header logo image


Page 21234..1020..»

Archive for the ‘Genetic medicine’ Category

Why are Rats Used in Medical Research? – MedicalResearch.com

Saturday, August 27th, 2022

26 Aug Why are Rats Used in Medical Research?

Rodents have long been the preferred species of animal to use in lab research, with experiments on the common brown rat starting around 150 years ago. While there are still many questions regarding the ethics of using live specimens for scientific experimentation, the achievements attributed to the use of rats are undeniable. But why are rats so important to human medicine, and what benefits do they hold over other species?

On top of all these benefits, rats offer more potential for genetic manipulation, which is why transgenic rats are often used in medical research rather than mice. The simple truth is that rats have a far wider range of effective uses in a large variety of research applications than their mouse counterparts.

The Advantages of Rats in Medical Research

The success found through experiments using lab rats is attributed to the amazing comparison in the physiological, anatomical, and genetic similarities found between rodents and humans. These similarities are key in being able to compare the results from rat experiments to the potential effects of the same treatment or condition in human beings.

Rats are also easier and cheaper to feed and house than other suitable creatures, such as primates, due to their smaller size, which also makes them easier to handle and transport too. Rats also reproduce rapidly and have relatively short reproduction cycles, making them readily available at all times. Since genetically sequencing the Brown Norway rat in 2004, it has been shown that most human genes that are linked to disease also have counterparts present in rats, which leads to a better understanding of diseases that afflict humans.

Rats are commonly used in many avenues of medical research, but one interesting study at the moment is helping researchers understand addiction in humans. Using rats, research has shown that addiction manifests differently in individuals and that compulsive narcotic-seeking efforts continue even in the face of adversity. Throughout this study, researchers were able to show, for the first time, that long-term exposure to narcotics altered the basolateral amygdala, an area of the brain that has been associated with the connection of stimulation and emotion. Using this same rat model, there has been a completely new path identified in the brain that connects an impulse with a habit.

Rats will continue to play a critical role in medical research for as long as there is research to be carried out and questions to be answered. The lab rat has helped mankind make numerous advances in the understanding and treatment of neural regeneration, diabetes, behavioral studies, cardiovascular medicine, wound healing, transplantation, and space motion sickness, and humanity owes many of our medical advancements to these understated champions of life.

The information on MedicalResearch.com is provided for educational purposes only, and is in no way intended to diagnose, cure, or treat any medical or other condition. Always seek the advice of your physician or other qualified health and ask your doctor any questions you may have regarding a medical condition. In addition to all other limitations and disclaimers in this agreement, service provider and its third party providers disclaim any liability or loss in connection with the content provided on this website.

4

See the original post here:
Why are Rats Used in Medical Research? - MedicalResearch.com

Read More...

The Columns Stepping Stones in STEM Washington and Lee University – The Columns

Saturday, August 27th, 2022

By Kelsey GoodwinAugust 22, 2022

Being able to see and experience the direct patient impact of this research has been incredibly rewarding, and further inspires me to pursue a career within the biomedical field.

~Bonner Kirkland 23

Name: Bonner Kirkland 23Hometown: Nashville, TennesseeMajor: Engineering Integrated with Biology

Q: What factors led you to choose W&L?I was immediately drawn to W&L by the strong sense of community on campus, as the honor system and speaking tradition reinforce a sense of trust and camaraderie among students and faculty. I was also drawn to the small class sizes, which Ive found to be extremely valuable to my learning process. I knew I wanted to pursue a science, technology, engineering and mathematics (STEM) major, and that being able to work in smaller groups of students closely alongside professors would greatly facilitate my ability to learn and develop skills that can be applied later in life. W&Ls strong alumni network was also very appealing to me, and the ability to connect with and seek career advice from alums is another valuable aspect of our community.

Q: Why did you choose your course of study?I knew I wanted to pursue a major within the STEM field when I arrived at college, but was undecided on what specific topics I was interested in. After taking Physics I in my first semester with Professor Irina Mazilu, I immediately fell in love with not only the subject matter, but also the Physics and Engineering Department. Each of the professors in this department genuinely care about their students growth, both in and outside of the classroom. They constantly volunteer their time to ensure students reach mastery of the difficult subject matter. My love for problem solving, math and science partnered with wonderful professors prompted me to pursue an engineering major. Ive thoroughly enjoyed the engineering coursework Ive taken which has exposed me to a variety of engineering topics, from electrical circuits to fluid mechanics.

The ability to integrate the engineering major with another science discipline in my case, biology enabled me to take a variety of biology courses in addition to engineering classes. Ive always wanted to pursue a career within the medical field, specifically biomedical engineering, so this major has allowed me to supplement my engineering skillset with biological knowledge that will help me in the future.

Q: How did you find out about this opportunity? Did anyone at W&L help?I briefly worked in the same lab through a program offered by my high school in 2018. Knowing I wanted to pursue a medical research position this summer, I reached out to my previous lab supervisor to see if he had any open positions for student research and he graciously welcomed me back into his lab. Because this is an unpaid position, this experience was made possible entirely through the generosity of W&L donors and summer funding opportunities, particularly the Johnson Opportunity Grant, Department of Physics and Engineerings supplemental summer funding, and Career and Professional Development funding. I am incredibly grateful for financial support from both the school and generous donors, allowing me to pursue this research position by offsetting the costs of living and working in Washington, D.C.

Q: What kind of work are you doing?This summer I conducted research in the Childrens National Hospitals Department of Genetic Medicine, where we are working on developing a quicker and more cost-effective method for determining abnormalities in amino acid concentrations in newborns. Traditional methods for evaluating amino acid concentrations in patients have been costly, timely and often require a large volume of sample. The method we are developing, on the other hand, requires a small sample and allows for the quick and proactive diagnosis of various genetic conditions in newborns marked by unique amino acid levels.

We are also working on a project to evaluate how glutathione, a combination of three amino acids, works to relieve cellular damage caused by oxidative stress in cells. Glutathione acts as an antioxidant defense against oxidative stress, preventing damage to the cells. This project will reveal how glutathione may work as an anti-aging mechanism that strengthens the immune system, detoxifies the body and eliminates carcinogens. All summer, I have been maintaining, growing, and plating HepG2 cells, then treating them with various concentrations of hydrogen peroxide to cause oxidative damage. Then I either pre- or post- treat these cells with gamma-glutamylcysteine a precursor amino acid to glutathione and analyze how this facilitates cell recovery. This work requires close attention to detail and sterile technique as to not contaminate the cells.

Q: What do you like most about it, and what has been most challenging so far?Having the opportunity to work with patient samples has definitely been a highlight of this internship. Recently, through use of this new method, researchers in the lab noticed that patients suffering from sickle cell anemia had low levels of citrulline, a critical amino acid which regulates vasodilation. These low levels of citrulline cause vasoconstriction and thus, we hypothesize chronic pain. After administering a dose of citrulline to several patients suffering from severe pain, they reported significantly reduced pain levels. The prospect of being able to use a naturally occurring amino acid rather than morphine to mitigate pain in these young patients is extremely valuable. Being able to see and experience the direct patient impact of this research has been incredibly rewarding, and further inspires me to pursue a career within the biomedical field.

I have also enjoyed being able to work on a project of my own, analyze the data and present my findings. The glutathione project Im currently working on has been challenging, confusing and frustrating at times, particularly when the data comes out differently than expected. However, it has taught me that research is rarely clean cut and perfect on the first try. It takes frequent repetition and minor tweaking of procedures to yield the desired results. Towards the end of the summer, I was able to present my results in our departments lab meeting, which was an exciting and meaningful experience. Sharing the culmination of my summers work with people working in different labs allowed me to gain more experience giving scientific presentations to people of different backgrounds.One of the most difficult elements of this research experience has been having to quickly familiarize myself with complex biochemistry and genetic topics. The majority of my coursework focuses on standard engineering classes and some biology classes, whereas this research is heavily based in chemistry. Becoming familiar with the different chemical and biological pathways involved in this project has definitely been a steep learning curve. However, I make up for my lack of prior chemistry coursework by reading relevant literature to the project and papers this lab has published in the past, as well as actively communicating any questions I have with my lab supervisor.

Q: Tell us about previous summer experiences youve had at W&L.Last summer, I worked as a compliance engineer intern for TVP Health, formerly known as The Ventilator Project. This nonprofit organization was founded in March 2020 in response to the COVID-19 pandemic with the mission of ensuring all people have access to quality medical care amid a global ventilator shortage. TVP Health developed a lower-cost ventilator, called AIRA, to combat this global issue. As a compliance engineer, I worked to ensure AIRA met various ISO medical device standards. This initial exposure to the medical device industry piqued my interest in the field and prompted me to consider a career path in biomedical engineering, as the intersection between engineering and direct patient impact is very important to me.

Q: How do you think your current summer experience and others youve had in the past, if applicable will impact your future career path?I have been interested in the sciences and problem solving for as long as I can remember, but my passion for integrating medicine with engineering began through my aforementioned internship with TVP Health. Last summers experience dealt with the more technical, regulatory side of the medical device industry, so I have really enjoyed this summers research, as it pertains more to the hands on, biological side of medical research. Gaining exposure to these two aspects of the industry will be incredibly formative in my future career endeavors.

My research experience at Childrens National Hospital immersed me in the field of biomedical research. I was given the opportunity to learn and practice sterile lab technique, the scientific method and the problem-solving methods used in the scientific world. This internship has also taught me the importance of communication with coworkers and superiors, as well as how to proactively avoid problems in a lab setting and think critically to respond in unfamiliar situations. After graduation, I hope to pursue a masters degree in biomedical engineering, and everything I have learned from my summer experiences will be incredibly valuable throughout graduate school and beyond.

I hope to focus my skillset on the medical device industry, particularly within the realm of womens health and medicine. Women are often underrepresented in clinical trials due to the complex, variable female hormone system. This can lead to women being misdiagnosed and prescribed the wrong medication, resulting in further health complications because women may react differently to a medication or medical device tested in a predominantly-male clinical trial. This injustice inspires me to develop female-centered medical devices and treatment methods, and I believe my current research opportunity is an early steppingstone to the field of medical research for me.

Q: Outside of your internship, what have you enjoyed the most about living and working in Washington D.C.?One of my favorite parts about Washington D.C. is the walkability of the city and the access to public spaces. In my free time, Ive loved going to Smithsonian museums, walking on the National Mall, going to the farmers market, and running in Rock Creek Park. I especially loved visiting the National Arboretum and seeing their current Ikebana exhibit. Ive learned that having access to quality outdoor spaces is something that is a very important factor to me when choosing a city to live in after graduation.

Q: What do you miss most about W&L when youre away for the summer?While being in a bigger city is exciting and lively, I definitely do miss W&L when Im away. Living on a small, welcoming and safe campus like ours is something I often take for granted during the academic year. The sense of community on campus is one of my favorite parts about being a W&L student. Having time away from school makes me grateful for aspects of our community like the honor system and speaking tradition, which unfortunately are not as prevalent in other places. I also miss the day-to-day interactions with people on campus, whether its grabbing lunch at Caf 77 with a friend or catching up with a professor between classes.

If you know any W&L students who would be great profile subjects, tell us about them! Nominate them for a web profile.

Follow this link:
The Columns Stepping Stones in STEM Washington and Lee University - The Columns

Read More...

Study points to new approach to clearing toxic waste from brain Washington University School of Medicine in St. Louis – Washington University School…

Saturday, August 27th, 2022

Visit the News Hub

Could aid efforts to find treatments for Alzheimers, other diseases

An extended form of the protein aquaporin 4 (red) lines the edges of tiny blood vessels in the brain. Cell nuclei are visible in blue. Researchers at Washington University School of Medicine in St. Louis have found a new druggable pathway that enhances the amount of long aquaporin 4 near blood vessels and increases the clearance of waste from the brain. The findings potentially could lead to new therapies to prevent Alzheimers dementia.

Researchers at Washington University School of Medicine in St. Louis have found a new druggable pathway that potentially could be used to help prevent Alzheimers dementia.

Amyloid beta accumulation in the brain is the first step in the development of Alzheimers dementia. Scientists have poured countless hours and millions of dollars into finding ways to clear amyloid away before cognitive symptoms arise, with largely disappointing results.

In this study, published Aug. 24 in the journal Brain, researchers found a way to increase clearance of waste products from the brains of mice by ramping up a genetic quirk known as readthrough. This same strategy also may be effective for other neurodegenerative diseases characterized by the buildup of toxic proteins, such as Parkinsons disease, the researchers said.

Every once in a while, the brain protein aquaporin 4 is synthesized with an extra little tail on the end. At first, Darshan Sapkota, PhD who led this study while a postdoctoral researcher at Washington University but is now an assistant professor of biological sciences at the University of Texas, Dallas thought this tail represented nothing more than an occasional failure of quality control in the protein-manufacturing process.

We were studying this very wonky basic science question How do proteins get made? and we noticed this funny thing, said senior author Joseph D. Dougherty, PhD, a Washington University professor of genetics and of psychiatry, and Sapkotas former mentor. Sometimes the protein-synthesizing machinery blew right through the stop sign at the end and made this extra bit on the end of aquaporin 4. At first, we thought it couldnt possibly be relevant. But then we looked at the gene sequence, and it was conserved across species. And it had this really striking pattern in the brain: It was only in structures that are important for waste clearance. So thats when we got excited.

Scientists already knew that the cells protein-building machinery occasionally fails to stop where it should. When the machinery doesnt stop a phenomenon known as readthrough it creates extended forms of proteins that sometimes function differently than the regular forms.

Sapkota and Dougherty created tools to see whether the long form of aquaporin 4 behaved differently in the brain than the regular form. They found the long form but not the short one in the so-called endfeet of astrocytes. Astrocytes are a kind of support cell that help maintain the barrier between the brain and the rest of the body. Their endfeet wrap around tiny blood vessels in the brain and help regulate blood flow. Astrocytic endfeet are the perfect place to be if your job is to keep the brain free of unwanted proteins by flushing waste out of the brain and into the bloodstream, where it can be carried away and disposed of.

Thinking that increasing the amount of long aquaporin 4 might increase waste clearance, Sapkota screened 2,560 compounds for the ability to increase readthrough of the aquaporin 4 gene. He found two: apigenin, a dietary flavone found in chamomile, parsley, onions and other edible plants; and sulphaquinoxaline, a veterinary antibiotic used in the meat and poultry industries.

Sapkota and Dougherty teamed up with Alzheimers researchers and co-authors John Cirrito, PhD, an associate professor of neurology, andCarla Yuede, PhD, an associate professor of psychiatry, of neurology and of neuroscience, to figure out the relationship between long aquaporin 4 and amyloid beta clearance.

The researchers studied mice genetically engineered to have high levels of amyloid in their brains. They treated the mice with apigenin; sulphaquinoxaline; an inert liquid; or a placebo compound that has no effect on readthrough. Mice treated with either apigenin or sulphaquinoxaline cleared amyloid beta significantly faster than those treated with either of the two inactive substances.

Theres a lot of data that says reducing amyloid levels by just 20% to 25% stops amyloid buildup, at least in mice, and the effects we saw were in that ballpark, Cirrito said. That tells me that this could be a novel approach to treating Alzheimers and other neurodegenerative diseases that involve protein aggregation in the brain. Theres nothing that says this process is specific for amyloid beta. It may be enhancing, say, alpha-synuclein clearance, too, which could benefit people with Parkinsons disease.

Sulphaquinoxaline is not safe for use in people. Apigenin is available as a dietary supplement, but its not known how much gets into the brain, and Cirrito cautions against consuming large amounts of apigenin in an attempt to stave off Alzheimers. The researchers are working on finding better drugs that influence the production of the long form of aquaporin 4, testing several derivatives of sulphaquinoxaline and additional compounds.

Were looking for something that could be quickly translated into the clinic, Sapkota said. Just knowing that its targetable at all by a drug is a helpful hint that theres going to be something out there we can use.

Sapkota D, Florian C, Doherty BM, White KM, Reardon KM, Ge X, Garbow JR, Yuede CM, Cirrito JR, Dougherty JD. Aqp4 stop codon readthrough facilitates amyloid- clearance from the brain. Brain. Aug. 24, 2022. DOI:10.1093/brain/awac199

This work was supported by the National Institute of Neurological Disorders and Stroke, grant number 1R01NS102272; the Mallinckrodt Institute of Radiology; the Hope Center for Neurological Disorders; the National Institute on Aging, grant numbers K99AG061231 and R01AG064902; Coins for Alzheimers Research Trust; and the Rotary Club International.

About Washington University School of Medicine

WashU Medicine is a global leader in academic medicine, including biomedical research, patient care and educational programs with 2,700 faculty. Its National Institutes of Health (NIH) research funding portfolio is the fourth largest among U.S. medical schools, has grown 54% in the last five years, and, together with institutional investment, WashU Medicine commits well over $1 billion annually to basic and clinical research innovation and training. Its faculty practice is consistently within the top five in the country, with more than 1,790 faculty physicians practicing at over 60 locations and who are also the medical staffs of Barnes-Jewish and St. Louis Childrens hospitals of BJC HealthCare. WashU Medicine has a storied history in MD/PhD training, recently dedicated $100 million to scholarships and curriculum renewal for its medical students, and is home to top-notch training programs in every medical subspecialty as well as physical therapy, occupational therapy, and audiology and communications sciences.

View original post here:
Study points to new approach to clearing toxic waste from brain Washington University School of Medicine in St. Louis - Washington University School...

Read More...

ALS Gene Therapy SynCav1 Found to Extend Survival in Mouse Model |… – ALS News Today

Saturday, August 27th, 2022

Treatment with gene therapy candidate SynCav1 delayed disease onset and extended survival in a mouse model ofamyotrophic lateral sclerosis(ALS), according to a new study.

The experimental therapy aims to improve the survival of motor neurons in people with ALS irrespective of the underlying cause.

These data suggest that SynCav1 might serve as a novel gene therapy for neurodegenerative conditions in ALS and other forms of central nervous system disease of unknown etiology [cause], the researchers wrote.

The study, Subpial delivery of adeno-associated virus 9-synapsin-caveolin-1 (AAV9-SynCav1) preserves motor neuron and neuromuscular junction morphology, motor function, delays disease onset, and extends survival in hSOD1G93A mice, was published inTheranostics.

Certain genetic mutations are known to cause ALS, and numerous research projects have explored whether gene therapies could be used to treat these cases for example, by delivering a healthy copy of a mutated gene to a persons cells.

While these approaches could address the underlying cause of disease in some patients, in the vast majority of ALS cases there is no known mutation. Therefore, this therapeutic strategy is unlikely to be beneficial for many patients.

The overall aim of SynCav1, meanwhile, is to help keep nerve cells healthier, regardless of the underlying disease cause.

SynCav1 is an experimental gene therapy designed to deliver a copy of the gene encoding Caveolin-1 (Cav-1) to nerve cells using a specifically engineered viral vector. Cav-1 is a cell membrane protein that is important for maintaining the health of nerve cells.

Increasing the production of Caveolin-1 specifically in nerve cells was found in a previous study to preserve motor function in animal models of ALS. It also significantly extended survival.

Delivering the experimental gene therapy via a viral vector also showed promise in preclinical models of Alzheimers.

Eikonoklastes Therapeutics acquired the license to SynCav1 earlier this year, with the company noting that the therapy had been found to delay neurodegeneration and cognitive deficits in an Alzheimers mouse model.

Now, an international team of scientists, including several stockholders and consultants at Eikonoklastes, tested SynCav1 in a mouse model of ALS caused by a mutation in the SOD1 gene. Mutations in this gene account for about 1220% of familial ALS cases and 12% of sporadic cases.

At eight weeks of age before symptom onset in this model the mice were given a single injection of SynCav1, administered via subpial delivery, or an injection through the spine and under the membrane that surrounds the spinal cord. Other mice were given sham surgery as a control.

In an initial set of experiments, the researchers tested several doses of the gene therapy, and determined that a dose of approximately 200 billion individual SynCav1 viral vectors could increase Cav-1 expression in the spinal cord by about fourfold.

The team then tested the therapeutic effect of this dosage. Disease onset, defined by the first sign of weight loss, occurred at around 1516 weeks of age, on average, in untreated mice. Treatment with SynCav1 delayed disease onset by about 15%, with an average onset age of 18 weeks.

SynCav1 treatment also extended average survival times by about 10%, from 162 days to 178 days in male mice and from 165 to 181 days in females. The treated mice performed better on standardized measures of motor function, and analyses of their spinal cords indicated that the treatment helped preserve nerve health as intended. It also preserved neuromuscular junctions, the site of communication between nerve and muscle cells.

Generally, similar results were seen in both male and female mice.

The researchers also conducted some similar tests using a rat model of ALS caused by mutations inSOD1. Results showed the therapy candidate improved rats grip strength, which provides further direct evidence of the therapeutic potential properties afforded by SynCav1 in a larger ALS animal model, the researchers wrote.

Notably, the team said that these results are comparable to findings from studies in rodent models testing therapies that directly targeted the mutated SOD1 gene. In combination with previous findings in Alzheimers models, the results broadly suggest that SynCav1 may have utility in treating neurological diseases even when the underlying cause is unclear.

Because the neuroprotective efficacy afforded by SynCav1 occurred independent of targeting the known toxic monogenic protein (i.e., mutant [SOD1]), these findings suggest that SynCav1 may serve as a novel gene therapy for other neurodegenerative conditions in addition to ALS and [Alzheimers disease], Brian Head, PhD, a professor at the University of San Diego School of Medicine and co-author of the study, said in a university press release.

However, it is essential for further studies to determine the effect of SynCav1 on disease progression at later stages of the disease, added Head, who invented the gene therapy technology and provided funding for this research.

More here:
ALS Gene Therapy SynCav1 Found to Extend Survival in Mouse Model |... - ALS News Today

Read More...

A New Kind of Chemo | The UCSB Current – The UCSB Current

Saturday, August 27th, 2022

Chemotherapy sucks. The treatments generally have awful side effects, and its no secret that the drugs involved are often toxic to the patient as well as their cancer. The idea is that, since cancers grow so quickly, chemotherapy will kill off the disease before its side effects kill the patient. Thats why scientists and doctors are constantly searching for more effective therapies.

A team led by researchers at UC Santa Barbara, and including collaborators from UC San Francisco and Baylor College of Medicine, has identified two compounds that are more potent and less toxic than current leukemia therapies. The molecules work in a different way than standard cancer treatments and could form the basis of an entirely new class of drugs. Whats more, the compounds are already used for treating other diseases, which drastically cuts the amount of red tape involved in tailoring them toward leukemia or even prescribing them off-label. The findings appear in the Journal of Medicinal Chemistry.

Our work on an enzyme that is mutated in leukemia patients has led to the discovery of an entirely new way of regulating this enzyme, as well as new molecules that are more effective and less toxic to human cells, said UC Santa Barbara Distinguished Professor Norbert Reich, the studys corresponding author.

The epigenome

Methyl group markers are one aspect of the epigenome that can turn off a gene.

Photo Credit: AV LENE MARTINSEN/ BIORENDER

All cells in your body contain the same DNA, or genome, but each one uses a different part of this blueprint based on what type of cell it is. This enables different cells to carry out their specialized functions while still using the same instruction manual; essentially, they just use different parts of the manual. The epigenome tells cells how to use these instructions. For instance, chemical markers determine which parts get read, dictating a cells actual fate.

A cells epigenome is copied and preserved by an enzyme (a type of protein) called DNMT1. This enzyme ensures, for example, that a dividing liver cell turns into two liver cells and not a brain cell.

However, even in adults, some cells do need to differentiate into different kinds of cells than they were before. For example, bone marrow stem cells are capable of forming all the different blood cell types, which dont reproduce on their own. This is controlled by another enzyme, DNMT3A.

This is all well and good until something goes wrong with DNMT3A, causing bone marrow to turn into abnormal blood cells. This is a primary event leading to various forms of leukemia, as well as other cancers.

Toxic treatments

Most cancer drugs are designed to selectively kill cancer cells while leaving healthy cells alone. But this is extremely challenging, which is why so many of them are extremely toxic. Current leukemia treatments, like Decitabine, bind to DNMT3A in a way that disables it, thereby slowing the progression of the disease. They do this by clogging up the enzymes active site (essentially, its business end) to prevent it from carrying out its function.

Unfortunately, DNMT3As active site is virtually identical to that of DNMT1, so the drug shuts down epigenetic regulation in all of the patients 30 to 40 trillion cells. This leads to one of the drug industrys biggest bottle necks: off-target toxicity.

Clogging a proteins active site is a straightforward way to take it offline. Thats why the active site is often the first place drug designers look when designing new drugs, Reich explained. However, about eight years ago he decided to investigate compounds that could bind to other sites in an effort to avoid off-target effects.

Working together

As the group was investigating DNMT3A, they noticed something peculiar. While most of these epigenetic-related enzymes work on their own, DNMT3A always formed complexes, either with itself or with partner proteins. These complexes can involve more than 60 different partners, and interestingly, they act as homing devices to direct DNMT3A to control particular genes.

Early work in the Reich lab, led by former graduate student Celeste Holz-Schietinger, showed that disrupting the complex through mutations did not interfere with its ability to add chemical markers to the DNA. However, the DNMT3A behaved differently when it was on its own or in a simple pair; it wasnt to stay on the DNA and mark one site after another, which is essential for its normal cellular function.

Around the same time, the New England Journal of Medicine ran a deep dive into the mutations present in leukemia patients. The authors of that study discovered that the most frequent mutations in acute myeloid leukemia patients are in the DNMT3A gene. Surprisingly, Holz-Schietinger had studied the exact same mutations. The team now had a direct link between DNMT3A and the epigenetic changes leading to acute myeloid leukemia.

Discovering a new treatment

Reich and his group became interested in identifying drugs that could interfere with the formation of DNMT3A complexes that occur in cancer cells. They obtained a chemical library containing 1,500 previously studied drugs and identified two that disrupt DNMT3A interactions with partner proteins (protein-protein inhibitors, or PPIs).

Whats more, these two drugs do not bind to the proteins active site, so they dont affect the DNMT1 at work in all of the bodys other cells. This selectivity is exactly what I was hoping to discover with the students on this project, Reich said.

Pyrazolone (compound 1) and pyridazine (compound 2) disrupt the activity of DNMT3A by binding to a non-active site on the enzyme.

Photo Credit: JONATHAN SANDOVAL ET AL.

These drugs are more than merely a potential breakthrough in leukemia treatment. They are a completely new class of drugs: protein-protein inhibitors that target a part of the enzyme away from its active site. An allosteric PPI has never been done before, at least not for an epigenetic drug target, Reich said. It really put a smile on my face when we got the result.

This achievement is no mean feat. Developing small molecules that disrupt protein-protein interactions has proven challenging, noted lead author Jonathan Sandoval of UC San Francisco, a former doctoral student in Reichs lab. These are the first reported inhibitors of DNMT3A that disrupt protein-protein interactions.

The two compounds the team identified have already been used clinically for other diseases. This eliminates a lot of cost, testing and bureaucracy involved in developing them into leukemia therapies. In fact, oncologists could prescribe these drugs to patients off label right now.

Building on success

Theres still more to understand about this new approach, though. The team wants to learn more about how protein-protein inhibitors affect DNMT3A complexes in healthy bone marrow cells. Reich is collaborating with UC Santa Barbara chemistry professor Tom Pettus and a joint doctoral student of theirs, Ivan Hernandez. We are making changes in the drugs to see if we can improve the selectivity and potency even more, Reich said.

Theres also more to learn about the drugs long-term effects. Because the compounds work directly on the enzymes, they might not change the underlying mutations causing the cancer. This caveat affects how doctors can use these drugs. One approach is that a patient would continue to receive low doses, Reich said. Alternatively, our approach could be used with other treatments, perhaps to bring the tumor burden down to a point where stopping treatment is an option.

Reich also admits the team has yet to learn what effect the PPIs have on bone marrow differentiation in the long term. Theyre curious if the drugs can elicit some type of cellular memory that could mitigate problems at the epigenetic or genetic level.

That said, Reich is buoyed by their discovery. By not targeting DNMT3As active site, we are already leagues beyond the currently used drug, Decitabine, which is definitely cytotoxic, he said, adding that this type of approach could be tailored to other cancers as well.

Read more:
A New Kind of Chemo | The UCSB Current - The UCSB Current

Read More...

Unraveling the mystery of who gets lung cancer and why – Genetic Literacy Project

Thursday, June 16th, 2022

Why do some heavy smokers never get lung cancer? And why do some people who never smoke get lung cancer? Answers are emerging for both of those questions. In both cases, much depends on our individual genetic make-up.

Lung cancer is the second most common cancer worldwide, accounting for2.2 million new cases and 1.8 million deaths in 2020. It is also the most commonly occurring cancer for which the major cause is both known and preventable. Yet there remain mysteries about causation of lung cancer. How do some heavy smokers manage to avoid lung cancer? And what accounts for the occurrence of lung cancer in people who have never smoked?

In a just-published study, researchers at the Albert Einstein College of Medicine in the Bronx have found that some smokers DNA appears to become accustomed to the cancer-causing agents in cigarettes. This may help prevent dangerous mutations that result in lung cancer.

The heaviest smokers did not have the highest mutation burden, lead study author Dr. Simon Spivack said in a statement. Our data suggests these individuals may have survived for so long in spite of their heavy smoking because they managed to suppress further mutation accumulation. This leveling off of mutations could stem from these people having very proficient systems for repairing DNA damage or detoxifying cigarette smoke.

While this explanation may account for one mystery, another remains: What about the hundreds of thousands of people throughout the world who get lung cancer every year but never so much as took a drag?

Cigarette smoking accounts for between 80 and 90 percent of lung cancer cases in the West. The vast majority of lung cancers in high-income countries could be prevented if all smokers gave up their habit. While this is not likely to happen, just noting this fact is a crucial starting point for any discussion of lung cancer.

The only other common non-skin cancer for which the predominant cause has been identified is cervical cancer, which is caused by the human papilloma virus (HPV), and which can be almost totally prevented by vaccination.

There are striking differences in the epidemiologic, clinical, and biological characteristics of lung cancer in different parts of the world. In the U.S., where nearly 240,000 cases of lung cancer are diagnosed each year and where there are 130,000 deaths annually from the disease, lung cancer rates are roughly comparable in men and women, and are decreasing in both sexes. In contrast, in China, lung cancer rates are increasing in both sexes, but are roughly twice as high in males compared to females.

While most lung cancer in the West is associated with smoking, worldwide, it has been estimated that 15 percent of men and 53 percent of all women with lung cancer worldwide are never smokers.

Lung cancer in never smokers (LCINS), which tends to be of the adenocarcinoma cell type, is found predominantly in women and in East Asians. In contrast, the most common cell types found in lung cancer occurring in smokers are squamous cell and small cell types.

When considered as a distinct disease entity, lung cancer in never smokers ranked as the 7th most common cause of cancer death and the 11th or 12th most common incident type of cancer.

For at least 40 years, we have tried to identify environmental risk factors that might explain the occurrence of lung cancer in people who have never smoked. Potential factors that have been studied include passive smoking; residential exposure to radon gas; exposure to cooking fumes from coal and other fuels (particularly, in low-income countries); general air pollution; pre-existing lung disease; hormonal/reproductive factors (that might help account for the more frequent occurrence in women who never smoked); and inherited susceptibility. Other potential risk factors include asbestos and oncogenic viruses.

Although numerous studies have examined these factors, they appear to have relatively weak effects and are unlikely to account for the majority of cases (here, here, and here).

A 2012 review of the epidemiology of lung cancer in never smokers concluded that, In any event, a large fraction of lung cancers occurring in never smokers cannot be definitively associated with established environmental risk factors, highlighting the need for additional epidemiologic research in this area.

If strong environmental risk factors that account for lung cancer in never smokers are lacking, research examining molecular markers and driver mutations has produced novel and potentially clinically actionable results. Current evidence indicates that LCINS is a distinct disease with unique molecular and genetic characteristics.

Cancer results from the binding of mutagens to the DNA of critical genes, including tumor suppressor genes, proto-oncogenes, and genes involved in DNA repair. If the damage is not repaired, the transformed cell can go on to produce a clone, which can go on to develop into a full-blown (i.e., clinical) cancer. Tobacco smoke contains more than 60 mutagens that bind to, and chemically modify, DNA, leaving a distinctive mutational imprint on the lung cancer genome.

However, identifying the specific mutations that account for the potent carcinogenic effect of smoking on lung cancer has proved a challenge. The recent study from Albert Einstein College of Medicine used a new method to identify mutations in the progenitor cells that give rise a cell type that is susceptible to lung cancer (basal lung epithelial cells).

The researchers examined normal lung tissue from 14 never smokers and 19 smokers. Only one of the former had lung cancer, whereas 13 of the latter had lung cancer. The number of mutations increased with age in both smokers and never smokers, and with increasing pack-years of smoking up to 23 pack-years among smokers, but with no further increase in heavy smokers. However, the one never smoker who developed lung cancer did not have more mutations in normal lung cells than the never smokers who were free of lung cancer.

Notably, the smokers who developed lung cancer did not have more mutations in their normal lung tissue than the smokers who did not develop lung cancer. Thus, it is not clear which mutations associated with smoking determine who goes on to develop lung cancer, or whether it is a matter of susceptibility factors or just bad luck.

Although smoking is a powerful risk factor for lung cancer, its also known that susceptibility genes also play a role in lung cancer, as well as in cancer generally. This is apparent from the fact that most smokers never develop lung cancer.

Its been long recognized that the pattern of lung cancer in Asia differs from that seen in the West. Smoking rates have been much lower in Asian women compared to Asian men, and women tend to develop the adenocarcinoma cell type, which occurs in the periphery of the lung, as opposed to squamous cell and small cell lung cancer, which occur in the main bronchi.

In the early 2000s it was noted that the response to treatment with epidermal growth factor receptor tyrosine kinase (EGFR-TK) inhibitors, such as gefitinib and erlotinib, among patients with non-small cell lung cancer (NSCLC) was markedly more effective in never smokers than in smokers. The benefit of treatment included statistically significant increased response rates, longer interval to progression, and/or longer median overall survival. This improved clinical response was most evident in patients from East Asia, in women, and in cases with the adenocarcinoma cell type.

Thus, lung cancer in smokers and that occurring in never smokers, particularly in East Asian women, appear to present two contrasting facets of lung cancer. In the first case, a potent carcinogen has been identified, but the precise way in which it causes cancer is unclear. In the second instance, a driver mutation which leads to cancer has been identified in a large proportion of cases, but evidence for environmental triggers is either weak or lacking. (A driver mutation is a genetic alteration that is responsible for both the initiation and progression of cancer).

Other research has identified a number of striking differences in genomic signatures and driver mutations between lung cancers occurring in smokers versus in those who have never smoked. For example, mutations in the tumor suppressor gene TP53 are more common in lung cancers in smokers than in LCINS. In addition, mutations in the KRAS oncogene are also common in lung cancers occurring in smokers but are rare in LCINS (43% vs. 0%). Conversely, EGFR mutations are common in LCINS but rare in lung cancer occurring in smokers (in one large study: 54% vs. 16%).

In addition, next generation sequencing studies indicate that the total number of mutations involving genes in protein coding regions was significantly higher in smokers than in never smokers (median 209 vs. 18). This represents a 90 percent lower incidence of mutations in never smokers.

The smaller number of genetic alterations identified in lung cancer in never smokers suggests that the majority, if not all, may play a role in the carcinogenic process. For this reason, it has been suggested that lung cancer in never smokers may provide a relatively enriched and easily identified set of oncogenic drivers for lung cancer.

The more frequent occurrence of EGFR mutations in LCINS has been found in different populations and geographic regions. The discovery of activating EGFR-TK mutations led to a number of randomized clinical trials comparing EGFR-TK inhibitors to chemotherapy in the front-line treatment of patients with EGFR-TK mutations. These trials have now established EGFR-TK inhibitors as the standard front-line treatment for patients with advanced-stage NSCLC that is positive for EGFR-TK mutation. Patients who harbor an EGFR-TK mutation have a 60% response rate to erlotinib (Tarceva).

Two researchers involved the treatment of LCINS concluded their review as follows, With the advances in sequencing technology and decreasing costs it is possible that, in the near future, advanced-stage LCINS may be primarily treated with molecularly targeted therapy, and it would be possible to achieve prolonged periods of disease control similar to the treatment of chronic myeloid leukemia (CML) and gastrointestinal stromal tumor (GIST).

In spite of these advances, it must be emphasized that the landscape of mutations in lung cancer is complex, and there is a tendency for these cancers to develop resistance to the first-line targeted therapy. For this reason, intensive work is focused on new targeted treatments, combinations of several agents, and use of immunotherapies in addition.

First, epidemiologic studies investigating low-level, hard-to-measure, or subtle exposures, such as environmental tobacco smoke, radon exposure, and asbestos should focus on validated lifetime non-smokers, since smoking is such a powerful risk factor for lung cancer. (The risk of lung cancer posed by smoking is much stronger than that posed by asbestos).

Because so little is known about the causes of LCINS, there may be a tendency to overstate the importance of associations with potential risk factors that have been studied, rather than acknowledge that the findings of these studies are unlikely to account for a large proportion of LCINS.

In regard to passive smoking, a French study that examined major mutations associated with lung cancer in never smokers and smokers found no clear association between passive smoke exposure and a smoker-like mutation profile in lifelong, never-smokers with lung cancer. They concluded that, Passive smoking alone appeared to be insufficient to determine a somatic profile in lung cancer.

Second, characterizing the common and divergent mechanisms of malignant transformation in lung cancer occurring among smokers and that in never smokers could contribute to a better understanding of the genomic changes underlying malignant transformation and progression. As one group of researchers wrote, The mutually exclusive nature of certain mutations is a strong argument in favor of separate genetic paths to cancer for ever smokers and never smokers.

Third, the difficulty of identifying major causal factors in LCINS reminds us, that for many cancers, in spite of fifty years of epidemiologic research, we still have not identified major causal factors (exposures) for many common cancers, which might lend themselves to prevention. This is true for colorectal cancer, breast cancer, pancreatic cancer, prostate cancer, brain cancer, leukemia, and others.

This, in turn, underscores how difficult it is to pinpoint external causes of cancers that in most cases take decades to develop. Smoking as a cause of lung cancer and human papillomavirus as a cause of cervical cancer are exceptions to be noted and appreciated.

That said, we are seeing that identifying driver mutations that give rise to a particular cancer can lead to the development of effective targeted therapies that can greatly extend survival. These therapies represent long-sought, dramatic progress in treating serious cancers. This progress is independent of identifying the causal factor responsible for the cancer.

Geoffrey Kabat is a cancer epidemiologist and the author of Hyping Health Risks: Environmental Hazards in Daily Life and the Science of Epidemiology and Getting Risk Right: Understanding Science of Elusive Health Risks. He has a long-standing interest in lung cancer and, particularly, lung cancer occurring in never smokers, and has published on risk factors associated with that condition, including passive smoking, hormonal factors, and body weight.

Read the original post:
Unraveling the mystery of who gets lung cancer and why - Genetic Literacy Project

Read More...

How diet and the microbiome affect colorectal cancer – EurekAlert

Thursday, June 16th, 2022

image:Jordan Kharofa, MD. view more

Credit: Photo/University of Cincinnati

While recommended screenings beginning at age 45 have helped decrease colorectal cancer cases in older adults, cancer rates are continuing to increase in younger populations.

Since 2009, the rate of new colorectal cancer diagnoses in patients under age 50 has increased by 2% each year.

"When I started practice and residency around 2010, Id uncommonly see patients who were less than 50 years old," said Jordan Kharofa, MD, associate professor in the Department of Radiation Oncology in the University of Cincinnatis College of Medicine, a University of Cincinnati Cancer Center member and a UC Health physician. "But more and more were seeing these patients in our clinics now to the point where it doesnt strike us as an exception to the rule."

The research is still unclear exactly what is causing increased cancer rates in young people, but Kharofa said one hypothesis is that patients diets and the bacteria in their gut are contributing factors. This led he and his colleagues to research the relationship between bacteria in the fecal microorganisms, or microbiome, and rates of colorectal cancer in younger populations.

Kharofa delivered a poster presentation on his findings at the recent American Society of Clinical Oncology annual meeting in Chicago.

The microbiome is a term used for the collection of microbes, including microorganisms like bacteria, that live on or in the human body. Kharofa said advances in DNA sequencing have allowed researchers to better characterize what species of bacteria are present in the microbiome, leading to a boom in research over the past 10 years.

In the past, wed have to culture specific bacteria and isolate them, and thats really complicated, he said. But now with the genetics and the cost of sequencing going down, we can quickly characterize what species are where and try to understand if they have implications for normal health and disease.

Kharofa said previous studies have shown that certain bacteria species present in the gut are associated with colorectal cancer. The research team then asked the question if these cancer-causing bacteria were elevated specifically in younger colorectal cancer patients compared to older patients and to healthy patients.

Kharofa collaborated with a team including Nicholas J. Ollberding, PhD, a Cincinnati Childrens Hospital Medical Center bioinformatician and associate professor in the UC Department of Pediatrics. Using genetic data from 11 previous studies, the team analyzed microbiome data from 609 patients who were healthy and 692 patients with colorectal cancer.

The research found two species of bacteria most closely associated with causing colorectal cancer were not found in higher levels among young patients, meaning these bacteria are unlikely to be responsible for increased cancer rates in young people.

Five other bacteria were found in higher levels in young people, including one species that is associated with a sulfur microbial diet, or a diet that is both high in processed meats, low-calorie drinks and liquor and low in raw fruits, vegetables and legumes.

Other epidemiologic studies without access to stool have revealed connections between a sulfur microbial diet and a higher increased risk of cancer in younger people, and Kharofa said this study is consistent with these previous findings.

Although these patients arent obese, there may be dietary patterns that happen early in life that enrich for certain bacteria such as this one, Kharofa said. Its not that what youre eating has carcinogens in them, but the byproducts produced during bacteria metabolism may lead to carcinogenic chemicals. Its possible that interactions between diet and the microbiome may mediate the formation of colorectal cancer cells and heightened risk in younger populations over the last several decades.

While more research is needed, Kharofa said a tangible takeaway from the study is for young people to eat more raw fruits and vegetables and legumes and less processed meats in their diets.

Theres still a lot we dont understand about how the diet influences the microbiome and how that might influence cancer, but this is a small sneak peek at something that might be going on, he said. Theres a lot of reasons to eat less processed foods and diets rich in raw fruits, vegetables and legumes, and this might be one more.

Kharofa said further research will look to learn more about the bacteria species that were found in higher levels in younger patients and how these species contribute both to the development of cancer and to the cancers response to treatment.

As the role of bacteria becomes clearer, there is also the potential for more advanced and tailored screening for younger patients.

Its really difficult to just screen everybody because the rates are pretty low in the entire population of individuals less than 45 years old, he said. But if you are able to profile the microbiome and maybe do targeted screening in some patients who had higher risk based on their stool, that might be a worthwhile investigation.

Even if a person is younger, Kharofa said anyone with symptoms should be evaluated by a doctor. Signs and symptoms of colorectal cancer include rectal bleeding or blood in the stool; persistent abdominal discomfort, including gas, bloating, fullness or cramps; diarrhea, constipation or feeling that the bowel does not fully empty; unknown weight loss; fatigue and vomiting.

Screening is for asymptomatic people, and anyone with symptoms needs to be evaluated, Kharofa said. We unfortunately see these patients presenting later at diagnosis because their symptoms were ignored. If youre young and you have symptoms, you need to be evaluated.

Other contributing authors to the research were Senu Apewokin, MD, associate professor in the UC College of Medicine, and Theresa Alenghat, PhD, member of Cincinnati Childrens Hospital Medical Centers Division of Immunobiology and an associate professor in the UC Department of Pediatrics.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Go here to see the original:
How diet and the microbiome affect colorectal cancer - EurekAlert

Read More...

Akouos Presents Nonclinical Data Supporting the Planned Clinical Development of AK-OTOF and Strategies for Regulated Gene Expression in the Inner Ear…

Friday, May 20th, 2022

Akouos, Inc.

- Nonclinical data demonstrate that a single intracochlear administration of an AAVAnc80 vector led to durable restoration of auditory function and was well tolerated, supporting planned clinical development of AK-OTOF for the treatment of OTOF-mediated hearing loss

- MicroRNA target site (miR-TS)-incorporation in AAV vectors is shown to have potential benefits for de-targeting transgene expression in the inner ear, supporting future development of gene therapies targeting a broad range of inner ear conditions

BOSTON, May 19, 2022 (GLOBE NEWSWIRE) -- Akouos, Inc. (NASDAQ: AKUS), a precision genetic medicine company dedicated to developing potential gene therapies for individuals living with disabling hearing loss worldwide, presented nonclinical data at the American Society of Gene and Cell Therapy (ASGCT) 25th Annual Meeting. The company gave two nonclinical presentations at the meeting: one that supports the planned clinical development of AK-OTOF, a gene therapy intended for the treatment of OTOF-mediated hearing loss; and another that supports the potential use of microRNA target site (miR-TS) in adeno-associated viral (AAV) vectors for regulated gene expression in the inner ear.

We are excited to present these nonclinical data, which highlight our precision genetic medicine platform and the potential of genetic medicines to address a broad range of inner ear conditions, to the gene and cell therapy community. The AK-OTOF nonclinical data demonstrate durable restoration of auditory function and show that the product candidate was systemically and locally well tolerated in two translationally relevant animal species, said Manny Simons, Ph.D., founder, president, and chief executive officer of Akouos. As we continue to progress toward planned IND submissions for AK-OTOF in the first half of 2022 and AK-antiVEGF in 2022, we are encouraged by the growing body of evidence supporting these filings, as well as by our efforts to advance preclinical development of other potential gene therapies for inner ear conditions, such as GJB2-mediated hearing loss, and to develop platform capabilities that can be applied to regenerative medicine approaches in the inner ear.

Story continues

Nonclinical In Vivo Expression, Durability of Effect, Biodistribution/Shedding, and Safety Evaluations Support Clinical Development of AK-OTOF (AAVAnc80-hOTOF Vector) for OTOF-mediated Hearing Loss Presenting Author: Ann E. Hickox, Ph.D.Session Title and Room: Ophthalmic and Auditory Diseases; Salon G

AK-OTOF is an AAV vector-based gene therapy intended for the treatment of patients with otoferlin gene (OTOF)-mediated hearing loss by delivering transgenes encoding OTOF to inner hair cells (IHCs). Following intracochlear delivery, and subsequent co-transduction of IHCs by each component vector, the two transgene products recombine to generate a full-length otoferlin mRNA transcript and subsequently a full-length otoferlin protein. Results from this presentation show:

Intracochlearadministration of AK-OTOF in otoferlin knockout (Otof-/-) mice, or its tagged version (AAVAnc80-FLAG.hOTOF) in non-human primates (NHPs), leads to full-length human otoferlin protein expression only in the target IHCs;human otoferlin expression in IHCs ofOfof-/-mice restores auditory functionas early as two weeks post-administration and restoration was durable through at least six months.

AK-OTOF was systemically and locally well tolerated in both mice and NHPs, and no adverse effects were observed inclinical pathology,oticpathology, systemic histopathology, or auditoryor cochlearfunction.

Limited systemic exposure of AK-OTOF following intracochlear administration was observed,and no otoferlin protein expression was detected in any non-target tissue types evaluated, including those with detectable levels of vector sequences and otoferlin mRNAexpression.

Together, these nonclinical studies further support the planned clinical development of AK-OTOF for the treatment of OTOF-mediated hearing loss.

The digital presentation is located at https://akouos.com/gene-therapy-resources/.

Evaluating miR-Target Sites as a Strategy to Allow AAV Vector-based De-targeting of Gene Expression in the Inner EarPresenting Author: Richard M. Churchill Jr.Poster Board Number: Tu-37

In the development of AAV gene therapy vectors, a goal is to generate safe and effective product candidates that deliver targeted transgene expression. Ubiquitous promoters can drive strong widespread expression in the inner ear in mice and NHPs. This expression can be well tolerated across the inner ear, as is the case for Akouoss first two programs, AK-OTOF and AK-antiVEGF. Addition of selective cis-regulatory elements may be needed for sometransgenes, such asGJB2,where expressionin a portion of nontarget cells is not welltolerated. This nonclinical study explored the potential use of miR-TS incorporation in AAV vectors for de-targeting transgene expression in different cell types of the cochlea. Using an in vitro model, expression of transgene mRNA and protein in the presence or absence of the target sites was evaluated. Akouosidentified multiplemicroRNA target sitesto drivevarious differential expression patterns demonstrating that a combination of AAVAnc80 andmiR-TScan driveexpression in supportingcells, while limiting expression in hair cells incochlear explants. Future work will focus on evaluating miR-TS regulation in vivo and identifying combinations of different miR-TSs to enhance de-targeting in specific cell types where, for example, expression driven by ubiquitous promoters is not well tolerated.

The digital presentation is located at https://akouos.com/gene-therapy-resources/.

About AkouosAkouos is a precision genetic medicine company dedicated to developing gene therapies with the potential to restore, improve, and preserve high-acuity physiologic hearing for individuals living with disabling hearing loss worldwide. Leveraging its precision genetic medicine platform that incorporates a proprietary adeno-associated viral (AAV) vector library and a novel delivery approach, Akouos is focused on developing precision therapies for forms of sensorineural hearing loss. Headquartered in Boston, Akouos was founded in 2016 by leaders in the fields of neurotology, genetics, inner ear drug delivery, and AAV gene therapy.

Forward-Looking StatementsStatements in this press release about future expectations, plans and prospects, as well as any other statements regarding matters that are not historical facts, may constitute forward-looking statements within the meaning of The Private Securities Litigation Reform Act of 1995. These statements include, but are not limited to, statements relating to the initiation, plans, and timing of our future clinical trials and our research and development programs, and the timing of our IND submissions for AK-OTOF and AK-antiVEGF. The words anticipate, believe, continue, could, estimate, expect, intend, may, plan, potential, predict, project, should, target, will, would, and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Actual results may differ materially from those indicated by such forward-looking statements as a result of various important factors, including: our limited operating history; uncertainties inherent in the development of product candidates, including the initiation and completion of nonclinical studies and clinical trials; whether results from nonclinical studies will be predictive of results or success of clinical trials; the timing of and our ability to submit applications for, and obtain and maintain regulatory approvals for, our product candidates; our expectations regarding our regulatory strategy; our ability to fund our operating expenses and capital expenditure requirements with our cash, cash equivalents, and marketable securities; the potential advantages of our product candidates; the rate and degree of market acceptance and clinical utility of our product candidates; our estimates regarding the potential addressable patient population for our product candidates; our commercialization, marketing, and manufacturing capabilities and strategy; our ability to obtain and maintain intellectual property protection for our product candidates; our ability to identify additional products, product candidates, or technologies with significant commercial potential that are consistent with our commercial objectives; the impact of government laws and regulations and any changes in such laws and regulations; risks related to competitive programs; the potential that our internal manufacturing capabilities and/or external manufacturing supply may experience delays; the impact of the COVID-19 pandemic on our business, results of operations, and financial condition; our ability to maintain and establish collaborations or obtain additional funding; and other factors discussed in the Risk Factors section of our Quarterly Report on Form 10-Q for the quarter ended March 31, 2022, which is on file with the Securities and Exchange Commission, and in other filings that Akouos may make with the Securities and Exchange Commission. Any forward-looking statements contained in this press release speak only as of the date hereof, and the Company expressly disclaims any obligation to update any forward-looking statement, whether as a result of new information, future events or otherwise.

Contacts

Media:Katie Engleman, 1ABkatie@1abmedia.com

Investors:Courtney Turiano, Stern Investor Relations Courtney.Turiano@sternir.com

Read more:
Akouos Presents Nonclinical Data Supporting the Planned Clinical Development of AK-OTOF and Strategies for Regulated Gene Expression in the Inner Ear...

Read More...

Money on the Move: SwanBio, Remix, Locus, Mirvie and More – BioSpace

Friday, May 20th, 2022

Investors are seeking out biotech companies that create unique technologies to solve problems. Recent money on the move saw funding support for a platform that selectively degrades DNA, software to help read mammograms and a company using corn genetics to develop cancer-targeting viruses.

SwanBio Therapeutics

Founding investors Syncona Limited and Mass General Brigham Ventures led a Series B financing round for SwanBio Therapeutics. Together, they raised $56 million, bringing SwanBios total funds raised to $133 million.

The new money will support the company as it evolves into a fully integrated research and development organization. A main priority is the clinical advancement of SBT101, the first clinical-stage AAV-based gene therapy candidate for the treatment of adrenomyeloneuropathy. The drug received a Fast Track designation and an Orphan Drug designation, and the U.S. Food and Drug Administration cleared an Investigational New Drug Application for the drug earlier in 2022.

In addition to SBT101, the funding will help develop other therapies for monogenic and polygenic disorders.

Locus Biosciences

North Carolina-based Locus Biosciences announced a $35 million financing, which included a Series B equity financing as well as the conversion of an earlier convertible note. The funding included investors such as Artis Ventures, Viking Global Investors, Discovery Innovations and Johnson and Johnson Innovation JJDC, Inc.

The funding will support Locus lead candidate LBP-EC01, a crPhage precision medicine targeting Escherichia coli (E. coli) bacteria. The company plans to advance the drug into a registrational Phase II/III trial. The funding will also support in-house manufacturing capabilities and the expansion of Locuss discovery platform engine.

Remix Therapeutics

A $70 million Series B financing will help Cambridge, Massachusetts-based Remix Therapeutics hone its proprietary technology platform. The platform uses data analytics to identify and reprogram RNA processing to enhance protein function, eliminate protein function or correct dysregulation in order to treat genetic diseases. Remix is collaborating with Janssen Pharmaceutica NV, part of Johnson & Johnsons Janssen Pharmaceutical Companies, to develop small-molecule therapeutics that modulate RNA processing.

The funding was led by existing investors such as Foresite Capital, Arch Venture Partners, Casdin Capital and Atlas Venture, as well as a new investor, Surveyor.

"This financing will support further development of our REMaster platform, which enables the design of molecules that can selectively degrade RNA, enhance RNA expression, induce exon skipping, or rescue genetic lesions, said Peter Smith, Ph.D., co-founder and CEO of Remix. This technology will transform how diseases are treated."

Mirvie

San Francisco-based Mirvie raised $60 million in a Series B round of funding, bringing its financing to a total of $90 million. The funding, led by Decheng Capital, included many venture capital firms, as well as a new investor: Allyson Felix, a seven-time Olympic gold medalist and maternal health advocate. Felix and her daughter survived severe preeclampsia, and now Felix is supporting Mirvies mission of understanding the underlying biology of each pregnancy to improve maternal health. The funding from the Series B will help Mirvie continue developing its RNA platform, which can predict preeclampsia months before patients experience life-threatening complications.

Vyriad, Inc.

In a Series B round of funding, Minnesota-based Vyriad pulled in $29.5 million. This brings the companys total raised funds to over $100 million, thanks to existing investors such as Mayo Clinic, Regeneron Pharmaceuticals and the Southeast Minnesota Capital Fund, as well as new investors such as Mr. Harry Stine of Stine Seed Farms. Stine Seed Farms develops corn and soybean seeds through genetic breeding programs.

I was amazed to learn that Vyriad's approach for developing safe, effective, cancer-targeted oncolytic viruses closely mirrors the Stine Seed model of high throughput screening, selection and commercialization of novel soybean and corn strains," said Dr. Stephen Russell, co-founder and CEO of Vyriad.

Privately held Vyriad will use the funds to advance its pipeline of oncolytic viruses that can be used, either alone or in combination with other therapies, to fight cancer, using the high-throughput genetics model that Stine used to develop agricultural germplasms.

Cynosure

Cynosures lead investor, Clayton, Dubilier & Rice, pledged $60 million in funding to help the company continue innovating and bringing medical aesthetics technologies to market. Cynosure has seen explosive growth recently, with sales growing over 45% in 2021 and over 30% year-over-year in the first quarter of 2022.

"Medical aesthetics is a large market with strong macro tailwinds that have only gotten stronger across the globe since our initial investment," said Derek Strum, a partner at Clayton, Dubilier & Rice. "We believe Cynosure is well-positioned to build on its momentum and capture both organic and inorganic growth opportunities."

Genascence

After a seed round of financing in 2019, clinical-stage biotech company Genascence closed a $10.5 million Series A financing. Pacira BioSciences, a leading non-opioid pain management company, led the funding with support from Polymerase Capital, the University of Florida Research Foundation and DeepWork Capital. The goal of the funding is to advance the companys gene therapies for musculoskeletal diseases. One of the priorities is to advance GNSC-001, the company's lead program in osteoarthritis. GNSC-001 is a genetic medicine called a recombinant adeno-associated vector and it has an inhibitor of interleukin-1, a key mediator in the pathogenesis of osteoarthritis.

Tubulis

Germany-based Tubulis completed a Series B financing worth 60 million (USD $63 million). The funding, led by Andera Partners, also involved new investors Evotec and Fund+. Tubulis develops antibody-drug conjugates (ADCs), and with the funding, the company hopes to advance its proprietary pipeline of ADCs towards clinical evaluation. Tubulis also plans to introduce programs addressing a range of solid tumor indications.

This funding emphasizes that Tubulis is uniquely positioned to consolidate the findings of the last 20 years in the ADC field and translate this understanding into meaningful therapeutic benefits for patients, said Dominik Schumacher, Ph.D., CEO and co-founder of Tubulis.

OMass Therapeutics

Several new investors joined OMass Therapeutics Series B financing to raise $100 million in total. Investors such as Sanofi Ventures, Northpond Ventures and GV joined veteran backers Oxford Science Enterprises, Oxford University and Syncona to gather funding for OMasss portfolio of highly validated target ecosystem medicines for membrane- and complex-bound proteins. Specifically, the funding will help the company develop an antagonist of the MC2 receptor to help treat congenital adrenal hyperplasia.

Curebase

San Francisco-based Curebase gathered $40 million in a Series B round of funding. Industry Ventures led the round, along with existing investors GGV Capital, Bold Capital and Xfund and new investors such as Acrew Capital, Positive Sum and World Innovation Lab. The round also included an investment from Gilead Sciences.

Since 2017, Curebase has raised $59 million to achieve its mission of democratizing access to clinical studies. The Series B funding will specifically go toward developing an end-to-end clinical trial execution model, furthering its eClinical software platform, honing its virtual and hybrid site capacities and enriching its capabilities for interventional drug sponsors and global studies.

InxMed

China-based InxMed completed a $15 million Series B+ financing. Funded by Hyfinity Investments, the financing will help the company accelerate clinical trials in China and the United States of its highly selective adenosine triphosphate competitive FAK inhibitor called IN10018.

IN10018 received a Fast Track Designation from the FDA in August 2021. With the Series B+ funds, InxMed will actively explore global partnership opportunities to accelerate more value inflections of IN10018 and other programs.

Aspen Neuroscience

Private autologous cell therapy company Aspen Neuroscience closed a Series B funding worth $147.5 million. GV, LYFE Capital and Revelation Partners co-led the round, along with support from new investors as well as some Series A and seed funding teams. Together, they have now raised more than $220 million for Aspen.

The goal of the funding is to support a patient Screening Cohort study and a Phase I/II post-IND submission study for ANPD001, which is designed to help treat Parkinsons disease.

Domain Therapeutics

Domain Therapeutics closed a $42 million Series A financing. Co-led by Panacea Venture, CTI Life Sciences and 3B Future Health Fund, the round also included several new investors and one existing investor, Seventure Partners.

Domain is a biopharmaceutical company developing new drug candidates targeting G Protein-Coupled Receptors (GPCRs), a class of drug targets. The funding will support the company as it clinically develops its EP4R antagonist, DT-9081, as well as advances two other CPCR programs and progresses its pipeline for first-in-class assets targeting GPCRs.

Invetx

In an oversubscribed Series B round of financing, Invetx raised $60.5 million. F-Prime Capital, Novo Holdings, GV and Eight Roads co-led the round with support from existing investors such as Anterra Capital and Casdin Capital.

Invetx, which develops protein-based therapeutics for animal health, will use the funds to advance its pipeline of monoclonal antibody products for chronic and serious diseases in dogs and cats.

With the support of several top-tier investors in this latest financing, Invetx is well-capitalized to continue advancing its novel veterinary products towards approval and commercialization, said Invetx CEO Juergen Horn, PhD.

Therapixel

When Therapixel closed its Series B financing, it had raised 15 M (USD$15.76 million). The funding was led by Crdit Mutuel Innovation and CapHorn along with support from existing investors such as Omnes, IT-Translation, M-Capital and Rgion Sud Investissement. With the investors financial backing, Therapixel will expand its presence in the U.S. and launch more features for its MammoScreen AI software for reading mammography.

Read the original here:
Money on the Move: SwanBio, Remix, Locus, Mirvie and More - BioSpace

Read More...

DiNAQOR Opens DiNAMIQS Subsidiary to Partner with Gene Therapy Companies Bringing New Treatments to Patients – PR Newswire

Friday, May 20th, 2022

DiNAQOR DiNAMIQS offers comprehensive range of biomanufacturing services,GMP-compatible process development, quality control and analytical development

ZURICH-SCHLIEREN, Switzerland, May 16, 2022 /PRNewswire/ --DiNAQOR announced today the launch of DiNAQOR DiNAMIQS, a biomanufacturing subsidiary, that will accelerate development timelines and reduce costs and risk for genetic medicine companies bringing new treatments to market.

DiNAQOR DiNAMIQS is based in the company's state-of-the-art, 1,200-square-meter (13,000 square feet) manufacturing facility in Bio-Technopark Schlieren-Zrich, the leading center for biotechnology companies in Central Europe. DiNAQOR's Chief Technology Officer, Eduard Ayuso, will serve as the CEO of DiNAQOR DiNAMIQS.

"We look forward to partnering with the world's leading gene therapy companies," said Johannes Holzmeister, M.D., Chairman and CEO of DiNAQOR."There are always challenges in the development process, and DiNAQOR DiNAMIQS is ideally suited to meet and overcome them. Manufacturing viral vectors at meaningful bioreactor scale and using GMP-compatible processes for preclinical studies will improve quality and safety while accelerating development timelines for genetic medicines."

DiNAQOR DiNAMIQS provides a comprehensive range of manufacturing services, process development, quality control and analytics solutions to support and accelerate gene therapy projects.

The DiNAMIQS platform employs innovative upstream and downstream processes and provides high-quality recombinant adeno-associated viral (AAV) vector manufacturing suitable for both in vitro and in vivo R&D applications up to 50L scale. Aligned with GMP regulations, the manufacturing protocol provides researchers with high quality vectors and minimal changes as projects progress toward clinical applications. DiNAMIQS is currently building a state-of-the-art GMP-compliant 2,400-square-meter (26,000 square feet) facility that can produce viral vectors at 500L scale.

DiNAQOR DiNAMIQS is also pioneering customizable, GMP-compatible process development that accelerates research and development efforts and is guided by a diagnostic procedure to determine relevant bioprocessing solutions. DiNAMIQS' process development expertise includes biomass expansion in bioreactor, large-scale transfection, harvest and clarification, ultrafiltration/diafiltration, affinity chromatography capture, ion exchange chromatography, preparative ultracentrifugation, desalting, dynamic dialysis, formulation, sterile filtration, automation assisted fill and finish.

Genetic medicinecompanies partnering with DiNAQOR DiNAMIQS will also use analytics that yield critical insights on viral vector potency, identity, and purity. DiNAMIQS in-house capabilities include digital PCR-based methods for titer quantification, ELISA, purity analyses, TCID50 infectivity assays and testing for bacterial endotoxins.

"Our state-of-the-art facility and stellar viral vector manufacturing team are prepared to help gene therapy developers bring their therapies efficiently to the clinic. I intend to bring my learnings from 20 years' experience in the field to our partners and provide them with high quality vectors. DiNAMIQS will shorten the time to market by closing the gaps between research grade vector supply, process development and GMP manufacturing," said Eduard Ayuso, CEO of DiNAQOR DiNAMIQS.

"Additionally, many promising gene therapy programs slow down when the costs associated with scaling up their manufacturing begin to mount. Our biomanufacturing expertise will enable these projects to move forward in a cost-effective way -- and do so quickly."

To learn more about DiNAQOR DiNAMIQS, visit http://www.dinamiqs.com.

About DiNAQORDiNAQOR is a life sciences platform company that is pioneering proprietary human-based tissue drug development and technology to enable organ-specific delivery of gene therapies and other therapeutics. The company is headquartered in Zurich-Schlieren, Switzerland, with additional presence in London, England; Hamburg, Germany; and Laguna Hills, California. For more information visit http://www.dinaqor.com.

Contact:KWM CommunicationsKellie Walsh914-315-6072[emailprotected]

SOURCE DiNAQOR

Excerpt from:
DiNAQOR Opens DiNAMIQS Subsidiary to Partner with Gene Therapy Companies Bringing New Treatments to Patients - PR Newswire

Read More...

Brain tumor growth may be halted with breast cancer drug – Medical News Today

Friday, May 20th, 2022

Sequencing the genome of cancer tumours is often used to help identify the type of cancer a person has and the best treatment for it.

Although cancer genomics has been used for a few years now, scientists are still learning about the best way to use genomic information to grade and categorize cancers.

One area that has received little attention until now is the methylation status of the cancer genome around specific genes. Methylation refers to the presence or absence of a methyl group on a base molecule within a gene that can affect whether or not a gene is expressed. This control of genetic expression is referred to as epigenetics.

Levels of expression of certain genes can also be affected by copy number variants (CNVs). CNVs arise because some sections of DNA are repeated, and the number of repeats varies between individuals due to deletions or duplications of DNA.

This leaves some people with many copies of a particular DNA sequence, whilst others have far fewer. These variations between individuals can be normal and harmless however, they can also underpin disease.

A type of brain cancer called meningioma is known for the diversity of CNVs that occur between the genomes of different tumors. CNVs can also affect methylation, which further affects gene expression.

In a study by researchers at Northwestern University in Evanston, IL, the scientists decided to look at both the level of methylation in the meningioma genomes and the number of repeats in different CNVs. They included certain genes in the cancer genome known to control growth and repair to see if this provided any insight into outcomes.

The findings are published in the journal Nature Genetics.

Using genomic data from 565 tumors taken from two cohorts of patients who had been followed up for 56 years, researchers profiled the DNA methylation of the cancer genomes. They then analyzed this alongside the presence of DNA repeats at certain points in the genome and also looked at the RNA present in the tumors to determine which genes had and hadnt been expressed.

They found that looking at the number of repeats within certain genes alone did not predict patient outcomes accurately, but looking at the number of repeats of genes alongside the level of methylation revealed three different grades of tumor.

Just over one-third of the tumors in the cohort were designated merlin intact meningiomas, where patients had the best outcomes. These tumors did not involve abnormal numbers of repeats on the gene that codes for a protein called merlin, which acts as a tumor suppressor. There was also normal methylation around this gene, allowing it to be expressed normally.

Conversely, 38% had immune-enriched meningiomas where patients had intermediate outcomes. These tumors were characterized by loss of the gene that codes for merlin and downregulation of other tumor-suppressing genes due to methylation.

This allowed them to overcome normal responses from the immune system.

A further 28% had hypermitotic meningiomas where the patient not only had fewer repeats of the gene that codes for merlin but a number of other gene repeats that caused either increased growth or decreased tumor suppression.

They also had methylation that allowed the increased expression of a gene known to promote cell growth. These patients had the least favorable outcomes.

Using this information, the researchers then tested the drug abemaciclib, a cancer drug already used for breast cancer, on tumor cells in cell lines, organoids, and xenografts in mice.

Results from these experiments indicated the drug could be used to treat individuals who had been identified as having either immune-enriched tumors or hypermitotic tumors.

Previously trials have failed to identify drugs that could reliably treat meningioma, but the identification of a biomarker could help identify patients who could benefit from certain treatments, said lead study author Dr. Stephen Magill.

Dr. Magill is an assistant professor of neurological surgery at Northwestern University Feinberg School of Medicine. He told Medical News Today in an interview: Some of our findings are really raising the possibility that the more we know about the biology, [the more] we can then say: this isnt just a meningioma, you have a hypermitotic meningioma.

So we can really use that as a biomarker to stratify who would go into a clinical trial.

Cancer researcher professor Noam Shomron from the Sackler Faculty of Medicine from Tel Aviv University, Israel, who was not involved in the research told Medical News Today:

I think its a wonderful study, because its so comprehensive, and it spans molecular and clinical findings and structural variations and methylation which is epigenetics [and something that] doesnt often take center stage.

See more here:
Brain tumor growth may be halted with breast cancer drug - Medical News Today

Read More...

LogicBio Therapeutics to Present at HC Wainwright Global Investment Conference – PR Newswire

Friday, May 20th, 2022

LEXINGTON, Mass., May 17, 2022 /PRNewswire/ -- LogicBio Therapeutics, Inc.(Nasdaq: LOGC), a clinical-stage genetic medicine company, today announced that president and chief executive officer,Frederic Chereau, will present a company overview at the H.C. Wainwright Global Investment Conferencebeing heldMay 23-26, 2022. The pre-recorded presentation will be available for on-demand viewing beginning at7:00 a.m. ETonTuesday, May 24, 2022.

A webcast of the presentation will be made available on the Investors section of the company's website athttps://investor.logicbio.com/. The webcast replay will be available for approximately 30 days.

AboutLogicBio Therapeutics

LogicBio Therapeuticsis a clinical-stage genetic medicine company pioneering genome editing and gene delivery platforms to address rare and serious diseases from infancy through adulthood. The company's genome editing platform, GeneRide, is a new approach to precise gene insertion harnessing a cell's natural DNA repair process potentially leading to durable therapeutic protein expression levels. The company's gene delivery platform, sAAVy, is an adeno-associated virus (AAV) capsid engineering platform designed to optimize gene delivery for treatments in a broad range of indications and tissues. The company's proprietary system, mAAVRx, aims to overcome some of the current limitations of AAV manufacturing by optimizing the transfection process to improve yields and product quality. The company is based inLexington, MA.For more information, visitwww.logicbio.com, which does not form a part of this release.

Investor Contacts: Stephen Jasper Gilmartin Group 858-525-2047 [emailprotected]

Media Contacts: Adam Daley Berry & Company Public Relations W:212-253-8881 C: 614-580-2048 [emailprotected]

SOURCE LogicBio Therapeutics, Inc.

Read the original post:
LogicBio Therapeutics to Present at HC Wainwright Global Investment Conference - PR Newswire

Read More...

Genascence Announces Data From Phase 1 Clinical Trial on GNSC-001, Company’s Lead Program in Osteoarthritis, Presented at American Society of Gene…

Friday, May 20th, 2022

Additional safety data, including 12-month follow-up on all subjects, demonstrated GNSC-001 is safe and well tolerated

Injection of GNSC-001 was associated with increased synovial concentrations of IL-1Ra and improved pain and function scores

Osteoarthritis affects more than 30 million Americans, and is leading cause of disability

PALO ALTO, Calif., May 17, 2022 /PRNewswire/ -- Genascence Corporation ("Genascence"), a clinical-stage biotechnology company revolutionizing the treatment of prevalent musculoskeletal diseases with gene therapy, today announced that additional safety data from the Phase 1 clinical trial of GNSC-001 for the treatment of osteoarthritis (OA), including 12-month follow-up on all subjects, demonstrated that it was safe and well tolerated. These data will be delivered in a poster presentation today at the American Society of Gene & Cell Therapy's (ASGCT) 25th Annual Meeting being held virtually and in-person May 16-19, 2022, in Washington, D.C.

Genascence Corporation (PRNewsfoto/Genascence)

GNSC-001 is the company's lead program in OA. GNSC-001 is a genetic medicine a recombinant adeno-associated vector (AAV) carrying a coding sequence for interleukin-1 receptor antagonist (IL-1Ra), a potent inhibitor of interleukin-1 (IL-1) signaling. IL-1 is considered one of the key mediators involved in the pathogenesis of OA, causing inflammation as well as cartilage destruction. GNSC-001 is designed to offer long-term, sustained inhibition of IL-1 following a single injection into the affected joint.

"Osteoarthritis is incapacitating, causing years of pain and disability for people living with the disease. Further, patients have limited treatment options, and nothing is currently available that is able to slow down progression of OA," said Thomas Chalberg, Ph.D., founder and CEO of Genascence. "We are excited by these findings as they demonstrate the initial safety of GNSC-001 and provide encouraging data to pursue GNSC-001 as a novel treatment for OA patients. We look forward to advancing the clinical program for GNSC-001 so that we can deliver transformative results for patients suffering from this disabling disease."

Story continues

Title: A Phase I Trial of Osteoarthritis Gene Therapy (NCT02790723)Date: May 17, 2022 5:30-6:30 PM ETSession: Gene and Cell Therapy Trials in ProgressAbstract Number: 799Location: Walter E. Washington Convention Center, Hall DPresenter: Christopher H. Evans, Ph.D.

In this investigator-sponsored Phase 1 single-arm, open-label, dose-escalation clinical trial of GNSC-001, a total of nine subjects with knee OA were enrolled and monitored for one year. Three subjects were treated in each of three cohorts, receiving either 1x1011 vg, 1x1012 vg, or 1x1013 vg GNSC-001 delivered by intra-articular injection. The primary endpoint is safety and tolerability. Additional measures include levels of circulating viral genomes, immune response to the vector, blood and urine analysis, and physical examination. Although the study was not powered for efficacy and had no control group, patients reported pain via VAS (0-10) and pain and function via WOMAC. Knee joints were imaged by X-ray and MRI upon study entry and after one year.

Results showed that intra-articular injection of GNSC-001 produced no severe adverse events; blood chemistries and hematologies remained normal during the 12-month follow-up period with no evidence of neutropenia. There were no vector-related adverse events in eight of the nine subjects; one subject experienced a mild/moderate knee effusion following injection which resolved with ice and rest. Clinical trial participants developed various degrees of anti-AAV neutralizing antibodies after injection of GNSC-001, as seen in preclinical studies. Small amounts of viral genomes were found in peripheral blood, beginning one day after injection and clearing within four weeks. Injection of GNSC-001 was associated with increased concentrations of IL-1Ra in synovial fluid, which remained elevated after 12 months of follow up. Pain and function scores improved following injection of GNSC-001.

"These additional data from the Phase 1 trial of GNSC-001 in patients with osteoarthritis showed that it safe and well tolerated including after one year," said Dr. Evans. "These results are encouraging as we believe this therapy has the potential to reduce structural disease progression in osteoarthritis patients."

The study was supported by funding from the U.S. Department of Defense Peer Reviewed Medical Research Program (PRMRP). More information is available at https://clinicaltrials.gov/ct2/show/NCT02790723.

Abstracts can be accessed via the conference website at annualmeeting.asgct.org.

About Osteoarthritis (OA) of the Knee

Osteoarthritis (OA), or degenerative joint disease, is the leading cause of disability. It is characterized by destruction of cartilage and structural changes in bone within the joint, which contribute to pain and loss of joint function. Osteoarthritis affects more than 30 million Americans and is increasing as a result of the aging population and increasing prevalence of obesity. Osteoarthritis represents a major economic burden, owing to direct medical costs and loss of productivity. Each year, millions of patients are treated for knee OA with NSAIDs, opioids, and steroid injections into the knee to manage their knee pain. There are no currently available therapies known to alter or slow down OA progression.

About Genascence Corporation

Genascence, a clinical-stage biotechnology company revolutionizing the treatment of prevalent musculoskeletal diseases with gene therapy, is developing life-changing treatments for highly prevalent conditions affecting millions of people. The company was founded in 2017 with technology licensed from three leading U.S. research institutions: Mayo Clinic, University of Florida, and NYU Langone Health. Headquartered in Palo Alto, California, Genascence's founders and leadership team have deep experience in the design, development, and manufacturing of successful gene therapies and biological medicines. For more information, please visit http://www.genascence.com.

Cision

View original content to download multimedia:https://www.prnewswire.com/news-releases/genascence-announces-data-from-phase-1-clinical-trial-on-gnsc-001-companys-lead-program-in-osteoarthritis-presented-at-american-society-of-gene--cell-therapy-25th-annual-meeting-301548456.html

SOURCE Genascence

See the rest here:
Genascence Announces Data From Phase 1 Clinical Trial on GNSC-001, Company's Lead Program in Osteoarthritis, Presented at American Society of Gene...

Read More...

Encoded Therapeutics Presents Nonclinical Data Showing Genomic Medicine Platform Yields Selective Expression to Optimize Gene Therapy Performance at…

Friday, May 20th, 2022

Multiple adaptable DNA sequence-encoded human genetic elements are modality-agnostic and can be combined to customize expression profiles to optimize therapeutic approaches in and beyond the brain

SOUTH SAN FRANCISCO, Calif., May 18, 2022--(BUSINESS WIRE)--Encoded Therapeutics announced nonclinical data being presented today at the American Society for Cell and Gene Therapy 25th Annual Meeting showing how its proprietary human genomic regulatory element (RE) engineering platform has been used to develop cell-selective expression vectors for targeted gene therapy. The company efficiently discovered a spectrum of sequence-encoded genetic elements, including enhancers, promoters and UTR elements, that drive selective expression profiles in mice. These REs function within the size constraints and episomal architecture of adeno-associated viruses (AAVs) and are compatible with multiple capsids and gene delivery systems.

"By combining human genomic regulatory elements to customize expression profiles and minimize off-target effects, we aim to improve the safety and efficacy of gene therapies for a broad range of monogenic and non-monogenic diseases in the future," said Encoded CEO Kartik Ramamoorthi, Ph.D. "Our regulatory elements engineering approach increases cell-selective expression, reducing toxicity concerns in tissues like the liver. The data were sharing today at ASGCT are exemplary of the Encoded platforms ability to achieve appropriately targeted transgene expression across many other central nervous system (CNS) cell types, like dorsal root ganglia (DRG) neurons, as well as non-CNS cell types."

Using Encoded's genomic medicine platform, researchers applied both expression-based functional screening and computational modeling to simultaneously test thousands of genomic elements in vivo. They uncovered sequence elements that selectively decrease liver expression while maintaining CNS expression in mice. Additionally, the research team constructed predictive models to rapidly and iteratively continue to improve the discovery rate and distribution of activity profiles, resulting in further reduction of liver expression in mice, with unchanged expression in the brain.

Story continues

Click here for the abstract of Encodeds ASGCT presentation, "Optimized Human Regulatory Sequences Achieve Targeted Expression in CNS and Decreased Liver Expression in Mice."

About Encoded Therapeutics

Encoded Therapeutics is creating one-time, disease-modifying gene therapies for pediatric central nervous system (CNS) disorders with its cell-selective targeting and regulation platform. The Encoded approach offers unprecedented gene specificity and cell selectivity to unlock novel opportunities by targeting a range of disease mechanisms. Encodeds technology is compatible with any delivery system to control where and when therapeutic transgenes are expressed, thereby shaping the functionality of target cells and holding broader therapeutic potential beyond CNS disorders. For more information, please visit http://www.encoded.com, and follow us on LinkedIn, Twitter @EncodedTx and YouTube.

View source version on businesswire.com: https://www.businesswire.com/news/home/20220518005469/en/

Contacts

Lynnea Olivarezlolivarez@encoded.com 956-330-1917

See the original post:
Encoded Therapeutics Presents Nonclinical Data Showing Genomic Medicine Platform Yields Selective Expression to Optimize Gene Therapy Performance at...

Read More...

Researchers Identify Role of ‘Sonic the Hedgehog’ Gene in Bone Repair – BioSpace

Friday, May 20th, 2022

Dominik Magdziak Photography/Getty Images

The technological revolution that followed the Human Genome project is arguably the greatest thing to happen to medicine since penicillin. Since the project, new ways are developed daily to deeply investigate what is already known, including genetic mechanisms.

Immersed in one of these investigations is Ph.D. candidate Maxwell Serowoky working within the University of South Carolinas Stem Cell laboratory of Francesca Mariani, Ph.D. Serowoky observed an increase in Sonic Hedgehog (Shh) gene activity during rib bone recovery, expanding the genes function beyond the known role of embryogenesis. The findings were published this week in NPJ Regenerative Medicine.

The research team ran with Serowokys observation. After finding the increase in Shh expression, hypothesis testing with mouse models began. A 3 mm rib bone resection procedure was performed on the subjects. Over the course of 28 days post-resection, the researchers observed the progression of cartilage callus formation over the bone gap. This callus indicates bone recovery and regrowth, a trait seen in humans and mice. Over time, this cartilage converts to bone.

During the resection procedures, Shh activity was observed, quantified and compared to non-injured mice. The non-injured mice expressed Shh at low levels in only the bone marrow. In the experimentally injured mice, Shh was seen at high levels in mesenchymal cells near the resection on day three. The increase in Shh was also seen in neighboring skeletal muscle tissues and periosteal tissues. The increased expression levels peaked and waned at five days post-resection. Five days of Shh upregulation is hypothesized to be directly linked to the formation of the cartilage callus.

Additional data was collected as the researchers harvested and analyzed the rib tissue surrounding the resected region. Here, it was determined that the number of mesenchymal cells that were expressing high levels of Shh reached approximately 94% on day five. Shh expression was seen at lower levels in tissues slightly farther from the surgical site but remained detectable.

The researchers were able to examine the progression of healing through Safranin-O staining and H&E staining, ideal processes for examining tissues and cartilage. After staining, the regions were measured to determine the progression of healing between day 7 and day 28. This data was used alongside Shh expression quantification to support the overall conclusion: Shh upregulation is required for the formation of the cartridge callus that goes on to regenerate bone after injuries.

When scientists identified the Sonic Hedgehog gene, named after a hedgehog variation, much like the Indian hedgehog and moonrat hedgehog genes discovered prior, they couldnt have understood the importance of the video-game namesake. The initial observation of Shh in fruit flies revealed the genes role in embryogenesis, but over forty years elapsed before the genes capabilities were expounded upon. In 2018, stimulation of the Shh pathway was seen to trigger hair regrowth. Abnormal activity of the pathway may play a role in tumor cell aggression, according to St. Jude Childrens Hospital in 2016. What could the next forty years hold?

Read more from the original source:
Researchers Identify Role of 'Sonic the Hedgehog' Gene in Bone Repair - BioSpace

Read More...

California, Other States to Cover Rapid WGS of Newborns Under Medicaid, but Questions of Access Loom – GenomeWeb

Friday, May 20th, 2022

NEW YORK California, the nation's most populous state, recently began coveringrapid diagnostic whole-genome sequencing (rWGS) for sick infants under Medicaid. The decision, in theory, should make the test more widely available, leading to faster diagnoses, better medical decisions, and lower healthcare costs in many cases.

On Jan. 1, a provision of a state budget bill from 2021 kicked in, expanding Medi-Cal benefits to include rWGS for beneficiaries under 12 months old who are receiving inpatient hospital services in an intensive care unit.

California is one of at least five states that now proclaim to cover that form of diagnostic testing as part of their health programs for low-income residents, expanding access to tens even hundreds of thousands of babies. Michigan was the first to do so in September of last year, while Oregon and Maryland joined California in offering coverage beginning Jan. 1 and Minnesota startedcoverage April 4. The states are following private payor Blue Shield of California, which has covered rWGS for critically ill newborns since June 2020.

Support for this policy from state governments comes as studies are providing more evidence that rWGS can improve medical care often abbreviating the so-called diagnostic odyssey and can even save money. Data from SeqFirst, a study of rWGS with broad inclusion criteria, have echoed the diagnostic yield of around 40 percent seen in Project Baby Bear, a pilot study funded by the state of California. In addition, cost analyses of providing rWGS to children older than one year suggest there are savings to be found in those cases, too.

"Genomic sequencing should more often be the first DNA test that is sent [out], and rapid WGS should be the standard of care when a child is hospitalized," said Erica Sanford Kobayashi, a pediatrician at Cedars-Sinai in Los Angeles who worked on Project Baby Bear while at Rady Children's Hospital in San Diego. And the faster, the better: Results should ideally be delivered within three days, she said, with no cost savings associated with 14-day turnaround.

Whether children will actually receive this diagnostic testing remains to be seen. "Anecdotally, [NICU doctors] are having a hard time ordering these tests," said Paul Kruszka, chief medical officer at GeneDx, a genetic testing company recently acquired by Sema4 that offers rWGS services, and an investigator on the SeqFirst study. Many doctors without clinical genetics training are simply not comfortable doing so, he said, noting that identifying patients, managing consent, and interpreting and delivering results are key challenges.

Moreover, byzantine medical billing rules mean that hospitals in California and potentially elsewhere may not be able to access the funding theoretically available for rWGS in the NICU under Medicaid.

California led the way in studying the potential benefits of sequencing the genomes of inexplicably ill newborns when it launched Project Baby Bear in 2018, providing $2 million for a pilot study in collaboration with Rady Children's Hospital and several other sites. Other states, including Michigan and Florida with Projects Baby Deer and Manatee, respectively, have run their own pilot programs.

Baby Bear showed that sequencing the genomes of 178 parent-child trios resulted in 76 infants receiving diagnoses 35 of them rare conditions that occur in less than one in a million births. Of those, 55 saw a change in treatment or management, resulting in a combined 513 fewer hospital days, 11 fewer major surgeries, and a reduced testing burden that alone saved an estimated $300,000. Other costs were reduced by approximately $2.5 million, mostly attributable to shorter hospital stays, according to Sanford Kobayashi.

In a study of cost-effectiveness of rWGS published in January in Frontiers in Pediatrics, she wrote that trio sequencing costs approximately $7,500, including interpretation. However, the figure is "an average of total costs from previous cases sequenced at Rady," the authors noted.

Rady provides rWGS testing for itself and about 80 other hospitals, charging around $8,000 to $9,000 for sequencing and interpretation. "We have a bespoke, extremely rapid test," said Stephen Kingsmore, director of the Rady Children's Institute of Genomic Medicine and a champion for rWGS in pediatrics. "It can be done for less, but it's the difference between a Rolls-Royce and a Ford Fiesta."

Other state "baby animal" programs saw comparable results. Baby Manatee, led by Nicklaus Children's Hospital in Miami in collaboration with Rady Children's, enrolled and sequenced the genomes of 50 patients, leading to 20 diagnoses (diagnostic yield of 40 percent) and a change in care for 19 patients, or 38 percent. The estimated savings were more than $3.8 million a $2.9 million return on investment, according to the final report.

For the 89 children in the Baby Deer study, 35 received a diagnosis (39 percent yield) with 24 (27 percent) receiving a change in management. At least 95 hospital days were avoided, contributing to total savings of $252,938.

In general, across 12 studies looking at the impact of rWGS on care of critically ill newborns, the diagnostic rate was 35 percent, with up to 77 percent of those patients receiving a change in management, Sanford Kobayashi said at a presentation in February at the Molecular Tri-Con meeting in San Diego.

The specific Medicaid benefits available for rapid diagnostic genome sequencing in infants and the ordering criteria vary by state. For example, in Michigan, rWGS requires prior authorization and isn't covered when the patient has an infection, trauma, or a confirmed pre- or postnatal genetic diagnosis, among other reasons. The state covers $6,278 in costs for rWGS testing specifically from Rady Children's, or $4,165 for the more general procedure of WGS billed under current procedural terminology (CPT) code 81425, "Genome (e.g., unexplained constitutional or heritable disorder or syndrome); sequence analysis" and $2,243 for CPT 81426, the code for comparator genomes, such as the parents. The state also covers genetic counseling. For fiscal year 2019, Medicaid covered approximately 46 percent of the 109,000 total births in Michigan.

Maryland also requires prior authorization and reimburses $3,999.80 for CPT 81425 and $2,154.40 for CPT 81426, according to data provided by Illumina. In 2020, the state had 68,554 newborns, of which nearly 40 percent were covered by Medicaid.

Minnesota requires an evaluation by a medical geneticist "or other physician subspecialist with expertise in the conditions or genetic disorder for which the testing is being considered," a spokesperson for the state's Department of Human Services said in an email.

Oregon, which already covered whole-exome sequencing under Medicaid for children under 18, may also cover rWGS for children over the age of 1 "if, based on individual consideration by the plan, the test will benefit the patient in terms of growth, development, or ability to participate in school," Philip Schmidt, a spokesperson for the Oregon Health Authority, said in an email. Data provided by the state showed that the Oregon Health Plan covered 53 WES tests during 2020. No data were available yet on rWGS coverage.

While California budget acts are only law for one year, the coverage expansion was included in a budget trailer bill, according to Nannette Miranda, director of communications for Assemblymember Phil Ting, D-San Francisco, chair of the budget committee. "Trailer bills become permanent law, just like regular bills," she said. Rady Children's hired lobbyist John Valencia to help get rWGS covered, she noted. The state's 2021-2022 budget provided $6 million to cover such testing, although it is not clear how much, if any, has been used. The state estimates that Medi-Cal covers around four in 10 children, and in 2020, the state had approximately 420,000 births.

In both Oregon and Maryland, San Diego-based Illumina helped precipitate the coverage decisions. Minutes from a Nov. 18, 2021, virtual meeting of Oregon's Health Evidence Review Commission, which makes coverage policy decisions for new treatments or procedures for the Oregon Health Plan, noted that "recently, Illumina contacted HERC staff to request a review of coverage of WGS." HERC had last considered the test in 2014. Illumina Senior Medical Director for the Americas John Fox, a veteran of Project Baby Deer, also testified at the meeting.

"Both Illumina and many supportive providers wrote the state [of Maryland] asking them to expand coverage for this important innovation," Illumina Senior Director of Communications Adi Raval said in an email. "We are grateful to the state for its action in a year of significant evolution, with COVID and other issues demanding their limited time."

Illumina's market access teams are pushing to get rWGS covered in other states, including Iowa and Ohio, as well as in other countries. "What we found is, if Illumina does not take the lead, it's very hard to accelerate adoption in the marketplace," said Ammar Qadan, Illumina VP of global market access.

Aside from the state-funded studies, other results are supporting the expanded use of sequencing in newborn care. At the American College of Medical Genetics and Genomics annual meeting in March, researchers from the SeqFirst study which received donated sequencing reagents from Illumina presented data suggesting that more than half of the 125 study participants received an abnormal result that led to an explanatory, or at least partially explanatory, diagnosis.

"Two-thirds were suspected of having a genetic disorder, but one-third were not," said Mike Bamshad, chief of genetic medicine in the pediatrics department at the University of Washington and Seattle Children's Hospital, and principal investigator on SeqFirst. Of that one-third, nearly all (93 percent) saw a change in management.

The premise of the SeqFirst study is to improve access to precision genetic diagnostics. There are only a few reasons not to do sequencing, GeneDx's Kruszka suggested. For the study, children are only excluded if their illness can be explained by infection, trauma, or prematurity.

The researchers had hypothesized that by expanding enrollment, the diagnostic yield would drop, potentially by as much as 50 percent. "So we were impressed that our explanatory rate remained up around 50 percent," Bamshad said.

"These are results that scream to me 'we need to look at a much larger population of kids,'" he said. "Clearly, this strategy does exactly what it's intended to do."

SeqFirst, through GeneDx, was able to deliver verbal results in an average of five days, Kruszka said. But according to Sanford Kobayashi, results need to come back more quickly to yield the full benefit of testing.

"Project Baby Bear showed that savings are influenced by test turnaround time," she said. The best outcomes come when results are back in three days or less, she added. "If you want to have the biggest impact, it does have to be that fast."

While ultra-rapid sequencing in the NICU may yield the most medical and economic benefits, "diagnosis is beneficial at any stage in life," Sanford Kobayashi said. Her new research is focused on using rWGS in the pediatric intensive care unit, which admits older children.

"All the kids born 10 years ago with maybe long QT syndrome or cardiomyopathy, they're still showing up to the PICU," she said. "Until we catch up and start sequencing everybody earlier, there are still going to be years where it would be useful to apply it to older children."

In the cost-effectiveness study published in January, Sanford Kobayashi's team assessed the cost of sequencing in the pediatric, rather than neonatal, ICU. Of the 38 participants, 17 received a diagnosis from WGS and seven had a change in management, allowing the team to model costs for them. While such cost modeling for rare disease is hard, because there are not always good data to compare to, the team used a so-called "Delphi consensus method" that compared the children to a counterfactual trajectory a hypothetical scenario in which rWGS was not ordered. Each trajectory was sent to 10 different pediatric institutions for review. "In doing that, we found that we saved about $185,000 in hospital costs," she said, again mostly due to shorter stays. Sequencing the trios cost about $240,000, resulting in net spending of about $55,000. Moreover, the study found that WGS added a total of about 12 quality-adjusted life years (QALY), an advanced metric that seeks to quantify the value of medical procedures beyond the simpler calculation of extended survival. "We were spending about $4,500 per QALY, which is super reasonable," she said, adding that spending $50,000 to get just one QALY is considered cost effective.

Still, most of the benefits of rWGS in older children are concentrated in a small number of cases. One of the children in the study was a 9-month-old who had been admitted to the PICU "without a good reason." Imaging showed a brain bleed and WGS detected a factor 13 deficiency, a hemophilia-like rare disease that is very unlikely to be tested for. Later, the child fell off a couch and was given extra factor 13 as part of the treatment, preventing another brain bleed.

"The moral of the story is that there are going to be times we dont make a diagnosis and it doesn't save any money," Sanford Kobayashi said. "But often enough, you're going to make a big enough impact that it makes up for those other times."

When asked why Oregon's HERC decided not to cover rWGS for children over 1, even though it covers WES for them, a spokesperson said, "the Commission decided that this group of patients (severely ill hospitalized infants) would have the clearest benefit from this service, because it would be most likely to affect treatment planning for this group."

"If the evidence for WGS for older, less severely ill children develops in the future, the HERC will consider expanding coverage beyond the group that is currently covered," she said.

While states are saying they'll cover this testing, there's still no guarantee that the children who need it will have it ordered for them. "Eventually, most big children's hospitals will do their own WGS," Sanford Kobayashi said. "But it's a big lift. The equipment is expensive, and people who can do the analysis are expensive."

Also, most doctors are not experts in genetic medicine. "We're not training a whole lot of medical geneticists," Kruszka said. "There are fewer than 60 residency slots per year and only half are being filled."

Even in the best-case scenario, where a patient is in the NICU, often the ordering physician will not have expertise in genetics. Those doctors continue to express discomfort ordering a test that requires consent and the results of which need to be explained and put into context, Kruszka said. And that doesn't even begin to address ordering the test outside of ICUs.

The good news is that when doctors see the power of rWGS up close, they're easily sold. "When neonatologists start using the technology, they love it," Kruszka said.

"Intensivists are eager to see us scale up," Bamshad added. "In the end, we're making their workflows much easier. And the changes in [patient] management are sometimes profound. They're now concerned theyve been missing things all along."

The SeqFirst researchers suggested that relying on clinical geneticists will only hinder access and are now considering ways to help nonexperts, possibly with handheld devices that help navigate the explanation and consenting process.

"Interpreting the result is key," Bamshad said. "That is probably done most effectively face to face with a genetics provider. To be honest, we probably still don't have the workforce to do that." At Seattle Children's, wait times to be admitted to the genetics clinic can be a year, even two; the hospital also has nearly two dozen genetic counselors to help interpret results. "That's a luxury that doesn't exist in most places," he said. "Eventually, we'll have to get to a point where return of this information is facilitated by technology and interpretation is done by nonspecialists."

Expanding the practice area for genetic counselors may be part of the answer. Michiganis in the process of licensing genetic counselors as independent clinicians, which could happen this year, Bob Wheaton, the spokesperson for the Michigan Department of Health and Human Services, said in an email. "Once this occurs, Medicaid will begin enrolling these practitioners and will allow direct reimbursement of genetic counseling services."

At the federal level, there are two avenues that could lead to increased coverage for rWGS in newborns under Medicaid. Last year, USSens.Susan Collins, R-Maine, Mark Kelly, D-Ariz.,and Bob Menendez, D-N.J.,introduced the "Ending the Diagnostic Odyssey Act," which would have the federal government pay 75 percent of the cost of rWGS, with states picking up the rest.

The 21st CenturyCures 2.0 bill, introduced last November by US Rep. Diana DeGette, D-Colo.,also could lead to funding of "demonstration projects" in up to 15 states.

But unless the mechanisms by which Medicaid pays for inpatient care are addressed, hospitals are unlikely to facilitate ordering of rWGS in the NICU.

States reimburse for hospital stays with diagnostics-related group (DRG) payments, essentially a lump sum for a particular type of hospital stay. "As a genetics physician, that puts us in a tough spot," said Caleb Bupp, a physician at Helen DeVos Children's Hospital in Grand Rapids, Michigan, and a leader of Project Baby Deer. "The cost of genetic testing eats up how much the hospital gets reimbursed," he said, potentially resulting in a net loss. "My perspective is, [rWGS] only works if payment happens separately. That's the elephant in the room."

In Michigan, the state created a DRG "carve-out," a pipeline to directly fund rWGS testing in the NICU, which takes the onus for the cost of testing off hospitals. Getting that carve-out, however, was only possible due to trust that the various parties, including the state health department, had built up after years of dialogue, Bupp said. "You have to call it out as something you problem-solve for," he said.

California does not have a DRG carve-out, Kingsmore said, and Minnesota has not made one, either. "The performing lab outside the hospital would submit for the test," the DHS spokesperson said. Whether Oregon and Maryland have carve-outs is not clear state health departments did not immediately respond to follow-up questions about payment mechanisms.

States that have not addressed payment for rWGS "are stealing from themselves by disincentivizing doctors from ordering this test," Kingsmore said. "It's really bizarre; they're saying 'no' to something that would save them money."

Rady has scheduled meetings with the California Department of Health Care Services to address payment mechanisms, but any celebration about establishing rWGS coverage would be premature.

"We have additional work to do," Kingsmore said. "Without such payment, uptake will be essentially zero."

Link:
California, Other States to Cover Rapid WGS of Newborns Under Medicaid, but Questions of Access Loom - GenomeWeb

Read More...

Targeting the Uneven Burden of Kidney Disease on Black Americans – The New York Times

Friday, May 20th, 2022

I was all for it, Malcolm said. So was Martin.

When they were tested, the brothers learned they had the variants and that the variants, not lupus, most likely were damaging their kidneys. They hardly knew how to react.

I am still trying to grapple with it, Malcolm said.

But Dr. Olabisi was not surprised. Researchers think the variants cause kidney disease only when there is a secondary factor. A leading candidate is the bodys own antiviral response, interferon, which is produced in abundance in people with lupus.

High levels of interferon also occur in people with untreated H.I.V. As happens in people with Covid-19, they can suffer an unusual and catastrophic collapse of their kidneys if they have the variants. Other viral infections, including some that may go unnoticed, can elicit surges of interferon that could set off the APOL1 variants. Interferon is also used as a drug to treat some diseases including cancer and was tested as a treatment for Covid patients.

For now, there is little Malcolm and Martin can do except take medications to control their lupus.

Martin said he understands all that, but hes glad he learned he has the variants. Now, he knows what he might be facing.

Im the kind of person who likes to plan, he said. It does make a difference.

While Dr. Olabisi is waiting to start his study, a drug company, Vertex, has forged ahead with its own research. But there was no agreement on how APOL1 variants caused kidney disease, so it was not clear what a drug was supposed to block.

If you dont understand the mechanism, that means you cant measure effects in a lab, said Dr. David Altshuler, chief scientific officer at Vertex. And if you cant measure effects in the lab, that means you cant correct them.

It was known how the APOL1 protein protected against sleeping sickness it punched holes in the disease-causing trypanosomes, making them swell with fluid and burst.

Link:
Targeting the Uneven Burden of Kidney Disease on Black Americans - The New York Times

Read More...

ASC Therapeutics, U Mass Medical School, and the Clinic for Special Children Announce Podium Presentation of Safety and Efficacy in Murine and Bovine…

Friday, May 20th, 2022

MILPITAS, Calif.--(BUSINESS WIRE)--ASC Therapeutics in partnership with the University of Massachusetts Medical School (UMMS) and the Clinic for Special Children (CSC), will present safety and efficacy results of a dual-function gene replacement vector therapy in murine and bovine models of classic Maple Syrup Urine Disease (MSUD) as a podium presentation on Tuesday, May 17 (Room 201, 3:45 PM 4:00 PM ET, abstract number: 461) at the 25th Annual Meeting of The American Society of Gene and Cell Therapy (ASGCT) held May 16-19, 2022 in Washington D.C.

The research group at UMMS, led by Guangping Gao, PhD, director of the Horae Gene Therapy Center at UMMS, and Dan Wang, PhD, assistant professor of RNA therapeutics, developed murine and bovine models for MSUD with collaborating clinical expert, Dr. Kevin Strauss, MD, from the Clinic for Special Children.

Three animal models were generated to test safety and efficacy: two murine models representing two common genetic forms of MSUD and a newborn calf naturally homozygous for a mutation that causes MSUD. All animals exhibited severe biochemical abnormalities hours after birth and die within 10 days if left untreated.

The partnership designed a dual-function AAV9 gene replacement vector that was administered via intravenous (IV) injection. Surviving mice grew and behaved similar to normal littermates and had normal or nearly normal biochemical markers with unrestricted diet for 16 weeks.

As compared to MSUD patients, MSUD calves exhibit a similar phenotype and are closely matched for size and metabolic rate. Without treatment they exhibit cerebral edema by day of life 3 and die soon after. In October 2021, a MSUD calf was born and developed biochemical signs of MSUD shortly after birth. The calf was administered the AAV9 gene therapy vector at 40 hours of life. Following AAV therapy, biomarker measurements indicated a significant restoration of the missing enzymatic activity. At 70 days after treatment, the calf was transitioned to a normal unrestricted diet and continues to thrive 100 days post-infusion with stable biochemical markers.

These data provide early demonstration of the safety and efficacy of the MSUD AAV9 gene therapy replacement vector as a one-time treatment for the most common and severe forms of MSUD.

The MSUD gene therapy development leverages the combined AAV gene therapy expertise at UMass Chan Medical School, such as AAV vector design, rodent and large animal modeling, large-scale vector production, and in vivo pre-clinical testing, Drs. Gao and Wang commented.

Dr. Kevin Strauss, MD, Medical Director at the Clinic for Special Children in Pennsylvania, a collaborating clinical expert, added, An innovative collaboration between the Clinic for Special Children and UMMS Horae Gene Therapy Center has allowed us to thoughtfully streamline the process of developing AAV gene replacement vectors. Within just three years of project inception, we have safely corrected an otherwise fatal MSUD phenotype in both mice and a newborn calf using a novel dual-function BCKDHA-BCKDHB vector, which has the potential to address 70-80% of reported MSUD cases in humans. The newborn calf with MSUD may represent the largest non-human experimental animal ever treated with AAV-mediated gene replacement. The calf provides unique insights that can directly inform the design of a clinical trial, which we hope to pursue through an alliance with ASC Therapeutics.

Dr Ruhong Jiang, CEO at ASC Therapeutics, said, The significant progress achieved through our research collaboration with Professors Gao, Wang and Strauss underlines the intrinsic value of bringing together teams from academia and industry that are highly specialized in complex gene therapies.

About Maple Syrup Urine Disease

Maple syrup urine disease (MSUD) is a rare genetic disorder affecting degradation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine and their ketoacid derivatives. MSUD is caused by biallelic mutations in one of three genes that encode subunits of the branched-chain ketoacid dehydrogenase complex (BCKDC), namely BCKDHA, BCKDHB, and DBT. Dietary BCAA restriction is the mainstay of treatment but has insufficient efficacy, and affords no protection against episodic and life-threatening encephalopathic crises. Severe (classic) MSUD is fatal without treatment. MSUD affects approximately 1 per 185,000 births worldwide.

About ASC Therapeutics

ASC Therapeutics is a biopharmaceutical company pioneering the development of gene replacement therapies, in-vivo gene editing and allogeneic cell therapies for hematological, metabolic, and other rare diseases. Led by a management team of industry veterans with significant global experience in gene and cell therapy, ASC Therapeutics is developing multiple therapeutic programs based on four technology platforms: 1) In-vivo gene therapy of inherited blood clotting disorders, initially focusing on ASC618, a second generation gene replacement treatment for hemophilia A; 2) In-vivo gene therapy in metabolic disorders, initially focusing on Maple Syrup Urine Disease; 3) In-vivo gene editing, initially focusing on ASC518 for hemophilia A; and 4) Allogeneic cell therapy, initially focusing on a Decidua Stromal Cell-based therapy for steroid-refractory acute Graft-versus-Host Disease. To learn more please visit https://www.asctherapeutics.com/.

About the Clinic for Special Children

The Clinic for Special Children (CSC) is a non-profit organization located in Strasburg, PA, which provides primary care and advanced laboratory services to those who live with genetic or other complex medical disorders. Founded in 1989, the organization provides services to over 1,200 individuals and is recognized as a world-leader in translational and precision medicine. The organization is primarily supported through community fundraising events and donations. For more information, please visit http://www.ClinicforSpecialChildren.org

About the University of Massachusetts Medical School

The University of Massachusetts Medical School (UMMS), one of five campuses of the University system, is comprised of the School of Medicine, the Graduate School of Biomedical Sciences, the Graduate School of Nursing, a thriving research enterprise and an innovative public service initiative, Commonwealth Medicine. Its mission is to advance the health of the people of the Commonwealth through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care. In doing so, it has built a reputation as a world-class research institution and as a leader in primary care education. For more information, please visit https://umassmed.edu/

Continue reading here:
ASC Therapeutics, U Mass Medical School, and the Clinic for Special Children Announce Podium Presentation of Safety and Efficacy in Murine and Bovine...

Read More...

Fly Researchers Find Another Layer to the Code of Life – Duke Today

Friday, May 20th, 2022

DURHAM, N.C. -- A new examination of the way different tissues read information from genes has discovered that the brain and testes appear to be extraordinarily open to the use of many different kinds of code to produce a given protein.

In fact, the testes of both fruit flies and humans seem to be enriched in protein products of these rarely-used pieces of genetic code. The researchers say the use of rare pieces of code may be another layer of control in the genome that could be essential to fertility and evolutionary innovation.

A decade after solving the structure of DNA as a double helix of the bases A,C, T and G, Francis Crick went on to decode the intermediate step by which three of these letters are translated into a codon, the recipe for a single amino acid, the building block of protein.

What was striking at the time and still somewhat puzzling is that this layer of lifes code used 61 different three-letter codons to produce just 20 amino acids, meaning many codons were being used to describe the same thing.

Were taught in our biology classes that when you change from one version of the codon to the other, and it doesn't change the amino acid, that's called a silent mutation. And that implies that it doesn't matter, said Don Fox, an associate professor of pharmacology and cancer biology in the Duke School of Medicine.

Yet when researchers have sequenced all these different organisms, they found a hierarchy, Fox said. Some codons are really frequent and some are really rare. And that distribution of codons can vary from one kind of tissue in an organism to another.

Fox wondered if the rarities play a role in how, say, a liver cell does liver things and how a bone cell does bone things.

Fox and his team, headed by PhD student Scott Allen, wanted to zoom in on the rare codons, using their preferred model Drosophila melanogaster, the laboratory fruit fly. A growing body of work has shown that dissimilar tissues have varying codon bias that is, different frequencies of synonymous codons occurring in different tissues. Rare codons are known to slow down and even stop protein production and genes with a lot of these rare codons make a lot less protein, Fox said.

Fox was collaborating with colleague Christopher Counter, the George Barth Geller Distinguished Professor of Pharmacology at Duke to understand a gene called KRAS, which is known to be a bad actor in pancreatic cancer especially, and which carries a lot of rare codons. Why, they wondered, would a cancer mutation have slowed down protein production, when normally a cancerous mutation makes more of something.

It turns out, the way KRAS is designed, it should be very hard to make any of it, Fox said.

Foxs team developed a new way of analyzing tissue-specific codon usage to look at where and how rare codons can be used in the fruit fly, which has perhaps the best-known genome in science. They ran a series of experiments to vary which codons were included in the KRAS gene and found that rare codons had a dramatic effect on how KRAS controls signaling between cells.

I realized from this cancer collaboration that we could take similar approaches and apply them to my primary research question, which is how tissues know what they are, Fox said.

In further experiments, they found that testes in flies -- and in humans -- are more tolerant of a high diversity of codons, but fly ovaries are not. The fly brain was also more tolerant of diverse codons. The work appeared May 6 in the open access journal eLife.

One particular gene with a high number of rare codons, RpL10Aa, is evolutionarily newer and helps to build the ribosome, the protein-assembly machinery in the cell. Fox said it appears that this genes rare codons serve to limit its activity to just the more tolerant testes, and that, in turn, may be something critical to fertility.

The way the testes seem to permit almost any gene being expressed, perhaps that makes it a breeding ground, if you will, for new genes, Fox said. The testes seems to be a place where younger genes tend to first be expressed. So we think it's sort of this more permissive tissue, and it lets new genes take hold.

What we think were seeing is that rare codons are a way to limit the activity of this evolutionarily young gene to the testes, Fox said. That would make rare codons yet another layer of control and fine-tuning in the genes.

The editors of eLife said the work breaks new ground in identifying codon usage as a basis for tissue-specific gene expression in animals.

This research was supported by the American Cancer Society, (RSG-128945) the National Science Foundation, and the National Institutes of Health (R01-CA94184, P01-CA203657, R35-GM140844, R01-HL111527)

CITATION: "Distinct Responses to Rare Codons in Select Drosophila Tissues," Scott R Allen, Rebeccah K Stewart, Michael Rogers, Ivan Jimenez Ruiz, Erez Cohen, Alain Laederach, Christopher M Counter, Jessica K Sawyer, Donald T Fox. eLife, May 6, 2022. DOI: 10.7554/eLife.76893 https://elifesciences.org/articles/76893

Read more here:
Fly Researchers Find Another Layer to the Code of Life - Duke Today

Read More...

UC Davis Looks to Expand Genetic Breast Cancer Risk Education, Outreach for Hispanic Women – Precision Oncology News

Friday, May 20th, 2022

NEW YORK A program at the UC Davis Comprehensive Cancer Center is educating Hispanic and Latina women in California about their genetic risk for breast cancer and the importance of genomic profiling for family members.

Through an effort called Tu Historia Cuenta, which translates to "your story matters," UC Davis has discussed breast cancer genetic risks with 1,000 Hispanic women and Latinas, according to Laura Fejerman, leader of the program and codirector of the cancer center's Women's Cancer Care and Research Program (WeCARE). Encouraged by the interest in the educational sessions offered by Tu Historia Cuenta, Fejerman and her colleagues now want to expand the program's reach and make it easier for women with a family history of breast cancer to get genetic counseling and testing.

For now, the program administers a survey to the women who attend the educational sessions and, based on their answers, identifies those who might benefit from genomic profiling. Session attendees are asked to fill out the survey by their community health educator, called promotores in Spanish. The surveys are scrubbed of identifying information and shared with the researchers, who flag the women who have a family history of cancer and should receive genomic testing.

The promotores then reach out to the high-risk women about getting tested for mutations in genes such as BRCA1/2 that confer a higher risk of breast, ovarian, and other cancers. The promotores continue to follow up with these high-risk women every three months.

In this way, the researchers and promotores have identified 62 high-risk women and recommended they undergo further screening, which is consistent with the rate of pathogenic variants seen among Hispanic and Latina breast cancer patients in the population, according to Fejerman, who also codirects the Latinos United for Cancer Health Advancement initiative at UC Davis. Research that Fejerman coauthored this year found that about 7 percent of Latinas with breast cancer harbor pathogenic variants in ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2, PTEN, RAD51C, and TP53.

Additionally, Fejerman and colleagues from the University of Texas, National Institute on Minority Health and Health Disparities, University of California, and University of Southern California published research this month that shed more light on the types of breast tumors Hispanic and Latina women tend to develop. They found, for example, that Hispanic and Latina women have higher rates of aggressive breast cancer like HER2-positive and triple-negative disease. Hispanic women with Indigenous American ancestry in particular are more likely to have HER2-positive tumors, their research showed. However, compared to their white and Black counterparts, Hispanic and Latina women are at lower risk of developing breast cancer overall.

Tu Historia Cuenta design

Fejerman and her colleagues started planning the Tu Historia Cuenta program in 2020. They developed two sets of educational materials, in partnership with nonprofit The Latino Cancer Institute: one set for training promotores on hereditary breast cancer risk and another set that is the basis of hour-long education sessions that the promotores host with Latina and Hispanic women at community-based education sessions.

To be part of the program, promotores do not need formal health education training, but they must attend the eight-hour workshop the researchers have developed about breast cancer, genetic risk, and genetic counseling. After completing the workshop, promotores go out into the community to conduct hour-long sessions about hereditary breast cancer risk and genetic screening.

According to Fejerman, the promotores' training and community education sessions have largely taken place online due to the COVID-19 pandemic. The educational sessions include an eight-minute video showing the journey of a fictional patient who goes to her doctor after finding a lump in her breast and undergoes medical exams and genomic profiling to discover she carries a BRCA1 mutation. The session attendees also hear a presentation about breast cancer and receive a brochure that explains breast cancer and hereditary cancer risks and provides resources for additional information. The information is presented in plain language for an audience with low health literacy, and all sessions and materials are in Spanish.

After the session, the attendees receive a questionnaire to complete that asks about their sociodemographic status; general cancer screening history, such as a mammogram or cervical cancer screening; prior exposure to genetic testing, like prenatal screening or previous cancer risk assessment; and their family history of breast cancer.

"The rationale for the program was that Hispanic Latinas are doing genetic testing at lower rates than non-Hispanic white women. They're about four times less likely to get genetic testing," Fejerman said. "We felt like this was a group where there is a lack of information and lack of understanding of what it means to carry a mutation that increases your risk."

After the first three classes, Fejerman and her colleagues published a study detailing the participants' demographics, insurance status, family history of cancer, and knowledge of cancer and genetics. Of 33 session attendees, 30 percent had no insurance and only 12 percent said they were fluent in English, highlighting some key barriers to healthcare access in this community.

In this study, 15 percent said they had a family history of ovarian cancer and 21 percent said they had at least three members on the same side of the family with breast, prostate, or pancreatic cancer.

The researchers also administered a knowledge assessment questionnaire before the educational sessions, which the attendees filled out. Based on their answers, 47 percent of participants (7 participants) were not able to correctly answer a multiple-choice question to define what a gene is, and 27 percent (4 participants) answered incorrectly, or didn't know, whether genetic tests could be performed with either a blood or saliva test. The participants took the same test after the session and the number of incorrect or don't know answers dropped to 7 percent (1 participant) for the same questions about genes and genetic testing.

While the program has reached more than 1,000 Hispanic and Latina women to date, there are still barriers to receiving genetic counseling after the education program. The promotores follow up regularly with session participants who said in the survey that they have a family history of cancer, but beyond that the onus is on the patient to reach out to their doctor or find a clinic and set up an appointment.

"The promotores call regularly to check in [with the high-risk women], but most of them are now asking for help to access services," Fejerman said. "We thought many of them would have some sort of clinic where they can go and talk to a doctor about their strong family history of cancer, based on what they learned from participating in the program, but that hasn't happened for most of them. That follow through is hard. Now, I'm writing grants now to include genetic counseling and testing as part of the program."

Barriers remain

The next iteration of the Tu Historia Cuenta may make it even easier for high-risk Hispanic and Latina women to access genetic counseling to assess their family risk for breast cancer. The program is currently funded through the University of California, San Francisco Mount Zion Funds and the California Breast Cancer Research Program, but Fejerman hopes to secure more funding this year to continue the education effort and potentially expand the program.

She is exploring grants that could potentially support the integration of a clinical trial within the program, through which eligible women could get genetic testing, and reaching out to nonprofits that provide support for cancer screening in underserved populations. Fejerman is also looking for support among her colleagues at the UC Davis Womens Cancer Care and Research Program in expanding the program.

Lack of insurance coverage is a major barrier to healthcare access in the Hispanic community. Many have no insurance or rely on Medicaid, which may not cover genetic testing. The language barrier presents challenges, as well. While many clinics have some Spanish speakers, Fejerman noted that there are far fewer genetic counselors who are bilingual and speak Spanish.

"There were people in the classes who already knew they had mutations, but they still felt like they needed a class to understand," Fejerman said. "They saw the opportunity to take the class in Spanish, and they took it. That means this person had gone through breast cancer or had gone through testing and still didn't feel like they understood it."

This population may also not know their family's history with cancer because they came to the US from other countries, where close relatives still reside. In the study conducted on participants of the first three educational sessions, none of the surveyed individuals were born in the US, and these women had lived in the US for an average of 17 years.

That presents several challenges, Fejerman said. Families may lose touch after many years apart in different countries, and someone may not know if their grandmothers or aunts also had breast cancer. The distance also affects the utility of cascade testing. If a Latina in the US is found to carry a BRCA1/2 mutation, she may be able to get more regular screening, but a family member in Mexico may not have the same access, Fejerman said.

"If you're an immigrant, sometimes you lose contact with family or you may only have a phone call every once in a while," Fejerman explained. "You probably don't want to use that short time to ask family members about cancer."

Fejerman noted that programs to educate Hispanic and Latina women work best when paired with other efforts to improve access, like assistance navigating the healthcare system and more robust efforts to include Hispanic and Latino patients in clinical research.

"When precision medicine became more common, that's when we started thinking that Latinos were going to be left behind in the conversations about precision medicine because of the lack of awareness and knowledge on genetics," Fejerman said. "They wouldn't be able to make informed decisions about cancer care because they were already behind on regular prevention information like mammograms or colonoscopies, and then we added the complexity of genetics and genomics."

Read the original:
UC Davis Looks to Expand Genetic Breast Cancer Risk Education, Outreach for Hispanic Women - Precision Oncology News

Read More...

Page 21234..1020..»


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick