Archive for the ‘Skin Stem Cells’ Category

Skin stem cells-LOral Group

Thursday, August 4th, 2016

The focus of our work is really to understand the regeneration of the skin and the hair. Michelle Rathman-Josserand, LOral Research Associate, Biologist

BRUNO BERNARD LORAL FELLOW

Franoise BERNERD LOral Fellow

Eva BESSAC LOral Expert in scientific computing

Jonathan GAWTREY LOral, Chemist

VALRIE JEANNE-ROSE LORAL, MATERIAL CHEMIST

ANA MARIA PENA LORAL, BIOPHYSICIST

MICHEL PHILIPPE LORAL RESEARCH ASSOCIATE

Jean-Christophe BICHON LORAL, CHEMIST, EXPERT IN ROBOTICS

Guive BALOOCH LORAL, DIRECTOR OF THE CONNECTED BEAUTY INCUBATOR

CYRIL SWEETLOVE L'ORAL, RESEARCH ENGINEER, ENVIRONMENTAL RESEARCH

CYRIL SWEETLOVE L'ORAL, RESEARCH ENGINEER, ENVIRONMENTAL RESEARCH

CYRIL SWEETLOVE L'ORAL, RESEARCH ENGINEER, ENVIRONMENTAL RESEARCH

By browsing this site, you accept the use of Cookies in order to offer you advertising tailored to your interests, to perform traffic statistics and to facilitate the sharing of information on social networks. To find out more about Cookies and to change the Cookies setting, Click here

See the rest here:
Skin stem cells-LOral Group

Read More...

Spray on some stem cells and grow your own skin! | Katie PhD

Thursday, August 4th, 2016

Ok. Bits of this film are a little grim, but its worth it. Well, go on then!

Amazing right? And yes, its real! I have to admit I double-checked the date when my friend forwarded me the National Geographic link, but April first it was not. Researchers at the University of Pittsburgs McGowan Institute for Regenerative Medicine have made the skin cell spray gun a very real, very effective treatment for burn victims.

So how does it work? At its core, this treatment relies on the unique properties of stem cells, so thats where Ill begin. Stem cells

Stem cells have fascinated biologists for years. They are unique amongst all other cells of the body in two ways; their capacity for self-renewal, and their ability to give rise to many different cell types.

Embryonic stem cells, which frequently (and controversially) make the news, are derived from a developing fetus. They are the ultimate in stem cell-iness because they have the potential to direct the development of an entire organism. This means that they contain all the information need to make muscles, nerves, eyes etc. And naturally this pluripotency (from the Latin pluri meaning many, and potency or potential) seemed like a fantastic quality for biologist to understand. Not only were there fundamental developmental principles to be learned, the medical applications were endless. However, glaring ethical issues arose regarding the taking of a life to save a life (that I wont get into here) that have resulted in the stringent regulation of embryonic stem cell research.

And so researchers turned to adult stem cells. While adult stem cells are not as versatile as embryonic stem cells, they do have the potential to direct the development of certain cell lineages. For example hematopoietic stem cells, which reside in your bone marrow, can divide asymmetrically into all the different cells of your blood. Similarly, all the different layers of your skin have ancestral skin stem cells.

Research into embryonic stem cells resulted in the identification of certain genes that were expressed in, and required by, stem cells. In 2006, a Japanese group generated the first induced pluripotent stem cells. Since then much work has gone into understanding the potential of these induced stem cells. However due to genetic manipulation and lack of correct genomic imprinting (small chemical modifications in our DNA that are laid down in the egg), induced pluripotent stem cells have the unfortunate ability to become cancerous. As detailed in a recent paper in Cell however, while these cells are not yet ready for the clinic, this should not prevent them from being used in a laboratory setting. Stem cells as a treatment

Bone marrow transplantation was the first example of a stem cell therapy. In 1959 the French surgeon Georges Math treated six nuclear power plant workers who had been so severely irradiated that their hematopoietic stem cell populations had been destroyed. The procedure has since been used with great success in the treatment of leukemia.

As with all transplants, the potential of the host rejecting the donor tissue exists. This rejection occurs because of subtle cellular differences between each and every one of us. Our immune system recognizes these differences as foreign, much as it would any other pathogenic invader, and mounts a formidable defense. With the development of tissue typing procedures and administration of immunosuppressive drugs, transplant rejection has significantly decreased.

By far the best way of avoiding rejection, however, is to transplant the recipients own tissue. In certain procedures, such as small areas of skin grafting, such auto-grafting is a viable option. But in others, such as in the case of organ transplantation, it is not. And this is where stem cells can sweep in and save the day.

Tissues in dishes

We have long had the capacity to grow cells in vitro (which literally means within a glass). Bacterial cells grow happily in test tubes when provided with simple nutrients and an incubator, as do yeast cells. Mammalian cells are a little more difficult to deal with, but again we have been culturing them in the lab for over a hundred years. All they require is a container to grow in that protects them from infection, liquid media containing essential amino acids and other nutrients, and a warm humid chamber in which to grow.

I am however talking about growing one type of cell at a time. Growing an organized tissue presents a far greater challenge. Not only do the cells have to grow and divide, they have to interact with one another and take on specialized roles within the tissue. Normally in our bodies external forces and small molecules send signals between cells that direct this process. Culturing a tissue in vitro requires a significant understanding of how the tissue forms, and an ability to isolate the stem cells from which the tissue is derived.

In the case of transplantation, the stem cells can be derived from the patient who will receive the cultured tissue, thus removing the chance of complications arising due to donor incompatibility. As you saw in the video, skin grafts have been performed in this way for quite some time, but with variable success.

The skin gun

And this is of course where the genius of the skin gun, and its inventor Joerg C. Gerlach, comes in; it bypasses the need for the in vitro tissue culturing. Skin stem cells that had been destroyed in the burn are replaced, and then the tissue is allowed to heal. As in the case of tissue culture in a lab, these cells require a sterile and nutrient rich environment to thrive. After the initial spraying, the wound is covered with a dressing that contains a synthetic circulatory system that brings nutrients to the infant skin and removes any toxins and waste products.

The speed and effectiveness of this treatment is out of this world. The guy in the video didnt even have a scar after his treatment. Perhaps the spray gun as a means of stem cell delivery is unique to skin regeneration, but there are a couple of features that should be transferable to other transplants, particularly the ability to enrich a patients own stem cells and re-apply them to damaged tissue. This will likely be advanced from burgeoning knowledge on where adult stem cells reside in our body, in so-called stem cell niches. With skin stem cell therapy now a reality, what will be next? Will we be able to re-grow more complex organs such as kidneys? Or will we be able to harvest healthy stem cells from a niche before a disease such as leukemia becomes debilitating? What do you think?

Bock, C., Kiskinis, E., Verstappen, G., Gu, H., Boulting, G., Smith, Z., Ziller, M., Croft, G., Amoroso, M., & Oakley, D. (2011). Reference Maps of Human ES and iPS Cell Variation Enable High-Throughput Characterization of Pluripotent Cell Lines Cell, 144 (3), 439-452 DOI: 10.1016/j.cell.2010.12.032

Hi Peter,

Thanks for the links. I should probably have pointed out in my article that this idea is not totally novel. The Australian plastic surgeon Dr. Fiona Wood has been using a similar technique for close to a decade. She has since started a company, http://www.avitamedical.com/index.php?ob=1&id=37. The technique was used extensively to treat burn victims of the Bali bombings in 2002. The recent development of the stem cell gun has basically increased the efficiency of the system, reduced damage caused to the stem cells during spraying, and made the technique more user friendly in a hospital setting.

However, I searched and searched and there is no Nature paper, which honestly baffled me too.

I was happy to see in that link that a clinical trial is in the works. Hopefully from that some concrete data can be collected as to the precise efficacy of the cell spray system, as well as a peer-reviewed article on the subject. It seems to me that burn experts are divided on the merit or value of the treatment. In my opinion the only way a consensus can be reached is through a thorough, scientific and transparent trial. But should the therapy prove itself in that setting, I think it is a fantastic advancement in the therapeutic use of adult stem cells.

Would this work on a aged skin, skin damaged other than fire, frostbite, gangrene, cancer, etc?

What about those sunbathers with leathery type of skin?

Thanks

Ha I like your idea about the leathery sun-worshipers! I think stem cell therapy like this has potential for aiding wound healing, ie where large amounts of skin have had to be removed. But I do not think it could help adult skin thats already present. Youd have to remove the whole leathery mess and start againa new era of cosmetic surgery?

View post:
Spray on some stem cells and grow your own skin! | Katie PhD

Read More...

Stem Cell Niches for Skin Regeneration

Thursday, August 4th, 2016

Int J Biomater. 2012; 2012: 926059.

1Department of Surgery, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA

2Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, 257 Campus Drive, Stanford, CA 94305, USA

3Department of Surgery, Plastic and Reconstructive Surgery Division, Division of Burn Surgery, University of Michigan Health Systems, 1500 East Medical Center Drive, Ann Arbor, MI 48104, USA

4The Biomaterials and Advanced Drug Delivery (BioADD) Laboratory, Stanford University, 300 Pasteur Drive, Grant Building, Room S380, Stanford, CA 94305, USA

Academic Editor: Kadriye Tuzlakoglu

Received 2012 Jan 15; Accepted 2012 Apr 8.

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Stem cell-based therapies offer tremendous potential for skin regeneration following injury and disease. Functional stem cell units have been described throughout all layers of human skin and the collective physical and chemical microenvironmental cues that enable this regenerative potential are known as the stem cell niche. Stem cells in the hair follicle bulge, interfollicular epidermis, dermal papillae, and perivascular space have been closely investigated as model systems for niche-driven regeneration. These studies suggest that stem cell strategies for skin engineering must consider the intricate molecular and biologic features of these niches. Innovative biomaterial systems that successfully recapitulate these microenvironments will facilitate progenitor cell-mediated skin repair and regeneration.

Skin serves as the interface with the external world and maintains key homeostatic functions throughout life. This regenerative process is often overlooked until a significant exogenous and/or physiologic insult disrupts our ability to maintain skin homeostasis [1]. Complications of normal repair often result in chronic wounds, excessive scarring, or even malignant transformation, cutaneous diseases that contribute substantially to the global health burden [2, 3]. As human populations prone to inadequate healing (such as the aged, obese, and diabetics) continue to expand, novel therapies to treat dysfunctional skin repair and regeneration will become more critical.

Tissue regeneration has been demonstrated in multiple invertebrate and vertebrate species [4]. In humans, even complex tissues can regenerate without any permanent sequelae, such as liver, nerves, and skin. Although the typical result after significant organ injury is the formation of scar, regeneration after extensive skin and soft tissue trauma has been reported, most notably after digit tip amputation [5]. It is well accepted that human skin maintains the ability to regenerate; the question for researchers and clinicians is how to harness this potential to treat cutaneous injury and disease.

The integumentary system is a highly complex and dynamic system composed of myriad cell types and matrix components. Numerous stem cell populations have been identified in skin and current research indicates that these cells play a vital role in skin development, repair, and homeostasis [1, 6, 7]. In general, stem cells are defined by their ability to self-renew and their capacity to differentiate into function-specific daughter cells. These progenitor cells have been isolated from all skin layers (epidermis, dermis, hypodermis) and have unique yet complimentary roles in maintaining skin integrity. The promise of regenerative medicine lies in the ability to understand and regulate these stem cell populations to promote skin regeneration [4].

Wound healing is a highly regulated process that is thought to be mediated in part by stem cells [8, 9]. This has prompted researchers to examine the use of stem cells to augment skin repair following injury. Preclinical studies have suggested that the secretion of paracrine factors is the major mechanism by which stem cells enhance repair [10, 11]. Consistent with this hypothesis, conditioned media from mesenchymal stem cells (MSCs) have been shown to promote wound healing via activation of host cells [11, 12]. Clinical studies have suggested that topical delivery of MSCs may improve chronic wound healing [1315] and multiple groups have demonstrated the benefit of using recombinant cytokines (many of which are known to be secreted by stem cells) in patients with recalcitrant wounds [16]. However, more research is needed to determine the mechanisms by which stem cell therapies might improve wound healing in humans.

For example, the extent of stem cell engraftment and differentiation following topical delivery remains unclear. In one study, bone-marrow-derived allogeneic MSCs injected into cutaneous wounds in mice were shown to express keratinocyte-specific proteins and contributed to the formation of glandular structures after injury [17]. Although long-term engraftment was poor (only 2.5% of MSCs remained engrafted after four weeks), levels of secreted proangiogenic factors were greater in MSC-treated wounds. Our laboratory has demonstrated that local injection of allogeneic MSCs improved early wound closure in mice but that injected MSCs contributed to less than 1% of total wound cells after four weeks [18]. Taken together, these studies suggest that the benefits observed with stem cell injections are the result of early cytokine release rather than long-term engraftment and differentiation.

One potential reason for the transient presence of exogenous stem cells is the absence of proper contextual cues after cells are delivered into the wound. The dynamic microenvironment, or niche, of stem cells is responsible for regulating their stem-like behavior throughout life [19, 20]. This niche is comprised of adjacent cells (stem and nonstem cells), signaling molecules, matrix architecture, physical forces, oxygen tension, and other environmental factors (). A useful analogy is the seed versus soil paradigm in which seeds (stem cells) will only thrive in the proper chemical and physical soil environment (wound bed) [4]. Clearly, we need to better define what these niches are and how they dictate cell behavior to fully realize the potential of progenitor cell therapies.

Potential components of the skin stem cell niche. Features common to skin stem cell niches include dynamic regulation of matrix ligands, intercellular interactions, and biochemical gradients in the appropriate three-dimensional contexts. Engineered biomaterials ...

The epidermis is comprised of at least three major stem cell populations: the hair follicle bulge, the sebaceous gland, and the basal layer of interfollicular epithelium [21]. Because these subpopulations are responsible for regulating epithelial stratification, hair folliculogenesis, and wound repair throughout life [22], the epidermis has become a model system to study regeneration. Elegant lineage tracing and gene mapping experiments have elucidated key programs in epidermal homeostasis. Specifically, components of the wingless-type (Wnt)/-catenin, sonic hedgehog (Shh), and transforming growth factor (TGF)-/bone morphogenetic protein (BMP) pathways appear to be particularly relevant to epidermal stem cell function [1, 22, 23]. Microarray analyses have even indicated that hair follicle stem cells share some of the same transcriptomes as other tissue-specific stem cells [24], suggesting that conserved molecular machinery may control how environmental stimuli regulate the stem cell niche [25].

Epithelial stem cells from the bulge, sebaceous gland, and basal epithelium have common features, including expression of K5, K14, and p63, and their intimate association with an underlying basement membrane (BM) [26]. These cells reside in the basal layer of stratified epithelium and exit their niche during differentiation [26]. This process is mediated in part by BM components such as laminin and cell surface transmembrane integrins that control cell polarity, anchorage, proliferation, survival, and motility [27, 28]. Epithelial progenitor cells are also characterized by elevated expression of E-cadherin in adherens junctions and reduced levels of desmosomes [29], underscoring the importance of both extracellular and intercellular cues in stem cell biology.

In addition to complex intraepithelial networks, signals from the dermis (e.g., periodic expression of BMP2 and BMP4) are thought to regulate epithelial processes [30]. Dermal-derived stem cells may even differentiate into functional epidermal melanocytes [31], suggesting that mesenchymal-epithelial transitions may underlie skin homeostasis, as has been shown in hepatic stem cells [32]. Recently, it has been demonstrated that irreversibly committed progeny from an epithelial stem cell lineage may be recycled and contribute back to the regenerative niche [33], further highlighting the complexity of the epidermal regeneration.

In contrast to the highly cellular nature of the epidermis, the dermis is composed of a heterogeneous matrix of collagens, elastins, and glycosaminoglycans interspersed with cells of various embryonic origin. Recent studies suggest that a cell population within the dermal papilla of hair follicles may function as adult dermal stem cells. This dermal unit contains at least three unique populations of progenitor cells differentiated by the type of hair follicle produced and the expression of the transcription factor Sox2 [34]. Sox2-expressing cells are associated with Wnt, BMP, and fibroblast growth factor (FGF) signaling whereas Sox2-negative cells utilize Shh, insulin growth factor (IGF), Notch, and integrin pathways [35, 36]. Skin-derived precursor (SKP) cells have also been isolated from dermal papillae and can be differentiated into adipocytes, smooth myocytes, and neurons in vitro [37, 38]. These cells are thought to originate in part from the neural crest and have been shown to exit the dermal papilla niche and contribute to cutaneous repair [39].

Researchers have also demonstrated that perivascular sites in the dermis may act as an MSC-like niche in human scalp skin [40]. These perivascular cells express both NG2 (a pericyte marker) and CD34 (an MSC and hematopoietic stem cell marker) and are predominantly located around hair follicles. Perivascular MSC-like cells have been shown to protect their local matrix microenvironment via tissue-inhibitor-of-metalloproteinase (TIMP-) mediated inhibition of matrix metalloproteinase (MMP) pathways, suggesting the importance of the extracellular matrix (ECM) niche in stem cell function [41]. Interestingly, even fibroblasts have been shown to maintain multilineage potential in vitro and may play important roles in skin regeneration that have yet to be discovered [42, 43].

The ability to harvest progenitor cells from adipose tissues is highly appealing due to its relative availability (obesity epidemic in the developed world) and ease of harvest (lipoaspiration). Secreted cytokines from adipose-derived stem cells (ASCs) have been shown to promote fibroblast migration during wound healing and to upregulate VEGF-related neovascularization in animal models [44]. ASCs have even been harvested from human burn wounds and shown to engraft into cutaneous wounds in a rat model [45]. Although these multipotent cells have only been relatively recently identified, they exhibit significant potential for numerous applications in skin repair [46].

ASCs are often isolated from the stromal vascular fraction (SVF) of homogenized fat tissue. These multipotent cells are closely associated with perivascular cells and maintain the potential to differentiate into smooth muscle, endothelium, adipose tissue, cartilage, and bone [47, 48]. Researchers have attempted to recreate the ASC niche using fibrin matrix organ culture systems to sustain adipose tissue [49]. Using this in vitro system, multipotent stem cells were isolated from the interstitium between adipocytes and endothelium, consistent with the current hypothesis that ASCs derive from a perivascular niche.

Detailed immunohistological studies have demonstrated that stem cell markers (e.g., STRO-1, Wnt5a, SSEA1) are differentially expressed in capillaries, arterioles, and arteries within adipose tissue, suggesting that ASCs may actually be vascular stem cells at diverse stages of differentiation [50]. Adipogenic and angiogenic pathways appear to be concomitantly regulated and adipocytes secrete multiple cytokines that induce blood vessel formation including vascular endothelial-derived growth factor (VEGF), FGF2, BMP2, and MMPs [51, 52]. Additionally, cell surface expression of platelet-derived growth factor receptor (PDGFR) has been linked to these putative mural stem cells [53]. Reciprocal crosstalk between endothelial cells and ASCs may regulate blood vessel formation [54] and immature adipocytes have been shown to control hair follicle stem cell activity through PDGF signaling [55]. Taken together, these studies indicate that the ASC niche is intimately associated with follicular and vascular homeostasis but further studies are needed to precisely define its role in skin homeostasis [48].

Strategies to recapitulate the complex microenvironments of stem cells are essential to maximize their therapeutic potential. Biomaterial-based approaches can precisely regulate the spatial and temporal cues that define a functional niche [56]. Sophisticated fabrication and bioengineering techniques have allowed researchers to generate complex three-dimensional environments to regulate stem cell fate. As the physicochemical gradients, matrix components, and surrounding cells constituting stem cell niches in skin are further elucidated (), tissue engineered systems will need to be increasingly scalable, tunable, and modifiable to mimic these dynamic microenvironments [5761]. A detailed discussion of different biomaterial techniques for tissue engineering is beyond the scope of this paper, but we refer to reader to several excellent papers on the topic [6270].

Skin-specific stem cells and putative features of their niche.

One matrix component thought to regulate interactions between hair follicle stem cells and melanocyte stem cells is the hemidesmosomal collagen XVII [71]. Collagen XVII controls their physical interactions and maintains the self-renewal capacity of hair follicles via TGF-, indicating that biomaterial scaffolds containing collagen XVII may be necessary for stem cell-mediated hair follicle therapies. Another matrix component implicated in the hair follicle niche is nephronectin, a protein deposited into the underlying basement membrane by bulge stem cells to regulate cell adhesion via 81 integrins [72]. Hyaluronic acid fibers have been incorporated into collagen hydrogels to promote epidermal organization following keratinocyte seeding [73], and in vitro studies have demonstrated the critical role of collagen IV in promoting normal epithelial architecture when keratinocytes are grown on fibroblast-populated dermal matrices [74]. These studies collectively suggest that tissue engineered matrices for skin regeneration will need to recapitulate the complex BM-ECM interactions that define niche biology [75].

The role of MSCs in engineering skin equivalents has been studied using either cell-based or collagen-based dermal equivalents as the scaffolding environment [76]. When these constructs were grown with keratinocytes in vitro, only the collagen-based MSCs promoted normal epidermal and dermal structure, leading the authors to emphasize the necessity of an instructive biomaterial-based scaffold to direct stem cell differentiation, proliferation, paracrine activity [and] ECM deposition [76]. Our laboratory has reported that MSCs seeded into dermal-patterned hydrogels maintain greater expression of the stem cell transcription factors Oct4, Sox2, and Klf4 as compared to those grown on two-dimensional surfaces [18]. MSCs seeded into these niche-like scaffolds also exhibited superior angiogenic properties compared to injected cells [18], indicating that stem cell efficacy may be enhanced with biomaterial strategies to recapitulate the niche. Another study demonstrated that ASC delivery in natural-based scaffolds (dermis or small intestine submucosa) resulted in improved wound healing compared to gelatin-based scaffolds, suggesting the importance of biologically accurate architecture for stem cell delivery [77].

Researchers have developed novel three-dimensional microfluidic devices to study perivascular stem cell niches in vitro [78]. For example, MSCs seeded with endothelial cells in fibrin gels were able to induce neovessel formation within microfluidic chambers through 61 integrin and laminin-based interactions. Fibrin-based gels have also been used to study ASC and endothelial cell interactions in organ culture [49] and to control ASC differentiation in the absence of exogenous growth factors, demonstrating the importance of the three-dimensional matrix environment in regulating the ASC niche [79]. These studies indicate that the therapeutic use of ASCs in skin repair will likely be enhanced with biomaterial systems that optimize these cell-cell and cell-matrix contacts.

Finally, it must be recognized that the wound environment is exceedingly harsh and often characterized by inflammation, high bacterial loads, disrupted matrix, and/or poor vascularity. In this context, it should not be surprising that injection of naked stem cells into this toxic environment does not produce durable therapeutic benefits. Our laboratory has shown that the high oxidative stress conditions of ischemic wounds can be attenuated with oxygen radical-quenching biomaterial scaffolds that also deliver stem cells [80]. Other researchers have shown that oxygen tension, pH levels, and even wound electric fields may influence stem cell biology, suggesting that the future development of novel sensor devices will allow even finer control of chemical microgradients within engineered niches [70, 81]. It is also important to acknowledge that current research on niche biology has been performed largely in culture systems or rodent models, findings that will need to be rigorously confirmed in human tissues before clinical use.

As interdisciplinary fields such as material science, computer modeling, molecular biology, chemical engineering, and nanotechnology coordinate their efforts, multifaceted biomaterials will undoubtedly be able to better replicate tissue-specific niche environments. Recent studies suggest that the cells necessary for skin regeneration are locally derived [5], indicating that adult resident cells alone may have the ability to recreate skin (). Thus, the ability to engineer the proper environment for skin stem cells truly has the potential to enable regenerative outcomes. We believe that next-generation biomaterial scaffolds will not only passively deliver stem cells but also must actively modify the physicochemical milieu to create a therapeutic niche.

Locally derived skin stem cells may harbor the potential to regenerate skin. Stem cells populations have been identified in various niches throughout the skin, including the epidermal stem cell in the hair follicle bulge, sebaceous glands, and interfollicular ...

Current research indicates that skin regeneration is highly dependent upon interactions between resident progenitor cells and their niche. These microenvironmental cues dictate stem cell function in both health and disease states. Early progress has been made in elucidating skin compartment-specific niches but a detailed understanding of their molecular and structural biology remains incomplete. Biomaterials will continue to play a central role in regenerative medicine by providing the framework upon which to reconstruct functional niches. Future challenges include the characterization and recapitulation of these dynamic environments using engineered constructs to maximize the therapeutic potential of stem cells.

Articles from International Journal of Biomaterials are provided here courtesy of Hindawi Publishing Corporation

Follow this link:
Stem Cell Niches for Skin Regeneration

Read More...

anti-aging stem cells – innovative treatments for skin …

Thursday, August 4th, 2016

Stem Cell Technology represents a major breakthrough in anti-aging and regenerative skin care, by protecting, strengthening, and replenishing our own human skin cells. Where Peptides stimulate different functions acting as messengers to skin cells, stem cell technology improves the life of the core of the cell. Working in synergy with peptides, they enhance the effectiveness of peptides and other active ingredients.

Antiaging effects - The stem cells in our skin have a limited life expectancy due to DNA damage, aging and oxidative stress. As our own skin stem cells age, they become more difficult to repair and replenish. Protection of our stem cells becomes more and more beneficial as our skin ages, and with the advent of stem cells, we are now able to delay the natural aging process even further than before.

Expected benefits of stem cells technology for regenerative skin care:

Stem Cell Replenishing Serum Featuring a potent concentration of apple and edelweiss plant stem cells, state-of-the-art peptides, and other cutting edge ingredients, the Stem Cell Replenishing Serum is thoroughly formulated to produce age defying results, restoring the youthful look and vitality to aging skin.

Stem Cell Moisturizing Cream Also featuring a healthy concentration of apple and edelweiss plant stem cells, peptides, and numerous botanical extracts, the Stem Cell Moisturizing Cream is formulated to produce age defying results while also helping to maintain healthy and youthful looking skin as a daily moisturizer.

Our Stem Cell Applications:

LPAR Stem Cell Products contain a wide variety of stem cells with healthy and potent concentrations in order to deliver the results skin care consumers strive for. The first stem cell ingredient discovered and produced is a liposomal preparation based on the stem cells of a rare Swiss apple. The revolutionary active ingredient, Malus Domestica by PhytoCellTec is based on a high tech plant cell culture technology. It has been proven to protect the longevity of skin stem cells and provide significant anti-wrinkle effects. Since the discovery and the worldwide success of Apple Stem Cells introduction to the cosmetic and skin care marketplace, other new and exciting stem cell ingredients have been discovered to provide extraordinary results for all skin types.

We were proud to be the first skin care line to offer the ground-breaking combination of Apple and Edelweiss stem cells, and are dedicated to formulating the best new and existing stem cell ingredients into our product line as the technology continues to develop.

To inquire about purchasing LPAR Stem Cell products. visit our Retail Locator page.

Featuring a luxurious and potent blend of three major botanical stem cells (Apple, Gardenia Jasminoides, Echinacea Angustifolia) two state-of-the-art peptides (Nutripeptides, Matrixyl synthe6), and numerous botanical extracts and minerals, the Stem Cell Nourishing Mask is thoroughly formulated to nourish, firm, and energize mature skin. Total Stem Cell Concentration: 5.5% - Total Peptide Concentration: 9.0%

Directions: Using fingertips, apply on clean, dry skin twice weekly. Avoid the eye area. The mask can be left on the skin for prolonged periods (during the day or overnight). Allow at least 10-15 minutes for the mask to penetrate the skin before rinsing with water or applying additional product For external use only.

Ingredients: Water (Aqua), Glycerin, Glyceryl Acrylate/Acrylic Acid Copolymer, Hydrolyzed Rice Protein (Nutripeptides), Sodium Hyaluronate, Hydroxypropyl Cyclodextrin, Palmitoyl Tripeptide-38 (Matrixyl synthe6), Biosaccharide Gum-1, Olea Europaea (Olive) Fruit Oil, Gardenia Jasminoides Meristem Cell Culture, Xanthan Gum, Malus Domestica Fruit Cell Culture, Lecithin, Porphyridium Polysaccharide, Echinacea Angustifolia Meristem Cell Culture, Carbomer, Triethanolamine, Mentha Pipertita (Peppermint) Extract, Camellia Sinensis (Green Tea) Leaf Extract, Palmaria Palmata (Dulce) Extract, Chamomilla Recutita (Matricaria) Flower Extract, Phenoxyethanol, Caprylyl Glycol, Ethylhexylglycerin, Hexylene Glycol, Copper PCA, Zinc PCA, Dipotassium Glycyrrhizate, Olea Europaea (Olive) Fruit Extract, Aloe Barbadensis Leaf Juice Powder, Fragrance (Parfum)

Featuring a plant and fruit stem cell enhanced blend of three major stem cells (Apple, Edelweiss, Alpine Rose), state-of-the-art peptides (Eyeseryl, Nutripeptides), the Stem Cell Eye Therapy is an advanced eye formula designed to nourish, firm, and increase skin elasticity and skin smoothness around the eye area. Total Stem Cell Concentration: 6.75% - Total Peptide Concentration: 11.0%

Directions: Using fingertips, apply product around both eyes on clean, dry skin once or twice daily before applying a moisturizer or night cream. For external use only.

Ingredients: Water, Acetyl Tetrapeptide-5 (Eyeseryl), Sodium Hyaluronate, Hydrolyzed Rice Protein (Nutripeptides), Glycerin, Leontopodium Alpinum Meristem Cell Culture (Edelweiss Stem Cells), Xanthan Gum, Malus Domestica Fruit Cell Culture (Apple Stem Cells), Lecithin, Porphyridium Polysaccharide, Camellia Sinensis (Green Tea) Leaf Extract, Cucumis Sativus (Cucumber) Fruit Extract, Phenoxyethanol, Caprylyl Glycol, Ethylhexylglycerin, Hexylene Glycol, Carbomer, Triethanolamine, Rhododendron Ferrugineum Leaf Cell Culture Extract (Alpine Rose Stem Cells) Isomalt, Sodium Benzoate, Lactic Acid, Sodium Polystyrene Sulfonate, Allantoin, Copper PCA, Aloe Barbadensis Leaf Juice Powder

Plant stem cells represent a major breakthrough in skin care, launching the beginning of a new system of treating the skin...by protecting and replenishing the building blocks of what makes up our own skin: Stem Cells. Rather than working around the natural aging process of our skin stem cells, we now have the technology available to improve the life of our skins most important and central component.

Featuring a potent combination of apple, edelweiss, and grape stem cells, state-of-the-art peptides, and other cutting edge ingredients, the Stem Cell Replenishing Serum is thoroughly formulated to produce age defying results, restoring the youthful look and vitality to aging skin.

Directions: Apply with fingertips on clean, dry skin once or twice daily. Avoid the eye area by approximately 1 cm. Suitable for mature skin types. For external use only.

Ingredients: Water (Aqua), Glycerin, Dipeptide Diaminobutyroyl Benzylamide Diacetate, Acetyl Octapeptide-3, Malus Domestica Fruit Cell Culture (Apple Stem Cells), Hydrolyzed Ceratonia Siliqua Seed Extract, Palmitoyl Tripeptide-5, PEG-8 Dimethicone, Saccharide Isomerate, Imperata Cylindrica (Root) Extract, Polysorbate 20, Leontopodium Alpinum Meristem Cell Culture (Edelweiss Stem Cells), Leucojum Aestivum Bulb Extract, Triethanolamine, Carbomer, Xanthan Gum, Vitis Vinifera Fruit Cell Extract (Grape Stem Cells), Isomalt, Sodium Benzoate, Lecithin, Disodium EDTA, Allantoin, Aloe Barbadensis Leaf Juice Powder, Phenoxyethanol, Caprylyl Glycol, Ethylhexylglycerin, Hexylene Glycol, PEG-8-Carbomer, Fragrance (Parfum)

Plant stem cells represent a major breakthrough in skin care, launching the beginning of a new system of treating the skin...by protecting and replenishing the building blocks of what makes up our own skin: Stem Cells. Rather than working around the natural aging process of our skin stem cells, we now have the technology available to improve the life of our skins most important and central component.

Featuring a healthy concentration and a diverse group of stem cells (apple, edelweiss, grape), peptides, and numerous botanical extracts, the Stem Cell Moisturizing Cream is formulated to produce age-defying results, while also helping to maintain healthy and youthful looking skin as a daily moisturizer.

Directions: For mature skin and/or skin conditioning, apply onto clean, dry skin with fingertips once daily. Avoid the eye. For external use only.

Ingredient Highlights: Plant/Fruit Stem Cells 4% - Malus Domestica (Apple Stem Cells) - Leontopodium Alpinum Cell Culture Extract (Edelweiss Stem Cells) - Vitis Vinifera Fruit Cell Extract (Grape Stem Cells)

Ingredients: Water (Aqua), Glycerin, Isopropyl Myristate, Caprylic/Capric Triglyceride, Cetearyl Olivate, Sorbitan Olivate, Sorbitol, Saccharide Isomerate, Sodium Hyaluronate, Leucojum Aestivum Bulb Extract, Malus Domestica Fruit Cell Extract (Apple Stem Cells), Leontopodium Alpinum Meristem Cell Culture (Edelweiss Stem Cells), Vitis Vinifera Fruit Cell Extract (Grape Stem Cells), Crambe Abyssinica Seed Oil, Dimethicone, Cetyl Alcohol, Imperata Cylindrica (Root) Extract, Acetyl Octapeptide-3 (SNAP-8), Dipeptide Diaminobutyroyl Benzylamide Diacetate(SYN-AKE), Palmitoyl Tripeptide-3 (SYN-COL), Hydrolyzed Ceratonia Siliqua Seed Extract, Aloe Barbadensis Leaf Juice Powder, Olea Europaea (Olive) Leaf Extract, Glyceryl Stearate, Xantham Gum, Cetyl Palmitate, Sorbitan Palmitate, Bisabolol, Tocopheryl Acetate, Fragrance, Phenoxyethanol, Caprylyl Glycol, Ethylhexyglycerin, Hexylene Glycol, PEG-8, Carbomer, Lecithin, Isomalt, Sodium Benzoate, Disodium EDTA

[ pH: 5.00 ]

Featuring high concentrations of Vitamin C (Tetrahexyldecyl Ascorbate), Orange Stem Cells, and Peptides, this is a multi-beneficial cream with state-of-the-art actives formulated to deliver significant and lasting results.

Tetrahexyldecyl Ascorbate is a stable, oil soluble form of Vitamin C that penetrates deeper into the skin than traditional ascorbic acid based Vitamin C. It's a proven skin lightener, a powerful Anti-Oxidant, DNA protector, and increases collagen synthesis more effectively than ascorbic acid. Orange Stem Cells work to increase elasticity and skin resistance to the dermis, which increase firmness and diminish wrinkles while also working synergistically with peptides to further increase skin elasticity and collagen support.

How to Use: Smooth a pearl sized drop onto the face once daily (morning or evening). Avoid the eye area while applying. Follow with Solar Protection if used during the day.

Ingredients: Water (Aqua), Tetrahexyldecyl Ascorbate (Vitamin C Ester), Glycerin, Hexyl Laurate, Caprylic/Capric Triglyceride, Butylene Glycol, Sorbitol, Stearic Acid, Glyceryl Stearate, PEG-100 Stearate, Cetyl Alcohol, Sorbitan Stearate, Polysorbate 60, Acetyl Hexapeptide-8, Sodium Hyaluronate, Squalane, Dimethicone, PPG-12/SMDI Copolymer, Citrus Aurantium Dulcis Callus Culture Extract (Orange Stem Cells), Tocopheryl Acetate, Cetearyl Ethylhexanoate, Linoleic Acid, Glycine Soja (Soybean) Sterols, Phospholipids, Di-PPG-2 Myreth-10 Adipate, Retinol, Polysorbate 20, Hydrolyzed Glycosaminoglycans, Alcohol, Ectoin, Lecithin, Cyclotetrapeptide-24 Aminocyclohexane Carboxylate, Glucosamine HCl, Algae Extract, Yeast Extract, Urea, Micrococcus Lysate, Plankton Extract, Arabidopsis Thaliana Extract, Magnesium Aluminum Silicate, Xanthan Gum, Phenoxyethanol, Caprylyl Glycol, Ethylhexylglycerin, Hexylene Glycol, Disodium EDTA, Citrus Aurantium Dulcis (Orange) Peel Oil

[ pH: 4.7 ]

The Vitamin C Stem Cell Mask combines a potent blend of Vitamin C Ester (Tetrahexyldecyl Ascorbate), highly concentrated plant and fruit stem cells (Argan, Sea Fennel), and Aldenine, a unique peptide that acts as a cellular detoxifier and a collagen III booster.

Directions: Apply on clean, dry skin. Avoid the eye area. The mask may be left on the skin (i.e. during the day or overnight), or it may be rinsed off with lukewarm water after 10 - 15 minutes. Suitable for mature skin types.

Ingredients: Water (Aqua), Tetrahexyldecyl Ascorbate, Kaolin, Glycerin, Glyceryl Stearate, Sorbitan Olivate, Cetearyl Olivate, Cetyl Palmitate, Sorbitol, Sorbitan Palmitate, Stearic Acid, Caprylic/Capric Triglyceride, Cyclopentasiloxane, Cyclhexasiloxane, Carthamus Tinctorius (Safflower) Seed Oil, Punica Granatum Extract, Butylene Glycol, Ananas Sativus (Pineapple) Fruit Extract, Carica Papaya Fruit Extract, Hydrolyzed Wheat Protein, Hydrolyzed Soy Protein, Tripeptide-1, Argania Spinosa (Argan Stem Cells) Sprout Cell Extract, Crithmum Maritimum (Sea Fennel Stem Cells) Callus Culture Filtrate, Oligopeptide-68, Sodium Oleate, Phenoxyethanol, Caprylyl Glycol, Ethylhexylglycerin, Hexylene Glycol, Polyacrylamide, C13-14 Isoparaffin, Laureth-7, Isomalt, Hydrogenated Lecithin, Lecithin, Sodium Benzoate, Allantoin, Citrus Aurantium Dulcis (Orange) Peel Oil, Magnesium Aluminum Silicate, Xanthan Gum, Disodium EDTA

[ pH: 6.00 ]

Originally designed to prepare and increase the skins receptiveness to our Professional Peptide Peel, the Premier Peptide Serum has gone on to become our most powerful anti-wrinkle product for year-round home care due to its high concentration and diversity of peptides. Composed of a total concentration of 65% peptides, the Premier Peptide Serum is a state of the art facial serum expertly formulated to reduce the signs of aging, energizing mature skin.

The Intensive Clarifying Peptide Cream is a unique and high potency moisturizing cream formulated with an abundance of natural skin lighteners, peptides, and botanical extracts that combine to clarify and firm mature skin, while effectively minimizing fine lines and wrinkles.

The Collagen Peptide Complex builds off of our original Collagen Copper Activating Complex, and includes an advanced formulation of peptides, including Syn-Coll, a small but powerful peptide that stimulates collagen synthesis at a cellular level, helping to compensate for any collagen deficit in the skin.

Boasting a remarkable collection of natural and innovative ingredients from exotic plants and enhanced peptides, the neck firming cream has been designed & tested to firm and energize mature skin, while providing increased smoothness and elasticity to the often neglected neck area.

Providing sufficient hydration is the most essential way to keep our skin healthy and youthful. While many of our products assist in hydrating the skin, hydration is the main focus of the Nano-Peptide B5 Complex, acting as the foundation for your home care regimen. Fortified with Sodium Hyaluronate (30%) and Pantothenic acid, it provides an especially deep and complete hydration. Because of the presence of peptides, it also assists in tightening and firming the skin while allowing for maximum absorption and effectiveness.

Designed for mature skin, this sophisticated moisturizer promotes cell renewal, stimulating the dermis layer of the skin with a high potency blend of peptides (Argireline, Matrixyl, & Biopeptide-CLTM) and botanical extracts that make it a particularly refined and effective moisturizing cream for age management.

The A&M Eye Recovery Therapy is an advanced age management treatment, applying the most tried and true peptides and delivery systems; Argireline & Matrixyl, to the highly wrinkle prone and fragile eye area, providing diminished wrinkle depth, and increased firmness and elasticity. The peptide Eyeliss is added to further enhance this treatment by counteracting skin slackening, puffiness, and decreasing irritation.

The A&M Facial Recovery Therapy is an advanced age-management treatment that blends the most tried and true peptides and delivery systems; Argireline & Matrixyl. Stimulating the deeper layers of the skin, the A&M Facial Recovery Therapy provides diminished wrinkle depth, as well as an increase in skin elasticity and firmness.

Originally designed to prepare and increase the skins receptiveness to our Professional Peptide Peel, the Premier Peptide Serum has gone on to become our most powerful anti-wrinkle product for year-round home care due to its high concentration and diversity of peptides. Composed of a total concentration of 65% peptides, the Premier Peptide Serum is a state of the art facial serum expertly formulated to reduce the signs of aging, energizing mature skin.

Directions: For mature skin types; apply at least three weeks before beginning the Lucrece Professional Peptide Peel treatment, and use twice a day leading up to the Peel. For year round application, apply once per day after the Collagen Peptide Complex. Avoid the eye area by at least 1 cm during application.

Peptides: SYN-AKE: A small peptide (Dipeptide Diaminobutyroyl Benzylamide Diacetate) that mimics the activity of Waglerin 1, a polypeptide that is found in the venom of the Temple Viper, Tropidolaemus wagleri. Clinical trials have shown SYN-AKE is capable of reducing wrinkle depth by inhibiting muscle contractions. SNAP-8: An anti-wrinkle (Acetyl Octapeptide-3) elongation of the famous Hexapeptide Argireline. The study of the basic biochemical mechanisms of anti-wrinkle activity led to the revolutionary Hexapeptide which has taken the cosmetic world by storm. ARGIRELINE: (Acetyl Hexapeptide-8) MATRIXYL: (Palmitoyl Pentapeptide-4) REGU-AGE: (Hydrolyzed Rice Bran Protein - Oxido Reductases - Soybean Protein) BIOPEPTIDE CL: (Palmitoyl Oligopeptide) RIGIN: (Palmitoyl Tetrapeptide-7) EYELISS: (Dipeptide-2 & Palmitoyl Tetrapeptide-7) INYLINE: (Acetyl Hexapeptide 30)

Other Ingredients: Water, Sodium Hyaluronate, Spiraea Ulmaria Flower Extract & Centella Asiatica Extract & Echinacea Purpurea Extract, Phenoxyethanol & Benzyl Alcohol & Potassium Sorbate & Tocopherol, Meadowsweet, Hydrocotyl Extract, Leucojum Aestivum Bulb Extract, Amino Acids, Diazolidinyl Urea, Imperata Cylindrica Extract, SMDI Copolymer, Hydroxyethylcellulose

[ pH: 5.00 ]

This unique and high potency moisturizing cream is formulated with an abundance of natural skin lighteners, peptides, and botanical extracts that combine to help clarify and energize mature skin.

Directions: Smooth a pearl size drop onto the face, gently massaging in with fingertips once per day (morning), avoiding the eye area. Follow with solar protection if applicable.

Skin Lightening Agents: Mulberry Bark, Saxifrage Extract, Grape Extract, Scutellaria Root Extracts, Vitamin C Ester (Tetrahexyldecyl Ascorbate), Emblica Fruit Extract, Licorice Root Extract.

Ingredients: Water (Aqua), Saxifrage Extract & Grape Extract & Butylene Glycol & Water & Mulberry Bark Extract & Scutellaria Root Extract, Prunus Amygdalus Dulcis (Sweet Almond) Oil, Caprylic/Capric Triglycerides, Sesamum Indicum (Sesame) Seed Oil, Cetearyl Olivate & Sorbitan Olivate, Glycerin, Palmitoyl Pentapeptide-4 (Matrixyl), Tetrahexyldecyl Ascorbate (C-Ester), Glyceryl Stearate & PEG 100 Stearate, Stearic Acid, Theobroma Cocao (Cocoa) Seed Butter, PPG-12/SMDI Copolymer, Butyrospermum Parkii (Shea) Butter, Tocopheryl Acetate (Vitamin E), Phyllanthus Emblica Fruit Extract, Palmitoyl Tripeptide-5 (Syn-Coll), Triethanolamine, Phenoxyethanol, Mangifera Indica (Mango) Seed Butter, Darutoside, Tricholoma Matsutake Singer (Mushroom) Extract, Imperata Cylindrica (Root) Extract, Fragrance (Parfum), Glucosamine HCL & Algae Extract & Yeast Extract & Urea, Retinyl Palmitate (Vitamin A), Centella Asiatica Extract & Echinacea Purpurea Extract, Xanthan Gum, Arctostaphylos Uva Ursi Leaf Extract, Glycyrrhiza Glabra Root Extract, Magnesium Aluminum Silicate, Disodium EDTA

[ pH: 5.75 ]

Specializing in firming the skin, the Collagen Peptide Complex builds off of our original Collagen Copper Activating Complex, and adds a combination of (5) major peptides, helping to keep the skin looking its youngest and most alive, as it works to firm, and add elasticity & texture to the skin. For best results, apply directly after the Nano-Peptide B5 Complex.

Directions: Apply a liberal amount on clean, dry face using fingertips, and massage into the skin. Let dry, and follow with a moisturizer and sun-block if used during the day, or the Vitamin A Facial Cream + III if used at night. Warning: For mature skin only. If redness occurs, lessen use to once or twice per week. If reactions persist, discontinue use.

Ingredients: Water (Aqua), Dipalmitoylhydroxyproline, Glycerin, Palmitoyl Tetrapeptide-7 (Rigin), Palmitoyl Oligopeptide (Biopeptide-CL), Butylene Glycol, Yeast (Faex Extract), Hydrocotyl Extract & Coneflower Extract, Aloe Barbadensis Leaf Extract, Palmitoyl Tripeptide-5 (Syn-Coll), Acetyl Hexapeptide-8 (Argireline), Palmitoyl Pentapeptide-4 (Matrixyl), Panthenol, Phenoxyethanol & Caprylyl Glycol & Ethylhexylglycerin & Hexylene Glycol, Triethanolamine, Carbomer, Decarboxy Carsonine HCI, Citrus Grandis (Grapefruit) Seed Extract, Copper PCA, Olea Europaea (Olive) Leaf Extract, Disodium EDTA

[ pH: 5.50 ]

Boasting a remarkable collection of natural and innovative ingredients from exotic plants and enhanced peptides, the neck firming cream has been designed & tested to firm and energize mature skin, while providing increased smoothness and elasticity to the often neglected neck area.

Directions: On clean dry skin, apply onto the neck area with fingertips in an upward motion. Apply twice a day, or as needed.

Key Ingredients: Bio-Bustyl: Stimulates cell metabolism, promotes collagen synthesis, and enhances fibroblast (collagen-producing cell) proliferation. INCI: Glyceryl Polymethacrylate, Soy Protein Ferment, PEG-8, & Palmitoyl Oligopeptide Polylift: Using a cross-linking technology, biopolymerization, Polylift reinforces the natural lifting effect of sweet almond proteins, providing a smooth firmness & radiance to the surface of the skin. INCI: Prunus Amygdalus Dulcis (Sweet Almond) Seed Extract.

Ingredients: Deionized Water, Prunus Amygdalus Dulcis (Sweet Almond Oil), Caprylic/Capric Triglycerides, Sesamum Indicum (Sesame) Seed Oil, Simmondsia (Jojoba) Seed Oil/ Buxus Chinensis, Cetearyl Alcohol, Dicetyl Phosphate, Ceteth-10 Phosphate, Palmitoyl Oligopeptide, Palmitoyl Tetrapeptide-7, Prunus Amygdalus Dulcis Seed Extract, Terminalia Catappa Leaf Extract & Sambucus Nigra Flower Extract & PVP & Tannic Acid, Glyceryl Polymethacrylate & Rahnella/ Soy Protein Ferment & PEG-8 & Palmitoyl Oligopeptide, Glycerin, Glyceryl Stearate & PEG 100 Stearate, Biosaccharide Gim-1, PPG-12/ SMDI Copolymer, Phyllanthus Emblica Fruit Extract, Stearic Acid, Centella Asiatica Extract & Darutosidetriethanolamine, Tocopheryl Acetate, Magnifera Indica (Mango) Seed Butter, Glycerin & Aqua & Lysolecithin & Perilla Frutescens Seed Oil, Xantham Gum, Retinyl Palmitate, Tetrahexyldecyl Ascorbate (Vitamin C Ester), Echinacea Purpurea Extract, Imperata Cylindrica (Root) Extract, Glycyrrhiza Glabra Root Extract, Magnesium, Aluminum Silicate, Disodium EDTA

[ pH: 6.25 ]

Hydration is the most essential way to keep our skin healthy feeling and healthy looking. While many of our products assist in hydrating the skin, hydration is the main focus for this product, making it an essential for all skin types. Fortified with Hyaluronic (30%) and Panthenol (Vitamin B5), the Nano-Peptide B5 Complex provides an especially deep and complete hydration. With the addition of peptides, it also assists in tightening and firming the skin while allowing for maximum absorption and effectiveness.

The Nano-Peptide B5 Complex should be applied directly after cleansing the skin, as the 2nd step in skin care regimens for all skin types (morning & night). For best results, age management regimens should follow with the Stem Cell Replenishing Serum and/or the Collagen Peptide Complex before moisturizing.

Directions: Apply a healthy amount on clean, dry skin. May be used around the eye area.

Key Ingredients: Palmitoyl Pentapeptide-4: Stimulates the skins fibroblasts to rebuild the extra-cellular matrix, including the synthesis of Collagen I and Collagen IV, fibronectin and of Glycosaminoglycans. It also stimulates the production of the dermal matrix (Collagen I & III) resulting in a significant reduction of wrinkles and fine lines. Acetyl Hexapeptide-8: Reduces facial wrinkle depth and the signs of skin aging resulting from facial movements and facial muscle contraction by halting the release of neurotransmitters from SNARE and catecholamine complexes, (which can also induce formation of wrinkles and fine lines to the skin). Hyaluronic Acid (30%): Penetrates deep into the skin, providing ample moisture Panthenol: Enhances formation of skin pigments for younger looking skin, and contains deep penetrating properties that allow a more complete hydration.

Other Ingredients: Water (Aqua), Hyaluronic Acid, Panthenol (Vitamin B5), MDI Complex, Palmitoyl Pentapeptide-4, Acetyl Hexapeptide-8, Phenoxyethanol, Hydrolyzed Wheat Protein, Butylene Glycol, Hydrocotyl & Coneflower Extract, Glycosaminoglycans.

[ pH: 5.5 ]

Designed for mature, sun damaged, and/or dehydrated skin, the Anti-Wrinkle Facial Cream is a peptide enriched moisturizer focused on increasing skin firmness & elasticity, and fortifying the skin with anti-oxidants & botanical extracts to facilitate healthy feeling and healthy looking skin.

Directions: Smooth a pearl size drop onto the face, massage into skin thoroughly. For use in the morning (recommended), follow with solar protection.

Ingredients: Water (Aqua), Glycerin, Dimethicone, Caprylic/Capric Triglycerides, C12-15 Alkyl Benzoate, Linoleic Acid & Glycine Soja (Soybean) Sterols & Phospholipids, Acetyl Hexapeptide-8, Butylene Glycol & Carbomer & Polysorbate 20 & Palmitoyl Pentapeptide-4, Cetearyl Alcohol & Dicetyl Phosphate & Ceteth-10 Phosphate, Glyceryl Stearate & PEG 100 Stearate, PPG-12/ SMDI Copolymer, Phyllanthus Emblica Fruit Extract, Darutoside, Cocoa Butter, Cetyl Alcohol, Butyrospermum Parkii (Shea Butter), Saccharomyces/Xylinum Black Tea Ferment & Glycerin & Hydroxyethylcellulose, Glucoseamine HCL & Algae Extract & Saccharomyces Cerevisiae (Yeast Extract) & Urea, Steareth-20 & Palmitoyl Tetrapeptide-7, Centella Asiatica Extract & Echinacea Purpurea Extract, Hydrolyzed Vegetable Protein, Imperata Cylindrica (Root) Extract & PEG-8 & Carbomer, Phenoxyethanol & Caprylyl Glycol & Ethylhexylglycerin & Hexylene Glycol, Polyglyceryl Methacrylate & Propylene Glycol & Palmitoyl Oligopeptide, Cyclopentasiloxane & Dimethicone, Stearic Acid, Mangifera Indica (Mango) Seed Butter, Tocopheryl Acetate, Glycyrrhiza Glabra Root Extract, Arctostaphylos Uva Ursi Leaf Extract, Chlorella Vulgaris Extract, Corallina Officinalis Extract, Dipotassium Glycyrrhizate, PEG-8 & Tocopherol & Ascorbyl Palmitate & Ascorbic Acid & Citric Acid, Disodium EDTA, Magnesium Aluminum Silicate, Xanthan Gum, Triethanolamine, Retinyl Palmitate, Lavandula Angustifolia (Lavender) Oil

[ pH: 5.75 ]

This advanced eye care treatment is expertly formulated to diminish the depth, increase firmness & elasticity, and to counteract skin slackening to the highly wrinkle prone and fragile eye area. Featuring (4) major peptides (Argireline, Matrixyl, Eyeliss, & Regu-age), the A&M Eye Recovery Therapy is our most potent eye treatment, and is recommended for mature skin.

Directions: Using fingertips, massage to surrounding eye areas affected by wrinkles due to muscle contractions. Also use in the nasal labial area. For best results, apply once per evening, followed by the A&M Facial Recovery Therapy, and/or the Vitamin A Facial Cream + III.

Ingredients Highlights: Palmitoyl Pentapeptide-4 (Matrixyl): Stimulates the skins fibroblasts to rebuild the extra-cellular matrix, including the synthesis of Collagen I and Collagen IV, fibronectin and of Glycosaminoglycans. It also stimulates the production of dermal matrix (Collagen I & III) resulting in a significant reduction of wrinkles and fine lines of the skin. Acetyl Hexapeptide-8 (Argireline): Reduces facial wrinkle depth and the signs of skin aging resulting from facial movements and facial muscle contraction by halting the release of neurotransmitters from SNARE and catecholamine complexes, (which can also induce formation of wrinkles and fine lines to the skin). Dipeptide-2 & Palmitoyl Tetrapeptide-7 (Eyeliss): Combats the effect of tiredness and hypertension, as well as the natural effects of aging, which contribute to the formation of bags under the eyes, Eyeliss is an outstanding anti-aging ingredient. Soy Peptides & Hydrolyzed Rice Bran Extract (Regu-Age): A highly active complex of specially purified soy and rice peptides and biotechnologically derived yeast protein, Regu-Age effectively addresses dark circles and puffiness around the eyes.

Other Ingredients: Water, Sodium Hyaluronate, Centella Asiatica Extract & Echinacea Purpurea Extract, Xanthan Gum-Chondrus Crispus & Glucose, Lecithin & Dipalmitoyl Hydroxyproline, Imperata Cylindrica Extract, PEG-8 Dimethicone, Cyclomethicone

[ pH: 6.25 ]

An advanced age management treatment that blends the most tried and true peptides and delivery systems, Argireline & Matrixyl, helping to prevent skin aging induced by repeated facial movement caused by excessive catecholamine release. Stimulating the deeper layers of the skin, the A&M Facial Recovery Therapy provides diminished wrinkle depth, as well as an increase in the elasticity and firmness of the skin. Recommend for mature skin types.

Directions: Using fingertips apply to facial areas and massage into skin once per evening, allowing it to absorb into the skin. Apply directly after the A&M Eye Recovery Therapy.

Ingredients Highlights: Palmitoyl Pentapeptide-4: Stimulates the skins fibroblasts to rebuild the extra-cellular matrix, including the synthesis of Collagen I and Collagen IV, fibronectin and of Glycosaminoglycans. It also stimulates the production of dermal matrix (Collagen I & III) resulting in a significant reduction of wrinkles and fine lines of the skin. Acetyl Hexapeptide-8: Reduces facial wrinkle depth and the signs of skin aging resulting from facial movements and facial muscle contraction by halting the release of neurotransmitters from SNARE and catecholamine complexes, (which can also induce formation of wrinkles and fine lines to the skin).

Other Ingredients: Deionized Water, Sodium Hyaluronate, Lecithin & Dipalmitoyl Hydroxyproline, Hydrocotyl & Coneflower Extracts, Glycosaminoglycans, Glucosamine HCI & Alagae Extract & Yeast Extract & Urea, Magnesium Ascorbyl Phosphate, Glycine HCL, Retinyl Palmitate

[ pH: 6.25 ]

Addressing the multiple problems of sun and age damaged skin, the Intensive Clarifying Facial Cream + III is a glycolic acid based moisturizer featuring three potent skin lighteners; Kojic Acid, Licorice, and Hydro- quinone (2%), which quickly & effectively treat hyperpigmentation & discolorations.

Vitamin C Ester (Tetrahexyldecyl Ascorbate) is a stable, oil-soluble form of Vitamin C, providing high level skin lightening, enhanced collagen synthesis, and increased DNA & UV protection with higher absorption capabilities and less irritating than Ascorbic Acid.

Because of how well it protects the skins collagen fibers, ascorbic acid based Vitamin C is widely considered one of the most effective antioxidants for skin rejuvenation & revitalization. The 20% Vitamin C Lightening drops combine a potent concentration of ascorbic acid with aloe, green tea leaf extract, and mushroom extract. *Also available is our original Vitamin C Serum, containing a milder blend of ascorbic acid (14%).

The Anti-Wrinkle Eye Cream contains a high potency blend of peptides, including EyelissTM & Regu-age (in addition to Argireline & Matrixyl) which work synergistically to improve firmness, elasticity, and reduce puffiness & dark circles around the eye area.

Addressing the multiple problems of sun and age damaged skin, the Intensive Clarifying Facial Cream + III moisturizer combines three powerful lightening. Agents: Hydroquinone, Kojic Acid, & Licorice, with Alpha Lipoic Acid, Vitamin C, & Co-enzyme Q10, minimizing fine lines, evening skin tone, and naturally exfoliating the outer layer of the skin while providing a 15 sun protection factor (SPF).

Directions: Smooth a pearl sized drop onto the face once or twice daily. Avoid eye area. If used during the day, apply additional sun protection if skin is in contact with the sun for an extended period (twenty minutes or more).

Active Ingredients: Octyl Methoxycinnamate - 7.5% Octyl Salcylate - 5% Glycolic Acid - 4% Benzophenone - 3% Hydroquinone - 2%

Inactive Ingredients: Deionized Water, Glyceryl Stearate & PEG-100 Stearate, Ascorbic Acid (Vitamin C), Alpha Lipoic Acid, Co-enzyme Q 10, Kojic Acid, Cetyl Alcohol, Licorice, Palmitic Acid, Octyl Salcylate, Phenoxyethanol, Tocopheryl Acetate, Essential Oil of Rosewood, Disodium tEDTA

[ pH: 4.5 ]

Vitamin C Ester is a stable, oil-soluble form of Vitamin C, providing high level Skin Lightening, enhanced Collagen Synthesis, and increased DNA & UV protection with higher absorption capabilities than Ascorbic Acid.

Directions: On clean, dry skin, apply four to five drops directly onto the face once a day, avoiding the eye area.

Ingredients: Cyclomethicone, Tetrahexyldecyl Ascorbate (Vitamin C Ester 10%), PPG-12/SMDI Copolymer, Santalum Album Extract, Phellodendrone Amurense Bark Extract, Barley Extract, Jojoba Seed Oil/Buxus Chinensis, Tocopheryl Acetate, Phenoxyethanol, Tricholoma Matsutake Singer (Mushroom Extract), Ascorbyl Palmitate, Bisabolol

[ pH: 7.0 ]

Ascorbic acid based Vitamin C is widely considered one of the most effective antioxidants for rejuvenating mature skin due to its ability to protect the skins collagen fibers, and for its ability to help inhibit melanin production, creating a lightening effect to the skin. The 20% Vitamin C Lightening Drops combine a potent concentration of ascorbic acid with aloe, green tea extract, and an exotic mushroom extract (Tricholoma Matsutake Singer) for additional lightening.

Directions: On clean, dry skin apply four to five drops directly onto the face once daily. Avoid the eye area. Thoroughly wash hands after use. Though a light tingling sensation is normal, if irritation (redness) results after application, discontinue or reduce the frequency of use of the product.

Ingredients: Water (Aqua), Ascorbic Acid -20%, Ethoxydiglycol, Hydroxyethylcellulose, Phenoxyethanol, Polysorbate 20, Camellia Sinensis Leaf Extract, Aloe Barbadensis Leaf Extract, Mushroom Extract (Tricholoma Matsutake Singer)-Enzymes- Alcohol, Sodium Sulfite, Disodium EDTA

[ pH: 3.00 ]

The Anti-Wrinkle Eye Cream is formulated to reduce puffiness, enhances firmness, strengthens connective tissues, and to help diminish dark circles around the eye area. In contrast to the A&M Eye Recovery Therapy, the Anti-Wrinkle Eye Cream concentrates on the upper layers of the skin, making it a great day moisturizer for the eyes.

Directions: Apply around the eye area with the ring finger once daily. For best results, follow with a moisturizer and solar protection.

Go here to read the rest:
anti-aging stem cells - innovative treatments for skin ...

Read More...

Research News: New Skin Stem Cells Surprisingly Similar to …

Tuesday, October 6th, 2015

Scientists have discovered a new type of stem cell in the skin that acts surprisingly like certain stem cells found in embryos: both can generate fat, bone, cartilage, and even nerve cells. These newly-described dermal stem cells may one day prove useful for treating neurological disorders and persistent wounds, such as diabetic ulcers, says Freda Miller, an HHMI international research scholar.

Miller and her colleagues first saw the cells several years ago in both rodents and people, but only now confirmed that the cells are stem cells. Like other stem cells, these cell scan self-renew and, under the right conditions, they can grow into the cell types that constitute the skins dermal layer, which lies under the surface epidermal layer. We showed that these cells are, in fact, the real thing, says Miller, a professor at the University of Toronto and a senior scientist in the department of developmental biology at the Hospital for Sick Children in Toronto. The dermal stem cells also appear tohelp form the basis for hair growth.The new work was published December 4, 2009, in the journal Cell Stem Cells.

Stem cell researchers like to talk about building organs in a dish. You can imagine, if you have all the right playersdermal stem cells and epidermal stem cellsworking together, you could do that with skin in a very real way.

Freda D. Miller

Though this research focuses on the skin, Miller has spent her career searching for cures for neurological diseases such as Parkinsons. About a decade ago, she decided to find an easily accessible cell that could be coaxed into making nerves. Brain stem cells, some of which can grow into nerves, lie deep in the middle of the organ and are too difficult to reach if the scientists eventually wanted to cultivate the cells from individual patients. I thought, This is blue sky stuff, but you never know. She searched the literature and found that amphibians can regenerate nerves in their skin. She also found published hints that mammalian nerve cells could do the same.

Her team looked in the dermal layer of the skin in both mice and people. Hair follicles and sweat glands are rooted in the dermis, a thick layer of cells that also help support and nourish blood vessels and touch-perceiving nerves. In 2001, Millers team hit paydirt when they discovered cells that respond to the same growth factors that make brain stem cells differentiate. She named them skin-derived precursors (SKPs, or skips).

Miller soon discovered that the cells act like neural crest cells from embryosstem cells that generate the entire peripheral nervous system and part of the headin that they could turn into nerves, fat, bone, and cartilage.That gave us the idea that these were some kind of embryonic-like precursor cell that migrated into the skin of the embryo, Miller said. But instead of disappearing as the embryo develops, the cells survive into adulthood.

Even though the SKPs acted like stem cells in Petri dishes, Miller didnt know if they behaved the same way in the body. We were obviously very excited about these cells, she said. The problem was, cells can do all kinds of weird things in culture dishes that look right but really arent. We thought, Maybe were being deceived.So lab member Jeffrey Biernaskie put the cells through their paces, performing a series of experiments to test whether the SKPs indeed acted like stem cells in the body.

Earlier work in the lab had shown that the SKPs produce a transcription factor called SOX2, which is produced in many types of stem cells. The team used genetically engineered mice with SOX2 genes tagged with green fluorescent protein, which allowed them to track where SOX2 was expressed in the animals. They found that about 1% of skin cells from adult mice contained the SOX2-making cells, and they were concentrated in the bulb at the base of hair follicles.When the team cultured these cells, they began behaving like SKPs.

Next, the scientists decided to see if the cells would not just settle at the base of hair follicles but grow new hair. They took the fluorescent cells, mixed them with epidermal cellswhich make up the majority of cells in a hair follicleand transplanted the mixture under the skin of hairless mice. These mice began growing hair, and analysis showed the green cells migrated to their home base in the bulb of the new hair follicles. The team also transplanted rat SKP cells under the skin of mice. The cells behaved exactly like dermal stem cellsthey spread out through the dermis and differentiated into various dermal cell types, including fat cells and dermal fibroblasts, which form the structural framework of the dermal layer. Intriguingly, the mice that carried transplanted rat SKPs also grew longer, thicker,rat-like hair, instead of short, thin mouse hair. These cells are instructive, they tell the epidermal cellswhich form the bulk of the hair follicleto make bigger, rat-like hair follicles, Miller said. There are a lot of jokes in my lab about bald men running around with rat hair on their heads.

Finally, the team gave mice small puncture wounds and then transplanted their fluorescent SKPs next to the wound. Within a month, many transplanted cells appeared in the scar, showing they had contributed to wound healing. The SKPs were also found in new hair follicles in the healed skin.

The cells behavior both in wound healing and hair growth led the team to conclude that the SKPs are, in fact, dermal stem cells. Miller said the finding complements work by HHMI investigator Elaine Fuchs, who found epidermal stem cells, which help renew the top layer of skin. Combining the evidence from the two labs suggests a possible path to baldness treatments, Miller saidthe dermal stem cells at the base of the hair follicle seem to be signaling the epidermal cells that form the shaft of the follicle to grow hair. But much about the signaling mechanism remains unknown.

Miller wants to investigate less cosmetic applications, such as treating nerve and brain diseases. Experiments she published between 2005 and 2007 showed that SKPs can grow into nerves and help repair spinal cord damage in rats. Her lab is continuing to pursue that research. She is also searching for signals that could trigger the dermal stem cells to rev up their innate wound-healing ability. If such a signal can be found and mimicked, Miller can envision one day treating chronic woundssuch as diabetic ulcerswith a topical cream. Such a treatment is years or decades away, she said, but now researchers know which cell types to focus on. Another possibility: improving skin grafts, which today consist of only epidermal, not dermal, cells. While skin grafts can dramatically help burn victims, those grafts dont function like normal skin.

Stem cell researchers like to talk about building organs in a dish, said Miller. You can imagine, if you have all the right playersdermal stem cells and epidermal stem cellsworking together, you could do that with skin in a very real way.

See more here:
Research News: New Skin Stem Cells Surprisingly Similar to ...

Read More...

Apple Stem Cells – Sonya Dakar Skin Clinic

Friday, September 25th, 2015

WHAT ARE STEM CELLS?

Stem cells are super unique in that they have the ability to go through numerous cycles and cell divisions while maintaining the undifferentiated state. Primarily, stem cells are capable of self-renewal and can transform themselves into other cell types of the same tissue. Their crucial role is to replenish dying cells and regenerate damaged tissue. Stem cells have a limited life expectation due to environmental and intrinsic stress factors. Because their life is endangered by internal and external stresses, stem cells have to be protected and supported to delay preliminary aging. In aged bodies, the number and activity of stem cells in reduced.

Until several years ago, the tart, unappealing breed of the Swiss-grown Uttwiler Sptlauber apples, did not seem to offer anything of value. That was until Swiss scientists discovered the unusual longevity of the stem cells that kept these apples alive months after other apples shriveled and fell off their trees. In the rural region of Switzerland, home of these magical apples, it was discovered that when the unpicked apples or tree bark was punctured, Swiss Apple trees have the ability to heal themselves and last longer than other varieties. What was the secret to these apples prolonged lives?

These scientists got to work to find out. What they revealed was that apple stem cells work just like human stem cells, they work to maintain and repair skin tissue. The main difference is that unlike apple stem cells, skin stem cells do not have a long lifespan, and once they begin depleting, the signs of aging start kicking in (in the forms of loose skin, wrinkles, the works). Time to harness these apple stem cells into anti aging skin care! Not so fast. As mentioned, Uttwiler Sptlauber apples are now very rare to the point that the extract can no longer be made in a traditional fashion. The great news is that scientists developed a plant cell culture technology, which involves breeding the apple stem cells in the laboratory.

Human stem cells on the skins epidermis are crucial to replenish the skin cells that are lost due to continual shedding. When epidermal stem cells are depleted, the number of lost or dying skin cells outpaces the production of new cells, threatening the skins health and appearance.

Like humans, plants also have stem cells. Enter the stem cells of the Uttwiler Sptlauber apple tree, whose fruit demonstrates an exceptionally long shelf-life. How can these promising stem cells help our skin?

Studies show that apple stem cells boosts production of human stem cells, protect the cell from stress, and decreases wrinkles. How does it work? The internal fluid of these plant cells contains components that help to protect and maintain human stem cells. Apple stem cells contain metabolites to ensure longevity as the tree is known for the fact that its fruit keep well over long periods of time.

When tested in vitro, the apple stem cell extract was applied to human stem cells from umbilical cords and was found to increase the number of the stem cells in culture. Furthermore, the addition of the ingredient to umbilical cord stem cells appeared to protect the cells from environmental stress such as UV light.

Apple stem cells do not have to be fed through the umbilical cord to benefit our skin! The extract derived from the plant cell culture technology is being harnessed as an active ingredient in anti aging skincare products. When delivered into the skin nanotechnology, the apple stem cells provide more dramatic results in decreasing lines, wrinkles, and environmental damage.

Currently referred to as The Fountain of Youth, intense research has proved that with just a concentration level of 0.1 % of the PhytoCellTec (apple stem cell extract) could proliferate a wealth of human stem cells by an astounding 80%! These wonder cells work super efficiently and are completely safe. Of the numerous benefits of apple stems cells, the most predominant include:

Skin Layers

Skin Cell Activity Before

Skin Cell Activity After 1 Hour

View original post here:
Apple Stem Cells - Sonya Dakar Skin Clinic

Read More...

Stem Cell Skin Care | Science Meets Beauty

Thursday, August 27th, 2015

Stem cells are the building blocks of your skin. They have a unique ability to replace damaged and diseased cells. As they divide, they can proliferate for long periods into millions of new skin cells.

As we age, our stem cells lose their potency. Your skins ability to repair itself just isnt what it used to be. The result can be fine lines, wrinkles, age spots, and sagging skin. But non-embryonic stem cells the same stem cells active early in life are highly potent.

Emerge Skin Cares Anti-Aging Stem Cell Skin Care Serum tap into the potency of these stem cells to renew skin.

Scientists at Emerge Labs Stem Cell Skin Care discovered that human non-embryonic stem cell extracts can renew skin by replacing old cells with healthy new ones. These stem cell extracts stimulate your own skins abilities to repair itself. And Emerge anti-aging stem cell serums were born. Where Stem Cells in Anti Aging Products Come From The first types of human stem cells to be studied by researchers were embryonic stem cells, donated from in vitro fertilization labs. But because creating embryonic stem cells involves the destruction of a fertilized human embryo, many people have ethical concerns about the use of such cells.

The non-embryonic stem cells in Lifeline stem cell serums are derived from unfertilized human oocytes (eggs) which are donated to ISCO from in vitro fertilization labs and clinics. Emerge Anti Aging Stem Cell Skin Care is Based On Proven Scientific Research Emerge Skin Cares exclusive anti-aging products are a combination of several discoveries and unique high-technology, patent-pending formulations.

PhytoCellTecMalus Domestica the first plant stem cell activefor skin stem cell protection with proven efficacy PhytoCellTec Malus Domestica is a liposomal preparation of apple stem cells developed by a novel, patent pending plant cell culture technology.

PhytoCellTec a novel plant cell culture technology has been invented to cultivate dedifferentiated callus cells from a rare Swiss apple. These apple stem cells are rich in epigenetic factors and metabolites, assuring the longevity of skin cells. PhytoCellTec Malus Domestica has been shown to protect skin stem cells and delay the senescence of hair follicles.

PhytoCellTec Malus Domestica provides a revolutionary anti-aging performance for real rejuvenation.

Claims with PhytoCellTec Malus Domestica Protects longevity of skin stem cells Delays senescence of essential cells Combats chronological aging

PhytoCellTec Solar Vitis is based on stem cells derived from a specific grape cultivar that has been obtained through our unique PhytoCellTec technology. As we all know UV radiation is responsible for 80% of skin aging. Despite the use of sun protection filters, toxins and free radicals are generated by UV in the skin. This affects sensitive cells such as the epidermal stem cells which are essential and most valuable. The activity of skin stem cells is the key factor in ensuring the vitality and regeneration capacity of the skin. PhytoCellTec Solar Vitis both protects and maintains the activity of epidermal stem cells even in cases of stress induced by UV.

Claims with PhytoCellTecTM Solar VitisProtects skin stem cells against UV stress Delays senescence of essential cells Fights photo-aging For a vital and healthy-looking skin

See the original post here:
Stem Cell Skin Care | Science Meets Beauty

Read More...

Stem cell and skin care. | Esthetics Association Florida

Saturday, August 15th, 2015

It is astonishing how the cosmetic industry uses medical discoveries and put these formulas into skin cream jars.

In 2009 the American company Voss laboratories was the first that introduced stem cell active ingredients into a cosmetic product. Due to the fact that the company didnt reveal their secret ingredients, it created a worldwide rumor that the company might be using human stem cells.

The world started to question if this would be ethical and safe.

Coming from the medical stand point: with human stem cells you can actually build and rebuild human organs but also carcinogenic cell. For that reason it created great concerns.

Now days many trendsetting companies producing stem cell creams and serums that dont use human stem cells

Stem cells are a class of undifferentiated cells that are able to differentiate into specialized cell types

Adult or somatic stem cells exist throughout the body after embryonic development and are found inside of different types of tissue. These stem cells have been found in tissues such as the brain, bone marrow, blood, blood vessels, skeletal muscles, liver, and the Skin ( basal layer and fat layer) . They remain in a quiescent or non-dividing state for years until activated by disease or tissue injury.

Adult stem cells can divide ( copy) or self-renew indefinitely, enabling them to generate a range of cell types from the originating organ or even regenerates the entire original organ.

Plant Stem Cells benefits human skin.

Stem cells from a rare red grape variety provide the basis for Israel based company On-Macabim latest skin care ingredient.

This variety is one of the few red grapes that have red flesh and juice the majority have red skin but white flesh and juice which is due to the high quantity of anthocyanins in the fruit.

The anthocyanins, also present in the flesh, leading to higher antioxidant levels overall.

The technology was developed last year and allows to extract stem cells from the plant which can then be formulated into a cosmetic ingredient to help protect the stem cells in human skin.

To harvest the stem cells the company first induces a wound in the plant which causes the surrounding cells to dedifferentiate (turn back into stem cells) and form a wound healing tissue called a callus.

Once the wound has healed these cells can differentiate again and build new tissue

According to On-macabim, these plant stem cells contain components and epigenetic factors that can protect human skin stem cells form UV radiation, inflammation, oxidative stress, neutralize free radicals and reverse the effects of photoaging.

Stem cells are found in the epidermal layer of the skin and are involved in skin growth and regeneration. If they are harmed by UV radiation,

their power to regenerate will be jeopardized.

Grape stem cells have the ability to promote healthy skin proliferation.

Grape Stem Cells Counteract Negative

Effects of UV Radiation on

Skin Stem Cells

In an in-vitro study, skin stem cells were treated with and without

the Grape Stem Cells.

Some were exposed to UVA+UVB-light; others were unexposed.

CFE was determined in each case.

Results confirmed that cells treated with the Grape Stem Cells increased

the CFE of the skin stem cells. A 58% decrease in CFE was observed

when skin stem cells were exposed to UV radiation (control).

However, the presence of the Grape Stem Cells counteracted the negative effect of UV radiation on the cells as the CFE remained at the same level when exposed to the UV radiation.

Therefore, the Grape Stem Cells protect skin stem cells against UV stress.

Benefits of the Grape Stem Cell products

Regenerative, repair and rejuvenating properties

Comments are closed.

Link:
Stem cell and skin care. | Esthetics Association Florida

Read More...

Skin Stem Cells: Benefits, Types, Medical Applications and …

Saturday, August 1st, 2015

Our skin has the amazing capability to renew itself throughout our adult life. Also, our hair follicle goes through a cycle of growth and degeneration. This happens all the time in our skin even though we are not aware of it. However, even though skin renews itself we still have to help it a little bit to get better results. Stem cells play an important role in this process of skin renewal or hair growth and the purpose of this article is to discuss and provide additional information about these tiny cells that play a big part in our life.

Skin stem cell is defined as multipotent adult skin cells which are able to self-renew or differentiate into various cell lineages of the skin. These cells are active throughout our life via skin renewal process or during skin repair after injuries. These cells reside in the epidermis and hair follicle and one of their purposes is to ensure the maintenance of adult skin and hair regeneration.

The truth is, without these little cells, our skin wouldnt be able to cope with various environmental influences. Our skin is exposed to different influences 24/7, for example, washing your face with soap, going out during summer or cold winter days etc. All these factors have a big impact on our skin and it constantly has to renew itself to stay in a good condition. This is where skin stem cells step in. They make sure your skin survives the influence of constant stress, heat, cold, even makeup, soap, etc.

Our skin is quite sensitive and due to its constant exposure to different influences throughout the day, it can get easily damage. Damage to skin cells can be caused by pretty much everything, from soap to cigarette smoke. One of the most frequent skin cell damages are the result of:

Skin stem cells are still subjected to scientific projects where researchers are trying to discover as much as possible about them. So far, they have identified several types of these cells, and they are:

Also, some scientists suggest that there is another type of stem cells mesenchymal stem cells which can be found in dermis (layer situated below the epidermis) and hypodermis (innermost and the thickest layer of the skin). However, this claim has been branded controversial and is a subject of many arguments and disputes between scientists. It is needed to conduct more experiments to find out whether this statement really is true.

Stem cells are found in many organs and tissues, besides skin. For example, scientists have discovered stem sells in brain, heart, bone marrow, peripheral blood, skeletal muscle, teeth, liver, gut etc. Stem cells reside in a specific area of each tissue or organ and that area is called stem cell niche. The same case is with the skin as well.

The ability of stem cells to regenerate and form almost any cell type in the body inspired scientists to work on various skin products that contain stem cells. Also, they decided to investigate the effect of plant stem cells on human skin. They discovered that plant stem cells are, actually, very similar to human skin stem cells and they function in a similar way as well. This discovery made scientists turn to plants as the source of stem cells and are trying to include them into the skin products due to their effectiveness in supporting skins cellular turnover. Another similarity between plant stem cells and human skin stem cells is their ability to develop according to their environment.

Fun Fact: The inspiration to use plant stem cells in skin care came from an unusual place almost extinct apple tree from Switzerland.

The benefits of plant stem cells on human skin are versatile. They offer possibility to treat some skin conditions, heal wounds, and repair the skin after some injury faster than it would usually take. Also, they bring back elasticity to the skin, reduce the appearance of wrinkles and slow down the aging process.

More here:
Skin Stem Cells: Benefits, Types, Medical Applications and ...

Read More...

Emerging interactions between skin stem cells and their …

Thursday, July 23rd, 2015

Hair follicle lineage and niche signals regulate hair follicle stem cells. (a) HFSCs can exist in two states. Quiescent bulge stem cells (Bu-SCs) are located in the outer layer of this niche and contribute to the generation of the outer root sheath. Primed stem cells reside in the hair germ, sandwiched between the bulge and a specialized dermal cluster known as the dermal papilla. They are responsible for generating the transit amplifying cell (TAC) matrix, which then gives rise to the hair shaft and its inner root sheath (IRS) channel. Although matrix and IRS are destroyed during catagen, many of the outer root sheath (ORS) cells are spared and generate a new bulge right next to the original one at the end of catagen. The upper ORS contributes to the outer layer of the new bulge, and the middle ORS contributes to the hair germ. Some of the lower ORS cells become the differentiated inner keratin 6+ (K6+) bulge cells, which provide inhibitory signals to Bu-SCs, raising their activation threshold for the next hair cycle. (b) During telogen, K6+ bulge cells produce BMP6 and FGF-18, dermal fibroblasts (DFs) produce BMP4 and subcutaneous adipocytes express BMP2. Together, these factors maintain Bu-SCs and hair germ in quiescence. At the transition to anagen, BMP2 and BMP4 are downregulated, whereas the expression of activation factors including noggin (NOG), FGF-7, FGF-10 and TGF-2 from dermal papillae and PDGF- from adipocyte precursor cells (APCs) is elevated. This, in turn, stimulates hair germ proliferation, and a new hair cycle is launched. Bu-SCs maintain their quiescent state until TAC matrix is generated and starts producing SHH.

Read more:
Emerging interactions between skin stem cells and their ...

Read More...

ProgeniDerm Anti-Senescence Skin Stem Cell Serum …

Thursday, July 9th, 2015

ProgeniDerm Anti-Senescence Skin Stem Cell Serum encourages new epidermal cell growth while protecting and prolonging the cell life of existing skin cells. Wrinkle depth is reduced, hyperpigmentation lightened, and collagen/elastin fibers become thicker and stronger. The ratio of older skin cells to younger skin cells is reversed. Skin looks visibly younger.

Elegantly formulated with fruit-derived Malus Domestica Fruit Stem Cell Extract, ProgeniDerm protects against chromosomal damage that signals skin cells to undergo apoptosis (cell death). Often this signal is sent prematurely due to free radical damage caused by UV light, smoke, stress, etc. With protection against this damage, existing skin cells live longer and more new cells are created.

The Malus Domestica Fruit Stem Cell Extract in ProgeniDerm restores aging skin stem cells regenerative properties. In-vitro and in-vivo testing showed that this new extract:

The ultimate result: skin that regains its ability to repair itself and regenerate new skin cells within two weeks. Substantially greater numbers of new epithelial cells are formed. Enzymes are released that protect cells from damage that shorten the skin cell life cycle. The addition of chondrus crispus (red seaweed/algae extract) and palmitoyl oligopeptide in a hyaluronic acid base combine to make our ProgeniDerm Anti-Senescence Skin Stem Cell serum a powerful new tool against premature aging.

Note: Epidermal skin stem cell DNA/chromosomal protection is the newest, most exciting direction for anti-aging products currently. Cellular Skin Rx is proud to be able to provide a serum containing this cutting-edge, naturally-derived extract to our customers. Now that peptides are firmly established as helpful to the skin for relaxing, firming, and reducing inflammation, using naturally-derived fruit stem cell extracts to prevent damage at the most basic cellular level is taking skin care to a whole new realm. You will see more and more of this approach to maintaining a younger complexion moving forward -with Cellular Skin Rx proudly providing you with products that incorporate these new Active Ingredients That Work.

After applying antioxidant serum of your choice, apply twice daily including eye area.

Combining with antioxidant serums such as C+ Firming serum or CSRx Antioxidant Complex yields best results.

Two weeks to gorgeous skin routine: Each morning use CSRx Antioxidant Defense Complex then C+ Firming serum, follow with ProgeniDerm Anti-Senescence Skin Stem Cell Serum, then any wrinkle-relaxers/firming products/moisturizers/sunscreen you regularly use. Each night use Age-Limit Advanced Refinishing serum or Ultra-Gentle Enzyme Surface Peel, then apply ProgeniDerm again. In just two weeks, you will see a visible difference in your skin tone, color, and texture.

See the rest here:
ProgeniDerm Anti-Senescence Skin Stem Cell Serum ...

Read More...

Swiss Apple Stem Cells for perfect skin. What do plant …

Wednesday, July 1st, 2015

This active ingredient won the prize in European Innovation Best Active Ingredient in 2008. It is a revolutionary technology designed to protect human skin stem cells with the help of stem cells from a rare Swiss apple. The clinical trials conducted by the company who discovered this ingredient showed that 100% of the participants saw a reduction in fine lines and wrinkles after using a solution containing 2% PhytoCellTech Malus Domestica.

According to the Bible, Adam bit into an apple (coaxed on by us femme fatales) and deprived Earth of Heaven...was he attracted by the delicious taste or did he already know of the amazing youth-boosting properties of this fruit?

PhytoCellTec Malus Domestica is an award-winning patented liposomal preparation, so containing tiny bubbles made out of the same material as cell membranes, based on the stem cells of a rare Swiss apple called Uttwiler Sptlauber that derives from a seedling planted in the middle of the18th century. Uttwiler Sptlauber is an endangered apple variety that is well-known for its ability to be stored for long periods without shrivelling and thus its longevity potential. The apples are rich in phytonutrients, proteins and long-living cells. A novel technology has now been developed enabling the cultivation of rare and endangered species like Uttwiler Sptlauber. Thanks to this technology, plant stem cells can be obtained and incorporated into skin care products to enhance the longevity of skin cells. Not only does it protect the skins own stem cells but has been shown to have excellent age-delaying and anti-wrinkle properties, and is currently one of the most pioneering and exciting ingredients in skin care.

Stem Cells and Longevity

Longevity is related to specific cells called stem cells which have a unique growth characteristic. These cells can make identical copies of themselves as well as differentiate (in other words, split) to become separate, specialised cells. Two basic types of stem cells are present in the human body:

Embryonic stem cells found in blastocysts (structures found in the human pre-embryonic stage) can grow and differentiate into one of the more than 220 different cell types which make up the human body;

Adult stem cells located in some adult tissues can only differentiate into their own or related cell types. These cells act as a repair system for the body but also maintain the normal turnover of regenerative organs such as blood, skin or intestinal tissues.

Research on Stem Cells and Applications

Continue reading here:
Swiss Apple Stem Cells for perfect skin. What do plant ...

Read More...

Hair Loss Forum – Stem cells in skin care products, good …

Friday, June 5th, 2015

I just found this on the web,

Stem cells in skin care...What does it really mean?

By Jeanette Jacknin M.D.

Dr Jacknin will be speaking about Cosmaceuticals at the upcoming 17th World Congress on Anti-Aging and Regenerative Medicine in Orlando, Florida, April 23-25, 2009.

Stem cells have recently become a huge buzzword in the skincare world. But what does this really mean? Skincare specialists are not using embryonic stem cells; it is impossible to incorporate live materials into a skincare product. Instead, companies are creating products with specialized peptides and enzymes or plant stem cells which, when applied topically on the surface, help protect the human skin stem cells from damage and deterioration or stimulate the skin's own stem cells. National Stem Cell was one of the few companies who actually incorporated into their skin care an enzyme secreted from human embryonic stem cells, but they are in the process of switching over to use non-embryonic stem cells from which to take the beneficial enzyme.

Stem cells have the remarkable potential to develop into many different cell types in the body. When a stem cell divides, it can remain a stem cell or become another type of cell with a more specialized function, such as a skin cell. There are two types of stem cells, embryonic and adult.

Embryonic stem cells are exogenous in that they are harvested from outside sources, namely, fertilized human eggs. Once harvested, these pluripotent stem cells are grown in cell cultures and manipulated to generate specific cell types so they can be used to treat injury or disease.

Unlike embryonic stem cells, adult or multipotent stem cells are endogenous. They are present within our bodies and serve to maintain and repair the tissues in which they are found. Adult stem cells are found in many organs and tissues, including the skin. In fact, human skin is the largest repository of adult stem cells in the body. Skin stem cells reside in the basal layer of the epidermis where they remain dormant until they are activated by tissue injury or disease. 1

There is controversy surrounding the use of stem cells, as some experts say that any product that claims to affect the growth of stem cells or the replication process is potentially dangerous, as it may lead to out-of-control replication or mutation. Others object to using embryonic stem cells from an ethical point of view. Some researchers believe that the use of stem cell technology for a topical, anti-aging cosmetic trivializes other, more important medical research in this field.

The skin stem cells are found near hair follicles and sweat glands and lie dormant until they "receive" signals from the body to begin the repair mode. In skincare, the use of topical products stimulates the stem cell to split into two types of cells: a new, similar stem cell and a "daughter" cell, which is able to create almost every kind of new cell in a specialized system. This means that the stem cell can receive the message to create proteins, carbohydrates and lipids to help repair fine lines, wrinkles and restore and maintain firmness and elasticity.1

Here is the original post:
Hair Loss Forum - Stem cells in skin care products, good ...

Read More...

Stem cells in skin care…What does it really mean …

Monday, April 27th, 2015

By Jeanette Jacknin M.D.

Dr Jacknin will be speaking about Cosmaceuticals at the upcoming 17th World Congress on Anti-Aging and Regenerative Medicine in Orlando, Florida, April 23-25, 2009.

Stem cells have recently become a huge buzzword in the skincare world. But what does this really mean? Skincare specialists are not using embryonic stem cells; it is impossible to incorporate live materials into a skincare product. Instead, companies are creating products with specialized peptides and enzymes or plant stem cells which, when applied topically on the surface, help protect the human skin stem cells from damage and deterioration or stimulate the skin's own stem cells. National Stem Cell was one of the few companies who actually incorporated into their skin care an enzyme secreted from human embryonic stem cells, but they are in the process of switching over to use non-embryonic stem cells from which to take the beneficial enzyme.

Stem cells have the remarkable potential to develop into many different cell types in the body. When a stem cell divides, it can remain a stem cell or become another type of cell with a more specialized function, such as a skin cell. There are two types of stem cells, embryonic and adult.

Embryonic stem cells are exogenous in that they are harvested from outside sources, namely, fertilized human eggs. Once harvested, these pluripotent stem cells are grown in cell cultures and manipulated to generate specific cell types so they can be used to treat injury or disease.

Unlike embryonic stem cells, adult or multipotent stem cells are endogenous. They are present within our bodies and serve to maintain and repair the tissues in which they are found. Adult stem cells are found in many organs and tissues, including the skin. In fact, human skin is the largest repository of adult stem cells in the body. Skin stem cells reside in the basal layer of the epidermis where they remain dormant until they are activated by tissue injury or disease. 1

There is controversy surrounding the use of stem cells, as some experts say that any product that claims to affect the growth of stem cells or the replication process is potentially dangerous, as it may lead to out-of-control replication or mutation. Others object to using embryonic stem cells from an ethical point of view. Some researchers believe that the use of stem cell technology for a topical, anti-aging cosmetic trivializes other, more important medical research in this field.

The skin stem cells are found near hair follicles and sweat glands and lie dormant until they "receive" signals from the body to begin the repair mode. In skincare, the use of topical products stimulates the stem cell to split into two types of cells: a new, similar stem cell and a "daughter" cell, which is able to create almost every kind of new cell in a specialized system. This means that the stem cell can receive the message to create proteins, carbohydrates and lipids to help repair fine lines, wrinkles and restore and maintain firmness and elasticity.1

First to the market in Britain in April 2007 and the U.S. was ReVive's Peau Magnifique, priced at a staggering 1,050. Manufacturers claim it uses an enzyme called telomerase to "convert resting adult stem cells to newly-minted skin cells' and 'effectively resets your skin's "ageing clock" by a minimum of five years'. The product claims long-term use 'will result in a generation of new skin cells, firmer skin with a 45 per cent reduction in wrinkles and increased long-term skin clarity'. Peau Magnifique is the latest in a line of products developed by Dr Gregory Bays Brown, a former plastic surgeon.

In the course of his research into healing burns victims, Dr Brown discovered a substance called Epidermal Growth Factor (EGF) that is released in the body when there is an injury, and, when applied to burns or wounds, dramatically accelerates the healing process. He believed the same molecule could be used to regenerate ageing skin and went on to develop ReVive, a skincare range based around it. 2

Continued here:
Stem cells in skin care...What does it really mean ...

Read More...



2020 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick