header logo image


Page 14«..10..13141516..»

Archive for the ‘Nano medicine’ Category

Nanobiotix a nanomedicine company

Thursday, April 4th, 2019

NANOMEDICINE

FOR BETTER AND LONGER LIFE

Watch our

R&D Day

Experts

Dr. David Raben, MD University of Colorado, Denver, CO, USADr. Tanguy Seiwert, MD University of Chicago Medicine, Chicago, IL, USADr. Colette Shen, MD, PhD University of North Carolina, Chapel Hill, NC, USADr. Jared Weiss, MD University of North Carolina, Chapel Hill, NC, USADr. James Welsh, MD MD Anderson Cancer Center, Houston, TX, USA

APRIL 4, 2019:

NANOBIOTIX ANNOUNCES FIRST EVER RADIOENHANCER

TO RECEIVE EUROPEAN MARKET APPROVAL

NANOXRAY

A FIRST-IN-CLASS RADIOENHANCER

A FIRST-IN-CLASSRADIOENHANCER

WE WORK TO PROVIDE

INNOVATIVE TREATMENTS TO HELP PATIENTS

TO LIVE LONGER AND BETTER.

COLETTE, CLINICAL TEAM

I WORK FOR LIFE.

CLINE, DISCOVERY TEAM

WE FIGHT FOR

MEANINGFUL GOALS TOGETHER.

ALY, FINANCE TEAM

NANOMEDICINE IS MORE THAN EVOLUTION,

ITS A REVOLUTION!

REGIS, MANUFACTURING AND SUPPLY TEAM

ENTHUSIASM,

FAITH IN NANOMEDICINE

AND LOVE FOR INNOVATION!

JULIE, DISCOVERY TEAM

NANOMEDICINEFOR BETTER AND LONGER LIFE

MEET US AT:ESTRO 2019, Milan

QUICK SELECT OR SCROLL DOWN

Continue reading here:
Nanobiotix a nanomedicine company

Read More...

Regenerative Nanomedicine Lab – yimlab.com

Wednesday, March 27th, 2019

Our recent research article "In-vitro Topographical Model of Fuchs Dystrophy for Evaluation of Corneal Endothelial Cell Monolayer Formation" appeared on theBack cover of Advanced Healthcare Materials latest issue.

Several diseases have been known to be caused by microstructural changes in the extracellular microenvironment. Therefore, the knowledge of the interaction of cells with the altered extracellular micro-structures or surface topography is critical to develop a better understanding of the disease for therapeutic development. One such disease is Fuchs corneal endothelial dystrophy (FED). FED is the primary disease and major reason of corneal endothelial cell death. If left untreated, corneal blindness will be resulted; thus, FED is the leading indication for corneal transplantation. In the USA, 4% of population over the age of 40 is believed to have compromised corneal endothelium due to FED, which will further increase due to increasing life expectancy and rapidly ageing population. A diagnostic clinical hallmark of FED is the development of discrete pillar or dome-like microstructures on the corneal endothelial basement membrane (Descemet membrane). These microstructures are called corneal guttata or guttae. Cell therapies have been proposed as an alternative treatment method for Fuchs dystrophy patients. However, currently, no in-vitro or in-vivo FED disease model is available to study the cell therapies before clinical trials.

In this study, the pathological changes in the micro-structure of basement membranes resulting from FED disease was analyzed, to identify geometrical dimension to develop an in-vitro disease model of synthetic corneal guttata pillars/domes by using microfabrication techniques. This model was used to study the monolayer formation of donor-derived human corneal endothelial cells to test the effectiveness of the corneal endothelial cell regenerative therapies. The results suggest that the corneal cell therapies may not be equally effective for patients at different stages of disease progression. The pre-existing guttata in patients could interfere with the cells thus hampering monolayer formation within the eye. Surgical removal of the guttata from the diseased Descemet membrane prior to cell regenerative therapy could increase the success rate of monolayer formation, which could potentially increase the chances of cell therapy success. This study also demonstrate how biomaterial design can be employed to mimic the pathological microstructural changes in basement membranes for better understanding of cellular responses in disease conditions.

Read more from the original source:
Regenerative Nanomedicine Lab - yimlab.com

Read More...

Nanomedicine Conferences | Nanotechnology Conferences …

Friday, March 8th, 2019

HIGHLIGHTS & BENEFITS

Keynote Sessions on Nano medicine

Oral presentations on Nano medicine

Young Researcher Forums

Poster Presentations on Nano medicine

Video Presentations on Nano medicine

E-poster Presentations on Nano medicine

Honorable Guests Presentations

Exhibitions on Nano medicine

Free Abstract Publication & DOI

Free Lunch and Networking

Questionnaires on Nano medicine

Theme:Exchange of Technological Advances in the field of Nanomedicine & Technology

EuroSciCon Ltd is back with its 3rdEdition ofNanomedicine&Technology 2019and this time it focusesaroundthe advancements in the strategies and researches that are going ahead in the field ofNanoscience.

TheNanomedicine 2019aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results about all aspects ofNanomedicine. It also provides the premier interdisciplinary forum for researchers, practitionersandeducators to present and discuss the most recent innovations, trends, and concerns, practical challenges encountered, and the solutions adopted in the field ofDrug Delivery.

Whats New?

NanomedicineandTechnology 2019includes international attendee workshops, lecturesandsymposia, including a designated registration area, a refreshment break and gala lunch.Nanomedicineeducators can join the EuroSciCon as an international member to receive discounts on registration. The core aim ofNanomedicine andTechnology 2019conference is to provide an opportunity for the delegates to meet, interact and exchange new ideas in the various areas ofNanoscience. We invite students to attend the conference and gain more knowledge about nanoscience and technology from eminent researchers of the world. So, come and join leading experts and allied professionals from April 11-12, 2019 in Paris, Franceto discuss the ways to develop better technologies that will aid in the development of Nanomedicine andTechnology.

WhatisNanomedicine And Technology?

Nanomedicineis a branch of medicine (ranges from 10-100nm) that applies the knowledge and tools of nanotechnology to the prevention and treatment of disease. It also involves the use of nanoscale materials such as biocompatiblenanoparticlesandnanorobots, for diagnosis, drug delivery, sensing or actuation purposes in a living organism.

There is a strong market for Nanomedicine andTechnologyin Europe. Itseeks to deliver a valuable set of research tools and clinically useful devices in the near future. The NationalNanotechnologyInitiative expects new commercial applications in thepharmaceutical industry that may include advanceddrug delivery systems, new therapies, and in vivo imagingNanomedicinesresearch is receiving funding from the US National Institutes of Health Common Fund program, supporting fourNanomedicinesdevelopment centers.

Nanomedicinessales reached$16billionin2015, with a minimum of$3.8 billioninnanotechnologyR&D being invested every year. Global funding for emerging nanotechnology increased by 45% per year in recent years, with product sales exceeding$1 trillionin2013. As the Nanomedicines industry continues to grow, it is expected to have a significantimpact on the economy.

Technology is the branch of technology that deals with dimensions and tolerances of less than 100 nanometres, especially the manipulation of individual atoms and molecules.

The globalmedicine market is projected to reach USD 1,669.40 Billion by 2021 from USD 1,179.20 Billion in2016, at a CAGR of 7.2% during the forecast period. This market is segmented based on the route of administration, facility of use, and region. Theglobal nano medicinemarket was valued at US$ 41,062.5 Mn in 2014 and is projected to reach US$ 118,527.2 Mn by 2023, expanding at a CAGR of 12.5% from 2015 to2023.

Whytoattend our conference

This event will provide an opportunity to build and expand your network with various people and gives chance to make collaboration with other universities and research labs. It also helps you to meet the experts in the relevant field of study. It givesthe accessto novel instruments in the market. This conference plays a major role in your business development and maximizes the profit.

Target Audience

Nano Medicine 2019keenly focuses on the following people:

Opportunities for ConferenceAttendees

For Researchers & Faculty:

For Universities, Associations & Societies:

For Students & Research Scholars:

For Business Delegates:

For Companies:

WhyExhibit?

Who shouldSponsor?

About Paris, France

Paris is the capital and most populous city of France, with an area of 105 square kilometers. It is located in northern central France with a western European Oceanic climate. Since the 17thcentury, Paris has been one of Europes major centers of finance, commerce, fashion, science, musicandpainting. It is especially known for its museums and architectural landmarks. The citys top tourist attractions are Notre Dame Cathedral, Louvre Museum, Eiffel Tower, Arc de Triomphe..As its leading role duringAgeof Enlightenment, it is often also referred to asThe City Of Light.

Nanomedicine and Drug Delivery:

Medication conveyance characterizes as thebestapproach to take pharmaceutical from the diverse course oforganizationshow in a human body and in addition creature. At the point when the medication is gone intohumanor creature body begins to demonstrate some helpful impact, which mends our body, experience the ill effects of particularinfection or sick. Medication willbegingo frompharmacokineticsframework which containadsorption, digestion, disseminationanddischargeand after that goes into the circulatory framework, where theparticularmedicationreachto particular receptors and tie with the receptors, which begin recuperate tobody. Medication conveyance has done fromvariouscourse, e.g.; oral course, intravenous course, intramuscular course, transdermal patches, intraocular course, intra-peritoneal,suppositories, and so on.

Drug Design and Drug Development:

Medication Design, regularly specific to as prudentpharmaceuticallayout or just sensible arrangement, is that the imaginative system for finding new drugs maintained the data of a natural sciences target. The medication is mostgenerallyrelate degree regular little particle that establishes or frustrates the perform ofa biomoleculeslike amacromolecules, thatcontinuouslyends up in a supportive advantage to the patient. Inside the unassuming sense, calm diagram incorporates the organizing of particles that are reverse in casing and charge to the biosub-nuclear concentrationwith that they move and along these lines can attach to that. Solution blueprint of times anyway not fundamentally depends upon convenient workstation showing systems. This sort ofshowingis routinely observed as PC supportedmedicationoutline

Synthesis and Characterisation of Nanomaterials:

The objective of any engineered technique for preparation ofnanoparticlesis to fabricate nanomaterials which have the unique properties for applications that are a result of their characteristic length scale being in the nanometer run (1 100 nm). Likewise, the manufactured strategy should show control of size in this range with the goal that one or the other property can be attained. There are two general strategies for synthesis of nanomaterials and the fabrication of nanostructures: Bottom Up and Top Down.

Bottom upapproach refers to the build-up of a material from the bottom: start with atoms or molecules and build up tonanostructures. The starting material is either gaseous state or liquid state of matter for bottom up method.

Top downapproach refers to cutting of a bulk material to get nano sized particle: begin with a pattern generated on a larger scale, then reduced tonanoscale. The starting material is in solid state for top down method.

Pharmacokinetics and Pharmacodynamics:

Pharmacodynamicsis the importance that medications have on the fundamental part; while pharmacokinetics is the investigation of the manner by which drugs travel through the body amid assimilation, conveyance, digestionanddischarge.Pharmacokineticsimpacts choices over the course oforganization. For medications to create their belongings they should interface with the body. This can result in a few practices and relies upon the properties of themedication,and will be talked about later in this section.Pharmacokineticsimpacts choices over the course oforganization. The procedures that happen after medicationadministratorcan be divided down into four particular zones (known as ADME).

Nanomedicine in Pre-Clinical Research:

Preclinical advancement wrapsthe activities that association quietexposurein the lab tobeginningof humanclinical trials.Preclinical examinationscan be planned to recognize a lead confident from a couple of hits; develop the best strategy for new medicine scale-up;select thebest detailing; choose the course, repeat, and traverse of presentation; and finally help the proposed clinical trial design. Concurrentpreclinical advancement practicesjoin developing a clinical course of action and setting up the newprescription thing, including related documentation to meet stringent FDA Great Assembling Practices and managerial standards

Advanced NanomaterialsandNanoparticles

Nanomaterialsare described as materials with no short of what one outside estimation in the size degree from around 1-100 nanometers.Nanoparticlesare things with every one of the three outside estimations at the nano-scale. Built nanoparticles are deliberately delivered and arranged with specific properties related to shape, estimate, surface properties and science. These properties are reflected in fog concentrates, colloids, or powders. Routinely, the direct of nanomaterials may depend more on surface district than atom plan itself. The control of organization, size, shape, and morphology ofnanomaterialsandnanoparticlesis a basic establishment for the improvement and use of Nano scale gadgets in everywhere throughout the world.

Nanoparticlescan be built with unmistakable pieces, sizes, shapes, and surface sciences to empower novel procedures in an extensive variety of natural applications. The one of a kind property of nanoparticles and their conduct in organic milieu likewise empower energizing and integrative ways to deal with concentrate essential natural inquiries.

Nano devicesandNano sensors:

TheNanodevicesandNanostructureshave presented a super trade of humankind with its Nano lifestyle machines. Nano scale materials are an extensively characterized set of substances that have no less than one basic measurement under 100 nanometers and have one of a kind electrical, magnetic, or optical properties. Ultrafine particulate matter is an outstanding case ofnanoscale particlesfound in the earth.Nanodeviceswill finally have a huge impact on our capacity to enhance food production, improve human health, energy conversion and control pollution.

Nano sensorsconvey data about nanoparticles. Numerous logical achievements in Nanotechnology has been contributed byNano sensors. Diverse kinds of sensors are developed fromnanomaterialsto distinguish a scope of substance vapors, to detect microbes or infections, to recognize single atoms to help pharmaceutical organizations in the generation of medications.

Nanomedicine in Drug Delivery Research :

Medication conveyance depicts the technique and way to deal with conveying medications orpharmaceuticalsand different xenobiotic to their site of activity inside a living being, with the objective of accomplishing a restorative result. Issues of pharmacodynamics and pharmacokinetics are vital contemplations for sedate conveyance. Outlining and creating novel medication conveyance frameworks, with an emphasis on their application to sickness conditions. Preclinical and clinical information identified with medicate conveyance frameworks.Medication Deliveryand Translational Research is a diary distributed by CRS, giving a one of a kind gathering tologicalproduction oftop notchinquire about that is solely centered around Drug Development and translational parts of medication conveyance.Medicationappropriation, pharmacokinetics, freedom, withtranquilizeconveyance frameworks when contrasted with customary dosing to exhibit helpful results. Here and now andlong haulbiocompatibility of medication conveyance frameworks, havereaction. Biomaterials with development factors for immaturemicroorganism separationin regenerative solution and tissue designing.Gadgetsfor sedate conveyance and medication/gadget blend items.

Novel Drug Delivery Systems:

TheNovel Drug Delivery Systemsare the technique by which a medication is conveyed can significantly affect itsadequacy. A few medications have an ideal focus go inside which greatest advantage is inferred, and fixations above or beneath this range can be poisonous or create no Local Drug Delivery Systems advantage by any means. Then again, the moderate advance in the adequacy of the treatment of extremeinfections,has proposed a developing requirement for a multidisciplinary way to deal with the conveyance of therapeutics to focuses in tissues. From this, new thoughts on controlling the pharmacokinetics, pharmacodynamics, non-particular danger, immunogenicity, bio acknowledgment, and viability of medications were produced. These newtechniques,regularly called medicate conveyance frameworks(DDS),depend oninterdisciplinarymethodologiesthat join polymer science, pharmaceutics,bio conjugatescience, and sub-atomic science. Then again, this reference examinesprogressesin the plan, enhancement, and adjustment of quality conveyance frameworks for the treatment oftumour, cardiovascular, aspiratory, hereditary, andirresistible maladies, and considers evaluation and audit methodology engaged with the advancement of quality based pharmaceuticals.

Synthesis of Nanoparticles for Drug Delivery:

Orchestrating nanoparticlesfor pharmaceutical purposes, for example, tranquilize arrangement should be possible in two strategies.Baseprocess, for example, pyrolysis, inactive gas build-up, solvothermal response, sol-gel creation and organized media in whichhydrophobiccompound, for example,liposomesare utilized as bases to mount themedication.Topdownprocess, for example, whittling down/processing in which themedicationis etched down to frame a nanoparticle.

Nanorobotics:

Ananoroboticsis a machine that can build and manipulate things precisely at an atomic level. Nanorobotics is the innovation of making machines or robots at or near the tiny size of a nanometre.Nanorobotswould regularly be gadgets running in measure from 0.1-10 micrometers. The fundamental component utilized will be carbon as precious stone/fullerene nanocomposites in view of the quality and compound idleness of these structures. The other indispensable utilization of Nanotechnology in connection to medicinal research and diagnostics arenanorobots.Nanorobots, working in the human body, could screen levels of various mixes and record the data in their interior memory.

Nanobiotechnology:

The termNanobiotechnologyrefers to the combination ofnanotechnologyandbiology. The concepts that are enhanced throughnanobiologyinclude: Nanoparticle, Nano device and Nano scale phenomena that occurs within the discipline ofnanotechnology. This approach to biology allows scientists to imagine and create systems that can be used for biological research. Revolutionary opportunities and future scope ofnanobiotechnologyare gaining its utmost importance in nano life sciences.

Applications in pharmaceuticals and molecular diagnostics, include drug delivery, drug discovery and drug development.Nanobiotechnologyhas extending the limits of detection to single molecules by refining the current molecular diagnostics. Nanoparticles play a vital role in the delivery of biological treatments, which include gene therapy, RNA interference, cell therapy, vaccines, and antisense therapeutics. The most promising application ofnanobiotechnologyis for the development of customized drugs. The combination of diagnostics with therapeutics, refinement of molecular diagnostics, and targeted drug delivery play important roles in this application. At last, the safety issues of nanoparticles are discussed including measures to address these. The prospects ofnanobiotechnologyare incredible.

Nanotechnology in Drug Delivery Heart Diseases:

Nanoparticlesthat are both manufacturedHDLand containaMRIdiverse operator(press oxide). The scientists are presently directing creature concentrates to decide how well the counterfeit HDL (high thickness lipoprotein) treatsbloodvessel plaque.Nanoparticlethat can convey medications to tablet on the mass of a conduit. They append a protein called a peptide to a nanoparticle, which at that point ties with thesurfaceof the plaque.

Future of Nanotechnology:

Certain highlights ofnanotechnologyhave been observed that are probably going to be important in determining its impact in the future. All the more essentially, reacting to the test ofnanotechnologywill require going up against "philosophical" inquiries regarding the kind of society we wish to make and the part that innovation may play in making it.Nanotechnologyis rapidly picking up traction over a scope of industries, from energy storage to agriculture to water treatment. Today,nanotechnologyis a standout amongst innovative, cutting-edge areas of scientific study and it keeps on progressing at amazing rates. From researchers at technology-centered companies and institutions to students pursuing a nanotechnology degree, pioneers innanotechnologyare making the latest breakthroughs in the field.

Biopharmaceutics and Biologic Drugs:

Biopharmaceuticsis defined as the study of factors that influencing rate and amount of drug which reaches the systemic circulation and use of this information to optimize the therapeutic efficacy of the drug products. The process of movement of drug from site of administration to systemic circulation is called asabsorption. The concentration of drug in plasma, onset of action, intensity and duration of response depend upon thebioavailability of drug from its dosage form. Bioavailability is defined as the rate and extent (amount) of drug absorption which indicates active effect.

Personalized Nanomedicine:

Personalized medicineaims to individualize chemotherapeutic interventions on the basis of ex vivo and in vivo information on patient- and disease-specific characteristics. By noninvasively visualizing how well image-guided nanomedicines-that is, submicrometer-sized drug delivery systems containing both drugs and imaging agents within a single formulation, and designed to more specifically deliver drug molecules to pathologic sites-accumulate at the target site, patients likely to respond to nanomedicine-based therapeutic interventions may be preselected. In addition, by longitudinally monitoring how well patients respond to nanomedicine-based therapeutic interventions, drug doses and treatment protocols can be individualized and optimized during follow-up. Furthermore,noninvasive imaginginformation on the accumulation ofnanomedicine formulationsin potentially endangered healthy tissues may be used to exclude patients from further treatment. Consequently, combining noninvasive imaging withtumor-targeted drug deliveryseems to hold significant potential for personalizing nanomedicine-based chemotherapeutic interventions, to achieve delivery of the right drug to the right location in the right patient at the right time.

Design of Nanodrugs:

To date, variousnanodrug systemshave been developed for different routes of administration, which include dendrimers,nanocrystals, emulsions, liposomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles. Nanodrug systems have been employed to improve the efficacy, safety, physicochemical properties, and pharmacokinetic/pharmacodynamic profile of pharmaceutical substances. In particular, functionalized nanodrug systems can offer enhancedbioavailabilityof orally taken drugs, prolonged half-life of injected drugs (by reducing immunogenicity), andtargeted deliveryto specific tissues. Thus,nanodrug systemsmight lower the frequency of administration while providing maximized pharmacological effects and minimized systemic side effects, possibly leading to better therapeutic compliance and clinical outcomes. In spite of these attractive pharmacokinetic advantages, recent attention has been drawn to the toxic potential of nanodrugs since they often exhibit in vitro and in vivo cytotoxicity, oxidative stress, inflammation, and genotoxicity.

Recent Nanomaterials for Drug Delivery:

Medication conveyance frameworks advertise is extending quickly. The same number of newMedicationrequires novel and inventive medication conveyance procedures. Theadvancementofsuchmedicationconveyance frameworks can enhance existing medications' helpful viability, easing their reactions, and decreasing the cost. Being advantageous from the fast advance of nanotechnologies and nanomaterials amid a decades ago, numerouspropelledtranquilize conveyance frameworks have been made conceivable.

Smart Drug Delivery Technology:

With SmartDrugDelivery Technology the extraordinary advances of biomedical nanotechnology amidthe previouscouple of decades, ordinary medication conveyance frameworks (DDSs) have been includedintobrilliant DDSs with jolts responsive qualities. To improve their helpful impacts and diminish the related reactions, dynamic medication particles ought to specifically collect in the ailment territory for a delayed period with high controllability. Medication conveyance alludes to the methodologies, details, innovations, and frameworks for transporting therapeutics in the body as expected to securely and effectively accomplish their coveted restorative impacts.Traditionalmedication conveyance frameworks(DDSs)are regularly joined by fundamental symptoms that for the most part owing to their nonspecific bio-appropriation and wildmedicationdischarge qualities. To beat these restrictions, progressed controlled DDSs have been created to accomplish the arrival of payloads at the objective destinations in aspatialcontrolled way. In contrast with the regular DDSs, the brilliant controlled DDSs can adequately lessen the dose recurrence, while keeping up the medication focus in focused organs/tissues for a more drawn out timeframe. In this sense, the controlled DDSs give wide bits of knowledge and interesting properties for diminishing medication focus variance, decreasing medication toxicities and enhancingremedial viability.

Nano Geo Science:

The learning of nanoscale insights accompanied with geological systems isNanogeoscience. Predominantly, this is interviewed by considering environmental nanoparticles size from 1 to 100 nanometers. The NanoGeoSciences team works closely with X-ray physical sciences in theNano-Science Center. Nanoscience is alarmed with inspecting material properties that alter as physical measurement approach the atomic scale and quantum properties become essential. The physical and chemical possessions of the Earth and several other terrestrial planets are subjected on the atomic to a nanoscale structure of their constituent rocks, minerals and fluids. Nanogeoscience encompasses the incorporation of microscopy, spectroscopy, and theoretical modelling comprised of experimental and fieldwork learning on the bulk manner connected with nanoscale mechanisms. Electron microscopy and allied spectroscopy approaches have been key techniques in this field for decades.

Green Nanotechnology:

Green nanotechnology alludes to the utilization of nanotechnology to improve the ecological supportability of procedures creating negative externalities. It additionally alludes to the utilization of the results of nanotechnology to improve maintainability. It incorporates making green nano-items and utilizing nano-items in the help of supportability.Green nanotechnologyhas been depicted as the advancement of clean innovations, "to limit potential ecological and human wellbeing dangers related with the fabricating and utilization of nanotechnology items and to empower supplanting of existing items with new nano items that are all the more naturally cordial all through their lifecycle.

Quantum Dots and Nanomagnetism:

Quantum Dots and Magnetic Nanoparticles have bunches of uses in explanatory strategies.Quantum Dotsare semiconductor nanoparticles whose electronic vitality levels are impressively controlled by the molecule measurements. This control occurs because of quantum repression. QDs are helpful as an investigative device because of its extraordinary optical properties. These optical properties comprise of restricted outflow spectra, wide absorbance spectra, discharge wavelength which is flexible by changing the extent of the molecule, high quantum effectiveness and low photobleaching rates.MNPsare made of magnetite (Fe3O4) or maghemite (Fe2O3). These materials are commonly superparamagnetic in the nanoscale extend. The attractive properties of these nanomaterials enable them to be controlled by attractive fields. the generally low poisonous quality of iron oxides takes into consideration their utilization in vivo applications.

Carbon Nanotechnology:

Carbon nanotube (CNT)is the allotropes of carbon with a cylindrical nanostructure. These cylindrical carbon molecules have unfamiliar properties, which are valuable for nanotechnology, electronics, optics and other fields of materials science and technology. Owing to the material's exceptional strength and rigidness, nanotubes have been constructed with length-to-diameter ratio of up to 132,000,000:1, significantly larger than for any other material.

In addition, owing to their remarkable thermal conductivity, mechanical, and electrical properties, carbon nanotubes find applications as additives to various structural materials. For instance, nanotubes form a nanoscopic portion of the material(s) in some (primarily carbon fibre) baseball bats, golf clubs, car parts orDamascus steel.

Pharmaceutical Nanotechnology:

Nanotechnology is the science which manages the procedures that happen at a molecular level and of nano-length scale size. The real investigations in the nanotechnology incorporate nanosized particles, their capacity and conduct as for different frameworks. The enormous capacities of nanoparticles have changed the viewpoint and extent of nanotechnology towards improvement into an adjuvant field for the rest of the fields of life sciences. Nanotechnology is the capacity to understand and control materials at the extremely littlest scales, from around 100 nm to the measurements of single molecules; At thisNanoscale, the properties of these nanosized particles differ from the customary medications.

Read more:
Nanomedicine Conferences | Nanotechnology Conferences ...

Read More...

Nanomedicine | medicine | Britannica.com

Thursday, January 31st, 2019

Nanomedicine, branch of medicine that seeks to apply nanotechnologythat is, the manipulation and manufacture of materials and devices that are smaller than 1 nanometre [0.0000001 cm] in sizeto the prevention of disease and to imaging, diagnosis, monitoring, treatment, repair, and regeneration of biological systems.

Although nanomedicine remains in its early stages, a number of nanomedical applications have been developed. Research thus far has focused on the development of biosensors to aid in diagnostics and vehicles to administer vaccines, medications, and genetic therapy, including the development of nanocapsules to aid in cancer treatment.

An offshoot of nanotechnology, nanomedicine is an emerging field and had garnered interest as a site for global research and development, which gives the field academic and commercial legitimacy. Funding for nanomedicine research comes both from public and private sources, and the leading investors are the United States, the United Kingdom, Germany, and Japan. In terms of the volume of nanomedicine research, these countries are joined by China, France, India, Brazil, Russia, and India.

Working at the molecular-size scale, nanomedicine is animated with promises of the seamless integration of biology and technology, the eradication of disease through personalized medicine, targeted drug delivery, regenerative medicine, as well as nanomachinery that can substitute portions of cells. Although many of these visions may not come to fruition, some nanomedicine applications have become reality, with the potential to radically transform the practice of medicine, as well as current understandings of the health, disease, and biologyissues that are of vital importance for contemporary societies. The fields global market share totalled some $78 billion dollars in 2012, driven by technological advancements. By the end of the decade, the market is expected to grow to nearly $200 billion.

Nanomedicine derives much of its rhetorical, technological, and scientific strength from the scale on which it operates (1 to 100 nanometers), the size of molecules and biochemical functions. The term nanomedicine emerged in 1999, the year when American scientist Robert A. Freitas Jr. published Nanomedicine: Basic Capabilities, the first of two volumes he dedicated to the subject.

Extending American scientist K. Eric Drexlers vision of molecular assemblers with respect to nanotechnology, nanomedicine was depicted as facilitating the creation of nanobot devices (nanoscale-sized automatons) that would navigate the human body searching for and clearing disease. Although much of this compelling imagery still remains unrealized, it underscores the underlying vision of doctors being able to search and destroy diseased cells, or of nanomachines that substitute biological parts, which still drives portrayals of the field. Such illustrations remain integral to the field, being used by scientists, funding agencies, and the media alike.

Attesting to the fields actuality are numerous dedicated scientific and industry-oriented conferences, peer-reviewed scientific journals, professional societies, and a growing number of companies. However, nanomedicines identity, scope, and goals are a matter of controversy. In 2006, for instance, the prestigious journal Nature Materials discussed the ongoing struggle of policy makers to understand if nanomedicine is a rhetorical issue or a solution to a real problem. This ambivalence is reflected in the numerous definitions of nanomedicine that can be found in scientific literature, that range from complicated drugs to the above mentioned nanobots. Despite the lack of a shared definition, there is a general agreement that nanomedicine entails the application of nanotechnology in medicine and that it will profoundly impact medical practice.

A further topic of debate is nanomedicines genealogy, in particular its connections to molecular medicine and nanotechnology. The case of nanotechnology is exemplary: on one hand, its potentialin terms of science but also in regard to funding and recognitionis often mobilized by nanomedicine proponents; on the other, there is an attempt to distance nanomedicine from nanotechnology, for fear of being damaged by the perceived hype that surrounds it. The push is then for nanomedicine to emerge not as a subdiscipline of nanotechnology but as a parallel field.

Although nanomedicine research and development is actively pursued in numerous countries, the United States, the EU (particularly Germany), and Japan have made significant contributions from the fields outset. This is reflected both in the number of articles published and in that of patents filed, both of which have grown exponentially since 2004. By 2012, however, nanomedicine research in China grew with respect to publications in the field, and the country ranked second only to the United States in the number of research articles published.

In 2004, two U.S. funding agenciesthe National Institutes of Health and the National Cancer Instituteidentified nanomedicine as a priority research area allocating $144 million and $80 million, respectively, to its study. In the EU meanwhile, public granting institutions did not formally recognize nanomedicine as a field, providing instead funding for research that falls under the headers of nanotechnology and health. Such lack of coordination had been the target of critiques by the European Science Foundation (ESF), warning that it would result in lost medical benefits. In spite of this, the EU ranked first in number of nanomedicine articles published and in 2007 the Seventh Framework Programme (FP7) allocated 250 million to nanomedicine research. Such work has also been heavily funded by the private sector. A study led by the European Science and Technology Observatory found that over 200 European companies were researching and developing nanomedicine applications, many of which were coordinating their efforts.

Much of nanomedicine research is application oriented, emphasizing methods to transfer it from the laboratory to the bedside. In 2005 the ESF pointed to four main subfields in nanomedicine research: analytical tools and nanoimaging, nanomaterials and nanodevices, novel therapeutics and drug delivery systems, and clinical, regulatory, and toxicological issues. Research in analytical tools and nanoimaging seeks to develop noninvasive, reliable, cheap, and highly sensitive tools for in vivo diagnosis and visualization. The ultimate goal is to create fully functional mobile sensors that can be remotely controlled to conduct in vivo, real-time analysis. Research on nanomaterials and nanodevices aims to improve the biocompatibility and mechanical properties of biomaterials used in medicine, so as to create safer implants, substitute damaged cell parts, or stimulate cell growth for tissue engineering and regeneration, to name a few. Work in novel therapeutics and drug delivery systems strives to develop and design nanoparticles and nanostructures that are noninvasive and can target specific diseases, as well as cross biological barriers. Allied with very precise means for diagnosis, these drug delivery systems would enable equally precise site-specific therapeutics and fewer side effects. The area of drug delivery accounts for a large portion of nanomedicines scientific publications.

Finally, the subfield of clinical, regulatory, and toxicological issues lumps together research that examines the field as a whole. Questions of safety and toxicology are prevalent, an issue that is all the more important given that nanomedicine entails introducing newly engineered nanoscale particles, materials, and devices into the human body. Regulatory issues revolve around the management of this newness, with some defending the need for new regulation, and others the ability of systems to deal with it. This subfield should also include other research by social scientists and humanists, namely on the ethics of nanomedicine.

Combined, these subfields build a case for preventive medicine and personalized medicine. Building upon genomics, personalized medicine envisions the possibility of individually tailored diagnostics and therapeutics. Preventive medicine takes this notion further, conjuring the possibility of treating a disease before it manifests itself. If realized, such shifts would have radical impacts on understandings of health, embodiment, and personhood. Questions remain concerning the cost and accessibility of nanomedicine and also about the consequences of diagnostics based on risk propensity or that lack a cure.

More:
Nanomedicine | medicine | Britannica.com

Read More...

What is Nanomedicine? The future of medicine.

Wednesday, November 21st, 2018

Materials which have at least one dimension less than 100nm are classified as nanomaterials. These materials can be may shapes and sizes like spheres, rods, wires, cubes, plates, stars, cages, pyramids among some funny named shapes like nanohedgehogs, nanocandles and nanocakes! See the paperMorphology-Controlled Growth of ZnO Nanostructures Using Microwave Irradiation: from Basic to Complex Structuresfor some really inventive names for various shaped nanomaterials!

Aside scientists are pretty terrible at naming things, for example,the creative names given to optical telescopes the Extremely Large Telescope,Large Binocular Telescope,Overwhelmingly Large Telescope,Very Large Optical Telescope.

These nanoparticle shapes come in different sizes and different materials too. Broadly we can categorize nanomaterials into two groups organic or inorganic (but it is possible to have a hybrid inorganic-organic nanoparticle too). Organic nanoparticles arent nanoparticles from your local farmers market they are nanoparticles which contain carbon (and often hydrogen too which forms hydrocarbons) whereas most inorganic nanoparticles dont contain carbon atoms. Organic nanomaterials include carbon (except fullerenes) , polymeric and lipid-based nanocarriers. Inorganic nanoparticles include metallic/plasmonic, magnetic, upconversion, semiconductor and silica based nanoparticles.

The main groups of organic nanocarriers are liposomes, micelles, protein/peptide based and dendrimers. Protein/peptide based nanocarriers are amorphous (non-crystalline) materials generally conjugated to the therapeutic agent and is often further functionalised with other molecules. Micelles and liposomes are formed by amphiphilic (both hydrophilic and hydrophobic parts), micelles form monolayers whereas liposomes form bilayers. Lastly, dendrimer nanocarriers are tree-like structures which have a starting atom core (eg. nitrogen) and other elements are added through a series of chemical reactions resulting in a spherical branching structure. This final structure is not unlike blood hemoglobin and albumin macromolecules.

These vesicular nanocarriers can be used to trap both hydrophobic and hydrophilic drugs and even small nanoparticles inside the aqueous/lipid core. This provides protection for drugs and facilitates significant drug loading minimising toxicity and increasing blood circulation time (increasing possibility that the drug will reach the therapeutic target from avoiding opsonisation).

inorganic nanomaterials are stable, robust, resistant, highly functional. and are quite easily cleared from the body. Furthermore, inorganic material exhibit truly exciting mechanical, optical, physical and electrical phenomena at the nanoscale which can be tailored through changes in material, phase, shape, size and surface characteristics. Oftentimes, it is necessary to add a biocompatible surface to inorganic nanoparticles to avoid toxicity, especially for heavy metals.

Semiconductor Nanomaterials

Quantum dots are the most well-known semiconductor nanoemitter. These are typically very small in size ~5nm, which is smaller or equal to the exciton Bohr radius giving quantum confinement. Electrons are subatomic particles with a negative elementary electric charge, electron holes is an empty position in an atom or lattice that an electron could occupy. An exciton is a bound statewhere an electron and electron hole are electrostatically attracted to each other through Coulombic forces.Anexciton bohr radiusis the separation distance between the hole and electron. Due to 3 dimensional confinement effects, quantised energy levels are produced in the filled low energy valence band and in the empty conduction band of the quantum dots which is very unlike bulk semiconductors. The energy gap between the conduction and valance band varies with the size of the quantum dot which explains the tunable emissions (colour) when excited. Additionally, alloyed quantum dots can be further tuned because the bandgap is approximately equal to the weighted average of the composite semiconductor material. Quantum dots excited in the near-infrared are expected to be revolutionary in biomedical imaging. There has been concerns about the stability and toxicity, as many quantum dots lose luminescence intensity when exposed to light/air/oxygen/water and they are generally composed of heavy metal materials.

Upconversion Nanomaterials

Upconversion nanomaterials consist of two parts, first the host dielectric lattice (e.g., NaYF4) with one or more guest trivalent lanthanide (atomic numbers 5771) ions (e.g., Er3+, Yb3+). Upconversion is an anti-stokes process, two or more lower energy photons are absorbed (either simultaneously or stepwise) via long-lived real electronic states of the lanthanide dopant and a higher energy photon is emitted. The lanthanide element has a specific electronic configuration with energy levels which is usually independent of the host material type, the nanoparticle shape and its size.

Electrons are arranged in shells around an atoms nucleus, where the closest electrons to the nucleus have the lowest energy. Each shell can hold a certain number of electrons (principal quantum number) the first shell (1) can hold 2 electrons, the second (2) 8 and the third (3) 18. Within these shells are subshells (defined by theazimuthal quantum number) and are labelled s,p,d or f which can hold 2,6,10 or 14 electrons respectively.

In the case of upconversion, the 5s and 5p shells are full whereas the 4f-4f shells are not. But, because 5s and 5p are full they shield the 4f-4f shells which allows sharp line-like luminescence, i.e. the luminescencepeak is not broad. This luminescence is also resistant to photobleaching, high photostability and are nonblinking, which of course is beneficial over fluorescent molecules which experience high levels of degradation. Through careful design, upconversion nanomaterials can display a variety of emission and excitation wavelengths from UV to NIR.

These upconversion nanoparticles can be incorporated with photosensitizers to produce reactive oxygen species which generally require activation by UV light. This therapy procedure is calledPhotodynamic therapyand can be used for treating a wide range of medical conditions including malignant cancers and acne. Upconverison nanomaterials also have applications in multimodal imaging through the use of specific dopants high atomic number dopants for computed tomography (CT) imaging, radioisotopes for single-photon emission tomography (SPECT) imaging or positron emission tomography(PET) imaging.

MagneticNanomaterials

At the nanoscale, certain magnetic materials below a specific size exhibit a special form of magnetism called superparamagnetism. Superparamagnetic nanoparticles behave as single domain paramagnets when under an external magnetic field but once the field is removed there is no residual magnetisation. Typically, these materials areIron oxide nanoparticles. Additionally, these nanomaterials tend to be non-toxic and can be readily coated with molecules for further functionalization. These nanoparticles are commonly used as MRI contrast agentsinmagnetic resonance imaging (MRI).Furthermore, magnetic nanoparticles can be used in nanotherapy either through magnetic-field-directed drug delivery or through magnetic hyperthermia which involves localized heating of diseased tissues and therefore, cell death.

Silica Nanoparticles

Silica is a highly biocompatible biomaterial which is often used in nanomedicine.

Mesoporous silica nanoparticles are silica nanoparticles which have been template-patterned to have pores throughout the particle. This is done through the use of surfactants likeCetrimonium bromide(CTAB), which is extracted after synthesis leaving holes where the CTAB once was. In these pores, water insoluble materials can be added, such as drugs for chemotherapy, dyes for imaging or even small nanoparticles. These pore sizes can be controlled to encapsulate various sizes of biomolecules. Silica is often used to coat nanoparticles to achieve biocompatibility and to simplify further functionalisation.

PlasmonicNanomaterials

Now, saving the best for last plasmonic nanoparticles.

Plasmonic nanoparticles consist of noble metals like gold, silver, copper and aluminium. At the nanoscale, these materials can supportLocalized surface plasmons, which is a collective oscillation of the free surface electrons at the interface between the nanomaterial and the surrounding dielectric medium when resonance occurs between the natural resonant frequency of the surface electrons and the frequency of the incident light photons. The LSPR can be tuned with the material, size and shape of the nanoparticle.

Plasmonic nanoparticles can scatter and absorb light, for example, for smaller nanoparticles absorption tends to dominate (more light is absorbed which is generally converted to heat energy) and for larger nanoparticles scattering tends to dominate (which is exploited in bioimaging). For this reason, smaller nanoparticles are often used in photothermal therapy. InPhotothermal therapy, plasmonic nanoparticles accumulate in diseased tissues then are irradiated with resonant light, the nanoparticles absorb this light energy and convert it to heat energy, resulting in localised heating of the damaged tissue. This localised heating causes cell death, thus this therapy can be used for cancerous tumors. This heating can be visualised using thermographical measurements or using a dark field microspectroscope, plasmon scattering can be used in medical imaging. Please giveBiomedical applications of plasmon resonant metal nanoparticles, Liao et. al.a read for additional information.

Like Loading...

Read more from the original source:
What is Nanomedicine? The future of medicine.

Read More...

IEEE-NANOMED 2016 The 10th IEEE International Conference …

Saturday, November 17th, 2018

Holiday Inn Macao Cotai Central Sands Cotai Central, Cotai Strip, Taipa, Macau SAR, China

Program Timetable (PDF version) is available. (FINAL, updated on Oct 26)

Registration Time:

IEEE-NANOMED is one of the premier annual events organized by the IEEE Nanotechnology Council to bring together physicians, scientists and engineers alike from all over the world and every sector of academy and industry, working at advancement of basic and clinical research in medical and biological sciences using nano/molecular and engineering methods. IEEE-NANOMED is the conference where practitioners will see nano/molecular medicine and engineering at work in both their own and related fields, from essential and advanced scientific and engineering research and theory to translational and clinical research.

Conference Theme:

Authors are also invited to submit results to a special issue of the journal Micromachines (impact factor 1.295), on the topic of Microdevices and Microsystems for Cell Manipulation. More information on the special issue and paper submission can be found here:http://www.mdpi.com/journal/micromachines/special_issues/cell_manipulation

Authors are also invited to submit results to a special issue of the journal Micromachines (impact factor 1.295), on the topic of MEMS/NEMS for Biomedical Imaging and Sensing. More information on the special issue and paper submission can be found here:http://www.mdpi.com/journal/micromachines/special_issues/MEMS_biomedical_imaging_sensing

Originally posted here:
IEEE-NANOMED 2016 The 10th IEEE International Conference ...

Read More...

Nanomedicine Conferences | Nanotechnology Events …

Friday, September 7th, 2018

About Conference

ME Conferences invites all the participants from all over the world to attendNanomedicine and Nanotechnology in Health CareDuring 17-19 September, 2018 at Abu Dhabi, UAE. This includes prompt keynote presentations, Oral talks, Poster presentations and Exhibitions. And it provides an opportunity to learn about the complexity of the Diseases, discuss interventional procedures, look at new and advances in Nanotechnology and their efficiency and efficacy in diagnosing and treating various diseases and also in Healthcare treatments.

ME Conferences organizes 1000+ Global Events Every Year across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open access journals which contains over 1,00,000 eminent personalities, reputed scientists as editorial board and organizing committee members. ME Conferences journals have over 5 million readers and the fame and success of the same can be attributed to the strong editorial board which contains over 30000 eminent personalities and the rapid, quality and quick review processing.ME Conferences make the perfect platform for global networking as it brings together renowned speakers and scientists across the globe to a most exciting and memorable scientific event filled with much enlightening interactive sessions, international workshops, world class international exhibitions and poster presentations.

Why to attend?

This Conference Nanomedicinemeet 2018 will focus on Healthcare and Medicine. World-renowned speakers, the most recent techniques, tactics, and the newest updates in fields Nanotechnology and Engineering, Medical Nanotechnology, Tissue Engineering are hallmarks of this conference. Nanomedicinemeet-2018 is an exciting opportunity to showcase the modern technology, the new products of your company, and/or the service your industry may offer to a broad international audience. It covers a lot of topics and it will be a nice platform to showcase their recent researches on Nanotechnology, MaterialScienceand other interesting topics.

Target Audience:

The termNano medicineencompasses a broad range of technologies and materials. Types of nanomaterials that have been investigated for use as drugs,, drug carriersor other Nonmedical agents. There has been steep growth in development of devices that integrate nanomaterials or other nanotechnology. Thenanotechnology-based medical devices market is categorized into three major segments, namely, therapeutic applications, diagnostics applications, and research applications. Rising incidence of lifestyle and age-related disorders (such as cardiovascular and hearing disorders) has contributed significantly to the growth of the nanotechnology-based active implantable devices market. Nanotechnology, or systems/device manufacture at the molecular level, is a multidisciplinary scientific field undergoing explosive development. The genesis of nanotechnology can be traced to the promise of revolutionary advances across medicine, communications and genomics. On the surface, miniaturization provides cost effective and more rapidlyfunctioningbiological components. Less obvious though is the fact that Nanometer sized objects also possess remarkableself-ordering and assemblybehaviors under the control of forces quite different from macro objects.

Advances in technology have increased our ability to manipulate the world around us . Nanotechnology is rapidly emerging within the realm of medicine. Nanomedicine is the process of diagnosing, treating, and preventing disease andtraumatic injury, of relieving pain, and of preserving and improving human health, using molecular tools and molecular knowledge of the human body. An exciting and promising area of Nano technological development is the building of Nanorobots. Highly precise positioning techniques are required in Miniaturing in chip technology, optics , micro mechanic, medicine , gene and biotechnology. The new manipulation technology is the desire to enter the micro and Nano world not only by viewing but also acting, alteringmicro andNanosized objects. Nanorobots plays a critical roles for many applications in the human body, such astargetingtumoral lesionsfor therapeutic purposes, miniaturization of the power source with an effective onboard controllable propulsion and steering system have prevented the implementation of such mobile robots.

The therapeutic properties of light have been known for thousands of years, but it was only in the last century that photodynamic therapy (PDT) was developed. It is an emerging modality for the treatment of a variety of diseases that require the killing of pathological cells (e.g. cancer cells or infectious micro-organisms) or the removal of unwanted tissue (e.g. neovascularization in the choroid or atherosclerotic plaques in the arteries). It is based on the excitation of nontoxic photosensitizers.Photodynamic therapy(PDT) uses the combination of dyes with visible light to produce reactive oxygen species and kill bacteria and destroy unwanted tissue. Nanotechnology plays a great role insolubilizing thephotosensitizers, metal nanoparticles can carry out Plasmon resonance enhancement, andfullerenescan act as photosensitizers, themselves.

Nanotechnology is becoming increasingly important for the several sectors. Promising results and applications are already being developed in the areas of nutrient delivery systems through bioactive Nano encapsulation,biosensorsto detect and quantifypathogens organic compounds. The sensitivity and performance of biosensors is being improved by using nanomaterials for their construction. The use of these nanomaterials has allowed the introduction of many new signal transduction technologies in biosensors. Many scientists have involved themselves to know the application and the benefits of nanotechnology in different areas of food industry that include bioactive Nano encapsulation, edible thin film, packages andNano sensors.

Green chemistry and Nano science are both emerging fields that take advantage of molecular-level designing and have enormous potential for advancing our science. Nano science is the study of materials that are on the length-scale of 100 nanometers or smaller and have properties that are dependent on their physical size. The principles of green chemistry can guide responsible development of Nano science, while the new strategies of Nano science can fuel the development ofgreener productsand processes.Phytochemicalsoccluded in tea have been extensively used as dietary supplements and as naturalpharmaceuticalsin the treatment The parallel development of green chemistry and Nano science and the potential synergy of the two fields can lead to more successful and profitable technologies with reduced environmental impacts and improved conservation of resources. In recent years, green synthesis ofmetal nanoparticlesis an interesting issue of the nanoscience.

Nanotechnologyis enabling technology that deals with Nano-meter sized objects. It is expected that nanotechnology will be developed at several levels: materials, devices and systems. The combination of biology and nanotechnology has led to a new generation ofNano devicesthat opens the possibility to characterize the chemical, physical, mechanical, and other molecular properties. And it can be even used to characterize the single molecules or cells at extraordinarily high throughput.Nanoparticleswith distinctive chemical compositions, sizes, shapes, and surface chemistries can be engineered easily and this technique has wide range of applications in biological systems.Utility of nanotechnology to biomedical sciences imply creation of materials and devices designed tointeraction in sub-cellular scaleswith a high degree of specificity.

Biopolymer nanoparticles are offering numerous advantages which embrace the simplicity of their preparation from well-understood biodegradable, biocompatible polymers and their high stability inbiological fluidsduring storage. Since the emergence of Nanotechnology in the past decades, the development and design of organic andbioorganic nanomaterialshas become an important field of research. And several types of polymers have been tested and are used in drug delivery systems; including nanoparticles, dendrimers, capsosomes and micelles. Researchers have found, the synthesized polymers even serves as a good carrier and plays a vital role in carrying a drug. And in other hand they are used in food industries too for food package purposes. There are thousands of organic chemicals are in present in various pharmaceutical to consumer product and are being used in dyes, flavoring agents. It can be explained in organic compounds ranging in diameter from 10 to 1m.Ultrafine particlesare the same asnanoparticlesand between 1 and 100 nanometers in size, fine particles are sized between 100 and 2,500 nanometers, and coarse particles cover a range between 2,500 and 10,000nanometers.

The biological synthesis ofnanoparticlesis synthesis method through which we can control, size and shape of nanoparticles and it increasingly regarded as a rapid, ecofriendly, and easily scaled-up technology. Over the past few years researches have shown their interest inmetallic nanoparticlesand their synthesis has greatly increased. However, drawbacks such as the involvement oftoxic chemicalsand the high-energy requirements of production. Synthesizing living organisms such as bacteria, fungi and plants is an alternative way to overcome the drawbacks. Plant mediated synthesis of nanoparticles is the green chemistry that connects. Generally, metal nanoparticles are synthesized and stabilized by using physical and chemical: the chemical approach, such as chemical reduction,electrochemical techniques,photochemical reactionsin reverse micelles. There is a growing attention to biosynthesis the metal nanoparticles using organisms. Among these organisms, plants seem to be the best candidate and they are suitable for large scale biosynthesis of nanoparticles.

Nanoparticles used asdrug deliveryvehicles are generally below 100 nm , and are coated with different biodegradable materials such as natural or synthetic polymers (PEG,PVA,PLGA,etc.), lipids, or metals , it plays significant role on cancer treatment as well as it holds tremendous potential as an effective drug delivery system. A targeted drug delivery system (TDDS) is a system, which releases the drug in a controlled manner. Nanosystems with different compositions and biological properties have been extensively investigated for drug and gene delivery applications. To achieve efficient drug delivery it is important to understand the interactions ofNanomaterialswith the biological environment, targetingcell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents. Nanotechnology refers to structures roughly in the 1100 nm size regime in at least one dimension. Despite this size restriction, nanotechnology commonly refers to structures that are up to several hundred nanometers in size and that are developed bytop-down or bottom-up engineering of individual components.

Nanosuspention formulation can be used to improve the solubility of the poorly soluble drugs. One of the major problems associated with poorly soluble drugs is very low bioavailability. The Preparation ofNanosuspentionis simple and applicable to all drugs which are water insoluble. It consists of the pure poorly water-soluble drug without any matrix material suspended in dispersion . Various techniques are used for the enhancement of the solubility of poorly soluble drugs which include physical and chemical modifications of drug and other methods like particle size reduction,crystal engineering, salt formation, solid dispersion, use ofsurfactant, complexation A range of parameters like solubility, stability at room temperature, compatibility with solvent, excipient, andphotostabilityplay a critical role in the successful formulation of drugs. Use of some drug which is potentially restricted because of its toxic side-effects and its poor solubility, making it unsuitable for intravenous use in patients withdrug malabsorption.

Nano medicine drives the convergence of nanotechnology and medicine it is delineated as the application of nanotechnology in healthcare. The field of tissue engineering has developed in phases: initially researchers searched for inert biomaterialsto act solely as replacement structures in the body. Tissue engineering is classified as an associate field of biomaterialsand engineering. It focuses on the use of cellular and material-based therapies aimed attargeted tissue regenerationcaused by traumatic, degenerative, and genetic disorders.It covers a broad range of applications, in practice the term has come to represent applications that repair or replace structural tissues (i.e., bone, cartilage, blood vessels, bladder, etc.). Today, these Nano scale technologies are coming to the forefront in medicine because of their biocompatibility, tissue-specificity, and integration and ability to act as therapeutic carriers.

Polymeric nanoparticles (NPs) are one of the most studied organic strategies for Nano medicine. Intense interest lies in the potential ofpolymeric NPsto revolutionize modern medicine. Polymeric NPs include drug delivery techniques such as conjugation and entrapment of drugs,prodrugs, stimuli-responsive systems,imaging modalities, and theranostics.The use of biodegradable polymeric nanoparticles (NPs) for controlled drug delivery has shown significanttherapeutic potential. Concurrently, targeted delivery technologies are becoming increasingly important as a scientific area of investigation. Polymericnanoparticles-based therapeutics show great promise in the treatment of a wide range of diseases, due to the flexibility in which their structures can be modified, with intricate definition over their compositions, structures and properties. Advances in polymerizationchemistries and the application of reactive, efficient andorthogonal chemicalmodification reactionshave enabled the engineering of multifunctional polymericnanoparticles.

In recent years,microbubbleand Nano bubble technologies have drawn great attention due to their wide applications in many fields of science and technology, such as water treatment,biomedical engineering, and nanomaterials.Nano bubblesexhibit unique characteristics; due to their minute size and high internal pressure, they can remain stable in water for prolonged periods of time. Nanobubbles can be created whengold nanoparticlesare struck by short laser pulses. The short-lived bubbles are very bright and can be made smaller or larger by varying the power of the laser. Because they are visible under a microscope, nanobubbles can be used to either diagnose sick cells or to track the explosions that are destroying them.

Natural productshave been used in medicine for many years. Many top-sellingpharmaceuticalsare natural compounds or their derivatives.. And plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. Natural products had huge success in the post-World War II era as antibiotics, and the two terms have become synonymous.While large pharmaceutical companies have favored screening synthetic compound libraries for drug discovery, small companies have started to explore natural products uses against cancer, microbial infection, inflammation, and other diseases.The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products bothin vitro and in vivo.

Nanoscience and nanotechnology are new frontiers of this century and food nanotechnology is an emerging technology. Food technology is regarded as one of the industry sectors where nanotechnology will play an important role in the future. The development of new products and applications involving nanotechnologies holds great promise in different industrial sectors, Nanotechnology may revolutionize the food industry by providing stronger, high-barrier packaging materials, more potentantimicrobial agents. Several possibilities exist to exploit the benefits of nanotechnologies during different phases of the food chain with the aim to enhance animal nutrition and health. Several complex set of engineering and scientific challenges in the food and bioprocessing industries for manufacturing high quality and safe food through efficient and sustainable means can be solved through nanotechnology. Bacteria identification and food quality monitoring using biosensors; intelligent, active, and smart food packaging systems; and Nanoencapsulationofbioactive food compoundsare few examples of emerging applications of nanotechnology for the food industry.

The main current applications of Nanotechnology for surgeons are in the areas of development of surgical implants using Nanomaterials, Imaging, Drug Delivery and development of Tissue Engineering products, such as scaffolds with enhanced materialcell interaction. An example of this is the development of a scaffold for delivery of stem cells to replace defective retinal pigmented epithelial cells in age-related Macular Degeneration. In Dentistry research has been done, liposomal Nanoparticles that contained collagenase and performed tests with them in rats, and found compared to conventional surgery, collagenase weakened the collagen fibers, making it easier to shift the teeth afterward with braces.

Nanoparticles with their unique size-dependent properties are at the forefront of advanced material engineering applications in several fields. Metals, non-metals, bio-ceramics, and manypolymeric materialsare used to produce nanoparticles of the respective materials. These are functional in producing liposomes, PEG and many more. Due to their small size nanoparticles has found to be interacting with human bodies same like of gases. Nanoparticles of the same composition can display behavioral differences when interacting with different environments. Nanoparticles can enter the human body via inhalation, ingestion, or skin contact. The range of pathologiesrelated to exposure tonanoparticles encompasses respiratoryand even several organs and leads to diseases. Accurate in vitro assessment ofnanoparticle cytotoxicityrequires a careful selection of the test systems. Due to high adsorption capacity and optical activity, engineered nanoparticles are highly potential in influencing classical cytotoxicity assays.

One of the exciting features of nanotechnology is its utility in the field of Nano medicine, therapeutics, and medical devices . When these small size materials are introduced into biological systems, their extremely small size and their unique Nano scale properties make it possible to use them as delivery vectors and probes for biological diagnostics,bioimagingand therapeutics. In fact, when size decreases, thesurface area to volume ratioof materials becomes very large, so that a vast suitable surface is available forchemical interactions withbiomolecules. This critically implied that nanotechnology is facing a transition into the tangible advancement ofhuman therapeutics. Recently, There are multiple clinical trials of nanomaterials have done; both for therapeutics and for medical devices.

Related conferences: Nanomedicine Conferences | Nanotechnology Events | Nano Healthcare Congress | Nanomedicine Meet | Nanoscience Event | Nanoengineering Conference | Tissue Engineering Meeting

Related Societies:

USA:International Organization of Materials, International Association of Nanotechnology, Graphene Stakeholders Association, Nano Science and Technology Institute (NSTI),NanoBusiness Commercialization Association, Alliance for Nanotechnology in Cancer,International association of nanotechnology,National Institute for Nanotechnology, Waterloo Institute for Nanotechnology, The Institute for Molecular Manufacturing (IMM),NanoBusiness Alliance, Nanotechnology and Nanoscience Student Association (NANSA),Nano Science and Technology Institute (NSTI),National Cancer Institute, National Nanotechnology Initiative,American Nano society, Metals and Minerals Societies, Society for Advancement of Material and process Engineering,American Composites Manufacturers Association, Brazilian Composites Materials Association,Canadian Biomaterials Society, American Institute of Aeronautics and Astronautics (AIAA).

Europe:International Union of Crystallography, European Nanoscience and Nanotechnology Association (ENNA),German Association of Nanotechnology, Nanotechnology Industries Association, The Institute of Nanotechnology (IoN), Nanotechnology Industries Association (NIA),Russian Society of Scanning Probe Microscopy and Nanotechnology, Society of Nanoscience and Nanotechnology, Federation of Materials Societies, Society for Biomaterials, Federation of European Materials Societies

Asia-Pacific & Middle East:Nano Technology Research Association (NTRA), Asian Nanoscience and Nanotechnology Association (ANNA), Nanoscience & Nanotechnology, ASPEN-Asian society of precision engineering and nanotechology, The International Association of Nanotechnology (IANT), Iran Nanotechnology Initiative Council (INIC), National Institutes of Health, Society of Materials Science, Japan Society for Composite Materials, Australasian Society for Biomaterials and Tissue Engineering, Australasian Ceramic Society, Materials Research Society, National Centre for Nanoscience and Technology.

Theme: Role of Nanotechnology in Humans life

Summary:

The field of Nanotechnology has recently emerged as the most commercially viable technology of this century because of its wide-ranging applications in our daily lives. Man-made Nanostructured materials such as fullerenes, nanoparticles, Nano powders, Nanotubes, Nanowires, Nanorods, Nano-fibers, Quantum dots, Dendrimers, Nano clusters, Nanocrystals, and Nanocomposites are globally produced in large quantities due to their wide potential applications, e.g., in skincare and consumer products, healthcare, electronics, photonics, biotechnology, engineering products, Pharmaceuticals, drug delivery, and agriculture. Many emerging economies such as Brazil, China, India, Iran, UAE, Malaysia, Mexico, Singapore and South Africa have ambitious research and development (R&D) plans for Nanotechnology.A group of scientists who have mapped out the uses of Nanotechnology and the needs of global health argue that Nano medicine is relevant for the developing world. They surveyed researchers worldwide and concluded that Nanotechnology could greatly contribute to meeting the Millennium Development Goals for health.

Importance and scope:

Nanotechnologyis becoming a crucial driving force behind innovation in medicine and healthcare, with a range of advances including Nano scale therapeutics, biosensors, implantable devices, drug delivery systems, and imaging technologies. Universities also have begun to offer dedicated Nano medicine degree programs (example:MSc program in Nanotechnology for Medicine and Health Care). Nanotechnology will be getting to be progressively prevalent these times Around learners. Actually, if you follow again of the Inception about nanotechnology, you will discover that Ayurveda need long been utilizing gold Also silver nanoparticles, known as bhasmas, to treat Different therapeutic ailments. Presently, nanotechnology may be generally utilized within huge numbers industries, going from cosmetics, agriculture, and materials should pharmaceutical Also human services. Nanomedicine may be the provision for nanotechnology for those diagnoses, detection, and medicine Also aversion of illnesses. Presently there need aid various items on the business that would the outcome from claiming nanotechnology. Talking for scratching the surface, we likewise have Nano auto wax that fills done the individuals minor cracks more successfully Furthermore provides for you a shinier vehicle. There need aid likewise Nano items accessible with stay with your eyewear What's more different optical units cleaner, dryer, What's more that's only the tip of the iceberg tough.

Conference highlights:

Why in Abu Dhabi?

Abu Dhabi is the federal capital and centre of government in the United Arab Emirates sits off the mainland on an island in the Persian (Arabian) Gulf. It is the largest city of the Emirate of Abu Dhabi and one of the most modern cities in the world. It is a well-ordered, industrious city with a pretty waterside location. Innovative Nano Technology LLC was founded in the beginning of 2016 in Al Ain City, Abu Dhabi, United Arab Emirates. It was established with the goal of taking a leading role in the field of Nano Technology Based Coatings, and is considered as one of the first Companies who offer the new Nano technology based Coatings in the region.

Why to attend?

United Arab Emirates has a number of universities that offer research and educational opportunities in nanotechnology. United Arab Emirates University, The first and foremost comprehensive National University in the United Arab Emirates. eFORS office is the University consultancy office within the college of engineering that deals with several science and technology issues including Biochemical and Biopharmaceutical Processes and Bioengineering and Nanotechnology. Reports released during October 2012 revealed that the worlds second largest foundry, Globalfoundries has agreed to partner with Masdar Institute to develop Abu Dhabi as a centre for semiconductor R&D and manufacturing excellence. In September, the company allowed students and professors to use its technology facilities at its Abu Dhabi branch. The facilities have a laboratory-like environment with powerful production servers, engineering work stations and a high-speed data network that can be used for enabling remote access to very advanced nanotechnology engineering systems

Technology domains of patent applications in UAE

This graph shows the global Nanomedicine market size, measured in terms of revenues, such as sales revenues, grants revenues, and milestones. From2006to date, a steady growth has occurred, which is expected to continue through2014, at aCAGRof13.5% [BCCResearch, Nanotechnology in Medical Applications. The drug delivery market is the largest contributing application segment, whereas biomaterials are the fastest growing application area in this market. Nanomedicine accounts for77Marketed Products Worldwide, representing an Industry with an estimated market $249.9Billion by2016[ETPNdata,BCC].

Globally, the industry players would centering essentially once R&D to get Regard for Different clinical trials for future Nanodrugs with a chance to be economically accessible in the business sector. If a chance to be generally arranged for exactly of the most punctual What's more The greater part essential requisitions of Nano medicine for regions for example, gene treatment and tissue building. The a greater amount propelled requisitions for Nano medicine will pose interesting tests As far as order Furthermore support about exploratory dexterity.

Nano medicine market :

Nano-enabled medical products beganappearing on the market over a decade ago and some have become best-sellers in theirtherapeutic categories. The main areas in which Nanomedical products have made animpact are cancer, CNS diseases, cardiovascular disease, and infection control. At present, cancer is one of the largesttherapeutic areas in which Nano-enabled products have made major contributions; theseinclude Abraxane, Depocyt, Oncospar, Doxil,and Neulasta. Cancer is a prime focus forNano pharmaceutical R&D, and companieswith clinical-stage developments in this fieldinclude Celgene, Access, Camurus, andCytimmune. Treatments for CNS disorders includingAlzheimers disease and stroke also feature prominently in Nano therapeutic research,seeking to build on achievements already posted by products such as Tysabri, Copazone,and Diprivan. According to BCC Research,this is a field hungry for successfultherapeutic advances and annual growth fromexisting and advanced pipeline products isexpected to reach 16% over the next 5 years.

Nanotechnology Companies in Asia and Middle East:

Nano Congress 2017

We gratefully thank all our wonderful Speakers, Conference Attendees, Students, Media Partners, Associations and Sponsors for making Nano Congress 2017 Conference the best ever!

The19thNano Congress for Next Generation, hosted by the ME Conferences was held duringAugust 31- September 01, 2017atBrussels, Belgiumbased on the themeNext Generation Nanotechnology Concepts Methodologies Tools and Applications". Benevolent response and active participation was received from the Organizing Committee Members along with Scientists, Researchers, Students and leaders from various fields of Nanotechnology who made this event a grand success.

ME Conferences expresses its gratitude to the conference Moderator,namelyDr.Dominique Ausserrefor taking up the responsibility to coordinate during the sessions. We are indebted to your support.

Similarly we also extend our appreciation towards our Poster judge namely,Dr. Arturs Medvids.

The conference was initiated with theHonorable presenceof theKeynote forum. The list includes:

The meeting reflected various sessions, in which discussions were held on the following major scientific tracks:

Nano Materials Synthesis and Characterisation

Nano Photonics

Molecular Nanotechnology

Nanotechnology and Cosmetics

Nanotechnology in Agriculture and Food Industry

Carbon Based Nano materials and Devices

Nanotechnology Safety

Nano Medicine and Nano Biotechnology

Nano Science and Technology

Nano Applications

Nano-electronics

Nano Biomaterials

Nano Biometric

Advanced Nanomaterials

Nano Technology in Tissue Engineering

Nanotech for Energy and Environment

Nano Computational Modelling

ME Conferences offers its heartfelt appreciation to organizations such asAllied Academies,Andrew John Publishing Inc.,New York private Equity Forum,Crowd Reviewsand other eminent personalities who supported the conference by promoting in various modes online and offline which helped the conference reach every nook and corner of the globe. ME Conferences also took privilege to felicitate the Keynote Speakers, Organizing Committee Members, Chairs and sponsors who supported this event

See the rest here:
Nanomedicine Conferences | Nanotechnology Events ...

Read More...

What is Nanomedicine? : Center for Nanomedicine

Friday, August 24th, 2018

Nanomedicine is defined as the medical application of nanotechnology. Nanomedicine can include a wide range of applications, including biosensors, tissue engineering, diagnostic devices, and many others. In the Center for Nanomedicine at Johns Hopkins, we focus on harnessing nanotechnology to more effectively diagnose, treat, and prevent various diseases. Our entire bodies are exposed to the medicines that we take, which can lead to unpleasant side effects and minimize the amount of medicine that reaches the places where it is needed. Medications can be more efficiently delivered to the site of action using nanotechnology, resulting in improved outcomes with less medication.

For example, treating cancer with current chemotherapy delivery techniques is like spraying an entire rose garden with poison in order to kill a single weed. It would be far more effective to spray a small amount of poison, directly on the weed, and save the roses. In this analogy, a cancer patients hair follicles, immune cells, and epithelia are the roses being poisoned by the chemotherapy. Using nanotechnology, we can direct the chemotherapy to the tumor and minimize exposure to the rest of the body. In addition, our nanotechnologies are more capable of bypassing internal barriers (see Technologies), further improving upon conventional nanotechnologies. Not only is our approach more effective at eradicating tumors (see Cancer under Research), but it also results in much higher quality of life for the patient.

Nanotechnology can also reduce the frequency with which we have to take our medications. Typically, the human body can very quickly and effectively remove medications, reducing the duration of action. For example, the current treatment for age-related macular degeneration (AMD) requires monthly injections into the eye in a clinical setting. However, if the medication is slowly released from the inside of a nanoparticle, the frequency of injection can be reduced to once every 6 months (see Eye under Research). The nanoparticle itself also slowly biodegrades into components that naturally occur in the body, which are also removed from the body after the medication has done its job. This exciting technology is currently being commercialized and moved toward clinical trials (see Commercialization).

Nanomedicine will lead to many more exciting medical breakthroughs. Please explore our various nanotechnology platforms and the numerous areas in which we are pursuing nanomedicine-based medical solutions.

See the article here:
What is Nanomedicine? : Center for Nanomedicine

Read More...

The Promise of Nanomedicine – Laboratory Equipment

Sunday, July 22nd, 2018

More than a decade ago, nanotechnology became an integral part of the overall scientific research world. Governments started funding programs specifically aimed at nanotechnology, research universities opened their facilities and coursework to the new discipline, and journals focusing on nano research became commonplace.And now, many researchers believe, its nanomedicines turn to do the same. Nanomedicinewhich has emerged as nanotechnologys most important sub-disciplineis the application of nanotechnology to the prevention and treatment of disease in the human body. It is already having an impact clinically among some of the deadliest diseases in the world.

Nanomedicine is far from the stuff of science fiction. The possibilities for nanomedicine to help us diagnose, treat and image diseases are endless. Imagine a smart nanomedicine that is able to bind to tumor cells and enhance imaging and diagnosis, at the same time as being able to deliver a gene therapy or chemotherapy agent. With the technologies available to us and our multidisciplinary teams, this will be possible in my lifetime, said Phoebe Phillips, head of the pancreatic cancer translational research group at the University of New South Wales in Sydney.

Phillips and her team have created a nanoparticle that dramatically increases its effectiveness as an anti-cancer drug for patients with pancreatic cancers, which is one of the fastest killing cancers from time of initial detection, often leaving patients with no suitable treatment options and only weeks to live.

While nanomedicine canand likely willplay a role in diagnostics, regenerative medicine, prosthetics and more, the effect the sub-discipline is currently having on the treatment of autoimmune diseases and cancers is significant.

Nanomedicine for HIVThirty years ago, a diagnosis of HIV/AIDS was essentially a guarantee of a painful, protracted death. It wasnt until 1996 that researchers discovered antiretroviral drugs, and the potent combination therapy that leads to successful management of HIV/AIDS in most cases. However, not much has changed since that discovery. Those suffering from the autoimmune disease still require daily oral dosing of three to four pills, and chronic oral dosing has significant complications that can arise from the high pill burden experienced by patients, leading to non-adherence to therapies for a variety of reasons.

Ive been working in HIV for over 20 years, Andrew Owen, professor of molecular and clinical pharmacology at the University of Liverpool (UK) told Laboratory Equipment. I was trying to understand the variability in drug exposure that occurs between different individuals and the genetic basis for that. We were finding a lot of interesting things, but they werent clinically implementable. They gave us a good understanding of why drug exposure was variable, but it didnt actually help the patients in any way.

In an attempt to solve the problem rather than just characterize it, Owen turned to nanomedicine in 2009, eventually becoming part of the first team to conduct human trials of orally dosed nanomedicines for HIV. Since then, Owen and his interdisciplinary team at the Liverpool Nanomedicine Partnership have secured more than 20 million of research funding for a multitude of nanomedicine-based approaches to HIV, such low-dose oral delivery, long-acting injectable medications and targeted delivery of antiretrovirals.

Some of Owens most important research to date tackles two of the pharmaceutical industrys biggest challenges: oral delivery of potent drugs and supply and demand.

One of the major problems that has plagued drug discovery and drug development over the last 30 years has been compatibility with oral drug delivery, Owen explained. The pharmaceutical industry has wrestled with that because they can develop very potent molecules across diseases, but actually delivering those molecules orally is very challenging. As you try to design into the molecule oral bioavailabilty, you usually get further away from the potency you want.

The Liverpool team solved this problem with the creation of Solid Drug Nanoparticles. The technology consists of combining a normal drug, in its solid form, with particles on that drug that are measurable within the nanometer scale. There are other things packed into the formulation as well, such as FDA-approved stabilizers that are proven to help disperse the drug. Owen says it is all about increasing the surface area covered by the drug.

If you imagine you take a granulated form of the drug, youre going to get big chunks of drugs in the intestinal tract when dissolution happens. But if you have nanometer-sized particles within the GI tract, then you are going to get a complete coating of the inside of the intestine after you take the drug, Owen explained. What that does is it massively increases the surface area covered by the drug, which saturates all sorts of drug influx processes within the GI tract.

Since 80 percent of a humans immune system is concentrated in the gut, the Solid Drug Nanoparticles are the perfect mechanism. The immune cells in the gut instinctually move toward the particles, creating a pathway for the drugs to cross the intestines, move through the lymphatic system, and finally into the systematic circulation.

In February, Owen presented the results of two trials at the Conference on Retroviruses and Opportunistic Infections (CROI) that confirmed his Solid Drug Nanoparticles can be effective at a 50 percent dose reduction. Specifically, Owen and his team applied the nanomedicine-based approach to the formulation of two drugs: efvirenz (EFV) and lopinavir (LPV). EFV is the current WHO-recommended regimen, with 70 percent of adult HIV patients in low- and middle-income countries taking the medication. At 50 percent of the dose, the patients in the trial were able to maintain plasma concentrations of the conventional dose.

Globally, the supply of drugs needed to treat every patient with HIV is outstripping manufacturing capabilitymeaning we, as a human species, cannot physically make enough HIV medication to treat everyone with the disease. A 50 percent reduction in dose means twice as many patients served with the existing drug supply.Owen and his team are working with multiple global partners to move the technology forward. For the drugs already formulated, the Medicines Patent Pool and Clinical Health Access are helping to scale up and take them to market. Meanwhile, USAIDs Project OPTIMIZE is applying the nanoparticle technology to the newest HIV drugs for use in low- and middle-income countries.

For their latest collaboration with Johns Hopkins University, the Liverpool team was just awarded $3 million to examine the use of implantable technologies that can deliver drugs for weeks, or even months.

The current oral drug regimens for HIV comprises three drugs in combinationone is the major driver for efficacy, and the other two are nucleoside reverse transcriptase inhibitors that prevent resistance to the main drug. However, current injectable formulations are only available with the main drugnone include the nucleoside reverse transcriptase inhibitors.

So, our project aims to develop the first long-acting injectable nucleoside reverse transcriptase inhibitors so that we can use them to have a fully long-acting regimen that matches the current clinical paradigm for therapy, Owen said.

The Liverpool/Hopkins team has also thought about applying their long-acting injectable technology to other chronic diseases, such as malaria and tuberculosis, as well as some cardiovascular applications.

Nanomedicine for diabetesWhen the nanoparticles he was working with as an imaging tool didnt produce the desired results, Pere Santamaria grew frustratedbut he didnt give up. Instead, the doctor and professor at the University of Calgary (Canada) changed his assumptions and pursued his experimentuntil the data came pouring in that confirmed it wasnt a failed experiment at all. Rather, it was a discovery.

The discovery of Navacims was a bit serendipitous, Santamaria told Laboratory Equipment. Thankfully I am a little OCD and I didnt let the failed experiment go.Navacims are an entirely new class of nanomedicine drugs that harness the ability to stop disease without impairing normal immunity. Santamaria has been studying Navacims for the past 17 years, ever since unintentionally developing them. He even started a spin-off company, Parvus Therapeutics, Inc., to help bring the drugs to market.

In autoimmune diseases, white blood cells, which are normally responsible for warding off foreign invaders and disease, turn on the body, attacking the good cells and causing their destruction. Each specific autoimmune disease results from an attack against thousands of individual protein fragments in the targeted organ, such as the insulin-producing pancreatic cells in the case of type 1 diabetes.

But Santamarias studies show that nanoparticles decorated with protein targets acting as bait for disease-causing white blood cells can actually be used to reprogram the cells to rightfully suppress the disease they once intended to cause.

Once the immune system recognizes the presence of a Navacim, a white blood cell is reprogrammed by epigenetic changes into a lymphocyte that no longer wants to cause tissue damage, but rather work to suppress disease. According to Santamaria, the reprogramming step is immediately followed by an expansion of that population of lymphocytesone now-good white blood cell dividing into a million.

Basically they turn the tables on the immune system, and then there is a very sophisticated series of downstream cellular events that arise from that reprogramming event that involves the recruitment of other lymphocytes and other cell types that completely suppress the inflammation in the organ that is being infected, Santamaria explained. This happens extremely efficiently and comprehensively. This is an approach that can efficiently, selectively and specifically blend a complex response without impairing basic immunity.

In addition, the design of Navacims is modular, meaning the nanomedicine can be applied to severalif not allautoimmune diseases, including multiple sclerosis and rheumatoid arthritis. Navacims can be altered to target different diseases by simply changing a small portion of the bait molecules on the nanoparticles. Santamarias studies have shown this to work in about seven autoimmune diseases thus far.

In April, Santamarias company Parvus entered into a license and collaboration agreement with Novartis for Navacims. Under the terms of the agreement, Novartis receives exclusive worldwide rights to use Parvus Navacim technology to develop and commercialize products for the treatment of type 1 diabetes, and will be responsible for clinical-stage development and commercialization. Parvus will still be responsible for conducting ongoing preclinical work in the diabetes area, with some research funding from Novartis.

Weve had such a long time to prove ourselves, that this is not a flash in the pan, that this is something serious and robust, Santamaria said. We know so much about the mechanisms of our actions, and so much granularity. I think there are no other drugs that have reached the clinic with this level of understanding. That was painful in the beginning for us, but in the end its going to be good.

Here is the original post:
The Promise of Nanomedicine - Laboratory Equipment

Read More...

The Future Of Nano Medicine

Friday, June 22nd, 2018

Nanomedicine, refers to highly specific medical intervention at the molecular level for curing disease or repairing damaged tissues. Though in its infancy, could we be looking at the future of medicine? Early clinical trials certainly look promising.How Nanomedicine Works

Nanomedicine works by injecting nanoparticles into the body Can be used to: Deliver medicine Find and treat disease Repair damaged cells

One human hair is approximately 80,000 nanometers wideApplications of Nanomedicine

Drug Delivery Using nanotechnology to deliver medicine, diabetic rats kept stable blood sugar levels for 10 days after injection Cancer Diagnosis and Treatment Using microRNA from a patients blood plasma and nanotechnology: Medical professionals can determine if lung cancer is present Begin treatment the same day Using Nano-Therm therapy to overheat brain cancer cells helps to destroy them In clinical trials, those with recurrent glioblastoma survived a median of 13 months More than double the survival rate of those not receiving Nano-Therm therapyNanotechnology is already commonly used in sunscreen and to make tennis balls more bouncy

Flu Testing Todays flu tests are: Time consuming Inaccurate Nanomedicine gold flu testing provides: Instant results Immediate treatment cycle to avoid spreading to others commercial nanotech testing no more than 5 years away Cell Feedback Nanomedicine can be used to test cells response to drugs offering new drug testing methods Provides instant feedback to how cells respond to medicine Can save years and millions of dollars on testing and clinical trials Can improve current medications

In a 1956, Arthur C. Clarke first envisioned the concept of nanotechnology in a short story, The Next TenantsAdvantages of Nanomedicine

Faster diagnosis of many ailments More precise treatments of conditions such as cancer Repair tissue deep within the body Target only diseased organs, lessening the need for drugsSources

https://commonfund.nih.gov/nanomedicine/overview.aspx http://www.understandingnano.com/medicine.html http://pubs.acs.org/doi/abs/10.1021/nn400630x http://www.nature.com/nnano/journal/v6/n10/full/nnano.2011.147.html http://www.dana.org/news/features/detail_bw.aspx?id=35592 http://pubs.rsc.org/en/Content/ArticleLanding/2011/AN/C1AN15303J http://onlinelibrary.wiley.com/doi/10.1002/smll.201001642/abstract http://www.clinam.org/benefits.html

View post:
The Future Of Nano Medicine

Read More...

Nanomedicine and Drug Delivery

Wednesday, June 20th, 2018

About Us

3rd ,International Conference and Exhibition on Nanomedicine and Drug Delivery March 13-14, 2019 Singapore

Conference Series LLC Ltd is a renowned organization that organizes highly notablePharmaceutical Conferencesthroughout the globe. Currently we are bringing forth3rdInternational Conference on Nanomedicine and Drug Delivery(NanoDelivery 2019) scheduled to be held duringMarch 13-14, 2019 at Singapore. The conferenceinvites all the participants across the globe to attend and share their insights and convey recent developments in the field of Nanomedicine and Drug Delivery.

Conference Series LLC Ltdorganizes 1000+ Global Events inclusive of 1000+ Conferences, 500+ Upcoming and Previous Symposiums and Workshops in USA, Europe & Asia with support from 1000 more scientificsocietiesand publishes 700+Open access Journalswhich contains over 50000 eminent personalities, reputed scientists as editorial board members.

2019 Highlights:

Nanomedicine and Drug Delivery will account for 40% of a $136 billion nanotechnology-enabled drug delivery market by 2021. We forecast the total market size in 2021 to be US$136 billion, with a 60/40 split between Nano medicine and Drug Delivery respectively, although developing new targeted delivery mechanisms may allow more value to be created for companies and entrepreneurs.

However, the Asia-Pacific region is expected to grow at a faster CAGR owing to presence of high unmet healthcare needs, research collaborations and increase in nanomedicine research funding in emerging economies such as Singapore, Japan, China, India and other economies in the region. Singapore is expected to surpass the United States in terms of nanotechnology funding in the near future, which indicates the growth offered by this region.This conference seeks to showcase work in the area of Nanomedicine, Drug Delivery Systems, and nanotechnology, Nanobiothechnology, particularly related to drug delivery.

For More PS:https://nanomedicine.pharmaceuticalconferences.com/

(Click here for any queries)

Nanomedicine and drugdelivery can address one of the greatest challenges in the post-genomic era of the 21st century making the essential connections between Academics and industry professionals.

To meet these challenges, the field of Nanomedicine and drugdelivery has undergone exponential growth during the last 5 years. Technologies such asPersonalized Nanomedicine, Design of Nanodrugs,Synthesis of Nanoparticles for Drug Delivery,Regenerative MedicineandTissue Engineering, Nanomedicines and Biomedical applications,Nanomaterials for drug delivery,Regulatory Aspects Towards Approval of Nanomedicine,NanoPharmaceutical, Industry and Market processing and drug delivery promise to transform the world ofAdvanced nanomedicinesanddrug deliverymuch in the same way that integrated and transformed the world of pharmaceutical sciences.

Nanodelivery 2019 has everything you need:

Open panel discussions: Providing an open forum with experts from academia and business to discuss on current challenges innanomedicineanddrug delivery, where all attendees can interact with the panel followed by a Q&A session.

Speakerandposter presentations: Providing a platform to all academicians and industry professionals to share their research thoughts and findings through a speech or a poster presentation.

Editorial board meeting: Discussing on growth and development of open access Nanomedicine and drugdelivery International Journals and recruiting board members and reviewers who can support the journal.

Round table meetings: Providing a platform where industry professionals meet academic experts.

Over 50+ organizations and international pavilions will be exhibiting at the Nanodelivery 2018 conference and Exhibition. Exhibitors will include equipment manufacturers and suppliers, systems providers, finance and investment firms, R&D companies, project developers, trade associations, and government agencies.

In addition to the products and services you will see at the Nanodelivery Exhibition, you will have access to valuable content, including Keynote Presentations, Product Demonstrations and Educational Sessions from todays industry leaders.

The Nanodelivery 2019 has everything you need, all under one roof, saving you both time and money. It is the event you cannot afford to miss!

Who's Coming to Nanodelivery 2019?

Conference Keywords

Nanomedicine:

Nanomedicineis the medical application ofnanotechnology, nanomedicineranges from the medical applicationsofnanomaterialsandbiological devices, to nanoelectronicbiosensors, and even possible future applications of molecular nanotechnology such asbiological machines.

Nanomedicine : Future Nanomedicine:

We can say that nanomedicine is ourfuture medicine.The usage ofNanomedicine in drug deliverycan unlock the way to cure many life threatening diseases. For examplesnanomedicine in cancer treatment,Nanomedicine for blood disorders,Nanomedicine for Lung Diseases, Nanomedicine for Cardiovascular Diseases. This includesFuture aspects of Nanomedicine,nanobots,nanodrugs.

Nanomedicine research group:

This is only possible by the grace and smart work of thenanomedicine research groupfrom all over the world.Nanomedicine coursesare taught in theuniversities all over the world.They also providepostdoctoral fellowship opportunity in nanomedicine.So we can say thatfuture of nanomedicineshines brightly .

Nanomedicine Market:

Nanomedicinecan be explained as theapplication ofnanotechnologytoachieveinnovation in healthcare.Theglobal nanomedicine marketis anticipatedto reach USD 350.8 billion by2025.This includes:Scope of Nanomedicine,Novel Drugs to NanoDrugs,Nanodrugs for Herbal medicinesand Cosmetics

Nanomedicine in Cancer:

A wide range of new tools and possibilities is already achieved incancer treatments using Nanotechnology, fromdiagnosingit earlier to improvedimagingfortargeted therapies.This includes Nanomedicine for other disease,Nanomedicine for Cardiovascular Diseases,Nanodrugs for Cancer Therapy

New formulations:

Nanomedicines are three-dimensional constructs of multiple components with preferred spatial arrangements for their functions.This includesNano Sized Drugs,Nanodrugs for Veterinary Therapeutics,Nanodrugs for Medical applications,Formulation and Development.

Emergence of Nanomedicines:

Extensive multidisciplinary investigation in the field ofnanomedicine nanotechnology biology and medicinehas caused the emergence of Nanomedicine as promising carriers fordeliveryof diversetherapeutic moleculesto the targeted sites. This includesNanodrugs for Cancer Therapy,Nanodrugs for Veterinary Therapeutics,Nanodrugs for Medical applications.

VLPs:

VLPsare a viruses devoid ofgenetic materialand thus they cannotreplicate.This includesNanoMedicine in HIV,Drug targeting,Nanomedicine for Cancer.

Nanocarrier :

A nanocarriers are used as atransport modulefor adrug. Commonly usednanocarriersincludemicelles,polymers,carbon-based materials,liposomesandmany more.This includesnanoparticles,nanobots,nanodrugs.

Nanomedicine-History:

It was the extensive multidisciplinary investigation in the field ofnanomedicine nanotechnologybiology and medicinethat gave rise to thefuture medicinei.e.Nanomedicine. We know that nanotechnology is a recent development inscientific research,though the development of its central concepts happened over a longer period of time.This includesNanomedicine for other disease,Nanodrugs for Herbal medicines and Cosmetics

Biomedical nanotechnology:

Biomedical nanotechnologyincludes a diverse collection of disciplines.This includesCarbon Nanotubes,BiosensorsandNanobioelectronics,Nanobiomechanics and Nanomedicine.

Drug delivery systems:

Drug deliveryis theformulations,technologies, and systems for transporting apharmaceutical compoundinside the body safely to achieve itsdesired therapeutic effect.This includesLiposomes,Versatile Polymers In Drug Deivery,Drug Development

Toxicity:

Toxicityis the measure to which a particular mixture of substances can damage an organism.This includeGold Nanoparticles,Silver Nanoparticles,Magnetic Nanoparticles.

Xenobiotics:

Axenobioticis a chemical substances which is not produced naturally or expected to be found within an organism.This includesNano Micro Particles,BiosensorsandNanobioelectronics,Bio inspired materials and drug delivery

Pharmaceutical technology:

We can detect diseases at much earlier stages usingNano pharmaceuticals.Usingnanoparticles we can also design thediagnostic applicationsconventionally.This includesNanoliposome,Drug Targeting,Challenges and advances in NanoPharmaceuticals

Bioimaging:

Bioimagingare methods that non-invasively visualizebiological processesin real time.This includesImage-guided drug delivery,Imaging,Optical sensors

Imaging probe:

Molecular imaging probeis an agent used tovisualize, characterize and quantify biological processes in living systems .This includesOptical sensors,Smart Polymer Nanoparticles,NanomaterialsforImaging

Pharmaceutical compound:

The particular pharmaceutical product to fit the unique need of a patient can be made byPharmaceutical compounding.This includesChallenges and advances in Nano Pharmaceuticals,Nano Pharmaceuticalsfrom thebench to Scale up

Pulmonary delivery:

Pulmonary deliveryofdrughas become an attractive target and of tremendous scientific andbiomedical interestin thehealth care research.This includes Transmucosal Drug Delivery Systems, Sonophoresis Drug Delivery System, Hydrogel in Drug Delivery

Vascular disease:

Diseases of theblood Vessels can be related toVascular diseases.This includesovarian, breast cancer,kidney disease,fungal infections.

Tissue engineering:

The use of a tissue, engineering and materials methods, and suitablebiochemicalandphysicochemical factorsto improve or replacebiological tissues.This includesNeuro Regenerations,Organ fabrication,Cell-based therapies

Regenerative medicine:

Regenerative medicineis a broad field that includes tissue engineering but also incorporates onself-healing

Regenerative medicine- self healing:

Body uses its own systems, sometimes with help foreignbiological materialtorecreate cellsandrebuild tissuesand organs.This includeBiologic scaffolds,Bone Marrow Tissue Engineering,Mechanical properties of engineered tissues

Quantitative Imaging:

Quantitative imagingprovides clinicians with a more accurate picture of a disease state.This includesImage-guided drug delivery,Imaging,Optical sensors.

Tissue Sciences:

The internal organs and connective structures ofvertebrates, andcambium,xylem, andphloemin plants are made up of different types of tissue.This includesNeuro Regenerations,Bioreactor design,Bone Marrow Tissue Engineering.

Rational drug design:

Drug design, is simply the inventive process of findingnew medicationsbased on the knowledge of abiological targetThis includesNanodrugs for Cancer Therapy,Nanodrugs for Medical applications,Nano Sized Drugs

Drug target:

Biological targetcan be described as thenative proteinin the body , with modified activity by a drug resulting in a specific effect. The biological target is often referred to as a drug target.This includeDrug targeting,Image-guided drug delivery,target site

Drug resistance mechanism:

InDrug resistancethe effectiveness of amedicationis reduced such as anantimicrobialor anantineoplasticin curing a disease or condition.This includeschemotherapy,tumor-targeted drug delivery

Single molecule imaging:

Single-molecule studies may be contrasted with measurements on the bulk collection of molecules. In this individual behavior ofmoleculescannot be distinguished, and only average characteristics can be measured.This includeDrug targeting,Image-guided drug delivery,Imaging

Medicine:

Medicine can be explained as the science and practice of thediagnosis,treatment, andprevention of disease.This include Controledradical polymerization,Nanodrugs for Herbal medicinesandCosmetics,Nanomedicine for Gastrointestinal Tract (GI) Diseases.

Computer-Aided Diagnosis:

Computer-aided detection(CADe), are systems that help doctors in the interpretation ofmedical images.This includesImage-guided drug delivery,Optical sensors,BiosensorsandNanobioelectronics

Pharmacology:

Pharmacology is the study ofdrug action, where a drug can be broadly defined as any man-made, natural, or endogenousThis includesNanoliposome,Drug Targeting,Applied biopharmaceutics

Drug delivery industries:

Demand fordrug deliveryproducts in the US will rise 6.1 percent yearly to $251 billion in 2019. Parenteral products will grow the fastest, driven bymonoclonal antibodiesandpolymer-encapsulated medicines.Hormonesand central nervous system agents will lead gains by application.Pen injectorsand retractable prefillable syringes will pace devices.This includesBio Pharmaceutical Industry,Focus on Nanopharmaceuticals,Industrial Applications of Nano medicine.

Drug delivery market:

The drug delivery market is thelargest contributing applicationsegment, whereasbiomaterialsis the fastest growing application area in this market. Nanomedicine accounts for 77Marketed ProductsWorldwide, representing an Industry with an estimated market $130.9 Billion by 2016.This includesBio Pharmaceutical Industry,Focus on Nanopharmaceuticals,Industrial Applications of Nano medicine.

Nanomedicine Market Size:

Theglobal nanomedicine marketis anticipated to reach USD 350.8 billion by 2025, according to a new report by Grand View Research, Inc. Development ofnovel nanotechnology-based drugsandtherapiesis driven by the need to develop therapies that have fewer side effects and that are morecost-effectivethantraditional therapies, in particular for cancer.This includespharmaceutical industry,Up Coming Market for Nanotechnology,Focus on Nanopharmaceuticals.

Biodegradable implants:

Biodegradable implants offer a number of financial,psychological, andclinical advantagesoverpermanent metal implants.They provide the appropriate amount of mechanical strength when necessary, and degrade at a rate similar tonew tissue formation, thereby transferring the load safely to thehealed boneand eliminating the need for an additional revision and removal operation.This includesBiologic scaffolds,Biomaterials,Bone Marrow Tissue Engineering.

Nanomedicine industry:

Expecteddevelopments in nanoroboticsowing to therise in fundingfrom thegovernment organizationsis expected to induce potential to the market.Nanorobotics engineering projectsthat are attempting totarget the cancer cellswithout affecting the surrounding tissues is anticipated to drive progress through to 2025.This includesIndustrial Applications of Nano medicine,Nanotechnology tools in Pharmaceutical R&D,Bio Pharmaceutical Industry,Focus on Nanopharmaceuticals

Nanomedicine Market Drivers:

The major drivers of the nanomedicine market include its application in varioustherapeutic areas, increasingR&D studiesabout nanorobots in this segment, andsignificant investmentsinclinical trialsby the government as well as private sector. TheOncology segmentis the majortherapeutic areafornanomedicine application, which comprised more than 35% of the total market share in 2016.This includesAn Up and Coming Market for Nanotechnology,Nanomedicine: Prospects, Risks and Regulatory Issues,Current , Future Applications and Regulatory challenges.

Nanomedicine Market trends:

Thetherapeutic areas for nanomedicineapplication areOncology,is includesCurrent , Future Applications and Regulatory challenges,Regulatory Policies.

Visit link:
Nanomedicine and Drug Delivery

Read More...

Nanomedicine Research Journal

Thursday, September 7th, 2017

Nanomedicine Research Journal (Abbreviation: Nanomed Res J)

is an international, open access, peer-reviewed, electronic and print quarterly publication released by the Iranian Society of Nanomedicine (ISNM). Nanomedicine Research Journal publishes original research articles, review papers, mini review papers, case reports and short communications covering a wide range of field-specific and interdisciplinary theoretical and experimental results related to applications of nanoscience and nanotechnology in medicine including, but not limited to, diagnosis, treatment, monitoring, prediction and prevention of diseases, tissue engineering, nano bio-sensors, functionalized carriers and targeted drug delivery systems.

* Publication process of manuscripts submitted to Nanomed Res J is free of charge.

To see Acceptance timeline Please follow the link below:

Acceptance Timeline Diagram

About the publisher

Founded in 2011 by the leading ofSchool of Advanced Technologies in medicine (SATiM),Tehran University of Medical Sciences (TUMS) and Iran Nanotechnology Initiative Council, the Iranian Society of Nanomedicine (ISNM) attempts to promote and develop medical nanotechnology in Iran. For more information about the publisher, please visit us at http://isnm.ir/en/.

Go here to read the rest:
Nanomedicine Research Journal

Read More...

Nanomedicine – Overview

Wednesday, September 6th, 2017

The program began in 2005 with a national network ofeight Nanomedicine Development Centers. Now, in the second half of this 10-year program, the four centers best positioned to effectively apply their findings to translational studies were selected to continue receiving support.

Nanomedicine, an offshoot of nanotechnology, refers to highly specific medical intervention at the molecular scale for curing disease or repairing damaged tissues, such as bone, muscle, or nerve. A nanometer is one-billionth of a meter, too small to be seen with a conventional lab microscope. It is at this size scale about 100 nanometers or less that biological molecules and structures operate in living cells.

The NIH vision for Nanomedicine is built upon the strengths of NIH funded researchers in probing and understanding the biological, biochemical and biophysical mechanisms of living tissues. Since the cellular machinery operates at the nanoscale, the primary goal of the program - characterizing the molecular components inside cells at a level of precision that leads to re-engineering intracellular complexes - is a monumental challenge.

The teams selected to carry out this initiative consist of researchers with deep knowledge of biology and physiology, physics, chemistry, math and computation, engineering, and clinical medicine. The choice and design of experimental approaches are directed by the need to solve clinical problems (e.g., treatment of sickle cell disease, blindness, cancer, and Huntingtons disease). These are very challenging problems, and great breakthroughs are needed to achieve the goals within the projected 10 year timeframe. The initiative was selected for the NIH Roadmap (now Common Fund) precisely because of the challenging, high risk goals, and the NIH team is working closely with the funded investigators to use the funds and the intellectual resources of the network of investigators to meet those challenges.

10 Year Program Design High Risk, High Reward

The Centers were funded with the expectation that the first half of the initiative would be more heavily focused on basic science with increased emphasis on application of this knowledge in the second five years. This was a novel, experimental approach to translational medicine that began by funding basic scientists interested in gaining a deep understanding of an intracellular nanoscale system and necessitated collaboration with clinicians from the outset in order to properly position work at the centers so that during the second half of the initiative, studies would be applied directly to medical applications. The program began witheight Nanomedicine Development Centers(NDCs), and four centers remain in the second half of the program.

Clinical Consulting Boards (CCBs)

The program has establishedClinical Consulting Boards (CCBs)for each of the continuing centers. These boards consist of at least three disease-specific clinician-scientists who are experts in the target disease(s). The intent is for CCBs to provide advice and insight into the needs and barriers regarding resource and personnel allocations as well as scientific advice as needed to help the centers reach their translational goals. Each CCB reports directly to the NIH project team.

Translational Path

In 2011, the PIs of the NDCs worked with their CCBs to precisely define their translational goals and the translational research path needed to reach those goals by the end of the initiative in 2015. To facilitate this, the NIH project team asked them to developcritical decision pointsalong their path. These critical decision points differ from distinct milestones because they may be adjusted based on successes, challenges, barriers, and progress. Similarly, the timing of these decision points may be revised as the centers progress. Research progress and critical decision points are revisited several times a year by the CCB and the NIH team, and when a decision point is reached, next steps are re-examined for relevance, feasibility and timing.

Transition plan

Throughout the program, various projects have been spun off of work at all the centers and most have received funding from other sources. This was by design as work at each center has been shifting from basic science to translational studies. Centers will not be supported by the common fund after 10 years. It is expected that work at the centers will be more appropriately funded by other sources. Pre-clinical targets will likely be developed, and the work at each center will be focused on a specific disease so the work will need to transition out of the experimental space of the common fund.

Support for the NIH Nanomedicine Initiative is provided by the NIH Common Fund, and a team of staff members from across the NIH oversees the program. You may direct questions or comments on the NIH Nanomedicine Initiative to Dr. Richard S. Fisher, Nanomedicine Project Team Leader (nano@nih.gov).

Read this article:
Nanomedicine - Overview

Read More...

Global Nanomedicine Industry 2017 Market Growth, Trends and Demands Research Report – MENAFN.COM

Wednesday, September 6th, 2017

(MENAFN Editorial) iCrowdNewswire - Sep 4, 2017

The Global Nanomedicine Market 2017 Industry Research Report' report provides a basic overview of the industry including its definition, applications and manufacturing technology. Then, the report explores the Global major industry players in detail.

The Global Nanomedicine Market Research Report 2017 renders deep perception of the key regional market status of the Nanomedicine Industry on a global level that primarily aims the core regions which comprises of continents like Europe, North America, and Asia and the key countries such as United States, Germany, #China and Japan.

Complete report on Nanomedicine market report spread across 116 pages, profiling 12 companies and supported with tables and figuresavailable @

The report on 'Global Nanomedicine Market is a professional report which provides thorough knowledge along with complete information pertaining to the Nanomedicine industry propos classifications, definitions, applications, industry chain summary, industry policies in addition to plans, product specifications, manufacturing processes, cost structures, etc.

The potential of this industry segment has been rigorously investigated in conjunction with primary market challenges. The present market condition and future prospects of the segment has also been examined. Moreover, key strategies in the market that includes product developments, partnerships, mergers and acquisitions, etc., are discussed. Besides, upstream raw materials and equipment and downstream demand analysis is also conducted.

Report Includes:-

The report cloaks the market analysis and projection of 'Nanomedicine Market on a regional as well as global level. The report constitutes qualitative and quantitative valuation by industry analysts, first-hand data, assistance from industry experts along with their most recent verbatim and each industry manufacturers via the market value chain. The research experts have additionally assessed the in general sales and revenue generation of this particular market. In addition, this report also delivers widespread analysis of root market trends, several governing elements and macro-economic indicators, coupled with market improvements as per every segment.

For any Inquire before buying @

Global Nanomedicine market competition by top manufacturers/players, with Nanomedicine sales volume, Price (USD/MT), revenue (Million USD) and market share for each manufacturer/player; the top players including: GE Healthcare, Johnson & Johnson, Mallinckrodt plc, Merck & Co. Inc., Nanosphere Inc., Pfizer Inc., SigmaTau Pharmaceuticals Inc., Smith & Nephew PLC, Stryker Corp, Teva Pharmaceutical Industries Ltd., UCB (Union chimique belge) S.A

The report is generically segmented into six parts and every part aims on the overview of the Nanomedicine industry, present condition of the market, feasibleness of the investment along with several strategies and policies. Apart from the definition and classification, the report also discusses the analysis of import and export and describes a comparison of the market that is focused on the trends and development. Along with entire framework in addition to in-depth details, one can prepare and stay ahead of the competitors across the targeted locations. The fact that this market report renders details about the major market players along with their product development and current trends proves to be very beneficial for fresh entrants to comprehend and recognize the industry in an improved manner. The report also enlightens the productions, sales, supply, market condition, demand, growth, and forecast of the Nanomedicine industry in the global markets.

Buy a copy of this report @

Every region's market has been studied thoroughly in this report which deals with the precise information pertaining to the Marketing Channels and novel project investments so that the new entrants as well as the established market players conduct intricate research of trends and analysis in these regional markets. Acknowledging the status of the environment and products' up gradation, the market report foretells each and every detail.So as to fabricate this report, complete key details, strategies and variables are examined so that entire useful information is amalgamated together for the understanding and studying the key facts pertaining the global Nanomedicine Industry. The production value and market share in conjunction with the SWOT analysis everything is integrated in this report.

Table of Contents

1 Nanomedicine Market Overview 2 Global Nanomedicine Market Competition by Manufacturers 3 Global Nanomedicine Capacity, Production, Revenue (Value) by Region (2011-2016) 4 Global Nanomedicine Supply (Production), Consumption, Export, Import by Regions (2011-2016) 5 Global Nanomedicine Production, Revenue (Value), Price Trend by Type 6 Global Nanomedicine Market Analysis by Application 7 Global Nanomedicine Manufacturers Profiles/Analysis

8 Nanomedicine Manufacturing Cost Analysis 9 Industrial Chain, Sourcing Strategy and Downstream Buyers 10 Marketing Strategy Analysis, Distributors/Traders 11 Market Effect Factors Analysis 12 Global Nanomedicine Market Forecast (2016-2021) 13 Research Findings and Conclusion

About Us

Deep Research Reportsis digital database of syndicated market reports for global and #China industries. These reports offer competitive intelligence data for companies in varied market segments and for decision makers at multiple levels in these organizations. We provide 24/7 online and offline support to our customers.

Connect us

Hrishikesh Patwardhan

Corporate Headquarters

2nd floor, metropole,

Next to inox theatre,

Bund garden road,Pune-411001.

1 888 391 5441

MENAFN0509201700703403ID1095819074

Excerpt from:
Global Nanomedicine Industry 2017 Market Growth, Trends and Demands Research Report - MENAFN.COM

Read More...

Innovation in cancer treatment multimodality therapy – eHealth Magazine | Elets

Wednesday, August 30th, 2017

eHealth Magazine | Elets
Innovation in cancer treatment multimodality therapy
eHealth Magazine | Elets
Nano medicine as a multimodality treatment of cancer is the latest evolution in this field. The advantage of nano delivery system is that it simultaneously delivers different agents to the active site, causing a special interaction between the agents ...

and more »

View original post here:
Innovation in cancer treatment multimodality therapy - eHealth Magazine | Elets

Read More...

Deadly Venom Can Be Turned Into Disease Treatments | WLRN – WLRN

Wednesday, August 30th, 2017

You probably know the Nietzsche quote: That which does not kill us makes us stronger.

One University of South Florida researcher is studying that adage in nature.

University Beat report on USF Health research into venom peptides.

Craig Doupnik looks at how components of venom the toxic secretions of dozens of animals like spiders and snakes can actually be bio-engineered to treat diseases.

Venom peptides have been recognized as potential therapeutics for a variety of different disorders in fact, several have made their way into clinical trials of currently FDA-approved drugs, saidDoupnik, an associate professor in the USF Morsani College of Medicines Department of Molecular Pharmacology and Physiology.

He explained that venom peptides are strings of amino acids that can be manipulated by scientists so they can be used to target ion channels. Those are proteins that help control things like how your heart beats and how neurons fire within your brain.

As a result, a lot of the FDA-approved venom peptides are used to treat problems with those systems.

Captopril, which is a drug that was originally derived from a viper venom, is used to treat hypertension and congestive heart failure," Doupnik said. "There's a peptide thats released from the venom of a cone snail thats used for treating chronic pain.

Other venom peptides target seizure-related disorders and other cardiac arrhythmias.

Doupniks research focuses on peptides from the venom of honeybees. He re-engineers those peptides so they can interact with different ion channels. His work doesnt create specific treatments but instead turns the venom into something a chemist can create a treatment from.

This kind of work on bee venom has been going on for more than thirty years but has really been advanced as technology approves.

Whats really kind of transformed the field for myself is how structural biology, in terms of how we can see these peptides and ion channels at atomic level resolution and some of the computational tools that are now available allow us to do the type of peptide engineering that otherwise wouldnt have been possible 10 years ago," Doupnik said.

Doupnik also studies nano-medicines, which treat diseases at the atomic level.

What it does is it provides computational engineers an opportunity to redesign molecules like peptides or even small molecules that can target these areas and either enhance their activity or reduce their activity, whatever the beneficial or therapeutic direction would be, and it can go in either direction, so thats part of the trick of the trade," he said.

"It gives us whats often referred to as rational drug design or rational peptide design," he added. "At least we have some rational understanding of what were trying to target versus just throwing a soup of chemicals onto a preparation and seeing what happens and then trying to sift through that soup to find out what the magic bullet might be or what the active ingredient might be.

Of course, there are ethical concerns when talking about bio-engineering. Doupnik believes sharing information with the public about this kind of work helps allay some of their fears.

There clearly are areas of concern and I think its important for scientists to effectively communicate to the lay public what the goals and intentions of this type of research are," he said.

And what about perhaps the most obvious question, one that comes back to the Nietzsche quote we started with: how in the world would someone think that deadly venom could be used to actually save lives?

Basic science is a crazy business!" Doupniksaid, laughing. "It takes you down a lot of different paths and a lot of those paths are dead ends. But it never the less is where a lot of our fundamental discoveries come from and when they do lead down paths towards therapeutics and helping us better understand human disease, we see the value in it obviously.

See more here:
Deadly Venom Can Be Turned Into Disease Treatments | WLRN - WLRN

Read More...

Nanomedicine Market Growth Opportunities for Distributers 2017 – Equity Insider (press release)

Wednesday, August 30th, 2017

Global Nanomedicine Market Research Report 2017 to 2022 provides a unique tool for evaluating the market, highlighting opportunities, and supporting strategic and tactical decision-making. This report recognizes that in this rapidly-evolving and competitive environment, up-to-date marketing information is essential to monitor performance and make critical decisions for growth and profitability. It provides information on trends and developments, and focuses on markets and materials, capacities and technologies, and on the changing structure of the Nanomedicine Market.

Companies Mentioned are GE Healthcare, Johnson & Johnson, Mallinckrodt plc, Merck & Co. Inc., Nanosphere Inc., Pfizer Inc., Sigma-Tau Pharmaceuticals Inc., Smith & Nephew PLC, Stryker Corp, Teva Pharmaceutical Industries Ltd., UCB (Union chimique belge) S.A.

Primary sources are mainly industry experts from core and related industries, and suppliers, manufacturers, distributors, service providers, and organizations related to all segments of the industrys supply chain. The bottom-up approach was used to estimate the global market size of Nanomedicine based on end-use industry and region, in terms of value. With the data triangulation procedure and validation of data through primary interviews, the exact values of the overall parent market, and individual market sizes were determined and confirmed in this study.

Sample/Inquire at: https://www.marketinsightsreports.com/reports/08308548/global-nanomedicine-market-research-report-2017/inquiry

This report segments the global Nanomedicine market on the basis of types Regenerative Medicine, In-vitro & In-vivo Diagnostics, Vaccines, Drug Delivery. On the basis of application Clinical Cardiology, Urology, Genetics, Orthopedics, Ophthalmology.

Essential points covered in Global Nanomedicine Market 2017 Research are:-

This independent 116 page report guarantees you will remain better informed than your competition. With over 170 tables and figures examining the Nanomedicine market, the report gives you a visual, one-stop breakdown of the leading products, submarkets and market leaders market revenue forecasts as well as analysis to 2022.

The global Nanomedicine market consists of different international, regional, and local vendors. The market competition is foreseen to grow higher with the rise in technological innovation and M&A activities in the future. Moreover, many local and regional vendors are offering specific application products for varied end-users. The new vendor entrants in the market are finding it hard to compete with the international vendors based on quality, reliability, and innovations in technology.

Browse Full Report at: https://www.marketinsightsreports.com/reports/08308548/global-nanomedicine-market-research-report-2017

Geographically, this report is segmented into several key Regions, with production, consumption, revenue (million USD), and market share and growth rate of Storage Area Network Switch in these regions, from 2012 to 2022 (forecast), covering

by Regions

The report provides a basic overview of the Nanomedicine industry including definitions, classifications, applications and industry chain structure. And development policies and plans are discussed as well as manufacturing processes and cost structures.

Then, the report focuses on global major leading industry players with information such as company profiles, product picture and specifications, sales, market share and contact information. Whats more, the Nanomedicine industry development trends and marketing channels are analyzed.

The research includes historic data from 2012 to 2016 and forecasts until 2022 which makes the reports an invaluable resource for industry executives, marketing, sales and product managers, consultants, analysts, and other people looking for key industry data in readily accessible documents with clearly presented tables and graphs. The report will make detailed analysis mainly on above questions and in-depth research on the development environment, market size, development trend, operation situation and future development trend of Nanomedicine on the basis of stating current situation of the industry in 2017 so as to make comprehensive organization and judgment on the competition situation and development trend of Nanomedicine Market and assist manufacturers and investment organization to better grasp the development course of Nanomedicine Market.

The study was conducted using an objective combination of primary and secondary information including inputs from key participants in the industry. The report contains a comprehensive market and vendor landscape in addition to a SWOT analysis of the key vendors.

There are 15 Chapters to deeply display the global Nanomedicine market.

Chapter 1, to describe Nanomedicine Introduction, product scope, market overview, market opportunities, market risk, market driving force;

Chapter 2, to analyze the top manufacturers of Nanomedicine, with sales, revenue, and price of Nanomedicine, in 2016and 2017;

Chapter 3, to display the competitive situation among the top manufacturers, with sales, revenue and market share in 2016and 2017;

Chapter 4, to show the global market by regions, with sales, revenue and market share of Nanomedicine, for each region, from 2012to 2017;

Chapter 5, 6, 7,8and 9, to analyze the key regions, with sales, revenue and market share by key countries in these regions;

Chapter 10and 11, to show the market by type and application, with sales market share and growth rate by type, application, from 2012 to 2017;

Chapter 12, Nanomedicine market forecast, by regions, type and application, with sales and revenue, from 2017to 2022;

Chapter 13, 14 and 15, to describe Nanomedicine sales channel, distributors, traders, dealers, Research Findings and Conclusion, appendix and data source.

Read the original:
Nanomedicine Market Growth Opportunities for Distributers 2017 - Equity Insider (press release)

Read More...

Impact of Existing and Emerging Europe Nanomedicine Market … – MilTech

Tuesday, August 29th, 2017

The global Nanomedicine Market size was estimated at USD XX billion in 2017. Technological advancements coupled with relevant applications in early disease diagnosis, preventive intervention, and prophylaxis of chronic as well as acute disorders is expected to bolster growth in this market.

Download Sample Pages @http://www.kminsights.com/request-sample-33081

Nanotechnology involves the miniaturization of larger structures and chemicals at nanometric scale which has significantly revolutionized drug administration, thus influencing adoption of the technology through to 2022.

Expected developments in nanorobotics owing to the rise in funding from the government organizations is expected to induce potential to the market. Nanorobotics engineering projects that are attempting to target the cancer cells without affecting the surrounding tissues is anticipated to drive progress through to 2022.

Ability of the nanotechnology to serve in diagnostics as well as the therapeutic sector at the same time as a consequence of its characteristic principle to is anticipated to augment research in this sector. Furthermore, utilization of DNA origami for healthcare applications is attributive for the projected growth.

The global nanomedicine market is segmented based on modality, application, indication, and region. Based on application, it is classified into drug delivery, diagnostic imaging, vaccines, regenerative medicine, implants, and others.

On the basis of indication, it is categorized into oncological diseases, neurological diseases, urological diseases, infectious diseases, ophthalmological diseases, orthopedic disorders, immunological diseases, cardiovascular diseases, and others. Based on modality, it is bifurcated into treatments and diagnostics.

The global market is driven by emerging technologies for drug delivery, increase in adoption of nanomedicine across varied applications, rise in government support & funding, growth in need for therapies with fewer side effects, and cost-effectiveness of therapies. However, long approval process and risks associated with nanomedicine (environmental impacts) restrain the market growth.

Download Sample Pages @http://www.kminsights.com/request-sample-33081

Contact:

Mr.Mannansales@kminsights.com+1 (888) 278-7681

About Us:Key Market Insights is a stand-alone organization with a solid history of advancing and exchanging market research reports and logical surveys delivered by our numerous transnational accomplices, which incorporate both huge multinationals and littler, more expert concerns.

Read more here:
Impact of Existing and Emerging Europe Nanomedicine Market ... - MilTech

Read More...

Expert Radiologist and Clinician Scientist, Michelle S. Bradbury, MD, PhD, is to be Recognized as a 2017 Top Doctor … – PR NewsChannel (press…

Tuesday, August 29th, 2017

Michelle Bradbury MD, PhD, who is a Professor of Radiology, Director of Intraoperative Imaging, and Co-Director of an National Cancer Institute awarded Nanomedicine Center (MSK-Cornell Center for Translation of Cancer Nanomedicines), has been named a 2017 Top Doctor in New York City, New York. Top Doctor Awards is dedicated to selecting and honoring those healthcare practitioners who have demonstrated clinical excellence while delivering the highest standards of patient care.

Dr. Michelle S. Bradbury is a highly experienced physician who has been in practice for over two decades. Her career in medicine started in 1997, when she graduated from the George Washington University School of Medicine and Health Sciences in Washington, D.C. An internship, residency and then fellowship followed, all completed at Wake Forest University in Winston-Salem, North Carolina. Dr. Bradbury also holds a Doctor of Philosophy Degree from the Massachusetts Institute of Technology.

Dr. Bradbury is certified by the American Board of Radiology in both Diagnostic Radiology and Neuroradiology. She is particularly renowned, however, as a leading expert in nanomedicine and in neuroradiology, using CT and MRI imaging of the brain, neck and spine to diagnose conditions of the nervous system. Alongside her work in this field she has been at the forefront of nanomedicine research and clinical trials.

Dr. Bradbury keeps up to date with the latest advances in her field through her active membership of professional organizations including the American College of Radiology, the World Molecular Imaging Congress, and the American Society of Nanomedicine. Her expertise and dedication makes Dr. Michelle S. Bradbury a very deserving winner of a 2017 Top Doctor Award.

About Top Doctor Awards

Top Doctor Awards specializes in recognizing and commemorating the achievements of todays most influential and respected doctors in medicine. Our selection process considers education, research contributions, patient reviews, and other quality measures to identify top doctors

See more here:
Expert Radiologist and Clinician Scientist, Michelle S. Bradbury, MD, PhD, is to be Recognized as a 2017 Top Doctor ... - PR NewsChannel (press...

Read More...

New report shares details about Europe’s nanomedicine market – WhaTech

Monday, August 28th, 2017

The global nanomedicine market size was estimated at USD XX billion in 2017. Technological advancements coupled with relevant applications in early disease diagnosis, preventive intervention, and prophylaxis of chronic as well as acute disorders is expected to bolster growth in this market.

Nanotechnology involves the miniaturization of larger structures and chemicals at nanometric scale which has significantly revolutionized drug administration, thus influencing adoption of the technology through to 2022.

Download Sample Pages @www.kminsights.com/request-sample-33081

Expected developments in nanorobotics owing to the rise in funding from the government organizations is expected to induce potential to the market. Nanorobotics engineering projects that are attempting to target the cancer cells without affecting the surrounding tissues is anticipated to drive progress through to 2022.

Ability of the nanotechnology to serve in diagnostics as well as the therapeutic sector at the same time as a consequence of its characteristic principle to is anticipated to augment research in this sector. Furthermore, utilization of DNA origami for healthcare applications is attributive for the projected growth.

The global nanomedicine market is segmented based on modality, application, indication, and region. Based on application, it is classified into drug delivery, diagnostic imaging, vaccines, regenerative medicine, implants, and others.

On the basis of indication, it is categorized into oncological diseases, neurological diseases, urological diseases, infectious diseases, ophthalmological diseases, orthopedic disorders, immunological diseases, cardiovascular diseases, and others. Based on modality, it is bifurcated into treatments and diagnostics.

This report studies sales (consumption) of Nanomedicine in Europe market, especially in Germany, UK, France, Russia, Italy, Benelux and Spain, focuses on top players in these countries, with sales, price, revenue and market share for each player in these Countries, the top player coveringAffilogicLTFNBergmannstrostGrupo PraxisBiotechrabbitBraccoMaterials Research?CentreCarlina technologiesChemConnectionCIC biomaGUNECIBER-BBNContiproCristal TherapeuticsDTIEndomagneticsFraunhofer ICT-IMMTecnaliaTeknikerGIMACIMDEAIstec CNRSwedNanoTechVicomtechVITO NV

The global market is driven by emerging technologies for drug delivery, increase in adoption of nanomedicine across varied applications, rise in government support & funding, growth in need for therapies with fewer side effects, and cost-effectiveness of therapies. However, long approval process and risks associated with nanomedicine (environmental impacts) restrain the market growth.

In addition, increase in out-licensing of nanodrugs and growth of healthcare facilities in emerging economies are anticipated to provide numerous opportunities for the market growth.

Download Sample Pages @www.kminsights.com/request-sample-33081

Read the rest here:
New report shares details about Europe's nanomedicine market - WhaTech

Read More...

Page 14«..10..13141516..»


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick