header logo image


Page 41234

Archive for February, 2019

StemFit Feeder Free Culture | amsbio

Friday, February 1st, 2019

StemFit is a xeno-free, defined medium proven to effectively maintain Induced Pluripotent Stem (iPS) and Embryonic Stem (ES) cells under feeder-free conditions during the reprogramming, expansion and differentiation phases of stem cell culture. Now available in research and clinical grade formulations StemFit combines market-leading colony forming efficiency with lower than standardmedia volume consumption to offer the most cost-effective colony expansion compared to leading competitors.

Benefits:

Find out about our new StemFit and iMatrix Recombinant Laminin Coating Free protocol.

Weekend-Free Cell Culture:

Figure 1. StemFit allows flexible weekend free protocols.

Greater Than x100 Folder Expansion:

Figure 2. Human 201B7 iPSCs grown on MEFs (feeder dependent)were transitioned to feeder-freeconditions with StemFit or commerciallyavailable medium A on respective ECMs (1000cells/cm2), and cultured for one week onpre-coated plates.

Reduced Media Consumption:

Figure 3. StemFit offers unparrallel cost savings, requiring less media volume and less media changes to achieve the same expansion.

Easy Transition from Feeder to Feeder-Free Culture:

Figure 4. Schematic of the transition of 201B7 iPSCs from feeder cell conditions to feeder free using StemFit. Protocol courtesy of the Center for iPSC Research and Application, Kyoto University.

Contact Us To Request A Free Sample

Superior Colony Forming Efficiency From a Single Clone:

StemFit culture medium has been independently evaluated to offer a high rate of colony expansion ofundifferentiated iPS/ES cells, while retaining normal karyotype following long-term passage.

Figure 5. Human iPSCs were adapted to StemFit,or commercially available medium A or B onMatrigel for more than 3 passages. Then,cells were serially diluted and seeded with eachmedium on Matrigel-coated 96-well platesat 1 cell/well or 10 cells/well. The number ofseeded cells was counted after 3 hours, andcolonies were counted at day 7.

Superior Performance of StemFit for the Culture of Induced Pluripotent Stem Cells. An independant study performed by CGT Catapult.

Figure 6. Compared against the 4 leading stem cell culture media (M2 - M5), StemFit (M1) demonstrates high rates of cell growth. Densities of approx. 7x105 viable cells/cm2 (vc/cm2) were achieved with protocol M1 after a 7-day culture cycle. Thenumber of doublings per day was found to be higher in M1

Highly Stable and Reproducible Feeder-Free Culture:

Figure 7. Human 201B7 iPSCs were cultured on iMatrix Laminin-511 with StemFit for 4 weeks without weekendfeeding. Cell colonies were dissociated into single cells and seeded at the listed densities.

Citations:

Ryuji Morizane & Joseph V Bonventre (2017) Generation of nephron progenitor cells and kidney organoids from human pluripotent stem cells. Nature Protocols 12, 195207 (2017).

Miyazaki, T. et al. (2017) Efficient Adhesion Culture of Human Pluripotent Stem Cells Using Laminin Fragments in an Uncoated Manner. Scientific Reports 7: 41165.

Camp, J. G. et al. (2017) Multilineage communication regulates human liver bud development from pluripotency. Nature 2017 Jun 22;546(7659):533-538.

Nakagawa, M. et al.(2014) A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Scientific Reports. 4, Article number: 3594.

Related Products:

See the original post here:
StemFit Feeder Free Culture | amsbio

Read More...

Biotechnology – Health and Public Services Health … – About ACC

Friday, February 1st, 2019

The Biotechnology curriculum, which has emerged from molecular biology and chemical engineering, is designed to meet the increasing demands for skilled laboratory technicians in various fields of biological and chemical technology

Course work emphasizes biology, chemistry, mathematics, and technical communications. The curriculum objectives are designed to prepare graduates to serve as research assistants and technicians in laboratory and industrial settings and as quality control/quality assurance technicians.

See our Biotechnology Center of Excellence!

Biotechnology trains students to work as research assistants ortechnicians, within a variety of industry and researchbased settings.

Lab equipment use, calibration, and troubleshooting Bioprocessingupstream and downstreamprocessing Cell Culturebacterial, mammalian, and stem celllines Gene cloning, genetic engineering, and DNAsequencing Immunological assays, antibody production, andscreening methods

Students gain hands-on experience in a state-of-the artfacility including a cell culture lab, bioprocessing lab,and DNA lab. Each student gains extensive laboratoryskills (over 700 hours of accumulated lab time forA.A.S.) necessary to enter the workforce directly, orto continue their education elsewhere. This positionsgraduates favorably for entry level jobs with theessential skills to be successful in industry or researchsettings.

Associate in Applied Science Degree (A.A.S.)Biotechnology

CertificateBasic Laboratory TechniquesBioinformatics

Academic research labs Pharmaceutical companies Environmental testing facilities Biomanufacturing production Medical testing labs

Entry-level range: $30,000-$35,000+

North Carolina is #3 in the country with over 700biotech companies & 63,000 employees in theindustry, with an industry wide average salary of$95,000. -ncbiotech.org

For more information, call the Biotechnologydepartment at 336-506-4224.

Continue reading here:
Biotechnology - Health and Public Services Health ... - About ACC

Read More...

Biotechnology – Monsanto Africa

Friday, February 1st, 2019

Home > Biotechnology

Print This Page

Biotechnology is the use of living things to make or change products.

Many people see the science of biotechnology as a new and even controversial discovery. But biotechnology the genetic enhancement of agricultural products may be one of the oldest human activities. For thousands of years, from the time human communities began to settle, cultivate crops and farm the land, humans have manipulated the genetic nature of the crops and animals they raise through breeding. Breeding has been done to improve yields, enhance taste and extend growing seasons. All major crop plants, which provide 90 percent of the globe's food and energy intake, have been extensively manipulated, hybridized, inter-bred and modified over the millennia by countless generations of farmers intent on producing crops in the most efficient ways.

Modern agricultural biotechnology merely takes these breeding enhancements a step further, going directly to the plants DNA to make these enhancements more precise and easier to control. Crops resulting from modern agricultural biotechnology, which have been safely planted for more than ten years on over a billion acres.

Modern biotechnology has allowed scientists to develop a better understanding of the function, structure and evolution of plants and now, through gene technology, enabled scientists to switch off genes or copy them and move them between species.

In the case of agriculture, genes coding for specific traits are combined with existing varieties and hybrids to produce crop plants that are capable of performing even better. Good examples of these are insect protected cotton and maize, and herbicide resistant crops such as soya, maize and cotton. This technology also permits the combination of such traits into a single crop plant. In this way varieties and hybrids which are both herbicide and insect resistant are possible.

Given increasing demand for food, feed and fuel, agricultural biotechnology provides a way for farmers to produce more grain on the same amount of land, using fewer inputs. Ultimately, this technology helps farming become more sustainable. For farmers, biotech crops can reduce cost by raising yield, improving protection from insects and disease, or increasing tolerance to heat, drought and other stress. Value-added biotech traits can provide consumer benefits such as increased protein or oil, improved fatty-acid balance or carbohydrate enhancements.

The DNA (deoxyribonucleic acid) from different organisms is essentially the same simply a set of instructions that directs cells to make the proteins that are the basis of life. Whether the DNA is from a microorganism, a plant, an animal or a human, it is made from the same materials.

Throughout the years, researchers have discovered how to transfer a specific piece of DNA from one organism to another. The first step in transferring DNA is to "cut" or remove a gene segment from a chain of DNA using enzyme "scissors.

The researcher then uses the "scissors" to cut an opening in the recipient DNA where the gene is to be inserted. Because the cut ends of both the gene segment and the recipient DNA are chemically "sticky," they attach to each other, forming a chain of DNA that now contains the new gene. To complete the process, researchers use another enzyme to paste or secure the new gene in place.

Monsanto scientists pioneered the application of this technique for use in plants. Subsequent decades of research have allowed Monsanto specialists to apply their knowledge of genetics to use these biotechnology techniques to improve large-acre crops such as maize, soybeans and cotton. Our researchers work carefully to ensure that, except for the addition of a beneficial trait, improved crops are the same as current crops.

Current population growth is already straining the earth's resources. According to the U.S. Census Bureaus latest projections, the population will increase to 9 billion by 2042, up 50 percent from 1999.

Agricultural biotechnology is one important part of sustainable development, helping farmers do more with less. For example, biotech crops can increase yields without requiring any additional farmland, saving valuable rain forests and animal habitats. Other innovations can reduce or eliminate reliance on pesticides and herbicides that may contribute to environmental degradation. Still others can preserve precious soil and water resources, one day even allowing plants to thrive in times of drought, heat and poor soil quality.

An additional benefit of agricultural biotechnology is the increased adoption of conservation tillage by farmers. Conservation tillage methods leave crop mulch covering the ground between growing seasons, providing a protective cover that holds soil in place, minimizes runoff and dramatically decreases erosion.

Most experts agree that plant biotechnology is safe and effective. Working to implement new agricultural technology and the infrastructure required to meet future food needs will improve the quality of life for people worldwide for years to come.

See original here:
Biotechnology - Monsanto Africa

Read More...

Global Marine Biotechnology Market Report 2018: Drivers …

Friday, February 1st, 2019

DUBLIN, Jan. 31, 2019 /PRNewswire/ --

The "Marine Biotechnology - Global Market Outlook (2017-2026)" report has been added to ResearchAndMarkets.com's offering.

Global Marine Biotechnology market accounted for $3.93 billion in 2017 and is expected to reach $8.74 billion by 2026 growing at a CAGR of 9.3% during the forecast period.

Some of the important factors driving the market growth are current applications of marine derived enzymes in cosmetics, use of micro algae and marine algae in bio-field products. However, Lower R&D investment in the field is hampering the growth of the market. Some of the key opportunities is the Marine biotechnological advancements has been resulted successful in diverse fields with increasing investments from venture capitalists.

Marine biotechnology is a pioneering field of in recent science and technology that customs various marine bio resources for a huge number of uses, including the production of food, fuel, often bioactive, compounds and possibly will contribute to prosperous communities, green growth and sustainable industries. Even though marine biotechnology is in an emerging stage, it has unexploited potential and accomplished capability growth prospect for future.

By applications, Marine Natural Products for Medicine segment is held significant growth during the forecast period due to rising investment by key players and other factors like healthy and dietary supplements because they are rich in amino acids, proteins, vitamins, and minerals etc. Since the marine environment is the mainly biologically and chemically diverse habitat on the planet, marine biotechnology has, in recent years delivered an increasing number of most important therapeutic products, industrial and environmental applications and analytical tools.

By geography, Europe is anticipated to be one of the leading regions contributing to the global market during the forecast period. With Europe getting better from the economic crisis, the region has been making stable investments in marine biotechnology and is also witnessing the appearance of several small and micro and medium sized enterprise that are making major assistance to the R&D and opening of novel marine-based products. In additionally, the European Union research policy supports a number of collaborative projects in marine biotechnology.

What our report offers:

Key Topics Covered:

1 Executive Summary

2 Preface 2.1 Abstract2.2 Stake Holders2.3 Research Scope2.4 Research Methodology2.5 Research Sources

3 Market Trend Analysis 3.1 Introduction3.2 Drivers3.3 Restraints3.4 Opportunities3.5 Threats3.6 Product Analysis3.7 Technology Analysis3.8 Application Analysis3.9 End User Analysis3.10 Emerging Markets3.11 Futuristic Market Scenario

4 Porters Five Force Analysis 4.1 Bargaining power of suppliers4.2 Bargaining power of buyers4.3 Threat of substitutes4.4 Threat of new entrants4.5 Competitive rivalry

5 Global Marine Biotechnology Market, By Source 5.1 Introduction5.2 Corals and Sponges5.3 Macro Algae5.4 Marine Fungi5.5 Marine Viruses5.6 Micro Algae

6 Global Marine Biotechnology Market, By Product 6.1 Introduction6.2 Biomaterials6.3 Bioactive Substances6.4 Other Products

7 Global Marine Biotechnology Market, By Type 7.1 Introduction7.2 Marine Animal Technolog7.3 Marine Plant Technology

8 Global Marine Biotechnology Market, By Technology 8.1 Introduction8.2 Enrichment, Isolation and Cultivation of Microorganisms8.3 Culture-Independent Techniques8.4 Large Scale Implementation

9 Global Marine Biotechnology Market, By Application 9.1 Introduction9.2 Marine Aquaculture9.3 Marine Natural Products For Medicine9.4 Marine Nutraceuticals9.5 Marine Biomaterials9.6 Marine Bioenergy9.7 Marine Bioremediation9.8 Food & Feed9.9 Energy and Environment Management Products9.10 Fine Chemical9.11 Environment

10 Global Marine Biotechnology Market, By End User 10.1 Introduction10.2 Healthcare/Biotechnology10.3 Consumers Products10.4 Public Services & Infrastructure10.5 Industrial Products10.6 Pharmaceuticals10.7 Supplements10.8 Cosmetics

11 Global Marine Biotechnology Market, By Geography 11.1 Introduction11.2 North America11.3 Europe11.4 Asia Pacific11.5 South America11.6 Middle East & Africa

12 Key Developments 12.1 Agreements, Partnerships, Collaborations and Joint Ventures12.2 Acquisitions & Mergers12.3 New Product Launch12.4 Expansions12.5 Other Key Strategies

13 Company Profiling

For more information about this report visit https://www.researchandmarkets.com/research/jsv93b/global_marine?w=5

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

Media Contact:

Research and Markets Laura Wood, Senior Manager press@researchandmarkets.com

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

SOURCE Research and Markets

http://www.researchandmarkets.com

View original post here:
Global Marine Biotechnology Market Report 2018: Drivers ...

Read More...

What is Biotechnology? | School of Biotechnology | DCU

Friday, February 1st, 2019

Biotechnology can be defined as the controlled and deliberate manipulation of biological systems (whether living cells or cell components) for the efficient manufacture or processing of useful products. The fact that living organisms have evolved such an enormous spectrum of biological capabilities means that by choosing appropriate organisms it is possible to obtain a wide variety of substances, many of which are useful to man as food, fuel and medicines. Over the past 30 years, biologists have increasingly applied the methods of physics, chemistry and mathematics in order to gain precise knowledge, at the molecular level, of how living cells make these substances. By combining this newly-gained knowledge with the methods of engineering and science, what has emerged is the concept of biotechnology which embraces all of the above-mentioned disciplines.

Biotechnology has already begun to change traditional industries such as food processing and fermentation. It has also given rise to the development of a whole new technology for industrial production of hormones, antibiotics and other chemicals, food and energy sources and processing of waste materials. This industry must be staffed by trained biotechnologists who not only have a sound basis of biological knowledge, but a thorough grounding in engineering methods. At Dublin City University, the School of Biological Sciences is unique in having, as members of its academic staff, engineers who have specialised in biotechnology. The degree programme also places a major emphasis on practical work and on developing a wide range of analytical and manipulative skills, including pilot plant operational skills appropriate to the biotechnologist. Graduates will be in an ideal position to exploit the opportunities for biotechnology in Ireland, in established or developing companies.

The course encompases biological and engineering aspects

For more information on the BSc in Biotechnology

Read the original post:
What is Biotechnology? | School of Biotechnology | DCU

Read More...

Biotechnology Facts – Softschools.com

Friday, February 1st, 2019

Biotechnology is not a new field, although its intentional use is comparatively new. Humans have unknowingly used biotechnology practices for thousands of years, specifically in farming and pharmaceuticals. Even in the Neolithic period, early humans incorporated a very broad definition of biotechnology in their newfound agricultural attempts. By the broad definition of the field, early civilizations' brewing and fermenting of alcohol, specifically by the Egyptians, Chinese, and Indians, and the use of yeast in bread making by many civilizations would fall under biotechnology. The term "biotechnology" is thought to have been first used in 1919 by Karoly Ereky. As new practices in biotechnology occur, additional subfields of the science have been created, including genomics, gene therapy, immunology, and more. By some standards, early practices in farming that utilized selective breeding could also be considered biotechnology. Perhaps the most crucial application of biotechnology of its era was the production of antibiotics to fight infection. Even today, researchers are continuing to improve upon biofuels in order to cut down on fossil fuel mining and greenhouse gas emissions. There are four major areas of biotechnology study and application. These are medical, agriculture, non-food agriculture, and environmental applications. While pharmaceuticals like antibiotics, insulin, and vaccines can be considered biotechnology uses, innovations like gene therapy and gene suppression would also meet that definition. Non-food agriculture uses apply to things like the creation of plants to produce plastics, and enzymes or single-celled organisms for industrial fermentation and the production of textiles. Some environmental applications of biotechnology include uses microbes to clean up an oil spill or fungal or algae outbreak. Through the efforts of the US Congress and the National Institute of General Medical Sciences under the National Institutes of Health, biotechnology has become a sought-after field of study in many major universities. Biotechnology does have its critics, as there is currently a movement to ban and avoid genetically modified foods grown through genetically altered agriculture. A labeling system was implemented in the US that requires genetically altered produce to be labeled as such.

Read the rest here:
Biotechnology Facts - Softschools.com

Read More...

Master of Science in Biotechnology – Drexel University …

Friday, February 1st, 2019

Biotechnology is the use of living organisms, or products of living organisms, for human benefit, and it has had a tremendous impact on many aspects of modern life. Its effects, however, are perhaps most keenly felt within the food/agricultural and medical fields. Biotechnological processes are used in the production of specific foods and have allowed the genetic modification of food crops to be hardier and to have increased nutritional value. The health care sector likewise has benefited from biotechnology to produce medicines and vaccines that prevent or cure disease. Moreover, biotechnological theory and methodologies will be central to the realization of personalized medicine.

At Drexel University, we are proud to offer the Master of Science in Biotechnology (BIOT), an innovative, non-thesis graduate degree program that emphasizes hands-on training in state-of-the-art laboratory techniques used across the biotechnology and biomedical industries.

This program furnishes students with the necessary technical skills to successfully seek gainful employment in both biotechnology/pharmaceutical firms and academic laboratories. It does so by using a two-pronged approach that combines theory with hands-on instruction under the direct supervision of our diverse and accomplished research faculty. The program is appropriate for recent college graduates or experienced technicians wishing to bolster their methodological base.

The Master of Science in Biotechnology program is ideally suited for enhancing the scientific skill set of the following groups:

"The Biotechnology master's program provided me with an excellent opportunity to gain a diverse set of technical skills, including those in biochemistry, biophysics and molecular biology, while exploring multiple areas of biomedical research. In addition, the experienced principal investigators and accelerated course work strengthened the knowledge I had gained throughout undergrad. Overall, the programs productive and focused curriculum at both the bench and in the classroom left me well qualified for positions in both academia and industry. On the strength of the Biotechnology Master of Science program at Drexel University, I have successfully secured positions in local biotech/pharma, and now work in the Screening Group at Janssen R&D (Johnson & Johnson) as an associate scientist."Jeff Branson, Class of 2016

The program encompasses both classes and hands-on practica. It is the inclusion of practica that makes this program unique, stressing applied learning of key methodologies used throughout academia and industry and their practical use in addressing research questions in bioscience and biomedicine. This innovative combination of technical theory and application will provide graduates of this program with a knowledge base and a set of skills that will make them very competitive for laboratory jobs in the academic or industrial sectors or enhance their potential for advancement at their current place of employment.

Swetaben Patel and Aishwarya Subramanian have taken positions at GlaxoSmithKline.

Lina Maciunas is currently pursuing a PhD at Drexel and works in the Loll Laboratory.

Jeff Branson is currently working as an associate scientist at Janssen R&D (Johnson & Johnson) in the Screening Group.

Ayonika Mukherjee has an internship at GlaxoSmithKline.

See the original post here:
Master of Science in Biotechnology - Drexel University ...

Read More...

Biotechnology – PRIDCO

Friday, February 1st, 2019

Puerto Rico. The Bio Island.

Puerto Rico enjoys a long legacy in pharmaceutical and medical device manufacturing. Biologics are also a growing segment of the island's life sciences sector. Amgen, Eli Lilly, Abbott and Becton Dickinson Bioscience alone have invested more than $65.9 million in four plants since 2005. Puerto Rico also boasts the world's largest modular biotechnology plant for producing recombinant human insulin.

Growing Agricultural Biotechnology Sector

Puerto Rico has also emerged as an important center for agricultural biotechnology. Pioneer Hi-Bred, BASF Agrochemical, Bayer-Cropscience, Syngenta Seeds and Rice Tec are among many seed companies that have found the island to be fertile ground for R&D with our tropical weather, consistent water supply, ease of commerce with the U.S., attractive incentives and top-quality agricultural science talent.

A Highly Educated Workforce

Puerto Rico's workforce has vast knowledge in GMP, FDA and other global regulations, while the island's university system turns out a steady stream of new talent:

Helpful Links:

Read more from the original source:
Biotechnology - PRIDCO

Read More...

Stem Cell Therapy in india – Stem Cell Treatment in Uttar …

Friday, February 1st, 2019

Welcome to Stem Cell Consults

Stem Cell Center offers a complete scope of stem cell solutions in India for the treatment of various types of diseases. Our main focus is helping people get back to good health through stem cell treatment. Our organization associated with so many hospitals, medical tourism company and also has our own stem cell research labs in India to provide best quality of stem cells in this advanced stem cell treatment field to provide best quality of treatment for all needed patients al over the world.

We also provide complete stem cell lab set up in all over the world and started some other stem cells labs in other countries via our best and experienced team. We have more than 10 years stem cell research experience and treated more than thousand patients for various diseases and even provide stem cell services to various hospitals in all over the world.

We at stem cell center can proudly say that we give the best stem cells in India. Our years of research, hard work and trials have helped us pioneer and accomplish amazing results when required. Your precious cells are processed utilizing our restrictive technology to guarantee they have the best features required for treatment. Undeveloped cell focus are completely anchored, non-lethal and totally without reactions with an excellent probability of homing and tissue or organ.

We are giving advanced Stem Cell Therapy in India where all other medical treatment fail then this stem cell treatment apply to cure such non-treatable maladies or diseases.

As the main healthcare consultant, stem cell center in India takes care of each and every section of the Medical Tourism Trip to entire India. We guarantee, our patients get the best healthcare service by getting in place, the renowned specialty hospitals, latest stem cell treatments, economical housing and alternatives for the patients.

Our organization is giving best stem cell therapy in India and furthermore has perfection in stem cell treatment in Uttar Pradesh, Delhi NCR and all other all major cities of India for the required patients in all those application which can treat by stem cell therapy. We have stem cells in various forms to improve the better recuperation of patient and refer the best stem cell solutions after the evaluation of patient case study by our experts. Our experts in stem cell cooperate with patients however the total understanding to offer you more peace of mind to develop clear evidence based path. We have highly experts in our team and our experts are strong in research and clinical research from the two perspectives.

Our mission is to offer best stem cell therapy at sensible price not only in India but also throughout the entire world so that every required patients can get best stem cell therapy to enhance his life.

Read the original post:
Stem Cell Therapy in india - Stem Cell Treatment in Uttar ...

Read More...

Page 41234


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick