header logo image


Page 124«..1020..122123124125

Archive for the ‘Stem Cell Therapy’ Category

US Patent: Isolation and use of solid tumor stem cells

Tuesday, May 18th, 2010

Isolation and use of solid tumor stem cells, United States Patent 7,713,710. [FreePatentsOnline][PatentStorm].
Publication Date: May 11, 2010.
Inventors: Clarke; Michael F. (Ann Arbor, MI), Morrison; Sean J. (Ann Arbor, MI), Wicha; Max S. (Ann Arbor, MI), Al-Hajj; Muhammad (Ann Arbor, MI).
Assignee: The Regents of the University of Michigan (Ann Arbor, MI) .
Appl. No.: 11/753,191
Filed: May 24, 2007
Abstract:

A small percentage of cells within an established tumor have the properties of stem cells. These solid tumor stem cells give rise both to more tumor stem cells and to the majority of cells in the tumor that have lost the capacity for extensive proliferation and the ability to give rise to new tumors. The solid tumor heterogeneity reflects the presence of tumor cell progeny arising from a solid tumor stem cell. This discovery is the basis for solid tumor stem cell compositions, methods for distinguishing functionally different populations of tumor cells, methods for using these tumor cell populations for studying the effects of therapeutic agents on tumor growth, and methods for identifying and testing novel anti-cancer therapies directed to solid tumor stem cells.

Parent Case Text:

CLAIM OF PRIORITY
This application is a Continuation of U.S. patent application Ser. No. 11/150,073, filed Jun. 10, 2005, which is a Continuation of U.S. patent application Ser. No. 09/920,517, filed Aug. 1, 2001, now U.S. Pat. No. 6,984,522, which claims priority to U.S. provisional applications Ser. No. 60/222,794, filed Aug. 3, 2000, and Ser. No. 60/240,317, filed Oct. 13, 2000, all of which are herein incorporated by reference in their entireties.

Google patents entry for Application Number 11/753,191 (The application that led to patent 7,713,710. The filing date was 24 May 2007).

Google patents entry for Application Number 11/150,073 (See Parent Case Text above: the filing date was 10 June 2005).

Google patents entry for Patent Number 6,984.522 (See Parent Case Text above: the filing date was 1 August, 2001 and the issue date was 10 Jan 2006). [FreePatentsOnline][PatentStorm].

Comment:

Not mentioned in the Parent Case Text above is United States Patent 7,115,360. [FreePatentsOnline][PatentStorm]. This patent was issued October 3, 2006 and filed on August 2, 2001.

The Parent Case Text for patent 7,115,360:

CLAIM OF PRIORITY
This patent is the United States national stage of PCT patent application PCT/US01/24243, published Feb. 14, 2002 as WO 02/12447, which is a continuation of U.S. Ser. No. 09/920,517, filed Aug. 1, 2001, now U.S. Pat. No. 6,984,522. This patent also claims priority to provisional patent applications U.S. Ser. Nos. 60/222,794, filed Aug. 3, 2000, and 60/240,317, Oct. 13, 2000.

Information about this patent was found via a Google search for "Isolation and use of solid tumor stem cells".

Read More...

Generic drug a potential treatment for glioblastoma?

Friday, May 14th, 2010

DCA research on brain cancer, EurekAlert, May 12, 2010. [FriendFeed entry]. Excerpt: "... the orphan generic drug Dichloroacetate (DCA) may hold promise as potential therapy for ... a form of brain cancer called glioblastoma". Another excerpt:

By extracting glioblastomas from 49 patients over a period of 2 years and studying them within minutes of removal in the operating room, the team showed that tumors respond to DCA by changing their metabolism. Then, the team treated 5 patients with advanced glioblastoma and secured tumor tissues before and after the DCA therapy. By comparing the two, the team showed that DCA works in these tumors exactly as was predicted by test tube experiments. This is very important because often the results in non-human models tested in the lab do not agree with the results in patients. In addition, the team showed that DCA has anti-cancer effects by altering the metabolism of glioblastoma cancer stem cells, the cells thought responsible for the recurrences of cancer.

And,

No conclusions can be made on whether the drug is safe or effective in patients with this form of brain cancer, due to the limited number of patients tested by the study's leads Drs Michelakis and Petruk. Researchers emphasize that use of DCA by patients or physicians, supplied from for-profit sources or without close clinical observation by experienced medical teams in the setting of research trials, is not only inappropriate but may also be dangerous. ...

See also: Generic drug may be potential treatment for deadly brain cancer: U of A medical study by Noreen Remtulla and Julia Necheff, ExpressNews, University of Alberta, May 12, 2010.

And: Potential brain-cancer drug shows promise, CBC News, May 12, 2010. [CBC video].

And: Cancer drug trial raises hopes by Elise Stolte, Edmonton Journal, May 13, 2010.

These news reports are about the publication: Metabolic Modulation of Glioblastoma with Dichloroacetate by Evangelos D Michelakis and 12 co-authors, including Kenneth C Petruk, Sci Transl Med 2010(May 12); 2(31): 31ra34.

See also an editorial: Targeting Cell Metabolism in Cancer Patients by Matthew G Vander Heiden, Sci Transl Med 2010(May 12); 2(31) :31ed1. From the TOC: "Dichloroacetate can safely modify glucose metabolism in aggressive brain tumors when administered to patients". Last sentence of the editorial: "Time will tell whether this strategy constitutes an effective cancer therapy".

Comments: After an initial research publication in January 2007 [PubMed citation], DCA attracted much attention. See, for example, the Wikipedia entry for Dichloroacetic acid. And, Cancer society warns of untested drug, CBC News, March 22, 2007.

The Official University of Alberta DCA Website provides FAQs about DCA. It includes, in the News & Updates section, DCA Research Team publishes results of Clinical Trials (dated May 12, 2010) and an earlier Letter from Dr. Evangelos Michelakis (dated October 2008).

Read More...

Generic drug a potential treatment for glioblastoma?

Friday, May 14th, 2010

DCA research on brain cancer, EurekAlert, May 12, 2010. [FriendFeed entry]. Excerpt: "... the orphan generic drug Dichloroacetate (DCA) may hold promise as potential therapy for ... a form of brain cancer called glioblastoma". Another excerpt:

By extracting glioblastomas from 49 patients over a period of 2 years and studying them within minutes of removal in the operating room, the team showed that tumors respond to DCA by changing their metabolism. Then, the team treated 5 patients with advanced glioblastoma and secured tumor tissues before and after the DCA therapy. By comparing the two, the team showed that DCA works in these tumors exactly as was predicted by test tube experiments. This is very important because often the results in non-human models tested in the lab do not agree with the results in patients. In addition, the team showed that DCA has anti-cancer effects by altering the metabolism of glioblastoma cancer stem cells, the cells thought responsible for the recurrences of cancer.

And,

No conclusions can be made on whether the drug is safe or effective in patients with this form of brain cancer, due to the limited number of patients tested by the study's leads Drs Michelakis and Petruk. Researchers emphasize that use of DCA by patients or physicians, supplied from for-profit sources or without close clinical observation by experienced medical teams in the setting of research trials, is not only inappropriate but may also be dangerous. ...

See also: Generic drug may be potential treatment for deadly brain cancer: U of A medical study by Noreen Remtulla and Julia Necheff, ExpressNews, University of Alberta, May 12, 2010.

And: Potential brain-cancer drug shows promise, CBC News, May 12, 2010. [CBC video].

And: Cancer drug trial raises hopes by Elise Stolte, Edmonton Journal, May 13, 2010.

These news reports are about the publication: Metabolic Modulation of Glioblastoma with Dichloroacetate by Evangelos D Michelakis and 12 co-authors, including Kenneth C Petruk, Sci Transl Med 2010(May 12); 2(31): 31ra34.

See also an editorial: Targeting Cell Metabolism in Cancer Patients by Matthew G Vander Heiden, Sci Transl Med 2010(May 12); 2(31) :31ed1. From the TOC: "Dichloroacetate can safely modify glucose metabolism in aggressive brain tumors when administered to patients". Last sentence of the editorial: "Time will tell whether this strategy constitutes an effective cancer therapy".

Comments: After an initial research publication in January 2007 [PubMed citation], DCA attracted much attention. See, for example, the Wikipedia entry for Dichloroacetic acid. And, Cancer society warns of untested drug, CBC News, March 22, 2007.

The Official University of Alberta DCA Website provides FAQs about DCA. It includes, in the News & Updates section, DCA Research Team publishes results of Clinical Trials (dated May 12, 2010) and an earlier Letter from Dr. Evangelos Michelakis (dated October 2008).

Read More...

International Stem Cell and Absorption Systems Confirm Results Showing Stem Cell Derived Corneal Tissue as an Alternative to Animals for Drug Testing

Wednesday, May 12th, 2010

Other Tests Show Tissue's Ability to Focus Light, Pointing to Potential Therapeutic Applications

OCEANSIDE, Calif. – May 10, 2010 – International Stem Cell Corporation (OTCBB: ISCO), http://www.internationalstemcell.com/, the first company to perfect a method of creating human "parthenogenetic" stem cells from unfertilized eggs, announces the results of a second set of experiments confirming that its lab-grown corneal tissue closely mimics the drug absorption and drug metabolism characteristics found in normal corneal tissue. Other tests show that the stem cell derived corneal tissue refracts light, thus providing a further indication of its potential therapeutic value in treating corneal injury and disease.

Two sets of collaborative experiments between ISCO and Absorption Systems have now shown that corneal tissue cultured by ISCO exhibits topical drug absorption barrier properties and tissue-appropriate enzymatic activity, making it a promising model for studying human ocular drug absorption as an alternative to live animal testing. ISCO's human corneal tissue is created in the laboratories of its wholly owned subsidiary, Lifeline Cell Technology (Walkersville, MD).

In a second set of tests conducted by a third party expert, a beam of diverging light was projected through the corneal tissue from different distances, becoming more or less refracted with the changing distance, showing that the corneal tissue was clear and had optical properties that allow the focusing of light. Additional experiments will be conducted to better define these optical characteristics.

According to Jeffrey Janus, Senior VP of ISCO and CEO of Lifeline, "We are very excited to confirm our initial results showing drug absorption that correlates with animal models and add to these results the observation of enzymatic activity. This not only advances our plans to manufacture a product that can be used to reduce the need for tests that use living animals, but it also is one more step toward the potential therapeutic use of this tissue as a treatment for human corneal injury or disease. This has implications, not only in the US, but also in India and Asia, where millions of people suffer from corneal blindness that now goes untreated. The experiments showing light refraction are a tempting indication that this tissue will have therapeutic application."

"There is a large commercial need for a predictive and reproducible non-animal method for testing the safety of ophthalmic drugs and consumer products," said Patrick M. Dentinger, President and CEO of Absorption Systems. "The combined knowledge and expertise of ISCO and Absorption Systems have allowed us to take a step forward toward addressing an unmet need in the field of ophthalmology by creating a unique in vitro model to study human ocular drug absorption without using animals. Our collaboration with ISCO underscores our commitment to helping bring safe drugs to market."

The collaboration between Absorption Systems and ISCO uses Absorption Systems' know-how in creating and characterizing assay systems to develop superior preclinical methods of testing drugs. Such methods can also reduce the use of laboratory animals currently necessary for other tests, including safety testing of consumer products.

ABOUT INTERNATIONAL STEM CELL CORPORATION (ISCO.OB):

International Stem Cell Corporation is a California-based biotechnology company focused on therapeutic and research products. ISCO's core technology, parthenogenesis, results in creation of pluripotent human stem cells from unfertilized oocytes (eggs). hpSCs avoid ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells with minimal immune rejection after transplantation into hundreds of millions of individuals of differing sexes, ages and racial groups. This offers the potential to create the first true stem cell bank, UniStemCell™, while avoiding the ethical issue of using fertilized eggs. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology. More information is available at ISCO's website, http://www.internationalstemcell.com/.

ABOUT ABSORPTION SYSTEMS:

Absorption Systems, founded in 1996, assists pharmaceutical, biotechnology and medical device companies in identifying and overcoming ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) barriers in the development of drugs, biologics and medical devices. The company's mission is to continually develop innovative research tools that can be used to accurately predict human outcomes or to explain unanticipated human outcomes when they occur. The CellPort Technologies® platform, a suite of human cell-based tests systems for drug transporter characterization, exemplifies Absorption Systems' commitment to innovation. Absorption Systems has facilities near Philadelphia, PA, and in San Diego, CA, and serves customers throughout the world. For information on the company's comprehensive contract services and applied research programs, please visit http://www.absorption.com/.

To subscribe to receive ongoing corporate communications please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0.

FORWARD-LOOKING STATEMENTS

Statements pertaining to anticipated technological developments and therapeutic applications, and other opportunities for the company and its subsidiary, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates,") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, uncertainty in the results of clinical trials or regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update these forward-looking statements.

Key Words: Stem Cells, Biotechnology, Parthenogenesis

CONTACTS:
International Stem Cell Corporation
Kenneth C. Aldrich, Chairman
760-940-6383
kaldrich@intlstemcell.com
Or
Brian Lundstrom, President
760-640-6383
bl@intlstemcell.com

Read More...

International Stem Cell and Absorption Systems Confirm Results Showing Stem Cell Derived Corneal Tissue as an Alternative to Animals for Drug Testing

Wednesday, May 12th, 2010

Other Tests Show Tissue's Ability to Focus Light, Pointing to Potential Therapeutic Applications

OCEANSIDE, Calif. – May 10, 2010 – International Stem Cell Corporation (OTCBB: ISCO), http://www.internationalstemcell.com/, the first company to perfect a method of creating human "parthenogenetic" stem cells from unfertilized eggs, announces the results of a second set of experiments confirming that its lab-grown corneal tissue closely mimics the drug absorption and drug metabolism characteristics found in normal corneal tissue. Other tests show that the stem cell derived corneal tissue refracts light, thus providing a further indication of its potential therapeutic value in treating corneal injury and disease.

Two sets of collaborative experiments between ISCO and Absorption Systems have now shown that corneal tissue cultured by ISCO exhibits topical drug absorption barrier properties and tissue-appropriate enzymatic activity, making it a promising model for studying human ocular drug absorption as an alternative to live animal testing. ISCO's human corneal tissue is created in the laboratories of its wholly owned subsidiary, Lifeline Cell Technology (Walkersville, MD).

In a second set of tests conducted by a third party expert, a beam of diverging light was projected through the corneal tissue from different distances, becoming more or less refracted with the changing distance, showing that the corneal tissue was clear and had optical properties that allow the focusing of light. Additional experiments will be conducted to better define these optical characteristics.

According to Jeffrey Janus, Senior VP of ISCO and CEO of Lifeline, "We are very excited to confirm our initial results showing drug absorption that correlates with animal models and add to these results the observation of enzymatic activity. This not only advances our plans to manufacture a product that can be used to reduce the need for tests that use living animals, but it also is one more step toward the potential therapeutic use of this tissue as a treatment for human corneal injury or disease. This has implications, not only in the US, but also in India and Asia, where millions of people suffer from corneal blindness that now goes untreated. The experiments showing light refraction are a tempting indication that this tissue will have therapeutic application."

"There is a large commercial need for a predictive and reproducible non-animal method for testing the safety of ophthalmic drugs and consumer products," said Patrick M. Dentinger, President and CEO of Absorption Systems. "The combined knowledge and expertise of ISCO and Absorption Systems have allowed us to take a step forward toward addressing an unmet need in the field of ophthalmology by creating a unique in vitro model to study human ocular drug absorption without using animals. Our collaboration with ISCO underscores our commitment to helping bring safe drugs to market."

The collaboration between Absorption Systems and ISCO uses Absorption Systems' know-how in creating and characterizing assay systems to develop superior preclinical methods of testing drugs. Such methods can also reduce the use of laboratory animals currently necessary for other tests, including safety testing of consumer products.

ABOUT INTERNATIONAL STEM CELL CORPORATION (ISCO.OB):

International Stem Cell Corporation is a California-based biotechnology company focused on therapeutic and research products. ISCO's core technology, parthenogenesis, results in creation of pluripotent human stem cells from unfertilized oocytes (eggs). hpSCs avoid ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells with minimal immune rejection after transplantation into hundreds of millions of individuals of differing sexes, ages and racial groups. This offers the potential to create the first true stem cell bank, UniStemCell™, while avoiding the ethical issue of using fertilized eggs. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology. More information is available at ISCO's website, http://www.internationalstemcell.com/.

ABOUT ABSORPTION SYSTEMS:

Absorption Systems, founded in 1996, assists pharmaceutical, biotechnology and medical device companies in identifying and overcoming ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) barriers in the development of drugs, biologics and medical devices. The company's mission is to continually develop innovative research tools that can be used to accurately predict human outcomes or to explain unanticipated human outcomes when they occur. The CellPort Technologies® platform, a suite of human cell-based tests systems for drug transporter characterization, exemplifies Absorption Systems' commitment to innovation. Absorption Systems has facilities near Philadelphia, PA, and in San Diego, CA, and serves customers throughout the world. For information on the company's comprehensive contract services and applied research programs, please visit http://www.absorption.com/.

To subscribe to receive ongoing corporate communications please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0.

FORWARD-LOOKING STATEMENTS

Statements pertaining to anticipated technological developments and therapeutic applications, and other opportunities for the company and its subsidiary, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates,") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, uncertainty in the results of clinical trials or regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update these forward-looking statements.

Key Words: Stem Cells, Biotechnology, Parthenogenesis

CONTACTS:
International Stem Cell Corporation
Kenneth C. Aldrich, Chairman
760-940-6383
kaldrich@intlstemcell.com
Or
Brian Lundstrom, President
760-640-6383
bl@intlstemcell.com

Read More...

CSC news links 2010-05-08

Sunday, May 9th, 2010

For links to recent news items about CSC, visit this [Topsy] page. Examples of two news items that have received attention in the past week:?

New research links ovarian hormones with breast stem-cell growth - Globe and Mail http://bit.ly/brT71E. Hashtag: #cancerSC. Posted to Twitter on Wed May 06, 2010 via TweetDeck. [PubMed Citation]


Broccoli compound limits breast cancer (about sulforaphane) http://bit.ly/9blnNP & http://bit.ly/aOTSDv. Hashtag: #cancerSC. Posted to Twitter on Wed May 05, 2010 via TweetDeck. [PubMed Citation]

Read More...

CSC news links 2010-05-08

Sunday, May 9th, 2010

For links to recent news items about CSC, visit this [Topsy] page. Examples of two news items that have received attention in the past week:?

New research links ovarian hormones with breast stem-cell growth - Globe and Mail http://bit.ly/brT71E. Hashtag: #cancerSC. Posted to Twitter on Wed May 06, 2010 via TweetDeck. [PubMed Citation]


Broccoli compound limits breast cancer (about sulforaphane) http://bit.ly/9blnNP & http://bit.ly/aOTSDv. Hashtag: #cancerSC. Posted to Twitter on Wed May 05, 2010 via TweetDeck. [PubMed Citation]

Read More...

International Stem Cell Corporation Signs Financing Agreement

Thursday, May 6th, 2010

OCEANSIDE, CA –May 5, 2010 – International Stem Cell Corporation (ISCO.OB), http://www.intlstemcell.com, today announced it has entered into a definitive agreement dated May 4, 2010 (‘the Agreement”) with Socius CG II, Ltd. (“Socius”), pursuant to which Socius has committed to purchase a single tranche of up to $10 million in non-convertible Series F Preferred Stock (the "Preferred Stock") from ISCO. The Company issued a warrant to purchase $13,500,000 worth of the Company’s Common Stock, the exercise price of the warrant being determined by the closing bid price for the Company’s Common Stock on the trading day immediately preceding the date the Company initiates the sale of the Series F Preferred.

The Company anticipates that the Closing of the Preferred Stock sale will take place 20 business days after the issuance of the Warrants. Proceeds from these sales will be used to provide general working capital and to fund additional development of the Company's proprietary Parthenogenetic Stem Cell Lines, development of commercial research products, and other research and development programs and related business activities.

Additional details on the transaction are contained in the Company's Form 8-K filed today with the Securities and Exchange Commission.

A prospectus relating to this offering is available from:
Investor Relations
International Stem Cell Corporation
2595 Jason Court
Oceanside, CA 92056

ABOUT INTERNATIONAL STEM CELL CORPORATION (ISCO.OB):
International Stem Cell Corporation is a California-based biotechnology company focused on therapeutic and research products. ISCO’s core technology, parthenogenesis, results in creation of pluripotent human stem cells from unfertilized oocytes (eggs). ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells with minimal immune rejection after transplantation into hundreds of millions of individuals of differing sexes, ages and racial groups. This offers the potential to create the first true stem cell bank, UniStemCell™, while avoiding the ethical issue of using fertilized eggs. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology.

FORWARD-LOOKING STATEMENTS:
Statements pertaining to anticipated future events, including the anticipated closing of the sale of Preferred Stock, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as “will,” “believes,” “plans,” “anticipates,” “expects,” “estimates,”) should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in satisfying the conditions to closing. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update these forward-looking statements.
Key Words: Stem Cells, Biotechnology, Parthenogenesis

CONTACTS:
International Stem Cell Corporation
Kenneth C. Aldrich, Chairman
760-940-6383
kaldrich@intlstemcell.com
Or
Brian Lundstrom, President
760-940-6383
bl@intlstemcell.com
WEST\21949392.1

Read More...

International Stem Cell Corporation Signs Financing Agreement

Thursday, May 6th, 2010

OCEANSIDE, CA –May 5, 2010 – International Stem Cell Corporation (ISCO.OB), http://www.intlstemcell.com, today announced it has entered into a definitive agreement dated May 4, 2010 (‘the Agreement”) with Socius CG II, Ltd. (“Socius”), pursuant to which Socius has committed to purchase a single tranche of up to $10 million in non-convertible Series F Preferred Stock (the "Preferred Stock") from ISCO. The Company issued a warrant to purchase $13,500,000 worth of the Company’s Common Stock, the exercise price of the warrant being determined by the closing bid price for the Company’s Common Stock on the trading day immediately preceding the date the Company initiates the sale of the Series F Preferred.

The Company anticipates that the Closing of the Preferred Stock sale will take place 20 business days after the issuance of the Warrants. Proceeds from these sales will be used to provide general working capital and to fund additional development of the Company's proprietary Parthenogenetic Stem Cell Lines, development of commercial research products, and other research and development programs and related business activities.

Additional details on the transaction are contained in the Company's Form 8-K filed today with the Securities and Exchange Commission.

A prospectus relating to this offering is available from:
Investor Relations
International Stem Cell Corporation
2595 Jason Court
Oceanside, CA 92056

ABOUT INTERNATIONAL STEM CELL CORPORATION (ISCO.OB):
International Stem Cell Corporation is a California-based biotechnology company focused on therapeutic and research products. ISCO’s core technology, parthenogenesis, results in creation of pluripotent human stem cells from unfertilized oocytes (eggs). ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells with minimal immune rejection after transplantation into hundreds of millions of individuals of differing sexes, ages and racial groups. This offers the potential to create the first true stem cell bank, UniStemCell™, while avoiding the ethical issue of using fertilized eggs. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology.

FORWARD-LOOKING STATEMENTS:
Statements pertaining to anticipated future events, including the anticipated closing of the sale of Preferred Stock, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as “will,” “believes,” “plans,” “anticipates,” “expects,” “estimates,”) should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in satisfying the conditions to closing. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update these forward-looking statements.
Key Words: Stem Cells, Biotechnology, Parthenogenesis

CONTACTS:
International Stem Cell Corporation
Kenneth C. Aldrich, Chairman
760-940-6383
kaldrich@intlstemcell.com
Or
Brian Lundstrom, President
760-940-6383
bl@intlstemcell.com
WEST21949392.1

Read More...

CSC news links 2010-05-01

Sunday, May 2nd, 2010

For links to recent news items, visit these [Twitter] or [FriendFeed] pages. Examples of two news items that have received attention:?

Read More...

More about presentations at AACR10

Sunday, May 2nd, 2010

Five presentations at the 101th annual meeting of the American Association of Cancer Research were highlighted a news release from Geron Corporation (dated March 3, 2010). One presentation that had an explicit focus on CSC was this poster:

Imetelstat, a telomerase inhibitor in phase I trials in solid tumor and hematological malignancies, has broad activity against multiple types of cancer stem cells [Presentation Abstract].

Also mentioned in the news release was an oral presentation by Jerry W Shay, given as part of the Major Symposium entitled: Role of Telomeres and Telomerase in Chromosomal Stability and Disease [Session Detail]. The presentation was:

Role of telomerase in normal and neoplastic stem cells [Presentation Abstract].

Another poster about the telomerase inhibitor imetelstat (GRN163L) was:

Sensitivity and resistance of non-small cell lung cancer to the telomerase inhibitor imetelstat [Presentation Abstract].

Comments: A search of the ClinicalTrials.gov database for GRN163L revealed 6 trials. Four were ongoing, but not recruiting participants. Two were still recruiting: 1) Safety and Dose Study of GRN163L Administered to Patients With Refractory or Relapsed Solid Tumor Malignancies; 2) A Study of GRN163L With Paclitaxel and Bevacizumab to Treat Patients With Locally Recurrent Or Metastatic Breast Cancer.

An analogous search for imetelstat yielded the same 6 trials. All 6 trials have been sponsored by Geron Corporation.

Read More...

CSC news links 2010-05-01

Sunday, May 2nd, 2010

For links to recent news items, visit these [Twitter] or [FriendFeed] pages. Examples of two news items that have received attention:?

Read More...

More about presentations at AACR10

Sunday, May 2nd, 2010

Five presentations at the 101th annual meeting of the American Association of Cancer Research were highlighted a news release from Geron Corporation (dated March 3, 2010). One presentation that had an explicit focus on CSC was this poster:

Imetelstat, a telomerase inhibitor in phase I trials in solid tumor and hematological malignancies, has broad activity against multiple types of cancer stem cells [Presentation Abstract].

Also mentioned in the news release was an oral presentation by Jerry W Shay, given as part of the Major Symposium entitled: Role of Telomeres and Telomerase in Chromosomal Stability and Disease [Session Detail]. The presentation was:

Role of telomerase in normal and neoplastic stem cells [Presentation Abstract].

Another poster about the telomerase inhibitor imetelstat (GRN163L) was:

Sensitivity and resistance of non-small cell lung cancer to the telomerase inhibitor imetelstat [Presentation Abstract].

Comments: A search of the ClinicalTrials.gov database for GRN163L revealed 6 trials. Four were ongoing, but not recruiting participants. Two were still recruiting: 1) Safety and Dose Study of GRN163L Administered to Patients With Refractory or Relapsed Solid Tumor Malignancies; 2) A Study of GRN163L With Paclitaxel and Bevacizumab to Treat Patients With Locally Recurrent Or Metastatic Breast Cancer.

An analogous search for imetelstat yielded the same 6 trials. All 6 trials have been sponsored by Geron Corporation.

Read More...

Sessions on CSC Therapeutics at AACR10

Tuesday, April 27th, 2010

There were two poster sessions on Cancer Stem Cell Therapeutics at the 101st Annual Meeting of the American Association for Cancer Research (AACR). The sessions, Cancer Stem Cell Therapeutics 1 and Cancer Stem Cell Therapeutics 2, took place on the morning and afternoon of April 20, 2010 [FriendFeed entry].

Two posters presented in the 2nd session have been highlighted in a news release. See: Alchemia’s HyACT Technology Enhances the Killing of Cancer Stem Cell Populations in Breast and Colorectal Cancer, Business Wire, April 20, 2010 [FriendFeed entry]. One of these is Poster #4293: Evaluation of activated CD44 as a biological target in the eradication of breast cancer stem cells, by Vera J Evtimov and Tracey J Brown [Presentation Abstract]. The other is Poster #4278: HA-Irinotecan targeting of activated CD44 is an effective therapy for the eradication of putative colon cancer stem cells [Presentation Abstract].

Read More...

Sessions on CSC Therapeutics at AACR10

Tuesday, April 27th, 2010

There were two poster sessions on Cancer Stem Cell Therapeutics at the 101st Annual Meeting of the American Association for Cancer Research (AACR). The sessions, Cancer Stem Cell Therapeutics 1 and Cancer Stem Cell Therapeutics 2, took place on the morning and afternoon of April 20, 2010 [FriendFeed entry].

Two posters presented in the 2nd session have been highlighted in a news release. See: Alchemia’s HyACT Technology Enhances the Killing of Cancer Stem Cell Populations in Breast and Colorectal Cancer, Business Wire, April 20, 2010 [FriendFeed entry]. One of these is Poster #4293: Evaluation of activated CD44 as a biological target in the eradication of breast cancer stem cells, by Vera J Evtimov and Tracey J Brown [Presentation Abstract]. The other is Poster #4278: HA-Irinotecan targeting of activated CD44 is an effective therapy for the eradication of putative colon cancer stem cells [Presentation Abstract].

Read More...

CSC news links 2010-04-18

Monday, April 19th, 2010

For links to recent news items, visit these [Twitter] or [FriendFeed] pages. Examples of a few news items that have received attention:

Read More...

CSC news links 2010-04-18

Monday, April 19th, 2010

For links to recent news items, visit these [Twitter] or [FriendFeed] pages. Examples of a few news items that have received attention:

Read More...

MicroRNA therapy could be a powerful tool to correct the CSC dysregulation?

Saturday, April 17th, 2010

Medical Hypothesis: No small matter: microRNAs - key regulators of cancer stem cells by Qing Ji, David Karnak, Ping Hao, Rongquan Wang and Liang Xu, Int J Clin Exp Med 2010(Mar 12); 3(1): 84-7 [FriendFeed entry][Full text via PMC]. PubMed Abstract:

Emerging evidence demonstrates that both tumor suppressor and oncogenic miRNAs play an essential role in stem cell self-renewal and differentiation by negatively regulating the expression of certain key genes in stem cells. It seems logical that they may also be critical players in cancer stem cells. Though small in size, miRNAs play a key role in the epigenetic regulation of cancer stem cells. Specifically, the imbalance of oncogenic vs. tumor suppressor miRNAs may lead to dysregulation of cancer stem cells, thus causing excessive self-renewal and survival of cancer stem cells, and resistance to chemo/radiotherapy. We postulate that restoring the balance of miRNAs will correct this dysregulation via the direct and simultaneous modulation of downstream stem cell pathways involved in cancer stem cell self-renewal and/or differentiation. The resultant restoration of key regulatory pathways could improve therapeutic response. Restoring tumor suppressor miRNAs and/or inhibiting oncogenic miRNAs may provide a novel molecular therapy for human cancers, potentially via modulating cancer stem cells.

Read More...

MicroRNA therapy could be a powerful tool to correct the CSC dysregulation?

Saturday, April 17th, 2010

Medical Hypothesis: No small matter: microRNAs - key regulators of cancer stem cells by Qing Ji, David Karnak, Ping Hao, Rongquan Wang and Liang Xu, Int J Clin Exp Med 2010(Mar 12); 3(1): 84-7 [FriendFeed entry][Full text via PMC]. PubMed Abstract:

Emerging evidence demonstrates that both tumor suppressor and oncogenic miRNAs play an essential role in stem cell self-renewal and differentiation by negatively regulating the expression of certain key genes in stem cells. It seems logical that they may also be critical players in cancer stem cells. Though small in size, miRNAs play a key role in the epigenetic regulation of cancer stem cells. Specifically, the imbalance of oncogenic vs. tumor suppressor miRNAs may lead to dysregulation of cancer stem cells, thus causing excessive self-renewal and survival of cancer stem cells, and resistance to chemo/radiotherapy. We postulate that restoring the balance of miRNAs will correct this dysregulation via the direct and simultaneous modulation of downstream stem cell pathways involved in cancer stem cell self-renewal and/or differentiation. The resultant restoration of key regulatory pathways could improve therapeutic response. Restoring tumor suppressor miRNAs and/or inhibiting oncogenic miRNAs may provide a novel molecular therapy for human cancers, potentially via modulating cancer stem cells.

Read More...

International Stem Cell Corporation Engages Leading Immunogeneticists to Advance its Industry-first, Immune-matched Stem Cells

Wednesday, April 14th, 2010

International Stem Cell Corporation (OTCBB:ISCO), http://www.intlstemcell.com, today added two world-leading immunogeneticists to its scientific advisory board. They and ISCO scientists will study the immune-matching properties of ISCO's human parthenogenetic stem cell (hpSC) technology and the potential for each hpSC-derived therapeutic cell to be an immune-match for millions of people.

Dr. Hans-Dieter Volk, Professor of Immunology and Chair of the Institute of Medical Immunology and Berlin-Brandenburg Center for Regenerative Therapies (BCRT) at Charité Universitätsmedizin in Berlin, and Dr. Matthias von Herrath, Professor at the La Jolla Institute of Allergy and Immunology at University of San Diego, have agreed to join ISCO's scientific advisory board. Both have dedicated their careers to experimental and clinical immunology and are highly regarded immunogenetics experts internationally. They will be most valuable as ISCO attempts to demonstrate the unique immune-matching benefits of the hpSC technology experimentally and in clinical practice.

"We believe that providing human cells that can minimize rejection though immune-matching to the recipient is one of the most important tasks in developing effective regenerative medicine therapies," says Dr. Simon Craw, Vice President at ISCO. "We look forward to Drs. Volk and von Herrath helping us try to demonstrate how that need can be met with our parthenogenetic stem cells."

Embryonic stem cells (hESC) almost invariably have different forms of genes (called "alleles") at each genetic position of the paternal and maternal chromosomes, i.e. they are "heterozygous." This includes the human leukocyte antigen ("HLA") genes that are largely responsible for the distinction between "self" and "foreign," and thus acceptance or rejection of transplants. Since hESC are derived from fertilized embryos, they carry the genes of a unique individual, thus the therapeutic cells derived from hESC will carry HLA alleles that can be recognized as foreign and be rejected by most patients unless they receive immunosuppressive therapy. Such therapy is costly, has significant side effects, and often is disabling in the long term.

Like most individuals in the population, induced pluripotent stem cells ("iPS" cells) and adult stem cells are also predominantly heterozygous because they carry paternal and maternal chromosomes. They are a perfect immune match to the patient they came from and are therefore typically administered back to that same individual ("autologous therapy"). However, they would likely be rejected by most other recipients. Autologous therapy is time-consuming and expensive, which goes against the cost containment pressures globally. In addition, the quality of the therapy is directly related to the ability to secure clinically sufficient numbers of functional cells from the patient, which often poses a significant problem in clinical practice.

In contrast, the hpSCs developed by ISCO are derived from unfertilized eggs ("oocytes") that have been shown in peer-reviewed journals to exhibit unlimited proliferation potential and are pluripotent (can become cells from all three germ layers that form a human being). Most significantly, hpSC can be created in a "homozygous" state, where the alleles, including the HLA alleles, are the same at each genetic position. When these HLA alleles are also found with a high frequency in a population, these "HLA-homozygous" stem cells and their therapeutic derivatives have the potential to be immune matched to millions of people. For example, ISCO's first homozygous stem cell line with high-frequency HLA alleles has the potential to be immune matched to an estimated 75 million people worldwide.

Dr. Volk says: "Using my experience from transplantation immunology and medicine during the past three decades, I am very pleased to help ISCO in their efforts to make its hpSC technology a clinical reality where therapeutic cell derivatives will be immune matches for millions of people worldwide." Dr. von Herrath continues: "While stem cell technologies generally offer great regenerative potential, most clinical applications will be limited by immune rejection. I look much forward to joining ISCO in their quest for making stem cell-derived therapy a practical and attractive clinical option for many degenerative diseases."

Besides the immunogenetic developments, ISCO is advancing its hpSC technology into the differentiation of hpSC into therapeutic cells and tissues and into the establishment of processes and facilities to produce clinical-grade cells. The company is seeking to demonstrate the therapeutic potential of its hpSC technology as a safe, efficient, and superior alternative to other sources of stem cells for human therapy.

ABOUT INTERNATIONAL STEM CELL CORPORATION (ISCO.OB):

International Stem Cell Corporation is a California-based biotechnology company focused on therapeutic and research products. ISCO's core technology, parthenogenesis, results in creation of pluripotent human stem cells from unfertilized oocytes (eggs). hpSCs avoid ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells with minimal immune rejection after transplantation into hundreds of millions of individuals of differing sexes, ages and racial groups. This offers the potential to create the first true stem cell bank, UniStemCell™, while avoiding the ethical issue of using fertilized eggs. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology. More information is available at ISCO's website, http://www.internationalstemcell.com.

To subscribe to receive ongoing corporate communications please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0.

FORWARD-LOOKING STATEMENTS

Statements pertaining to anticipated technological developments and therapeutic applications, and other opportunities for the company and its subsidiary, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "should," "believes," "plans," "anticipates," "expects," "estimates") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, uncertainty in the results of clinical trials or regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update these forward-looking statements.

Key Words: Stem Cells, Biotechnology, Parthenogenesis

International Stem Cell Corporation
Kenneth C. Aldrich, Chairman
760-940-6383
kaldrich@intlstemcell.com
or
Brian Lundstrom, President
760-640-6383
bl@intlstemcell.com

Read More...

Page 124«..1020..122123124125


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick