Page 11234..10..»

Archive for the ‘Stem Cell kidney Failure’ Category

OPDIVO (nivolumab) in Combination with CABOMETYX (cabozantinib) Shows Sustained Survival and Response Rate Benefits as First-Line Treatment for…

Sunday, February 14th, 2021

PRINCETON, N.J., & ALAMEDA, Calif.--(BUSINESS WIRE)--Bristol Myers Squibb (NYSE: BMY) and Exelixis, Inc. (NASDAQ: EXEL) today announced results from new analyses from the pivotal Phase 3 CheckMate -9ER trial, demonstrating clinically meaningful, sustained efficacy benefits as well as quality of life improvements with the combination of OPDIVO (nivolumab) and CABOMETYX (cabozantinib) compared to sunitinib in the first-line treatment of advanced renal cell carcinoma (RCC). These data will be presented in two posters at the virtual American Society of Clinical Oncology (ASCO) 2021 Genitourinary Cancers Symposium from February 11 to 13, 2021 and featured in the Poster Highlights Session on February 13, 2021 from 9:00 a.m. 9:45 a.m. EST.

Abstract #308: Nivolumab + cabozantinib (NIVO+CABO) vs. sunitinib (SUN) for advanced renal cell carcinoma (aRCC): outcomes by sarcomatoid histology and updated trial results with extended follow-up of CheckMate -9ER (Motzer, et. al.)

With a median follow-up of two years (23.5 months), OPDIVO in combination with CABOMETYX continued to show superior progression-free survival (PFS), objective response rate (ORR) and overall survival (OS) versus sunitinib, with a low rate of treatment-related adverse events (TRAEs) leading to discontinuation. No new safety signals were identified with extended follow-up. Across the full study population:

In an exploratory subgroup analysis of 75 patients with sarcomatoid features, the combination of OPDIVO and CABOMETYX showed benefit in this population typically associated with a poor prognosis, reducing the risk of death by 64% vs. sunitinib (HR 0.36; 95% CI: 0.17 to 0.79) and demonstrating both superior PFS (10.3 months vs. 4.2 months) and ORR (55.9% vs. 22.0%).

Abstract #285: Patient-reported outcomes of patients with advanced renal cell carcinoma (aRCC) treated with first-line nivolumab plus cabozantinib versus sunitinib: the CheckMate -9ER trial (Cella, et. al.)

In a separate analysis from the CheckMate -9ER trial conducted with 18.1 months of median follow-up, patients treated with the combination of OPDIVO and CABOMETYX reported statistically significant health-related quality of life benefits. Treatment with OPDIVO in combination with CABOMETYX was associated with a lower treatment burden, decreased risk of deterioration and a reduction of disease-related symptoms compared to sunitinib. These exploratory outcomes were measured using Functional Assessment of Cancer Therapy Kidney Symptom Index-19 (FKSI-19), a quality of life tool specific to kidney cancer, and EQ-5D-3L instruments.

There is a continued need for new therapies that show benefit across subgroups of patients with advanced renal cell carcinoma, said Robert Motzer, M.D., Kidney Cancer Section Head, Genitourinary Oncology Service, and Jack and Dorothy Byrne Chair in Clinical Oncology, Memorial Sloan Kettering Cancer Center. In CheckMate -9ER, nivolumab in combination with cabozantinib doubled progression-free survival, increased overall survival and response rate and, in an exploratory analysis, showed impressive disease control, and these promising efficacy results were sustained with extended follow-up. Also of note, patients in this study reported significant quality of life improvements, which are important for patients undergoing treatment for this challenging disease.

These additional data from CheckMate -9ER provide strong evidence that OPDIVO in combination with CABOMETYX may help patients achieve and maintain control of their disease, said Dana Walker, M.D., M.S.C.E., vice president, development program lead, genitourinary cancers, Bristol Myers Squibb. This regimen brings together two proven agents in advanced renal cell carcinoma, and we believe it will play an important role alongside other first-line treatment options. We look forward to the potential to build on our heritage of transforming patient outcomes with OPDIVO-based combinations across a wide range of tumor types.

The overall survival benefit and quality-of-life measures reported in these findings continue to show improvement with the combination of CABOMETYX and OPDIVO after an extended follow-up of two years, said Gisela Schwab, M.D., President, Product Development and Medical Affairs and Chief Medical Officer, Exelixis. These new findings from CheckMate -9ER and the recent FDA approval of the combination regimen are extremely encouraging as we further explore the potential of CABOMETYX in combination with immunotherapies to help more patients with difficult-to-treat tumor types.

OPDIVO in combination with CABOMETYX was approved for the first-line treatment of advanced RCC by the U.S. Food and Drug Administration (FDA) in January 2021, and further applications are under review with health authorities globally.

Bristol Myers Squibb and Exelixis thank the patients and investigators involved in the CheckMate -9ER clinical trial.

About CheckMate -9ER

CheckMate -9ER is an open-label, randomized, multi-national Phase 3 trial evaluating patients with previously untreated advanced or metastatic renal cell carcinoma (RCC). A total of 651 patients (23% favorable risk, 58% intermediate risk, 20% poor risk; 25% PD-L11%) were randomized to receive OPDIVO plus CABOMETYX (n=323) vs. sunitinib (n=328). The primary endpoint is progression-free survival (PFS). Secondary endpoints include overall survival (OS) and objective response rate (ORR). The primary efficacy analysis is comparing the doublet combination vs. sunitinib in all randomized patients. The trial is sponsored by Bristol Myers Squibb and Ono Pharmaceutical Co and co-funded by Exelixis, Ipsen and Takeda Pharmaceutical Company Limited.

About Renal Cell Carcinoma

Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults, accounting for more than 179,000 deaths worldwide each year. RCC is approximately twice as common in men as in women, with the highest rates of the disease in North America and Europe. The five-year survival rate for those diagnosed with metastatic, or advanced, kidney cancer is 13%.

Bristol Myers Squibb: Creating a Better Future for People with Cancer

Bristol Myers Squibb is inspired by a single vision transforming patients lives through science. The goal of the companys cancer research is to deliver medicines that offer each patient a better, healthier life and to make cure a possibility. Building on a legacy across a broad range of cancers that have changed survival expectations for many, Bristol Myers Squibb researchers are exploring new frontiers in personalized medicine, and through innovative digital platforms, are turning data into insights that sharpen their focus. Deep scientific expertise, cutting-edge capabilities and discovery platforms enable the company to look at cancer from every angle. Cancer can have a relentless grasp on many parts of a patients life, and Bristol Myers Squibb is committed to taking actions to address all aspects of care, from diagnosis to survivorship. Because as a leader in cancer care, Bristol Myers Squibb is working to empower all people with cancer to have a better future.

About OPDIVO

Opdivo is a programmed death-1 (PD-1) immune checkpoint inhibitor that is designed to uniquely harness the bodys own immune system to help restore anti-tumor immune response. By harnessing the bodys own immune system to fight cancer, Opdivo has become an important treatment option across multiple cancers.

Opdivos leading global development program is based on Bristol Myers Squibbs scientific expertise in the field of Immuno-Oncology and includes a broad range of clinical trials across all phases, including Phase 3, in a variety of tumor types. To date, the Opdivo clinical development program has treated more than 35,000 patients. The Opdivo trials have contributed to gaining a deeper understanding of the potential role of biomarkers in patient care, particularly regarding how patients may benefit from Opdivo across the continuum of PD-L1 expression.

In July 2014, Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world. Opdivo is currently approved in more than 65 countries, including the United States, the European Union, Japan and China. In October 2015, the Companys Opdivo and Yervoy combination regimen was the first Immuno-Oncology combination to receive regulatory approval for the treatment of metastatic melanoma and is currently approved in more than 50 countries, including the United States and the European Union.

About CABOMETYX (cabozantinib)

In the U.S., CABOMETYX tablets are approved for the treatment of patients with advanced RCC; for the treatment of patients with HCC who have been previously treated with sorafenib; and for patients with advanced RCC as a first-line treatment in combination with nivolumab. CABOMETYX tablets have also received regulatory approvals in the European Union and additional countries and regions worldwide. In 2016, Exelixis granted Ipsen exclusive rights for the commercialization and further clinical development of cabozantinib outside of the United States and Japan. In 2017, Exelixis granted exclusive rights to Takeda Pharmaceutical Company Limited for the commercialization and further clinical development of cabozantinib for all future indications in Japan. Exelixis holds the exclusive rights to develop and commercialize cabozantinib in the United States.

OPDIVO INDICATIONS

OPDIVO (nivolumab), as a single agent, is indicated for the treatment of patients with unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) whose tumors express PD-L1 (1%) as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab) and 2 cycles of platinum-doublet chemotherapy, is indicated for the first-line treatment of adult patients with metastatic or recurrent non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

OPDIVO (nivolumab) is indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with unresectable malignant pleural mesothelioma (MPM).

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of patients with intermediate or poor risk advanced renal cell carcinoma (RCC).

OPDIVO (nivolumab), in combination with cabozantinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

OPDIVO (nivolumab) is indicated for the treatment of patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.

OPDIVO (nivolumab) is indicated for the treatment of adult patients with classical Hodgkin lymphoma (cHL) that has relapsed or progressed after autologous hematopoietic stem cell transplantation (HSCT) and brentuximab vedotin or after 3 or more lines of systemic therapy that includes autologous HSCT. This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) with disease progression on or after platinum-based therapy.

OPDIVO (nivolumab) is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma who have disease progression during or following platinum-containing chemotherapy or have disease progression within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), as a single agent, is indicated for the treatment of adult and pediatric (12 years and older) patients with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of adults and pediatric patients 12 years and older with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab) is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph nodes or metastatic disease who have undergone complete resection.

OPDIVO (nivolumab) is indicated for the treatment of patients with unresectable advanced, recurrent or metastatic esophageal squamous cell carcinoma (ESCC) after prior fluoropyrimidine- and platinum-based chemotherapy.

OPDIVO IMPORTANT SAFETY INFORMATION

Severe and Fatal Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions listed herein may not include all possible severe and fatal immune-mediated adverse reactions.

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue. While immune-mediated adverse reactions usually manifest during treatment, they can also occur after discontinuation of OPDIVO or YERVOY. Early identification and management are essential to ensure safe use of OPDIVO and YERVOY. Monitor for signs and symptoms that may be clinical manifestations of underlying immune-mediated adverse reactions. Evaluate clinical chemistries including liver enzymes, creatinine, adrenocorticotropic hormone (ACTH) level, and thyroid function at baseline and periodically during treatment with OPDIVO and before each dose of YERVOY. In cases of suspected immune-mediated adverse reactions, initiate appropriate workup to exclude alternative etiologies, including infection. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue OPDIVO and YERVOY depending on severity (please see section 2 Dosage and Administration in the accompanying Full Prescribing Information). In general, if OPDIVO or YERVOY interruption or discontinuation is required, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Consider administration of other systemic immunosuppressants in patients whose immune-mediated adverse reactions are not controlled with corticosteroid therapy. Toxicity management guidelines for adverse reactions that do not necessarily require systemic steroids (e.g., endocrinopathies and dermatologic reactions) are discussed below.

Immune-Mediated Pneumonitis

OPDIVO and YERVOY can cause immune-mediated pneumonitis. The incidence of pneumonitis is higher in patients who have received prior thoracic radiation. In patients receiving OPDIVO monotherapy, immune-mediated pneumonitis occurred in 3.1% (61/1994) of patients, including Grade 4 (<0.1%), Grade 3 (0.9%), and Grade 2 (2.1%). In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated pneumonitis occurred in 10% (5/49) of patients. In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated pneumonitis occurred in 3.9% (26/666) of patients, including Grade 3 (1.4%) and Grade 2 (2.6%). In NSCLC patients receiving OPDIVO 3 mg/kg every 2 weeks with YERVOY 1 mg/kg every 6 weeks, immune-mediated pneumonitis occurred in 9% (50/576) of patients, including Grade 4 (0.5%), Grade 3 (3.5%), and Grade 2 (4.0%). Four patients (0.7%) died due to pneumonitis.

In Checkmate 205 and 039, pneumonitis, including interstitial lung disease, occurred in 6.0% (16/266) of patients receiving OPDIVO. Immune-mediated pneumonitis occurred in 4.9% (13/266) of patients receiving OPDIVO, including Grade 3 (n=1) and Grade 2 (n=12).

Immune-Mediated Colitis

OPDIVO and YERVOY can cause immune-mediated colitis, which may be fatal. A common symptom included in the definition of colitis was diarrhea. Cytomegalovirus (CMV) infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. In patients receiving OPDIVO monotherapy, immune-mediated colitis occurred in 2.9% (58/1994) of patients, including Grade 3 (1.7%) and Grade 2 (1%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated colitis occurred in 25% (115/456) of patients, including Grade 4 (0.4%), Grade 3 (14%) and Grade 2 (8%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated colitis occurred in 9% (60/666) of patients, including Grade 3 (4.4%) and Grade 2 (3.7%).

In a separate Phase 3 trial of YERVOY 3 mg/kg monotherapy, immune-mediated colitis occurred in 12% (62/511) of patients, including Grade 3-5 (7%) and Grade 2 (5%).

Immune-Mediated Hepatitis and Hepatotoxicity

OPDIVO and YERVOY can cause immune-mediated hepatitis. In patients receiving OPDIVO monotherapy, immune-mediated hepatitis occurred in 1.8% (35/1994) of patients, including Grade 4 (0.2%), Grade 3 (1.3%), and Grade 2 (0.4%). In patients receiving OPDIVO monotherapy in Checkmate 040, immune-mediated hepatitis requiring systemic corticosteroids occurred in 5% (8/154) of patients. In patients receiving OPDIVO 1 mg/ kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated hepatitis occurred in 15% (70/456) of patients, including Grade 4 (2.4%), Grade 3 (11%), and Grade 2 (1.8%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated hepatitis occurred in 7% (48/666) of patients, including Grade 4 (1.2%), Grade 3 (4.9%), and Grade 2 (0.4%).

In a separate Phase 3 trial of YERVOY 3 mg/kg monotherapy, immune-mediated hepatitis occurred in 4.1% (21/511) of patients, including Grade 3-5 (1.6%) and Grade 2 (2.5%).

OPDIVO in combination with cabozantinib can cause hepatic toxicity with higher frequencies of Grade 3 and 4 ALT and AST elevations compared to OPDIVO alone. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. In patients receiving OPDIVO and cabozantinib, Grades 3 and 4 increased ALT or AST were seen in 11% of patients.

Immune-Mediated Endocrinopathies

OPDIVO and YERVOY can cause primary or secondary adrenal insufficiency, immune-mediated hypophysitis, immune-mediated thyroid disorders, and Type 1 diabetes mellitus, which can present with diabetic ketoacidosis. Withhold OPDIVO and YERVOY depending on severity (please see section 2 Dosage and Administration in the accompanying Full Prescribing Information). For Grade 2 or higher adrenal insufficiency, initiate symptomatic treatment, including hormone replacement as clinically indicated. Hypophysitis can present with acute symptoms associated with mass effect such as headache, photophobia, or visual field defects. Hypophysitis can cause hypopituitarism; initiate hormone replacement as clinically indicated. Thyroiditis can present with or without endocrinopathy. Hypothyroidism can follow hyperthyroidism; initiate hormone replacement or medical management as clinically indicated. Monitor patients for hyperglycemia or other signs and symptoms of diabetes; initiate treatment with insulin as clinically indicated.

In patients receiving OPDIVO monotherapy, adrenal insufficiency occurred in 1% (20/1994), including Grade 3 (0.4%) and Grade 2 (0.6%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, adrenal insufficiency occurred in 8% (35/456), including Grade 4 (0.2%), Grade 3 (2.4%), and Grade 2 (4.2%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, adrenal insufficiency occurred in 7% (48/666) of patients, including Grade 4 (0.3%), Grade 3 (2.5%), and Grade 2 (4.1%). In patients receiving OPDIVO and cabozantinib, adrenal insufficiency occurred in 4.7% (15/320) of patients, including Grade 3 (2.2%) and Grade 2 (1.9%).

In patients receiving OPDIVO monotherapy, hypophysitis occurred in 0.6% (12/1994) of patients, including Grade 3 (0.2%) and Grade 2 (0.3%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, hypophysitis occurred in 9% (42/456), including Grade 3 (2.4%) and Grade 2 (6%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, hypophysitis occurred in 4.4% (29/666) of patients, including Grade 4 (0.3%), Grade 3 (2.4%), and Grade 2 (0.9%).

In patients receiving OPDIVO monotherapy, thyroiditis occurred in 0.6% (12/1994) of patients, including Grade 2 (0.2%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, thyroiditis occurred in 2.7% (22/666) of patients, including Grade 3 (4.5%) and Grade 2 (2.2%).

In patients receiving OPDIVO monotherapy, hyperthyroidism occurred in 2.7% (54/1994) of patients, including Grade 3 (<0.1%) and Grade 2 (1.2%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, hyperthyroidism occurred in 9% (42/456) of patients, including Grade 3 (0.9%) and Grade 2 (4.2%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, hyperthyroidism occurred in 12% (80/666) of patients, including Grade 3 (0.6%) and Grade 2 (4.5%).

In patients receiving OPDIVO monotherapy, hypothyroidism occurred in 8% (163/1994) of patients, including Grade 3 (0.2%) and Grade 2 (4.8%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, hypothyroidism occurred in 20% (91/456) of patients, including Grade 3 (0.4%) and Grade 2 (11%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, hypothyroidism occurred in 18% (122/666) of patients, including Grade 3 (0.6%) and Grade 2 (11%).

In patients receiving OPDIVO monotherapy, diabetes occurred in 0.9% (17/1994) of patients, including Grade 3 (0.4%) and Grade 2 (0.3%), and 2 cases of diabetic ketoacidosis. In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, diabetes occurred in 2.7% (15/666) of patients, including Grade 4 (0.6%), Grade 3 (0.3%), and Grade 2 (0.9%).

In a separate Phase 3 trial of YERVOY 3 mg/kg monotherapy, Grade 2-5 immune-mediated endocrinopathies occurred in 4% (21/511) of patients. Severe to life-threatening (Grade 3-4) endocrinopathies occurred in 9 (1.8%) patients. All 9 patients had hypopituitarism, and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. Six of the 9 patients were hospitalized for severe endocrinopathies. Moderate (Grade 2) endocrinopathy occurred in 12 patients (2.3%), including hypothyroidism, adrenal insufficiency, hypopituitarism, hyperthyroidism and Cushings syndrome.

Immune-Mediated Nephritis with Renal Dysfunction

OPDIVO and YERVOY can cause immune-mediated nephritis. In patients receiving OPDIVO monotherapy, immune-mediated nephritis and renal dysfunction occurred in 1.2% (23/1994) of patients, including Grade 4 (<0.1%), Grade 3 (0.5%), and Grade 2 (0.6%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated nephritis with renal dysfunction occurred in 4.1% (27/666) of patients, including Grade 4 (0.6%), Grade 3 (1.1%), and Grade 2 (2.2%).

Immune-Mediated Dermatologic Adverse Reactions

OPDIVO can cause immune-mediated rash or dermatitis. Exfoliative dermatitis, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug rash with eosinophilia and systemic symptoms (DRESS) has occurred with PD-1/PD-L1 blocking antibodies. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate nonexfoliative rashes.

YERVOY can cause immune-mediated rash or dermatitis, including bullous and exfoliative dermatitis, SJS, TEN, and DRESS. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate non-bullous/ exfoliative rashes.

Withhold or permanently discontinue OPDIVO and YERVOY depending on severity (please see section 2 Dosage and Administration in the accompanying Full Prescribing Information).

In patients receiving OPDIVO monotherapy, immune-mediated rash occurred in 9% (171/1994) of patients, including Grade 3 (1.1%) and Grade 2 (2.2%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated rash occurred in 28% (127/456) of patients, including Grade 3 (4.8%) and Grade 2 (10%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated rash occurred in 16% (108/666) of patients, including Grade 3 (3.5%) and Grade 2 (4.2%).

In a separate Phase 3 trial of YERVOY 3 mg/kg monotherapy, immune-mediated rash occurred in 15% (76/511) of patients, including Grade 3-5 (2.5%) and Grade 2 (12%).

Other Immune-Mediated Adverse Reactions

The following clinically significant immune-mediated adverse reactions occurred at an incidence of <1% (unless otherwise noted) in patients who received OPDIVO monotherapy or OPDIVO in combination with YERVOY or were reported with the use of other PD-1/PD-L1 blocking antibodies. Severe or fatal cases have been reported for some of these adverse reactions: cardiac/vascular: myocarditis, pericarditis, vasculitis; nervous system: meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis (including exacerbation), Guillain-Barr syndrome, nerve paresis, autoimmune neuropathy; ocular: uveitis, iritis, and other ocular inflammatory toxicities can occur; gastrointestinal: pancreatitis to include increases in serum amylase and lipase levels, gastritis, duodenitis; musculoskeletal and connective tissue: myositis/polymyositis, rhabdomyolysis, and associated sequelae including renal failure, arthritis, polymyalgia rheumatica; endocrine: hypoparathyroidism; other (hematologic/immune): hemolytic anemia, aplastic anemia, hemophagocytic lymphohistiocytosis (HLH), systemic inflammatory response syndrome, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), sarcoidosis, immune thrombocytopenic purpura, solid organ transplant rejection.

In addition to the immune-mediated adverse reactions listed above, across clinical trials of YERVOY monotherapy or in combination with OPDIVO, the following clinically significant immune-mediated adverse reactions, some with fatal outcome, occurred in <1% of patients unless otherwise specified: nervous system: autoimmune neuropathy (2%), myasthenic syndrome/myasthenia gravis, motor dysfunction; cardiovascular: angiopathy, temporal arteritis; ocular: blepharitis, episcleritis, orbital myositis, scleritis; gastrointestinal: pancreatitis (1.3%); other (hematologic/immune): conjunctivitis, cytopenias (2.5%), eosinophilia (2.1%), erythema multiforme, hypersensitivity vasculitis, neurosensory hypoacusis, psoriasis.

Some ocular IMAR cases can be associated with retinal detachment. Various grades of visual impairment, including blindness, can occur. If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Haradalike syndrome, which has been observed in patients receiving OPDIVO and YERVOY, as this may require treatment with systemic corticosteroids to reduce the risk of permanent vision loss.

Infusion-Related Reactions

OPDIVO and YERVOY can cause severe infusion-related reactions. Discontinue OPDIVO and YERVOY in patients with severe (Grade 3) or life-threatening (Grade 4) infusion-related reactions. Interrupt or slow the rate of infusion in patients with mild (Grade 1) or moderate (Grade 2) infusion-related reactions. In patients receiving OPDIVO monotherapy as a 60-minute infusion, infusion-related reactions occurred in 6.4% (127/1994) of patients. In a separate trial in which patients received OPDIVO monotherapy as a 60-minute infusion or a 30-minute infusion, infusion-related reactions occurred in 2.2% (8/368) and 2.7% (10/369) of patients, respectively. Additionally, 0.5% (2/368) and 1.4% (5/369) of patients, respectively, experienced adverse reactions within 48 hours of infusion that led to dose delay, permanent discontinuation or withholding of OPDIVO. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, infusion-related reactions occurred in 2.5% (10/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, infusion-related reactions occurred in 8% (4/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, infusion-related reactions occurred in 5.1% (28/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, infusion-related reactions occurred in 4.2% (5/119) of patients. In MPM patients receiving OPDIVO 3 mg/kg every 2 weeks with YERVOY 1 mg/kg every 6 weeks, infusion-related reactions occurred in 12% (37/300) of patients.

In separate Phase 3 trials of YERVOY 3 mg/kg and 10 mg/kg monotherapy, infusion-related reactions occurred in 2.9% (28/982) of patients.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation

Fatal and other serious complications can occur in patients who receive allogeneic hematopoietic stem cell transplantation (HSCT) before or after being treated with OPDIVO or YERVOY. Transplant-related complications include hyperacute graft-versus-host-disease (GVHD), acute GVHD, chronic GVHD, hepatic veno-occlusive disease (VOD) after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between OPDIVO or YERVOY and allogeneic HSCT.

Follow patients closely for evidence of transplant-related complications and intervene promptly. Consider the benefit versus risks of treatment with OPDIVO and YERVOY prior to or after an allogeneic HSCT.

Embryo-Fetal Toxicity

Based on its mechanism of action and findings from animal studies, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. The effects of YERVOY are likely to be greater during the second and third trimesters of pregnancy. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with OPDIVO and YERVOY and for at least 5 months after the last dose.

Increased Mortality in Patients with Multiple Myeloma when OPDIVO is Added to a Thalidomide Analogue and Dexamethasone

In randomized clinical trials in patients with multiple myeloma, the addition of OPDIVO to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of patients with multiple myeloma with a PD-1 or PD-L1 blocking antibody in combination with a thalidomide analogue plus dexamethasone is not recommended outside of controlled clinical trials.

Lactation

There are no data on the presence of OPDIVO or YERVOY in human milk, the effects on the breastfed child, or the effects on milk production. Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 5 months after the last dose.

Serious Adverse Reactions

In Checkmate 037, serious adverse reactions occurred in 41% of patients receiving OPDIVO (n=268). Grade 3 and 4 adverse reactions occurred in 42% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse drug reactions reported in 2% to <5% of patients receiving OPDIVO were abdominal pain, hyponatremia, increased aspartate aminotransferase, and increased lipase. In Checkmate 066, serious adverse reactions occurred in 36% of patients receiving OPDIVO (n=206). Grade 3 and 4 adverse reactions occurred in 41% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in 2% of patients receiving OPDIVO were gamma-glutamyltransferase increase (3.9%) and diarrhea (3.4%). In Checkmate 067, serious adverse reactions (74% and 44%), adverse reactions leading to permanent discontinuation (47% and 18%) or to dosing delays (58% and 36%), and Grade 3 or 4 adverse reactions (72% and 51%) all occurred more frequently in the OPDIVO plus YERVOY arm (n=313) relative to the OPDIVO arm (n=313). The most frequent (10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.2%), colitis (10% and 1.9%), and pyrexia (10% and 1.0%). In Checkmate 227, serious adverse reactions occurred in 58% of patients (n=576). The most frequent (2%) serious adverse reactions were pneumonia, diarrhea/colitis, pneumonitis, hepatitis, pulmonary embolism, adrenal insufficiency, and hypophysitis. Fatal adverse reactions occurred in 1.7% of patients; these included events of pneumonitis (4 patients), myocarditis, acute kidney injury, shock, hyperglycemia, multi-system organ failure, and renal failure. In Checkmate 9LA, serious adverse reactions occurred in 57% of patients (n=358). The most frequent (>2%) serious adverse reactions were pneumonia, diarrhea, febrile neutropenia, anemia, acute kidney injury, musculoskeletal pain, dyspnea, pneumonitis, and respiratory failure. Fatal adverse reactions occurred in 7 (2%) patients, and included hepatic toxicity, acute renal failure, sepsis, pneumonitis, diarrhea with hypokalemia, and massive hemoptysis in the setting of thrombocytopenia. In Checkmate 017 and 057, serious adverse reactions occurred in 46% of patients receiving OPDIVO (n=418). The most frequent serious adverse reactions reported in 2% of patients receiving OPDIVO were pneumonia, pulmonary embolism, dyspnea, pyrexia, pleural effusion, pneumonitis, and respiratory failure. In Checkmate 057, fatal adverse reactions occurred; these included events of infection (7 patients, including one case of Pneumocystis jirovecii pneumonia), pulmonary embolism (4 patients), and limbic encephalitis (1 patient). In Checkmate 743, serious adverse reactions occurred in 54% of patients receiving OPDIVO plus YERVOY. The most frequent serious adverse reactions reported in 2% of patients were pneumonia, pyrexia, diarrhea, pneumonitis, pleural effusion, dyspnea, acute kidney injury, infusion-related reaction, musculoskeletal pain, and pulmonary embolism. Fatal adverse reactions occurred in 4 (1.3%) patients and included pneumonitis, acute heart failure, sepsis, and encephalitis. In Checkmate 214, serious adverse reactions occurred in 59% of patients receiving OPDIVO plus YERVOY (n=547). The most frequent serious adverse reactions reported in 2% of patients were diarrhea, pyrexia, pneumonia, pneumonitis, hypophysitis, acute kidney injury, dyspnea, adrenal insufficiency, and colitis. In Checkmate 9ER, serious adverse reactions occurred in 48% of patients receiving OPDIVO and cabozantinib (n=320). The most frequent serious adverse reactions reported in 2% of patients were diarrhea, pneumonia, pneumonitis, pulmonary embolism, urinary tract infection, and hyponatremia. Fatal intestinal perforations occurred in 3 (0.9%) patients. In Checkmate 025, serious adverse reactions occurred in 47% of patients receiving OPDIVO (n=406). The most frequent serious adverse reactions reported in 2% of patients were acute kidney injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia. In Checkmate 205 and 039, adverse reactions leading to discontinuation occurred in 7% and dose delays due to adverse reactions occurred in 34% of patients (n=266). Serious adverse reactions occurred in 26% of patients. The most frequent serious adverse reactions reported in 1% of patients were pneumonia, infusion-related reaction, pyrexia, colitis or diarrhea, pleural effusion, pneumonitis, and rash. Eleven patients died from causes other than disease progression: 3 from adverse reactions within 30 days of the last OPDIVO dose, 2 from infection 8 to 9 months after completing OPDIVO, and 6 from complications of allogeneic HSCT. In Checkmate 141, serious adverse reactions occurred in 49% of patients receiving OPDIVO (n=236). The most frequent serious adverse reactions reported in 2% of patients receiving OPDIVO were pneumonia, dyspnea, respiratory failure, respiratory tract infection, and sepsis. In Checkmate 275, serious adverse reactions occurred in 54% of patients receiving OPDIVO (n=270). The most frequent serious adverse reactions reported in 2% of patients receiving OPDIVO were urinary tract infection, sepsis, diarrhea, small intestine obstruction, and general physical health deterioration. In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY (n=119), serious adverse reactions occurred in 47% of patients. The most frequent serious adverse reactions reported in 2% of patients were colitis/diarrhea, hepatic events, abdominal pain, acute kidney injury, pyrexia, and dehydration. In Checkmate 040, serious adverse reactions occurred in 49% of patients receiving OPDIVO (n=154). The most frequent serious adverse reactions reported in 2% of patients were pyrexia, ascites, back pain, general physical health deterioration, abdominal pain, pneumonia, and anemia. In Checkmate 040, serious adverse reactions occurred in 59% of patients receiving OPDIVO with YERVOY (n=49). Serious adverse reactions reported in 4% of patients were pyrexia, diarrhea, anemia, increased AST, adrenal insufficiency, ascites, esophageal varices hemorrhage, hyponatremia, increased blood bilirubin, and pneumonitis. In Checkmate 238, serious adverse reactions occurred in 18% of patients receiving OPDIVO (n=452). Grade 3 or 4 adverse reactions occurred in 25% of OPDIVO-treated patients (n=452). The most frequent Grade 3 and 4 adverse reactions reported in 2% of OPDIVO-treated patients were diarrhea and increased lipase and amylase. In Attraction-3, serious adverse reactions occurred in 38% of patients receiving OPDIVO (n=209). Serious adverse reactions reported in 2% of patients who received OPDIVO were pneumonia, esophageal fistula, interstitial lung disease, and pyrexia. The following fatal adverse reactions occurred in patients who received OPDIVO: interstitial lung disease or pneumonitis (1.4%), pneumonia (1.0%), septic shock (0.5%), esophageal fistula (0.5%), gastrointestinal hemorrhage (0.5%), pulmonary embolism (0.5%), and sudden death (0.5%).

Common Adverse Reactions

In Checkmate 037, the most common adverse reaction (20%) reported with OPDIVO (n=268) was rash (21%). In Checkmate 066, the most common adverse reactions (20%) reported with OPDIVO (n=206) vs dacarbazine (n=205) were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28% vs 12%), and pruritus (23% vs 12%). In Checkmate 067, the most common (20%) adverse reactions in the OPDIVO plus YERVOY arm (n=313) were fatigue (62%), diarrhea (54%), rash (53%), nausea (44%), pyrexia (40%), pruritus (39%), musculoskeletal pain (32%), vomiting (31%), decreased appetite (29%), cough (27%), headache (26%), dyspnea (24%), upper respiratory tract infection (23%), arthralgia (21%), and increased transaminases (25%). In Checkmate 067, the most common (20%) adverse reactions in the OPDIVO arm (n=313) were fatigue (59%), rash (40%), musculoskeletal pain (42%), diarrhea (36%), nausea (30%), cough (28%), pruritus (27%), upper respiratory tract infection (22%), decreased appetite (22%), headache (22%), constipation (21%), arthralgia (21%), and vomiting (20%). In Checkmate 227, the most common (20%) adverse reactions were fatigue (44%), rash (34%), decreased appetite (31%), musculoskeletal pain (27%), diarrhea/colitis (26%), dyspnea (26%), cough (23%), hepatitis (21%), nausea (21%), and pruritus (21%). In Checkmate 9LA, the most common (>20%) adverse reactions were fatigue (49%), musculoskeletal pain (39%), nausea (32%), diarrhea (31%), rash (30%), decreased appetite (28%), constipation (21%), and pruritus (21%). In Checkmate 017 and 057, the most common adverse reactions (20%) in patients receiving OPDIVO (n=418) were fatigue, musculoskeletal pain, cough, dyspnea, and decreased appetite. In Checkmate 743, the most common adverse reactions (20%) in patients receiving OPDIVO plus YERVOY were fatigue (43%), musculoskeletal pain (38%), rash (34%), diarrhea (32%), dyspnea (27%), nausea (24%), decreased appetite (24%), cough (23%), and pruritus (21%). In Checkmate 214, the most common adverse reactions (20%) reported in patients treated with OPDIVO plus YERVOY (n=547) were fatigue (58%), rash (39%), diarrhea (38%), musculoskeletal pain (37%), pruritus (33%), nausea (30%), cough (28%), pyrexia (25%), arthralgia (23%), decreased appetite (21%), dyspnea (20%), and vomiting (20%). In Checkmate 9ER, the most common adverse reactions (20%) in patients receiving OPDIVO and cabozantinib (n=320) were diarrhea (64%), fatigue (51%), hepatotoxicity (44%), palmar-plantar erythrodysaesthesia syndrome (40%), stomatitis (37%), rash (36%), hypertension (36%), hypothyroidism (34%), musculoskeletal pain (33%), decreased appetite (28%), nausea (27%), dysgeusia (24%), abdominal pain (22%), cough (20%) and upper respiratory tract infection (20%). In Checkmate 025, the most common adverse reactions (20%) reported in patients receiving OPDIVO (n=406) vs everolimus (n=397) were fatigue (56% vs 57%), cough (34% vs 38%), nausea (28% vs 29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%), constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain (21% vs 16%), and arthralgia (20% vs 14%). In Checkmate 205 and 039, the most common adverse reactions (20%) reported in patients receiving OPDIVO (n=266) were upper respiratory tract infection (44%), fatigue (39%), cough (36%), diarrhea (33%), pyrexia (29%), musculoskeletal pain (26%), rash (24%), nausea (20%) and pruritus (20%). In Checkmate 141, the most common adverse reactions (10%) in patients receiving OPDIVO (n=236) were cough (14%) and dyspnea (14%) at a higher incidence than investigators choice. In Checkmate 275, the most common adverse reactions (20%) reported in patients receiving OPDIVO (n=270) were fatigue (46%), musculoskeletal pain (30%), nausea (22%), and decreased appetite (22%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO as a single agent, the most common adverse reactions (20%) were fatigue (54%), diarrhea (43%), abdominal pain (34%), nausea (34%), vomiting (28%), musculoskeletal pain (28%), cough (26%), pyrexia (24%), rash (23%), constipation (20%), and upper respiratory tract infection (20%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY (n=119), the most common adverse reactions (20%) were fatigue (49%), diarrhea (45%), pyrexia (36%), musculoskeletal pain (36%), abdominal pain (30%), pruritus (28%), nausea (26%), rash (25%), decreased appetite (20%), and vomiting (20%). In Checkmate 040, the most common adverse reactions (20%) in patients receiving OPDIVO (n=154) were fatigue (38%), musculoskeletal pain (36%), abdominal pain (34%), pruritus (27%), diarrhea (27%), rash (26%), cough (23%), and decreased appetite (22%). In Checkmate 040, the most common adverse reactions (20%) in patients receiving OPDIVO with YERVOY (n=49), were rash (53%), pruritus (53%), musculoskeletal pain (41%), diarrhea (39%), cough (37%), decreased appetite (35%), fatigue (27%), pyrexia (27%), abdominal pain (22%), headache (22%), nausea (20%), dizziness (20%), hypothyroidism (20%), and weight decreased (20%). In Checkmate 238, the most common adverse reactions (20%) reported in OPDIVO-treated patients (n=452) vs ipilimumab-treated patients (n=453) were fatigue (57% vs 55%), diarrhea (37% vs 55%), rash (35% vs 47%), musculoskeletal pain (32% vs 27%), pruritus (28% vs 37%), headache (23% vs 31%), nausea (23% vs 28%), upper respiratory infection (22% vs 15%), and abdominal pain (21% vs 23%). The most common immune-mediated adverse reactions were rash (16%), diarrhea/colitis (6%), and hepatitis (3%). In Attraction-3, the most common adverse reactions (20%) in OPDIVO-treated patients (n=209) were rash (22%) and decreased appetite (21%).

In a separate Phase 3 trial of YERVOY 3 mg/kg, the most common adverse reactions (5%) in patients who received YERVOY at 3 mg/kg were fatigue (41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).

Please see US Full Prescribing Information for OPDIVO and YERVOY.

Clinical Trials and Patient Populations

Checkmate 037previously treated metastatic melanoma; Checkmate 066previously untreated metastatic melanoma; Checkmate 067previously untreated metastatic melanoma, as a single agent or in combination with YERVOY; Checkmate 227previously untreated metastatic non-small cell lung cancer, in combination with YERVOY; Checkmate 9LApreviously untreated recurrent or metastatic non-small cell lung cancer in combination with YERVOY and 2 cycles of platinum-doublet chemotherapy by histology; Checkmate 017second-line treatment of metastatic squamous non-small cell lung cancer; Checkmate 057second-line treatment of metastatic non-squamous non-small cell lung cancer; Checkmate 743previously untreated unresectable malignant pleural mesothelioma, in combination with YERVOY; Checkmate 214previously untreated renal cell carcinoma, in combination with YERVOY; Checkmate 9ERpreviously untreated renal cell carcinoma, in combination with cabozantinib; Checkmate 025previously treated renal cell carcinoma; Checkmate 205/039classical Hodgkin lymphoma; Checkmate 141recurrent or metastatic squamous cell carcinoma of the head and neck; Checkmate 275urothelial carcinoma; Checkmate 142MSI-H or dMMR metastatic colorectal cancer, as a single agent or in combination with YERVOY; Checkmate 040hepatocellular carcinoma, as a single agent or in combination with YERVOY; Checkmate 238adjuvant treatment of melanoma; Attraction-3esophageal squamous cell carcinoma

CABOMETYX INDICATIONS

CABOMETYX(cabozantinib) is indicated for the treatment of patients with advanced renal cell carcinoma (RCC).

See original here:
OPDIVO (nivolumab) in Combination with CABOMETYX (cabozantinib) Shows Sustained Survival and Response Rate Benefits as First-Line Treatment for...

Read More...

AlloVir Research Presented at the 2021 Transplantation & Cellular Therapy Meeting Digital Experience – Business Wire

Sunday, February 14th, 2021

CAMBRIDGE, Mass.--(BUSINESS WIRE)--AlloVir (Nasdaq: ALVR), a late clinical-stage cell therapy company, today announced results of a subgroup analysis from a Phase 2, proof-of-concept study (CHARMS) evaluating the companys lead product candidate, Viralym-M (ALVR105), an allogeneic, off-the-shelf, multi-virus specific investigational T-cell therapy (VST), in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients with virus-associated hemorrhagic cystitis (V-HC). These data are being presented in an oral presentation during the Transplantation & Cellular Therapy (TCT) Meeting of the American Society for Transplantation and Cellular Therapy (ASTCT) and the Center for International Blood & Marrow Transplant Research (CIBMTR). Additionally, two separate oral presentations characterize the high economic and clinical burden of V-HC and double-stranded (ds) DNA viral infections in allo-HSCT recipients. Preclinical data was also presented in a poster presentation on ALVR109, AlloVirs virus-specific T-cell therapy targeting SARS-CoV-2, the virus responsible for COVID-19.

The data from the Phase 2 CHARMS study highlight Viralym-M's potential to treat and possibly prevent multiple viral infections and viral diseases. The findings presented at TCT show that this novel virus-specific T cell therapy has the potential to rapidly and effectively resolve macroscopic hematuria in allo-HSCT recipients with virus-associated hemorrhagic cystitis a disease that currently has no effective treatment options and causes significant morbidity and increased risk of mortality, said Agustin Melian, MD, Chief Medical Officer and Head of Global Medical Sciences of AlloVir. We have recently initiated our Phase 3, pivotal study of Viralym-M for the treatment of virus-associated hemorrhagic cystitis and look forward to advancing this therapy through development for patients in need.

Data of Viralym-M in fifty-eight allo-HSCT recipients with at least one treatment-refractory viral infection caused by BK virus (BKV), cytomegalovirus (CMV), adenovirus (AdV), Epstein Barr virus (EBV), human herpesvirus 6 (HHV-6), and/or JC virus (JCV) were evaluated in the CHARMS Phase 2 study. The subgroup analysis presented at TCT included 26 patients who received intravenous VST infusions for the treatment of V-HC due to infection with BKV (n=23), AdV (n=2) and BKV and AdV (n=1). Infusions were well tolerated with mild, grade 1, de novo skin rash from graft-versus-host disease (GVHD) occurring in 15% of patients (n=4). In the 20 patients with available V-HC grading, resolution of macroscopic hematuria was observed in 60% and 80% of patients at two- and six-weeks post-infusion, respectively. In comparison, resolution of macroscopic hematuria was observed in <10% and 30% of patients at weeks two and six, respectively, in a contemporary cohort of allo-HSCT recipients (n=33) with V-HC who were not treated with Viralym-M.

Health economic outcomes data was also presented in two separate oral presentations at the conference. The two presentations analyzed U.S. claims data to compare health care reimbursement, health resource utilization, and clinical outcomes in pediatric and adult allo-HSCT recipients with V-HC and those without V-HC, and allo-HSCT recipients with or without dsDNA infections, respectively. Both studies found that allo-HSCT recipients with V-HC and those with any dsDNA infection had higher reimbursement costs, increased hospital and ICU length of stay, and increased hospital readmission rates. The presence of V-HC or any dsDNA viral infection was associated with a higher risk of mortality.

In addition, a poster presentation at the conference demonstrated the in vitro effector and safety profile of ALVR109, an allogeneic, off-the-shelf investigational VST therapy designed to target SARS-CoV-2, the virus that causes the severe and life-threatening viral disease, COVID-19. These data suggest the potential for using these VSTs to treat COVID-19 in hospitalized high-risk patients to prevent the development of severe disease. A clinical trial evaluating these banked, off-the-shelf SARS-CoV-2 specific T cells has been initiated at the Center for Cell and Gene Therapy, Baylor College of Medicine (BCM), Texas Children's Hospital, and Houston Methodist Hospital.

Viral Infections in Immunocompromised Patients

In healthy individuals, virus-specific T cells (VSTs) from the bodys natural defense system provide protection against numerous disease-causing viruses. However, in patients with a weakened immune system these viruses may be uncontrolled. Viral diseases are common and can cause potentially devastating and life-threatening consequences in immunocompromised patients. For example, up to 90% of patients will reactivate at least one virus following an allogeneic stem cell transplant and two-thirds of these patients reactivate more than one virus, resulting in significant and prolonged morbidity, hospitalization, and premature death. Typically, when viruses infect immunocompromised patients, standard antiviral treatment does not address the underlying problem of a weakened immune system and therefore many patients suffer with life-threatening outcomes such as multi-organ damage and failure, and even death.

Viralym-M

Viralym-M (ALVR105) is an allogeneic, off-the-shelf, multi-virus specific investigational T-cell therapy targeting five devastating viral pathogens: BK virus, cytomegalovirus, adenovirus, Epstein-Barr virus, and human herpesvirus 6. Viralym-M has the potential to transform care for transplant recipients as well as individuals who are at high risk for opportunistic viral infections by reducing or preventing disease morbidity and dramatically improving patient outcomes. Three pivotal and proof-of-concept clinical (POC) trials are ongoing and actively recruiting patients in indications such as treatment of virus-associated hemorrhagic cystitis and multi-virus prevention following allo-HSCT, and preemptive treatment of BK viremia in adult kidney transplant recipients. Additional pivotal and POC trials are expected to initiate for the treatment of CMV and the treatment of AdV in allo-HSCT recipients and in CMV for solid organ transplant recipients, respectively. For more information on the ongoing clinical trials visit clinicaltrials.gov.

Viralym-M has received Regenerative Medicine Advanced Therapy (RMAT) designation from the U.S. Food and Drug Administration (FDA), as well as PRIority MEdicines (PRIME) and Orphan Drug Designations (ODD) from the European Medicines Agency.

About AlloVir

AlloVir is a leading late clinical-stage cell therapy company with a focus on restoring natural immunity against life-threatening viral diseases in pediatric and adult patients with weakened immune systems. The companys innovative and proprietary technology platforms leverage off-the-shelf, allogeneic, multi-virus specific T-cells targeting devastating viruses for patients with T-cell deficiencies who are at risk from the life-threatening consequences of viral diseases. AlloVirs technology and manufacturing process enables the potential for the treatment and prevention of a spectrum of devastating viruses with each single allogeneic cell therapy. The company is advancing multiple mid- and late-stage clinical trials across its product portfolio. For more information visit http://www.allovir.com.

Forward-Looking Statements

This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, including, without limitation, statements regarding AlloVirs development and regulatory status of our product candidates, the planned conduct of its preclinical studies and clinical trials and its prospects for success in those studies and trials, and its strategy, business plans and focus. The words may, will, could, would, should, expect, plan, anticipate, intend, believe, estimate, predict, project, potential, continue, target and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Any forward-looking statements in this press release are based on managements current expectations and beliefs and are subject to a number of risks, uncertainties and important factors that may cause actual events or results to differ materially from those expressed or implied by any forward-looking statements contained in this press release, including, without limitation, those related to AlloVirs financial results, the timing for the initiation and successful completion of AlloVirs clinical trials of its product candidates, whether and when, if at all, AlloVirs product candidates will receive approval from the U.S. Food and Drug Administration, or FDA, or other foreign regulatory authorities, competition from other biopharmaceutical companies, the impact of the COVID-19 pandemic on AlloVirs product development plans, supply chain, and business operations and other risks identified in AlloVirs SEC filings. AlloVir cautions you not to place undue reliance on any forward-looking statements, which speak only as of the date they are made. AlloVir disclaims any obligation to publicly update or revise any such statements to reflect any change in expectations or in events, conditions or circumstances on which any such statements may be based, or that may affect the likelihood that actual results will differ from those set forth in the forward-looking statements. Any forward-looking statements contained in this press release represent AlloVirs views only as of the date hereof and should not be relied upon as representing its views as of any subsequent date.

Go here to see the original:
AlloVir Research Presented at the 2021 Transplantation & Cellular Therapy Meeting Digital Experience - Business Wire

Read More...

Opdivo in Combination with Cabometyx Shows Sustained Survival and Response Rate Benefits as First-Line Treatment for Patients with Advanced RCC -…

Sunday, February 14th, 2021

PRINCETON, N.J., & ALAMEDA, Calif.(BUSINESS WIRE)Bristol Myers Squibb (NYSE: BMY) and Exelixis, Inc.(NASDAQ: EXEL) today announced results from new analyses from the pivotal Phase 3 CheckMate -9ER trial, demonstrating clinically meaningful, sustained efficacy benefits as well as quality of life improvements with the combination of OPDIVO (nivolumab) and CABOMETYX (cabozantinib) compared to sunitinib in the first-line treatment of advanced renal cell carcinoma (RCC). These data will be presented in two posters at the virtual American Society of Clinical Oncology (ASCO) 2021 Genitourinary Cancers Symposium from February 11 to 13, 2021 and featured in the Poster Highlights Session on February 13, 2021 from 9:00 a.m. 9:45 a.m. EST.

Abstract #308: Nivolumab + cabozantinib (NIVO+CABO) vs. sunitinib (SUN) for advanced renal cell carcinoma (aRCC): outcomes by sarcomatoid histology and updated trial results with extended follow-up of CheckMate -9ER (Motzer, et. al.)

With a median follow-up of two years (23.5 months), OPDIVO in combination with CABOMETYX continued to show superior progression-free survival (PFS), objective response rate (ORR) and overall survival (OS) versus sunitinib, with a low rate of treatment-related adverse events (TRAEs) leading to discontinuation. No new safety signals were identified with extended follow-up. Across the full study population:

In an exploratory subgroup analysis of 75 patients with sarcomatoid features, the combination of OPDIVO and CABOMETYX showed benefit in this population typically associated with a poor prognosis, reducing the risk of death by 64% vs. sunitinib (HR 0.36; 95% CI: 0.17 to 0.79) and demonstrating both superior PFS (10.3 months vs. 4.2 months) and ORR (55.9% vs. 22.0%).

Abstract #285: Patient-reported outcomes of patients with advanced renal cell carcinoma (aRCC) treated with first-line nivolumab plus cabozantinib versus sunitinib: the CheckMate -9ER trial (Cella, et. al.)

In a separate analysis from the CheckMate -9ER trial conducted with 18.1 months of median follow-up, patients treated with the combination of OPDIVO and CABOMETYX reported statistically significant health-related quality of life benefits. Treatment with OPDIVO in combination with CABOMETYX was associated with a lower treatment burden, decreased risk of deterioration and a reduction of disease-related symptoms compared to sunitinib. These exploratory outcomes were measured using Functional Assessment of Cancer Therapy Kidney Symptom Index-19 (FKSI-19), a quality of life tool specific to kidney cancer, and EQ-5D-3L instruments.

There is a continued need for new therapies that show benefit across subgroups of patients with advanced renal cell carcinoma, said Robert Motzer, M.D., Kidney Cancer Section Head, Genitourinary Oncology Service, and Jack and Dorothy Byrne Chair in Clinical Oncology, Memorial Sloan Kettering Cancer Center. In CheckMate -9ER, nivolumab in combination with cabozantinib doubled progression-free survival, increased overall survival and response rate and, in an exploratory analysis, showed impressive disease control, and these promising efficacy results were sustained with extended follow-up. Also of note, patients in this study reported significant quality of life improvements, which are important for patients undergoing treatment for this challenging disease.

These additional data from CheckMate -9ER provide strong evidence that OPDIVO in combination with CABOMETYXmay help patients achieve and maintain control of their disease, said Dana Walker, M.D., M.S.C.E., vice president, development program lead, genitourinary cancers, Bristol Myers Squibb. This regimen brings together two proven agents in advanced renal cell carcinoma, and we believe it will play an important role alongside other first-line treatment options. We look forward to the potential to build on our heritage of transforming patient outcomes with OPDIVO-based combinations across a wide range of tumor types.

The overall survival benefit and quality-of-life measures reported in these findings continue to show improvement with the combination of CABOMETYX and OPDIVO after an extended follow-up of two years, said Gisela Schwab, M.D., President, Product Development and Medical Affairs and Chief Medical Officer, Exelixis. These new findings from CheckMate -9ER and the recent FDA approval of the combination regimen are extremely encouraging as we further explore the potential of CABOMETYX in combination with immunotherapies to help more patients with difficult-to-treat tumor types.

OPDIVO in combination with CABOMETYX was approved for the first-line treatment of advanced RCC by the U.S. Food and Drug Administration (FDA) in January 2021, and further applications are under review with health authorities globally.

Bristol Myers Squibb and Exelixis thank the patients and investigators involved in the CheckMate -9ER clinical trial.

About CheckMate -9ER

CheckMate -9ER is an open-label, randomized, multi-national Phase 3 trial evaluating patients with previously untreated advanced or metastatic renal cell carcinoma (RCC). A total of 651 patients (23% favorable risk, 58% intermediate risk, 20% poor risk; 25% PD-L11%) were randomized to receive OPDIVO plus CABOMETYX (n=323) vs. sunitinib (n=328). The primary endpoint is progression-free survival (PFS). Secondary endpoints include overall survival (OS) and objective response rate (ORR). The primary efficacy analysis is comparing the doublet combination vs. sunitinib in all randomized patients. The trial is sponsored by Bristol Myers Squibb and Ono Pharmaceutical Co and co-funded by Exelixis, Ipsen and Takeda Pharmaceutical Company Limited.

About Renal Cell Carcinoma

Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults, accounting for more than 179,000 deaths worldwide each year. RCC is approximately twice as common in men as in women, with the highest rates of the disease in North America and Europe. The five-year survival rate for those diagnosed with metastatic, or advanced, kidney cancer is 13%.

Bristol Myers Squibb: Creating a Better Future for People with Cancer

Bristol Myers Squibb is inspired by a single vision transforming patients lives through science. The goal of the companys cancer research is to deliver medicines that offer each patient a better, healthier life and to make cure a possibility. Building on a legacy across a broad range of cancers that have changed survival expectations for many, Bristol Myers Squibb researchers are exploring new frontiers in personalized medicine, and through innovative digital platforms, are turning data into insights that sharpen their focus. Deep scientific expertise, cutting-edge capabilities and discovery platforms enable the company to look at cancer from every angle. Cancer can have a relentless grasp on many parts of a patients life, and Bristol Myers Squibb is committed to taking actions to address all aspects of care, from diagnosis to survivorship. Because as a leader in cancer care, Bristol Myers Squibb is working to empower all people with cancer to have a better future.

Photo courtesy of Bristol Myers Squibb

About OPDIVO

Opdivo is a programmed death-1 (PD-1) immune checkpoint inhibitor that is designed to uniquely harness the bodys own immune system to help restore anti-tumor immune response. By harnessing the bodys own immune system to fight cancer, Opdivo has become an important treatment option across multiple cancers.

Opdivos leading global development program is based on Bristol Myers Squibbs scientific expertise in the field of Immuno-Oncology and includes a broad range of clinical trials across all phases, including Phase 3, in a variety of tumor types. To date, the Opdivo clinical development program has treated more than 35,000 patients. The Opdivotrials have contributed to gaining a deeper understanding of the potential role of biomarkers in patient care, particularly regarding how patients may benefit from Opdivo across the continuum of PD-L1 expression.

In July 2014, Opdivo was the first PD-1 immune checkpoint inhibitor to receive regulatory approval anywhere in the world. Opdivo is currently approved in more than 65 countries, including the United States, the European Union, Japan and China. In October 2015, the Companys Opdivo and Yervoy combination regimen was the first Immuno-Oncology combination to receive regulatory approval for the treatment of metastatic melanoma and is currently approved in more than 50 countries, including the United States and the European Union.

About CABOMETYX (cabozantinib)

In the U.S., CABOMETYX tablets are approved for the treatment of patients with advanced RCC; for the treatment of patients with HCC who have been previously treated with sorafenib; and for patients with advanced RCC as a first-line treatment in combination with nivolumab. CABOMETYX tablets have also received regulatory approvals in the European Union and additional countries and regions worldwide. In 2016, Exelixis granted Ipsen exclusive rights for the commercialization and further clinical development of cabozantinib outside of the United States and Japan. In 2017, Exelixis granted exclusive rights to Takeda Pharmaceutical Company Limited for the commercialization and further clinical development of cabozantinib for all future indications in Japan. Exelixis holds the exclusive rights to develop and commercialize cabozantinib in the United States.

OPDIVO INDICATIONS

OPDIVO (nivolumab), as a single agent, is indicated for the treatment of patients with unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) whose tumors express PD-L1 (1%) as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab) and 2 cycles of platinum-doublet chemotherapy, is indicated for the first-line treatment of adult patients with metastatic or recurrent non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

OPDIVO (nivolumab) is indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) with progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving OPDIVO.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of adult patients with unresectable malignant pleural mesothelioma (MPM).

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the first-line treatment of patients with intermediate or poor risk advanced renal cell carcinoma (RCC).

OPDIVO (nivolumab), in combination with cabozantinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

OPDIVO (nivolumab) is indicated for the treatment of patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.

OPDIVO (nivolumab) is indicated for the treatment of adult patients with classical Hodgkin lymphoma (cHL) that has relapsed or progressed after autologous hematopoietic stem cell transplantation (HSCT) and brentuximab vedotin or after 3 or more lines of systemic therapy that includes autologous HSCT. This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) with disease progression on or after platinum-based therapy.

OPDIVO (nivolumab) is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma who have disease progression during or following platinum-containing chemotherapy or have disease progression within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), as a single agent, is indicated for the treatment of adult and pediatric (12 years and older) patients with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of adults and pediatric patients 12 years and older with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO (nivolumab) is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab), in combination with YERVOY (ipilimumab), is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

OPDIVO (nivolumab) is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph nodes or metastatic disease who have undergone complete resection.

OPDIVO (nivolumab) is indicated for the treatment of patients with unresectable advanced, recurrent or metastatic esophageal squamous cell carcinoma (ESCC) after prior fluoropyrimidine- and platinum-based chemotherapy.

OPDIVO IMPORTANT SAFETY INFORMATION

Severe and Fatal Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions listed herein may not include all possible severe and fatal immune-mediated adverse reactions.

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue. While immune-mediated adverse reactions usually manifest during treatment, they can also occur after discontinuation of OPDIVO or YERVOY. Early identification and management are essential to ensure safe use of OPDIVO and YERVOY. Monitor for signs and symptoms that may be clinical manifestations of underlying immune-mediated adverse reactions. Evaluate clinical chemistries including liver enzymes, creatinine, adrenocorticotropic hormone (ACTH) level, and thyroid function at baseline and periodically during treatment with OPDIVO and before each dose of YERVOY. In cases of suspected immune-mediated adverse reactions, initiate appropriate workup to exclude alternative etiologies, including infection. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue OPDIVO and YERVOY depending on severity (please see section 2 Dosage and Administration in the accompanying Full Prescribing Information). In general, if OPDIVO or YERVOY interruption or discontinuation is required, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Consider administration of other systemic immunosuppressants in patients whose immune-mediated adverse reactions are not controlled with corticosteroid therapy. Toxicity management guidelines for adverse reactions that do not necessarily require systemic steroids (e.g., endocrinopathies and dermatologic reactions) are discussed below.

Immune-Mediated Pneumonitis

OPDIVO and YERVOY can cause immune-mediated pneumonitis. The incidence of pneumonitis is higher in patients who have received prior thoracic radiation. In patients receiving OPDIVO monotherapy, immune-mediated pneumonitis occurred in 3.1% (61/1994) of patients, including Grade 4 (<0.1%), Grade 3 (0.9%), and Grade 2 (2.1%). In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated pneumonitis occurred in 10% (5/49) of patients. In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated pneumonitis occurred in 3.9% (26/666) of patients, including Grade 3 (1.4%) and Grade 2 (2.6%). In NSCLC patients receiving OPDIVO 3 mg/kg every 2 weeks with YERVOY 1 mg/kg every 6 weeks, immune-mediated pneumonitis occurred in 9% (50/576) of patients, including Grade 4 (0.5%), Grade 3 (3.5%), and Grade 2 (4.0%). Four patients (0.7%) died due to pneumonitis.

In Checkmate 205 and 039, pneumonitis, including interstitial lung disease, occurred in 6.0% (16/266) of patients receiving OPDIVO. Immune-mediated pneumonitis occurred in 4.9% (13/266) of patients receiving OPDIVO, including Grade 3 (n=1) and Grade 2 (n=12).

Immune-Mediated Colitis

OPDIVO and YERVOY can cause immune-mediated colitis, which may be fatal. A common symptom included in the definition of colitis was diarrhea. Cytomegalovirus (CMV) infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. In patients receiving OPDIVO monotherapy, immune-mediated colitis occurred in 2.9% (58/1994) of patients, including Grade 3 (1.7%) and Grade 2 (1%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated colitis occurred in 25% (115/456) of patients, including Grade 4 (0.4%), Grade 3 (14%) and Grade 2 (8%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated colitis occurred in 9% (60/666) of patients, including Grade 3 (4.4%) and Grade 2 (3.7%).

In a separate Phase 3 trial of YERVOY 3 mg/kg monotherapy, immune-mediated colitis occurred in 12% (62/511) of patients, including Grade 3-5 (7%) and Grade 2 (5%).

Immune-Mediated Hepatitis and Hepatotoxicity

OPDIVO and YERVOY can cause immune-mediated hepatitis. In patients receiving OPDIVO monotherapy, immune-mediated hepatitis occurred in 1.8% (35/1994) of patients, including Grade 4 (0.2%), Grade 3 (1.3%), and Grade 2 (0.4%). In patients receiving OPDIVO monotherapy in Checkmate 040, immune-mediated hepatitis requiring systemic corticosteroids occurred in 5% (8/154) of patients. In patients receiving OPDIVO 1 mg/ kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated hepatitis occurred in 15% (70/456) of patients, including Grade 4 (2.4%), Grade 3 (11%), and Grade 2 (1.8%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated hepatitis occurred in 7% (48/666) of patients, including Grade 4 (1.2%), Grade 3 (4.9%), and Grade 2 (0.4%).

In a separate Phase 3 trial of YERVOY 3 mg/kg monotherapy, immune-mediated hepatitis occurred in 4.1% (21/511) of patients, including Grade 3-5 (1.6%) and Grade 2 (2.5%).

OPDIVO in combination with cabozantinib can cause hepatic toxicity with higher frequencies of Grade 3 and 4 ALT and AST elevations compared to OPDIVO alone. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. In patients receiving OPDIVO and cabozantinib, Grades 3 and 4 increased ALT or AST were seen in 11% of patients.

Immune-Mediated Endocrinopathies

OPDIVO and YERVOY can cause primary or secondary adrenal insufficiency, immune-mediated hypophysitis, immune-mediated thyroid disorders, and Type 1 diabetes mellitus, which can present with diabetic ketoacidosis. Withhold OPDIVO and YERVOY depending on severity (please see section 2 Dosage and Administration in the accompanying Full Prescribing Information). For Grade 2 or higher adrenal insufficiency, initiate symptomatic treatment, including hormone replacement as clinically indicated. Hypophysitis can present with acute symptoms associated with mass effect such as headache, photophobia, or visual field defects. Hypophysitis can cause hypopituitarism; initiate hormone replacement as clinically indicated. Thyroiditis can present with or without endocrinopathy. Hypothyroidism can follow hyperthyroidism; initiate hormone replacement or medical management as clinically indicated. Monitor patients for hyperglycemia or other signs and symptoms of diabetes; initiate treatment with insulin as clinically indicated.

In patients receiving OPDIVO monotherapy, adrenal insufficiency occurred in 1% (20/1994), including Grade 3 (0.4%) and Grade 2 (0.6%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, adrenal insufficiency occurred in 8% (35/456), including Grade 4 (0.2%), Grade 3 (2.4%), and Grade 2 (4.2%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, adrenal insufficiency occurred in 7% (48/666) of patients, including Grade 4 (0.3%), Grade 3 (2.5%), and Grade 2 (4.1%). In patients receiving OPDIVO and cabozantinib, adrenal insufficiency occurred in 4.7% (15/320) of patients, including Grade 3 (2.2%) and Grade 2 (1.9%).

In patients receiving OPDIVO monotherapy, hypophysitis occurred in 0.6% (12/1994) of patients, including Grade 3 (0.2%) and Grade 2 (0.3%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, hypophysitis occurred in 9% (42/456), including Grade 3 (2.4%) and Grade 2 (6%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, hypophysitis occurred in 4.4% (29/666) of patients, including Grade 4 (0.3%), Grade 3 (2.4%), and Grade 2 (0.9%).

In patients receiving OPDIVO monotherapy, thyroiditis occurred in 0.6% (12/1994) of patients, including Grade 2 (0.2%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, thyroiditis occurred in 2.7% (22/666) of patients, including Grade 3 (4.5%) and Grade 2 (2.2%).

In patients receiving OPDIVO monotherapy, hyperthyroidism occurred in 2.7% (54/1994) of patients, including Grade 3 (<0.1%) and Grade 2 (1.2%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, hyperthyroidism occurred in 9% (42/456) of patients, including Grade 3 (0.9%) and Grade 2 (4.2%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, hyperthyroidism occurred in 12% (80/666) of patients, including Grade 3 (0.6%) and Grade 2 (4.5%).

In patients receiving OPDIVO monotherapy, hypothyroidism occurred in 8% (163/1994) of patients, including Grade 3 (0.2%) and Grade 2 (4.8%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, hypothyroidism occurred in 20% (91/456) of patients, including Grade 3 (0.4%) and Grade 2 (11%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, hypothyroidism occurred in 18% (122/666) of patients, including Grade 3 (0.6%) and Grade 2 (11%).

In patients receiving OPDIVO monotherapy, diabetes occurred in 0.9% (17/1994) of patients, including Grade 3 (0.4%) and Grade 2 (0.3%), and 2 cases of diabetic ketoacidosis. In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, diabetes occurred in 2.7% (15/666) of patients, including Grade 4 (0.6%), Grade 3 (0.3%), and Grade 2 (0.9%).

In a separate Phase 3 trial of YERVOY 3 mg/kg monotherapy, Grade 2-5 immune-mediated endocrinopathies occurred in 4% (21/511) of patients. Severe to life-threatening (Grade 3-4) endocrinopathies occurred in 9 (1.8%) patients. All 9 patients had hypopituitarism, and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. Six of the 9 patients were hospitalized for severe endocrinopathies. Moderate (Grade 2) endocrinopathy occurred in 12 patients (2.3%), including hypothyroidism, adrenal insufficiency, hypopituitarism, hyperthyroidism and Cushings syndrome.

Immune-Mediated Nephritis with Renal Dysfunction

OPDIVO and YERVOY can cause immune-mediated nephritis. In patients receiving OPDIVO monotherapy, immune-mediated nephritis and renal dysfunction occurred in 1.2% (23/1994) of patients, including Grade 4 (<0.1%), Grade 3 (0.5%), and Grade 2 (0.6%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated nephritis with renal dysfunction occurred in 4.1% (27/666) of patients, including Grade 4 (0.6%), Grade 3 (1.1%), and Grade 2 (2.2%).

Immune-Mediated Dermatologic Adverse Reactions

OPDIVO can cause immune-mediated rash or dermatitis. Exfoliative dermatitis, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug rash with eosinophilia and systemic symptoms (DRESS) has occurred with PD-1/PD-L1 blocking antibodies. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate nonexfoliative rashes.

YERVOY can cause immune-mediated rash or dermatitis, including bullous and exfoliative dermatitis, SJS, TEN, and DRESS. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate non-bullous/ exfoliative rashes.

Withhold or permanently discontinue OPDIVO and YERVOY depending on severity (please see section 2 Dosage and Administration in the accompanying Full Prescribing Information).

In patients receiving OPDIVO monotherapy, immune-mediated rash occurred in 9% (171/1994) of patients, including Grade 3 (1.1%) and Grade 2 (2.2%). In patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, immune-mediated rash occurred in 28% (127/456) of patients, including Grade 3 (4.8%) and Grade 2 (10%). In patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, immune-mediated rash occurred in 16% (108/666) of patients, including Grade 3 (3.5%) and Grade 2 (4.2%).

In a separate Phase 3 trial of YERVOY 3 mg/kg monotherapy, immune-mediated rash occurred in 15% (76/511) of patients, including Grade 3-5 (2.5%) and Grade 2 (12%).

Other Immune-Mediated Adverse Reactions

The following clinically significant immune-mediated adverse reactions occurred at an incidence of <1% (unless otherwise noted) in patients who received OPDIVO monotherapy or OPDIVO in combination with YERVOY or were reported with the use of other PD-1/PD-L1 blocking antibodies. Severe or fatal cases have been reported for some of these adverse reactions: cardiac/vascular: myocarditis, pericarditis, vasculitis; nervous system: meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis (including exacerbation), Guillain-Barr syndrome, nerve paresis, autoimmune neuropathy; ocular: uveitis, iritis, and other ocular inflammatory toxicities can occur; gastrointestinal: pancreatitis to include increases in serum amylase and lipase levels, gastritis, duodenitis; musculoskeletal and connective tissue: myositis/polymyositis, rhabdomyolysis, and associated sequelae including renal failure, arthritis, polymyalgia rheumatica; endocrine: hypoparathyroidism; other (hematologic/immune): hemolytic anemia, aplastic anemia, hemophagocytic lymphohistiocytosis (HLH), systemic inflammatory response syndrome, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), sarcoidosis, immune thrombocytopenic purpura, solid organ transplant rejection.

In addition to the immune-mediated adverse reactions listed above, across clinical trials of YERVOY monotherapy or in combination with OPDIVO, the following clinically significant immune-mediated adverse reactions, some with fatal outcome, occurred in <1% of patients unless otherwise specified: nervous system: autoimmune neuropathy (2%), myasthenic syndrome/myasthenia gravis, motor dysfunction; cardiovascular: angiopathy, temporal arteritis; ocular: blepharitis, episcleritis, orbital myositis, scleritis; gastrointestinal: pancreatitis (1.3%); other (hematologic/immune):conjunctivitis, cytopenias (2.5%), eosinophilia (2.1%), erythema multiforme, hypersensitivity vasculitis, neurosensory hypoacusis, psoriasis.

Some ocular IMAR cases can be associated with retinal detachment. Various grades of visual impairment, including blindness, can occur. If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Haradalike syndrome, which has been observed in patients receiving OPDIVO and YERVOY, as this may require treatment with systemic corticosteroids to reduce the risk of permanent vision loss.

Infusion-Related Reactions

OPDIVO and YERVOY can cause severe infusion-related reactions. Discontinue OPDIVO and YERVOY in patients with severe (Grade 3) or life-threatening (Grade 4) infusion-related reactions. Interrupt or slow the rate of infusion in patients with mild (Grade 1) or moderate (Grade 2) infusion-related reactions. In patients receiving OPDIVO monotherapy as a 60-minute infusion, infusion-related reactions occurred in 6.4% (127/1994) of patients. In a separate trial in which patients received OPDIVO monotherapy as a 60-minute infusion or a 30-minute infusion, infusion-related reactions occurred in 2.2% (8/368) and 2.7% (10/369) of patients, respectively. Additionally, 0.5% (2/368) and 1.4% (5/369) of patients, respectively, experienced adverse reactions within 48 hours of infusion that led to dose delay, permanent discontinuation or withholding of OPDIVO. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, infusion-related reactions occurred in 2.5% (10/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg every 3 weeks, infusion-related reactions occurred in 8% (4/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, infusion-related reactions occurred in 5.1% (28/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg every 3 weeks, infusion-related reactions occurred in 4.2% (5/119) of patients. In MPM patients receiving OPDIVO 3 mg/kg every 2 weeks with YERVOY 1 mg/kg every 6 weeks, infusion-related reactions occurred in 12% (37/300) of patients.

In separate Phase 3 trials of YERVOY 3 mg/kg and 10 mg/kg monotherapy, infusion-related reactions occurred in 2.9% (28/982) of patients.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation

Fatal and other serious complications can occur in patients who receive allogeneic hematopoietic stem cell transplantation (HSCT) before or after being treated with OPDIVO or YERVOY. Transplant-related complications include hyperacute graft-versus-host-disease (GVHD), acute GVHD, chronic GVHD, hepatic veno-occlusive disease (VOD) after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between OPDIVO or YERVOY and allogeneic HSCT.

Follow patients closely for evidence of transplant-related complications and intervene promptly. Consider the benefit versus risks of treatment with OPDIVO and YERVOY prior to or after an allogeneic HSCT.

Embryo-Fetal Toxicity

Based on its mechanism of action and findings from animal studies, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. The effects of YERVOY are likely to be greater during the second and third trimesters of pregnancy. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with OPDIVO and YERVOY and for at least 5 months after the last dose.

Increased Mortality in Patients with Multiple Myeloma when OPDIVO is Added to a Thalidomide Analogue and Dexamethasone

In randomized clinical trials in patients with multiple myeloma, the addition of OPDIVO to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of patients with multiple myeloma with a PD-1 or PD-L1 blocking antibody in combination with a thalidomide analogue plus dexamethasone is not recommended outside of controlled clinical trials.

Lactation

There are no data on the presence of OPDIVO or YERVOY in human milk, the effects on the breastfed child, or the effects on milk production. Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 5 months after the last dose.

Serious Adverse Reactions

In Checkmate 037, serious adverse reactions occurred in 41% of patients receiving OPDIVO (n=268). Grade 3 and 4 adverse reactions occurred in 42% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse drug reactions reported in 2% to <5% of patients receiving OPDIVO were abdominal pain, hyponatremia, increased aspartate aminotransferase, and increased lipase. In Checkmate 066, serious adverse reactions occurred in 36% of patients receiving OPDIVO (n=206). Grade 3 and 4 adverse reactions occurred in 41% of patients receiving OPDIVO. The most frequent Grade 3 and 4 adverse reactions reported in 2% of patients receiving OPDIVO were gamma-glutamyltransferase increase (3.9%) and diarrhea (3.4%). In Checkmate 067, serious adverse reactions (74% and 44%), adverse reactions leading to permanent discontinuation (47% and 18%) or to dosing delays (58% and 36%), and Grade 3 or 4 adverse reactions (72% and 51%) all occurred more frequently in the OPDIVO plus YERVOY arm (n=313) relative to the OPDIVO arm (n=313). The most frequent (10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.2%), colitis (10% and 1.9%), and pyrexia (10% and 1.0%). In Checkmate 227, serious adverse reactions occurred in 58% of patients (n=576). The most frequent (2%) serious adverse reactions were pneumonia, diarrhea/colitis, pneumonitis, hepatitis, pulmonary embolism, adrenal insufficiency, and hypophysitis. Fatal adverse reactions occurred in 1.7% of patients; these included events of pneumonitis (4 patients), myocarditis, acute kidney injury, shock, hyperglycemia, multi-system organ failure, and renal failure. In Checkmate 9LA, serious adverse reactions occurred in 57% of patients (n=358). The most frequent (>2%) serious adverse reactions were pneumonia, diarrhea, febrile neutropenia, anemia, acute kidney injury, musculoskeletal pain, dyspnea, pneumonitis, and respiratory failure. Fatal adverse reactions occurred in 7 (2%) patients, and included hepatic toxicity, acute renal failure, sepsis, pneumonitis, diarrhea with hypokalemia, and massive hemoptysis in the setting of thrombocytopenia. In Checkmate 017 and 057, serious adverse reactions occurred in 46% of patients receiving OPDIVO (n=418). The most frequent serious adverse reactions reported in 2% of patients receiving OPDIVO were pneumonia, pulmonary embolism, dyspnea, pyrexia, pleural effusion, pneumonitis, and respiratory failure. In Checkmate 057, fatal adverse reactions occurred; these included events of infection (7 patients, including one case of Pneumocystis jirovecii pneumonia), pulmonary embolism (4 patients), and limbic encephalitis (1 patient). In Checkmate 743, serious adverse reactions occurred in 54% of patients receiving OPDIVO plus YERVOY. The most frequent serious adverse reactions reported in 2% of patients were pneumonia, pyrexia, diarrhea, pneumonitis, pleural effusion, dyspnea, acute kidney injury, infusion-related reaction, musculoskeletal pain, and pulmonary embolism. Fatal adverse reactions occurred in 4 (1.3%) patients and included pneumonitis, acute heart failure, sepsis, and encephalitis. In Checkmate 214, serious adverse reactions occurred in 59% of patients receiving OPDIVO plus YERVOY (n=547). The most frequent serious adverse reactions reported in 2% of patients were diarrhea, pyrexia, pneumonia, pneumonitis, hypophysitis, acute kidney injury, dyspnea, adrenal insufficiency, and colitis. In Checkmate 9ER, serious adverse reactions occurred in 48% of patients receiving OPDIVO and cabozantinib (n=320). The most frequent serious adverse reactions reported in 2% of patients were diarrhea, pneumonia, pneumonitis, pulmonary embolism, urinary tract infection, and hyponatremia. Fatal intestinal perforations occurred in 3 (0.9%) patients. In Checkmate 025, serious adverse reactions occurred in 47% of patients receiving OPDIVO (n=406). The most frequent serious adverse reactions reported in 2% of patients were acute kidney injury, pleural effusion, pneumonia, diarrhea, and hypercalcemia. In Checkmate 205 and 039, adverse reactions leading to discontinuation occurred in 7% and dose delays due to adverse reactions occurred in 34% of patients (n=266). Serious adverse reactions occurred in 26% of patients. The most frequent serious adverse reactions reported in 1% of patients were pneumonia, infusion-related reaction, pyrexia, colitis or diarrhea, pleural effusion, pneumonitis, and rash. Eleven patients died from causes other than disease progression: 3 from adverse reactions within 30 days of the last OPDIVO dose, 2 from infection 8 to 9 months after completing OPDIVO, and 6 from complications of allogeneic HSCT. In Checkmate 141, serious adverse reactions occurred in 49% of patients receiving OPDIVO (n=236). The most frequent serious adverse reactions reported in 2% of patients receiving OPDIVO were pneumonia, dyspnea, respiratory failure, respiratory tract infection, and sepsis. In Checkmate 275, serious adverse reactions occurred in 54% of patients receiving OPDIVO (n=270). The most frequent serious adverse reactions reported in 2% of patients receiving OPDIVO were urinary tract infection, sepsis, diarrhea, small intestine obstruction, and general physical health deterioration. In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY (n=119), serious adverse reactions occurred in 47% of patients. The most frequent serious adverse reactions reported in 2% of patients were colitis/diarrhea, hepatic events, abdominal pain, acute kidney injury, pyrexia, and dehydration. In Checkmate 040, serious adverse reactions occurred in 49% of patients receiving OPDIVO (n=154). The most frequent serious adverse reactions reported in 2% of patients were pyrexia, ascites, back pain, general physical health deterioration, abdominal pain, pneumonia, and anemia. In Checkmate 040, serious adverse reactions occurred in 59% of patients receiving OPDIVO with YERVOY (n=49). Serious adverse reactions reported in 4% of patients were pyrexia, diarrhea, anemia, increased AST, adrenal insufficiency, ascites, esophageal varices hemorrhage, hyponatremia, increased blood bilirubin, and pneumonitis. In Checkmate 238, serious adverse reactions occurred in 18% of patients receiving OPDIVO (n=452). Grade 3 or 4 adverse reactions occurred in 25% of OPDIVO-treated patients (n=452). The most frequent Grade 3 and 4 adverse reactions reported in 2% of OPDIVO-treated patients were diarrhea and increased lipase and amylase. In Attraction-3, serious adverse reactions occurred in 38% of patients receiving OPDIVO (n=209). Serious adverse reactions reported in 2% of patients who received OPDIVO were pneumonia, esophageal fistula, interstitial lung disease, and pyrexia. The following fatal adverse reactions occurred in patients who received OPDIVO: interstitial lung disease or pneumonitis (1.4%), pneumonia (1.0%), septic shock (0.5%), esophageal fistula (0.5%), gastrointestinal hemorrhage (0.5%), pulmonary embolism (0.5%), and sudden death (0.5%).

Common Adverse Reactions

In Checkmate 037, the most common adverse reaction (20%) reported with OPDIVO (n=268) was rash (21%). In Checkmate 066, the most common adverse reactions (20%) reported with OPDIVO (n=206) vs dacarbazine (n=205) were fatigue (49% vs 39%), musculoskeletal pain (32% vs 25%), rash (28% vs 12%), and pruritus (23% vs 12%). In Checkmate 067, the most common (20%) adverse reactions in the OPDIVO plus YERVOY arm (n=313) were fatigue (62%), diarrhea (54%), rash (53%), nausea (44%), pyrexia (40%), pruritus (39%), musculoskeletal pain (32%), vomiting (31%), decreased appetite (29%), cough (27%), headache (26%), dyspnea (24%), upper respiratory tract infection (23%), arthralgia (21%), and increased transaminases (25%). In Checkmate 067, the most common (20%) adverse reactions in the OPDIVO arm (n=313) were fatigue (59%), rash (40%), musculoskeletal pain (42%), diarrhea (36%), nausea (30%), cough (28%), pruritus (27%), upper respiratory tract infection (22%), decreased appetite (22%), headache (22%), constipation (21%), arthralgia (21%), and vomiting (20%). In Checkmate 227, the most common (20%) adverse reactions were fatigue (44%), rash (34%), decreased appetite (31%), musculoskeletal pain (27%), diarrhea/colitis (26%), dyspnea (26%), cough (23%), hepatitis (21%), nausea (21%), and pruritus (21%). In Checkmate 9LA, the most common (>20%) adverse reactions were fatigue (49%), musculoskeletal pain (39%), nausea (32%), diarrhea (31%), rash (30%), decreased appetite (28%), constipation (21%), and pruritus (21%). In Checkmate 017 and 057, the most common adverse reactions (20%) in patients receiving OPDIVO (n=418) were fatigue, musculoskeletal pain, cough, dyspnea, and decreased appetite. In Checkmate 743, the most common adverse reactions (20%) in patients receiving OPDIVO plus YERVOY were fatigue (43%), musculoskeletal pain (38%), rash (34%), diarrhea (32%), dyspnea (27%), nausea (24%), decreased appetite (24%), cough (23%), and pruritus (21%). In Checkmate 214, the most common adverse reactions (20%) reported in patients treated with OPDIVO plus YERVOY (n=547) were fatigue (58%), rash (39%), diarrhea (38%), musculoskeletal pain (37%), pruritus (33%), nausea (30%), cough (28%), pyrexia (25%), arthralgia (23%), decreased appetite (21%), dyspnea (20%), and vomiting (20%). In Checkmate 9ER, the most common adverse reactions (20%) in patients receiving OPDIVO and cabozantinib (n=320) were diarrhea (64%), fatigue (51%), hepatotoxicity (44%), palmar-plantar erythrodysaesthesia syndrome (40%), stomatitis (37%), rash (36%), hypertension (36%), hypothyroidism (34%), musculoskeletal pain (33%), decreased appetite (28%), nausea (27%), dysgeusia (24%), abdominal pain (22%), cough (20%) and upper respiratory tract infection (20%). In Checkmate 025, the most common adverse reactions (20%) reported in patients receiving OPDIVO (n=406) vs everolimus (n=397) were fatigue (56% vs 57%), cough (34% vs 38%), nausea (28% vs 29%), rash (28% vs 36%), dyspnea (27% vs 31%), diarrhea (25% vs 32%), constipation (23% vs 18%), decreased appetite (23% vs 30%), back pain (21% vs 16%), and arthralgia (20% vs 14%). In Checkmate 205 and 039, the most common adverse reactions (20%) reported in patients receiving OPDIVO (n=266) were upper respiratory tract infection (44%), fatigue (39%), cough (36%), diarrhea (33%), pyrexia (29%), musculoskeletal pain (26%), rash (24%), nausea (20%) and pruritus (20%). In Checkmate 141, the most common adverse reactions (10%) in patients receiving OPDIVO (n=236) were cough (14%) and dyspnea (14%) at a higher incidence than investigators choice. In Checkmate 275, the most common adverse reactions (20%) reported in patients receiving OPDIVO (n=270) were fatigue (46%), musculoskeletal pain (30%), nausea (22%), and decreased appetite (22%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO as a single agent, the most common adverse reactions (20%) were fatigue (54%), diarrhea (43%), abdominal pain (34%), nausea (34%), vomiting (28%), musculoskeletal pain (28%), cough (26%), pyrexia (24%), rash (23%), constipation (20%), and upper respiratory tract infection (20%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY (n=119), the most common adverse reactions (20%) were fatigue (49%), diarrhea (45%), pyrexia (36%), musculoskeletal pain (36%), abdominal pain (30%), pruritus (28%), nausea (26%), rash (25%), decreased appetite (20%), and vomiting (20%). In Checkmate 040, the most common adverse reactions (20%) in patients receiving OPDIVO (n=154) were fatigue (38%), musculoskeletal pain (36%), abdominal pain (34%), pruritus (27%), diarrhea (27%), rash (26%), cough (23%), and decreased appetite (22%). In Checkmate 040, the most common adverse reactions (20%) in patients receiving OPDIVO with YERVOY (n=49), were rash (53%), pruritus (53%), musculoskeletal pain (41%), diarrhea (39%), cough (37%), decreased appetite (35%), fatigue (27%), pyrexia (27%), abdominal pain (22%), headache (22%), nausea (20%), dizziness (20%), hypothyroidism (20%), and weight decreased (20%). In Checkmate 238, the most common adverse reactions (20%) reported in OPDIVO-treated patients (n=452) vs ipilimumab-treated patients (n=453) were fatigue (57% vs 55%), diarrhea (37% vs 55%), rash (35% vs 47%), musculoskeletal pain (32% vs 27%), pruritus (28% vs 37%), headache (23% vs 31%), nausea (23% vs 28%), upper respiratory infection (22% vs 15%), and abdominal pain (21% vs 23%). The most common immune-mediated adverse reactions were rash (16%), diarrhea/colitis (6%), and hepatitis (3%). In Attraction-3, the most common adverse reactions (20%) in OPDIVO-treated patients (n=209) were rash (22%) and decreased appetite (21%).

In a separate Phase 3 trial of YERVOY 3 mg/kg, the most common adverse reactions (5%) in patients who received YERVOY at 3 mg/kg were fatigue (41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).

Please see US Full Prescribing Information for OPDIVO and YERVOY.

Clinical Trials and Patient Populations

Checkmate 037previously treated metastatic melanoma; Checkmate 066previously untreated metastatic melanoma; Checkmate 067previously untreated metastatic melanoma, as a single agent or in combination with YERVOY; Checkmate 227previously untreated metastatic non-small cell lung cancer, in combination with YERVOY; Checkmate 9LApreviously untreated recurrent or metastatic non-small cell lung cancer in combination with YERVOY and 2 cycles of platinum-doublet chemotherapy by histology; Checkmate 017second-line treatment of metastatic squamous non-small cell lung cancer; Checkmate 057second-line treatment of metastatic non-squamous non-small cell lung cancer; Checkmate 743previously untreated unresectable malignant pleural mesothelioma, in combination with YERVOY; Checkmate 214previously untreated renal cell carcinoma, in combination with YERVOY; Checkmate 9ERpreviously untreated renal cell carcinoma, in combination with cabozantinib; Checkmate 025previously treated renal cell carcinoma; Checkmate 205/039classical Hodgkin lymphoma; Checkmate 141recurrent or metastatic squamous cell carcinoma of the head and neck; Checkmate 275urothelial carcinoma; Checkmate 142MSI-H or dMMR metastatic colorectal cancer, as a single agent or in combination with YERVOY; Checkmate 040hepatocellular carcinoma, as a single agent or in combination with YERVOY; Checkmate 238adjuvant treatment of melanoma; Attraction-3esophageal squamous cell carcinoma

CABOMETYX INDICATIONS

Read the original post:
Opdivo in Combination with Cabometyx Shows Sustained Survival and Response Rate Benefits as First-Line Treatment for Patients with Advanced RCC -...

Read More...

Astellas and Seagen Announce Presentation of Results from PADCEV (enfortumab vedotin-ejfv) Pivotal Trial in Patients with Previously Treated Advanced…

Sunday, February 14th, 2021

TOKYO and BOTHELL, Wash., Feb. 12, 2021 /PRNewswire/ --Astellas Pharma Inc. (TSE: 4503, President and CEO: Kenji Yasukawa, Ph.D., "Astellas") and Seagen Inc. (Nasdaq: SGEN) today announced results from the second cohort (cohort 2) of patients in the pivotal phase 2 single-arm EV-201 trial. In the trial, 52 percent of patients who received PADCEV (enfortumab vedotin-ejfv) had an objective response (95 percent Confidence Interval [CI]: 40.8, 62.4) and the median duration of response was 10.9 months (95 percent CI: 5.8, NR). Twenty percent of patients had a complete response, the absence of detectable cancer, after PADCEV treatment, and 31 percent had a partial response. Adverse events were consistent with those observed in previous trial data, with the most common all-grade treatment-related adverse events (AEs) being alopecia (51 percent), peripheral sensory neuropathy (47 percent), and fatigue (34 percent).

Cohort 2 of the EV-201 trial evaluated PADCEV in patients with locally advanced or metastatic urothelial cancer who had been previously treated with a PD-1/L1 inhibitor, had not received a platinum-containing chemotherapy in this setting, and were ineligible for cisplatin. Urothelial cancer is the most common type of bladder cancer and can also be found in the renal pelvis, ureter and urethra.1

Thefindings were presented today in an oral presentation as part of the virtual scientific program of the American Society of Clinical Oncology Genitourinary Cancers Symposium (ASCO GU) (Abstract 394).

"Roughly half of all patients with locally advanced or metastatic urothelial cancer have comorbidities that make them ineligible for cisplatin-based chemotherapy and after progression on first-line immunotherapy, there are few effective treatment options," said Arjun Balar, M.D., Associate Professor of Medicine, Director Genitourinary Medical Oncology Program, NYU Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and an investigator for the trial. "Results from EV-201 cohort 2 indicate that enfortumab vedotin may be an important therapeutic option for these patients."

"Fifty-two percent of patients in this study cohort responded to PADCEV including some patients who showed no detectable cancer following treatment an important result for people with this difficult-to-treat form of urothelial cancer," said Andrew Krivoshik, M.D., Ph.D., Senior Vice President and Oncology Therapeutic Area Head, Astellas.

"We're pleased that PADCEV provided meaningful clinical benefit to a group of patients who historically have very few options and may choose not to pursue further treatment for the disease," said Roger Dansey, M.D., Chief Medical Officer, Seagen.

The results are expected to be submitted to the U.S. Food and Drug Administration by the end of March as part of a supplemental biologics licensing application. EV-201 results will also be included in submissions to some global health authorities.

EV-201 Cohort 2 Trial ResultsIn cohort 2 of the dual-cohort trial, 52 percent of patients who received PADCEV had an objective response (46/89); (95 percent CI: 40.8, 62.4) per blinded independent central review (the primary endpoint), with 20percent of patients (18/89) experiencing a complete response and 31 percent of patients experiencing a partial response (28/89).

In the trial's secondary endpoints, duration of response lasted a median of 10.9 months (95 percent CI: 5.8, NR).Patients lived a median of 5.8 months without cancer progression (progression-free survival) (95 percent CI: 5.0, 8.3), and had a median overall survival of 14.7 months(95 percent CI: 10.5,18.2).

Grade 3 or greater treatment-related AEs of interest included skin reactions (17 percent), peripheral neuropathy (8 percent) and hyperglycemia (6 percent). Four deaths were reported as treatment-related by investigators in patients age 75 years and older with multiple comorbidities.

About Urothelial CancerUrothelial cancer is the most common type of bladder cancer (90 percent of cases) and can also be found in the renal pelvis (where urine collects inside the kidney), ureter (tube that connects the kidneys to the bladder) and urethra.1 Globally, approximately 549,000 new cases of bladder cancer and 200,000 deaths are reported annually.2

About the EV-201 TrialThe EV-201 trial (NCT03219333) is a single-arm, pivotal phase 2 clinical trial of enfortumab vedotin for patients with locally advanced or metastatic urothelial cancer who have been previously treated with a PD-1 or PD-L1 inhibitor, including those who have also been treated with a platinum-containing chemotherapy (cohort 1) and those who have not received a platinum-containing chemotherapy in this setting and who are ineligible for cisplatin (cohort 2). The trial enrolled 128 patients in cohort 1 and 91 patients in cohort 2 at multiple centers internationally.

The primary endpoint is confirmed objective response rate per blinded independent central review. Secondary endpoints include assessments of duration of response, disease control rate, progression-free survival, overall survival, safety and tolerability.

About PADCEV (enfortumab vedotin-ejfv)PADCEV was approved by the U.S. Food and Drug Administration (FDA) in December 2019 and is indicated for the treatment of adult patients with locally advanced or metastatic urothelial cancer who have previously received a programmed death receptor-1 (PD-1) or programmed death-ligand 1 (PD-L1) inhibitor and a platinum-containing chemotherapy before (neoadjuvant) or after (adjuvant) surgery or in a locally advanced or metastatic setting. PADCEV was approved under the FDA's Accelerated Approval Program based on tumor response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.3

PADCEV is a first-in-class antibody-drug conjugate (ADC) that is directed against Nectin-4, a protein located on the surface of cells and highly expressed in bladder cancer.3,4 Nonclinical data suggest the anticancer activity of PADCEV is due to its binding to Nectin-4 expressing cells followed by the internalization and release of the anti-tumor agent monomethyl auristatin E (MMAE) into the cell, which result in the cell not reproducing (cell cycle arrest) and in programmed cell death (apoptosis).4 PADCEV is co-developed by Astellas and Seagen.

PADCEV Important Safety Information Warnings and Precautions

Adverse ReactionsSerious adverse reactions occurred in 46% of patients treated with PADCEV. The most common serious adverse reactions (3%) were urinary tract infection (6%), cellulitis (5%), febrile neutropenia (4%), diarrhea (4%), sepsis (3%), acute kidney injury (3%), dyspnea (3%), and rash (3%). Fatal adverse reactions occurred in 3.2% of patients, including acute respiratory failure, aspiration pneumonia, cardiac disorder, and sepsis (each 0.8%).

Adverse reactions leading to discontinuation occurred in 16% of patients; the most common adverse reaction leading to discontinuation was peripheral neuropathy (6%). Adverse reactions leading to dose interruption occurred in 64% of patients; the most common adverse reactions leading to dose interruption were peripheral neuropathy (18%), rash (9%) and fatigue (6%). Adverse reactions leading to dose reduction occurred in 34% of patients; the most common adverse reactions leading to dose reduction were peripheral neuropathy (12%), rash (6%) and fatigue (4%).

The most common adverse reactions (20%) were fatigue (56%), peripheral neuropathy (56%), decreased appetite (52%), rash (52%), alopecia (50%), nausea (45%), dysgeusia (42%), diarrhea (42%), dry eye (40%), pruritus (26%) and dry skin (26%). The most common Grade 3 adverse reactions (5%) were rash (13%), diarrhea (6%) and fatigue (6%).

Lab AbnormalitiesIn one clinical trial, Grade 3-4 laboratory abnormalities reported in 5% were: lymphocytes decreased (10%), hemoglobin decreased (10%), phosphate decreased (10%), lipase increased (9%), sodium decreased (8%), glucose increased (8%), urate increased (7%), neutrophils decreased (5%).

Drug Interactions

Specific Populations

For more information, please see the full Prescribing Information for PADCEV here.

About Astellas Astellas Pharma Inc. is a pharmaceutical company conducting business in more than 70 countries around the world. We are promoting the Focus Area Approach that is designed to identify opportunities for the continuous creation of new drugs to address diseases with high unmet medical needs by focusing on Biology and Modality. Furthermore, we are also looking beyond our foundational Rx focus to create Rx+ healthcare solutions that combine our expertise and knowledge with cutting-edge technology in different fields of external partners. Through these efforts, Astellas stands on the forefront of healthcare change to turn innovative science into value for patients. For more information, please visit our website athttps://www.astellas.com/en.

About Seagen Seagen Inc. is a global biotechnology company that discovers, develops and commercializes transformative cancer medicines to make a meaningful difference in people's lives. Seagen is headquartered in the Seattle, Washington area, and has locations in California, Canada, Switzerland and the European Union. For more information on our marketed products and robust pipeline, visit http://www.seagen.com and follow @SeagenGlobal on Twitter.

About the Astellas and Seagen CollaborationAstellas and Seagen are co-developing enfortumab vedotin under a collaboration that was entered into in 2007 and expanded in 2009.

Astellas Cautionary NotesIn this press release, statements made with respect to current plans, estimates, strategies and beliefs and other statements that are not historical facts are forward-looking statements about the future performance of Astellas. These statements are based on management's current assumptions and beliefs in light of the information currently available to it and involve known and unknown risks and uncertainties. A number of factors could cause actual results to differ materially from those discussed in the forward-looking statements. Such factors include, but are not limited to: (i) changes in general economic conditions and in laws and regulations, relating to pharmaceutical markets, (ii) currency exchange rate fluctuations, (iii) delays in new product launches, (iv) the inability of Astellas to market existing and new products effectively, (v) the inability of Astellas to continue to effectively research and develop products accepted by customers in highly competitive markets, and (vi) infringements of Astellas' intellectual property rights by third parties.

Information about pharmaceutical products (including products currently in development), which is included in this press release is not intended to constitute an advertisement or medical advice.

Seagen Forward Looking StatementsCertain statements made in this press release are forward looking, such as those, among others, relating to the submission of data from cohort 2 of the EV-201 trial for presentation at an upcoming scientific congress; intended regulatory actions, including plans to submit a supplemental biologics licensing application to the FDA and to make submissions to global health authorities; and the therapeutic potential of PADCEV, including its efficacy, safety and therapeutic uses. Actual results or developments may differ materially from those projected or implied in these forward-looking statements. Factors that may cause such a difference include the possibilities that we may experience delays in the submission of results to the FDA; that the results from cohort 2 of the EV-201 trial may not be support any approvals by regulatory authorities; that, even if PADCEV receives an additional approval in the U.S. or an approval in any global registrations, the product labeling may not be as broad or desirable as anticipated; that ongoing and subsequent clinical trials may fail to establish sufficient efficacy; that adverse events or safety signals may occur; and that adverse regulatory actions may occur. More information about the risks and uncertainties faced by Seagen is contained under the caption "Risk Factors" included in the company's Annual Report on Form 10-K for the year ended December 31, 2020 filed with the Securities and Exchange Commission. Seagen disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by law.

References

1

American Society of Clinical Oncology. Bladder cancer: introduction (5-2019). https://www.cancer.net/cancer-types/bladder-cancer/introduction. Accessed January 27, 2021.

2

Cancer today: data visualization tools for exploring the global cancer burden in 2020. https://gco.iarc.fr/today/home. Accessed January 27, 2021.

3

PADCEV [package insert] Northbrook, IL: Astellas Pharma Inc.

4

Challita-Eid P, Satpayev D, Yang P, et al. Enfortumab Vedotin Antibody-Drug Conjugate Targeting Nectin-4 Is a Highly Potent Therapeutic Agent in Multiple Preclinical Cancer Models. Cancer Res 2016;76(10):3003-13.

SOURCE Astellas Pharma Inc.

http://www.us.astellas.com

See the original post here:
Astellas and Seagen Announce Presentation of Results from PADCEV (enfortumab vedotin-ejfv) Pivotal Trial in Patients with Previously Treated Advanced...

Read More...

[Full text] Loganin Attenuates Septic Acute Renal Injury with the Participation of | DDDT – Dove Medical Press

Sunday, February 14th, 2021

Introduction

Sepsis, a destructive inflammatory response syndrome in clinical practice, is principally caused by multi-factors, such as toxins, pathogenic bacteria, and their metabolic products entering in the blood stream.1,2 As a terrible generalized hyperinflammatory condition, sepsis patients suffer a variety of tissue injuries and organ dysfunctions involving in lung, kidney, and heart.35 Despite many efforts have been made to reduce mortality and improve the cure rate of sepsis worldwide, sepsis remains a terrible disease that seriously threatens the patients. Only 30% septic patients survive according to statistics, besides, at least 6 million patients die from septic infection annually according to the statistics of the World Health Organization (WHO).6,7 Among the complications of sepsis, acute kidney injury (AKI) is the most common and serious with high mortality. It is considered that over 60% septic cases occur with AKI and approximately 50% AKI cases are associated with sepsis.8,9 Dreadfully, although the standard treatments are used, the mortality of severe AKI is as high as 45 to 70%.10 Hence, it is extremely urgent to study the accurate mechanisms and develop effective methods to alleviate sepsis-related AKI.

Several studies have revealed the mechanisms related to AKI are controversial, uncontrolled inflammatory response, severe oxidative stress, maladaptive apoptosis, and aberrant endoplasmic reticulum stress are all involved in the pathological process of AKI.11 As known, except for inflammation, oxidative stress is frequently prescribed for AKI pathogenesis. Oxidative stress referring to a state of imbalance between oxidation and anti-oxidation is a negative effect produced by free radicals, which is considered to be an important factor leading to multiple diseases, including retinopathy.12 Under various pathologic conditions, the strong correlation between oxidative stress injury and nuclear factor E2-related factor 2 (Nrf2) has been previously proved.1315 The preceding study has pointed out that Nrf2/HO-1 pathway is one of the most recognized signaling closely associated with oxidative and anti-oxidative balance.16,17 Under normal circumstances, the cap n collar subfamily of basic region-leucine zipper transcription factor Nrf2 is restricted in the cytoplasm by binding to its ligand Kelch-like ECH associating protein 1 (Keap1).18 Once exposed to oxidative stress stimulation, Nrf2-Keap1 complexes can be dissociated, the detached Nrf2 translocates into the nucleus to promote heme-oxygenase 1 (HO-1) expression, which involves in the balance of molecules associated with oxidative stress, such as superoxide dismutase (SOD), malonaldehyde (MDA), reactive oxygen species (ROS), and glutathione peroxidase (GSH-Px).19,20 Previously, regulating Nrf2 and its downstream genes could decrease inflammatory factor release, reduce oxidative stress, and maintain anti-apoptotic and survival abilities in the injured kidney.21 Therefore, restraining oxidative stress through activating Nrf2 pathway might be a possible therapeutic strategy targeting sepsis-related AKI.

The evolving evidence indicates that ROS accumulation resulting from abnormal oxidative stress promotes macromolecule peroxidation, and thereby causing cytochrome c-mediated mitochondrial apoptosis.22 Oxidative-stress-related excessive ROS generation contributes to cardiolipin oxidation, and thereby resulting in cytochrome c binding reduction.23 The free cytochrome c in the mitochondria migrates from inter-membrane side to the cytoplasm and touches off apoptotic cascade at the molecular level.24 Therefore, reducing oxidative stress and thus mitochondrial apoptosis induced by oxidative stress may be a potential therapeutic strategy for septic AKI.

Loganin (iridoid glycoside) is the main active ingredient of Corni fructus, which is the fruit of Cornus officinalis Sieb. and has been used to nourish the liver and kidney in the East for fairly long time.25 Loganin has been reported to possess the property of anti-inflammation, antioxidant, anti-diabetes, neuroprotection, and sedation.2630 Liu et al reported that Loganin alleviated diabetic nephropathy by down-regulating MDA level while up-regulating SOD activity in serum and kidney tissues, indicating the antioxidant capacity of Loganin in renal injury models.29 Moreover, Loganin could also play a hepatoprotective role in type 2 diabetic db/db mice by suppressing inflammatory reaction, oxidative stress, and apoptosis, which are the pathogenesis of septic AKI.28 However, whether Loganin can serve as a potential treatment for septic AKI is still unknown. Hence, the following study was conducted to investigate the effects of Loganin on septic AKI and preliminarily explore the related mechanism.

Cecal ligation and puncture (CLP) method was used to induce sepsis in mice. Male C57BL/6 mice at the age of 8 weeks (License number: SCXK (Liaoning, China) 20150001) were obtained from Changsheng biotechnology Co., Ltd. and kept in a standard laboratory environment (12-hour day/night cycle, 4555% humidity, 22 1C). After the adaption, the mice were randomly divided into the following five groups: Sham; CLP; III CLP+L-Loganin (20 mg/kg); CLP+M-Loganin (40 mg/kg); CLP+H-Loganin (80 mg/kg). After anesthesia, the abdomen of mice was open to expose the cecum. The cecal puncture point was the midpoint between the end of the cecum and the ligation point. For the mice in sham group, the cecum was found and returned into the abdominal. After the CLP operation, the mice were given Loganin (20, 40, 80 mg/kg) or equal volume of vehicle by gavage for once. A part of the mice were euthanized under deep anesthesia 24 h after the CLP operation to collect serum and renal cortex for follow-up experiments. The remaining mice were used to calculate the survival rate. All the animal treatment was performed in accordance with the Guide for Care and Use of Laboratory Animals (Eighth Edition) published by the Institute of Laboratory Animal Resources Commission on Life Sciences. All laboratory procedures were approved by The First Affiliated Hospital of Harbin Medical University (No.SYDW2019-229).

The collected serum was used to determine the levels of creatinine and blood urea nitrogen in accordance with the manufacturers instruction (Jiancheng Bioengineering Institute, China).

The fixed kidney tissues were embedded in paraffin, sliced into sections at 5 mm thick, subjected to hematoxylin solution (Solarbio, China), and counterstained with eosin (Sangon, China) in accordance with the manufacturer's instruction. The kidney pathological alterations were observed under light microscopy at 200 X magnification and scored to evaluate the degree of renal injury.

Simply, the above-mentioned kidney sections were blocked in goat serum at room temperature for 15 min, incubated in the primary antibody (Rabbit anti-neutrophil gelatinase-associated lipocalin (NGAL), dilution: 1:50, Affinity, China) at 4C overnight, and treated with HRP IgG antibody (dilution: 1:500, Thermo Fisher, USA) at room temperature for 1 hTo visualize renal NGAL expression, diaminobenzidine slide (Solarbio, China) and hematoxylin (Solarbio, China) were applied according to the manufacturers instruction. Finally, the expression of target protein was observed under light microscopy at 400 X magnification.

Briefly, cell apoptosis in the aforementioned kidney section was detected by TUNEL assay by using the In Situ Cell Death Detection Kit (Roche, Switzerland). After all the procedure required by the manufacturer's instruction, apoptosis was observed under light microscopy at 400 X magnification.

Human kidney proximal tubular (HK2) cells were obtained from Procell Life Science & Technology Co., Ltd. (Wuhan, China) and cultured in DMEM medium (Gibco, USA) in a humidified 5% CO2 incubator at 37C. After adhering to the plates, HK2 cells were exposed to 100 ng/mL lipopolysaccharides (LPS) with or without Loganin (5, 10, 20 M) for 48 h. The treated HK2 cells were collected for the future experiments.

To inhibit the function of AKT or Nrf2, HK2 cells were grown in 10 M LY294002 (a broad-spectrum inhibitor of PI3K) or 10 M ML385 (a specific Nrf2 inhibitor) for 48 h in the presence of 100ng/mL LPS and 20 M Loganin.

Oxidative stress markers, including SOD and GSH-Px activity as well as MDA production in the kidney tissues or HK2 cells, were, respectively, measured by corresponding assay kits (Nanjing Jiancheng Biological Engineering Institute, China). The microplate reader (BioTek, USA) was used to read the optical density (OD) value at 570 nm. ROS production in the kidney tissues or HK2 cells was measured by a ROS assay kit (Nanjing Jiancheng Biological Engineering Institute, China) and flow cytometry (NovoCyte, Aceabio, USA) was used for its quantitative analysis.

Mitochondrial membrane potential detection kit obtained from Beyotime Institute of Biotechnology (Shanghai, China) was used to detect the changes in mitochondrial membrane potential of kidney tissue homogenates or HK2 cells. All the procedures were according to the manufacturers instructions and flow cytometry (NovoCyte, Aceabio, USA) was used for the quantitative analysis.

Fluo-4 AM fluorescent probe was used to detect intracellular calcium mobilization. Briefly, kidney tissue homogenates or HK2 cells were incubated in 4 M Fluo-4 AM (Beyotime Institute of Biotechnology, China) at 37C for 30 min. After washing by PBS for three times, flow cytometry (NovoCyte, Aceabio, USA) was used for quantitative analysis.

Kidney tissues and treated HK2 cells were used to extract total, cytoplasmic, or nuclear protein, and the protein concentration was quantified by the BCA kit (Solarbio, China). The isolated protein was separated by sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE), transferred onto polyvinylidene difluoride (PVDF) membranes and blocked by 5% skimmed milk. Next, the PVDF membranes were subjected to the primary antibodies and horseradish peroxidase (HRP) labelled secondary antibody. Finally, chemiluminescence (ECL) kit was used to visualize the protein, which integrated intensity was calculated by Gel-Pro-Analyzer. The protein levels were presented as relative expression, which was calculated by comparing with the sham or control group. The primary antibodies were as follows: Rabbit anti-cytochrome c; anti-Bax; anti-Bcl-2; anti-AKT, anti-p-AKT (Ser473); anti-Nrf2; anti-HO-1 (dilution: 1:1000, Abclonal, China); anti-cleaved caspase-3 (dilution: 1:1000, Affinity, China).

Data were represented as means standard derivations (SD). The data from three or more groups were analyzed by one-way ANOVA followed by Tukeys multiple comparison tests. P value less than 0.05 was considered statistically significant.

First of all, we detected the survival rate in septic mice with Loganin administration. As shown in Figure 1A, the survival rate was observably elevated in the Loganin-treated septic mice when compared with the model ones (20, 40, 80 mg/kg). The concentrations of serum creatinine and blood urea nitrogen (Figure 1B and C) as well as the expressions of acute kidney injury marker NGAL (Figure 1E) were down-regulated with Loganin treatment (20, 40, 80 mg/kg, p < 0.05). Besides, compared with the septic group, the renal injury score calculated by HE staining was also decreased with Loganin treatment (20, 40, 80 mg/kg, Figure 1D and F, p < 0.05). The above results indicated that Loganin not only possessed the feature of down-regulating mortality but also could relieve AKI in septic mice.

Figure 1 Effects of Loganin on the survival rate, renal function and renal pathological changes in septic mice. (A) The survival rate in septic mice after Loganin treatment. The levels of serum (B) creatinine and (C) blood urea nitrogen in septic mice after Loganin treatment. (D) HE staining (at 200magnification) and (E) immunohistochemistry targeting NGAL (at 400magnification) in kidney tissue of septic mice after Loganin treatment. (F) HE staining score. Data were represented as mean SD at least six independent experiments and analyzed by one-way analysis of variance (ANOVA) followed by Tukeys multiple comparison test. ###p < 0.001 vs the sham group and **p < 0.01, ***p < 0.001 vs the CLP group.

Since oxidative stress is considered to be one of the principal elements mediating AKI, we measured the changes in oxidative stress status of kidney tissues after Loganin treatment. As exhibited in Figure 2AD, the activities of SOD and GSH-Px were up-regulated, while the productions of MDA and ROS were down-regulated in the kidney tissue of septic mice after Loganin treatment (20, 40, 80 mg/kg, p < 0.05), indicating Loganin prevented oxidative stress damage. To investigate whether Loganin was involved in mitochondrial dysfunction associated with renal impairment, we detected mitochondrial function in the kidney tissue of septic mice after Loganin treatment. As described in Figure 2E and F, the mitochondrial membrane potential loss and calcium overload were obvious in the kidney tissues after CLP procedure, which could be remitted by Loganin treatment (20, 40, 80 mg/kg, p < 0.05). With the restoration of mitochondrial function after Loganin treatment, the release of cytochrome c from mitochondria to cytoplasm was also decreased (20, 40, 80 mg/kg, Figure 2G and H, p < 0.05). Afterwards, the possible molecular mechanism related oxidative stress status was preliminarily studied. As shown in Figure 2IK, the nuclear translocation of Nrf2 was accelerated in Loganin-treated group (20, 40, 80 mg/kg, p < 0.05). Accompanied by Nrf2 nuclear translocation, HO-1 expression was also increased in kidney tissue of septic mice (20, 40, 80 mg/kg, p < 0.05). The above results indicated that Loganin reduced oxidative stress injury and promoted mitochondrial function recovery in kidney tissue of septic mice, which might be regulated by Nfr2/HO-1 signaling pathway.

Figure 2 Effects of Loganin on oxidative stress and mitochondrial function in kidney tissue of septic mice. (A) SOD activity in kidney tissue of septic mice after Loganin treatment. (B) MDA levels in kidney tissue of septic mice after Loganin treatment. (C) GSH-Px activity in kidney tissue of septic mice after Loganin treatment. (D) ROS production in kidney tissue of septic mice after Loganin treatment. (E) Flow cytometry was used to analyze JC-1 staining in kidney tissue of septic mice after Loganin treatment. (F) Flow cytometry was used to analyze calcium overload in kidney tissue of septic mice after Loganin treatment. Representative Western blot for (G) mitochondrial cytochrome c, (H) cytoplasmic cytochrome c (I) nuclear Nrf2, (J) cytoplasmic Nrf2 and (K) HO-1 in kidney tissues of septic mice after Loganin treatment. Data were represented as mean SD at least six independent experiments and analyzed by one-way analysis of variance (ANOVA) followed by Tukeys multiple comparison test. #p< 0.05, ###p < 0.001 vs the sham group and *p< 0.05 **p < 0.01, ***p < 0.001 vs the CLP group.

Subsequently, apoptosis in kidney tissues was also studied in our work. As suggested by TUNEL staining of the kidney tissue, apoptosis was distinctly increased after CLP procedure, which could be inhibited by Loganin administration (Figure 3A, 20, 40, 80 mg/kg). Consistent with TUNEL staining results, the levels of cleaved caspase-3 and Bax were decreased, whereas Bcl-2 levels were increased in the kidney of septic mice treated with Loganin (Figure 3BD, 20, 40, 80 mg/kg, p < 0.05). Simultaneously, AKT phosphorylation was down-regulated by CLP procedure compared with the sham operation, which was restored by Loganin administration (Figure 3E, 20, 40, 80 mg/kg, p < 0.05). The above results indicated that Loganin inhibited apoptosis in kidney tissue of septic mice, which might be regulated by AKT signaling pathway.

Figure 3 Effects of Loganin on apoptosis in kidney tissue of septic mice. (A) TUNEL staining in kidney tissue of septic mice. Representative Western blot for (B) cleaved caspase-3, (C) Bax, (D) Bcl-2 and (E) p-AKT in kidney tissue of septic mice after Loganin treatment. Data were represented as mean SD at least six independent experiments and analyzed by one-way analysis of variance (ANOVA) followed by Tukeys multiple comparison test. ###p < 0.001 vs the sham group and ***p < 0.001 vs the CLP group.

Since the in vivo experiments suggested Loganin could alleviate oxidative stress injury and promoted mitochondrial function recovery in septic kidney tissues, we should prove the beneficial effects of Loganin in vitro. As described in Figure 4AD, SOD and GSH-Px activities were decreased, while MDA and ROS productions were increased in LPS-incubated HK2 cells (p < 0.05). The incubation of Loganin could eliminate this phenomenon (5, 10, 20 M, p < 0.05). In addition, the loss of mitochondrial membrane potential and the overload of calcium, accompanied by cytochrome c release to cytoplasm, were almost reversed by Loganin incubation (Figure 4EJ, 5, 10, 20 M, p < 0.05). Similar to the in vivo results, the abnormal activation of Nrf2/HO-1 signaling pathway was also reversed with Loganin treatment (Figure 4KM, 20 M, p < 0.05), indicating Loganin mitigated oxidative stress and facilitated mitochondrial function recovery possibly via activating Nrf2/HO-1 signaling pathway in LPS-stimulated HK2 cells.

Figure 4 Effects of Loganin on oxidative stress and mitochondrial function in LPS-treated HK2 cells. (A) SOD activity in LPS-stimulated HK2 cells after Loganin treatment. (B) MDA levels in LPS-stimulated HK2 cells after Loganin treatment. (C) GSH-Px activity in LPS-stimulated HK2 cells after Loganin treatment. (D) ROS production in LPS-stimulated HK2 cells after Loganin treatment. (E) and (G) Flow cytometry was used to analyze JC-1 staining in LPS-stimulated HK2 cells after Loganin treatment. (F) and (H) Flow cytometry was used to analyze calcium overload in LPS-stimulated HK2 cells after Loganin treatment. Representative Western blot for (I) mitochondrial cytochrome c, (J) cytoplasmic cytochrome c, (K) nuclear Nrf2, (L) cytoplasmic Nrf2 and (M) HO-1 in LPS-stimulated HK2 cells after Loganin treatment. Data were represented as mean SD at least three independent experiments and analyzed by one-way analysis of variance (ANOVA) followed by Tukeys multiple comparison test. ##p < 0.01, ###p < 0.001 vs the control group and *p< 0.05 **p < 0.01, ***p < 0.001 vs the LPS group.

As shown in Figure 5A, the apoptosis rate of LPS-treated HK2 cells was distinctly increased compared with the control (p < 0.05), which could be lessened by Loganin incubation (5, 10, 20 M, p < 0.05). The incubation of Loganin inhibited caspase-3 splitting and Bax expression, whereas elevated Bcl-2 levels in LPS-stimulated HK2 cells (Figure 5BD, 5, 10, 20 M, p < 0.05). In addition, the aberrant phosphorylation of AKT was also reversed by Loganin treatment in LPS-stimulated HK2 cells (Figure 5E, 20 M, p < 0.05), which was consistent with the results of in vivo experiments, indicating Loganin inhibited LPS-induced HK2 cell apoptosis potentially by regulating AKT signaling pathway.

Figure 5 Effects of Loganin on apoptosis in LPS-treated HK2 cells. (A) Flow cytometry was used to analyze apoptosis in LPS-stimulated HK2 cells after Loganin treatment. Representative Western blot for (B) cleaved caspase-3, (C) Bax, (D) Bcl-2 and (E) p-AKT in LPS-stimulated HK2 cells after Loganin treatment. Data were represented as mean SD at least three independent experiments and analyzed by one-way analysis of variance (ANOVA) followed by Tukeys multiple comparison test. #p< 0.05, ##p < 0.01, ###p < 0.001 vs the control group and *p< 0.05 **p < 0.01, ***p < 0.001 vs the LPS group.

The aforementioned data suggested both Nrf2/HO-1 and AKT pathway might involve in the protective effects of Loganin on septic AKI. Finally, antagonist targeting the activity of Nrf2 and AKT, ML385 and LY294002 was used to verify the regulating effects of Loganin on Nrf2/HO-1 and AKT signaling pathway in LPS-induced HK2 cells. As shown in Figure 6AD, the antioxidant properties of Loganin were diminished by ML385 or LY294002 application in LPS-treated HK2 cells as indicated by SOD and GSH-Px activities as well as MDA and ROS productions (p < 0.05). Besides, the protective effects of mitochondrial function of Loganin were offset by Nrf2 or AKT suppression (Figure 6EH and J, p < 0.05). Similarly, as indicated by flow cytometry results, its antiapoptotic effects were also weakened by ML385 or LY294002 (Figure 6I, p < 0.05). The above results proved that the protective effects of Loganin were mediated by regulating Nrf2/HO-1 and AKT signaling pathway, but the direct target of Loganin was left to be explored in the future.

Figure 6 Verifying the effects of Loganin on AKT and Nrf2/HO-1 signaling. (A) SOD activity in LPS-stimulated HK2 cells after Loganin treatment. (B) MDA levels in LPS-stimulated HK2 cells after Loganin treatment. (C) GSH-Px activity in LPS-stimulated HK2 cells after Loganin treatment. (D) ROS production in LPS-stimulated HK2 cells after Loganin treatment. (E) and (G) Flow cytometry was used to analyze JC-1 staining in LPS-stimulated HK2 cells after Loganin treatment. (F) and (H) Flow cytometry was used to analyze calcium overload in LPS-stimulated HK2 cells after Loganin treatment. (I) Flow cytometry was used to analyze apoptosis in LPS-stimulated HK2 cells after Loganin treatment. Representative Western blot for (J) mitochondrial cytochrome c and cytoplasmic cytochrome c in LPS-stimulated HK2 cells after Loganin treatment. Data were represented as mean SD at least three independent experiments and analyzed by one-way analysis of variance (ANOVA) followed by Tukeys multiple comparison test. *p< 0.05 **p < 0.01, ***p < 0.001 vs the indicated group.

Sepsis is a complex inflammatory condition that responded to infection. The complications of sepsis are varied. Acute lung injury (ALI) is the first to appear, whereas AKI is the most serious one resulting in a mortality of 4570% in septic patients.10 In the present work, we aimed to study whether Loganin possessed the nephroprotective effect in septic mice and investigated the underlying mechanisms. Firstly, we found Loganin administration improved the survival rate in septic mice. Meanwhile, AKI was also relieved Loganin administration reflected by reduced oxidative stress, restored mitochondrial function, and inhibited apoptosis in the kidney tissue of septic mice. Besides, Loganin treatment promoted Nrf2 nuclear translocation, activated its downstream molecules, and simultaneously facilitated AKT phosphorylation in the kidney of septic mice and LPS-treated HK2 cells. Meanwhile, the beneficial effects of Loganin could be crippled by Nrf2 antagonist ML385 or PI3K inhibitor LY294002, indicating Nrf2/HO-1 and AKT signaling pathway activation is essential for the nephroprotective effects of Loganin in septic models. Above all, the present work suggested that Loganin treatment acquired protective effects in septic AKI through reducing oxidative stress and apoptosis via regulating Nrf2/HO-1 and AKT signaling pathway.

The sepsis model was established by using the CLP method, which was supposed to be the gold in vivo model for the experimental sepsis.31 It is well accepted that CLP method can simulate clinical symptoms of sepsis more practically than endotoxin or bacteria injection method.32 Hence, CLP method was adopted in our work to evaluate the therapeutic effect of Loganin on septic AKI and its underlying mechanisms. In the present study, the degree of kidney injury was analyzed after CLP procedure in mice. Consistent with previous research,33 we found the levels of serum creatinine, blood urea nitrogen, and AKI marker NGAL expression were significantly increased, indicating the septic AKI models were successfully imitated. As the exhibited results, the survival rate in septic mice with Loganin treatment was distinctly increased, indicating the potential protection of Loganin in sepsis. Afterwards, the reduction in serum creatinine concentration, blood urea nitrogen level, and renal NGAL expression was observed in septic mice with Loganin treatment, suggesting the palliative effects of Loganin on sepsis-related AKI. The in vivo data preliminarily confirmed the renal protective effects of Loganin in septic mice.

It is well understood that excessive oxidative stress is appeared to participate in the process of kidney injury resulting from multiple factors, including diabetes and sepsis.34,35 The influence of abnormal oxidative stress in the kidney tissue of CLP-treated mice should not be belittled. The previous studies have reported that Loganin possesses the ability to restore the balance of oxidative stress in diabetic nephropathy animal models by down-regulating MDA level while up-regulating SOD activity.29 Besides, Loganin also could remit inflammatory reaction, oxidative stress, and apoptosis in the livers of type 2 diabetic db/db mice models.28 Based on these backgrounds, we preliminarily inferred that Loganin might play the protective role of renal injury in septic mice by alleviating oxidative stress and experiments were carried out. In our study, we found that the CLP procedure induced SOD and GSH-Px activity decline while MDA and ROS production rise in the kidney tissue, which could be restored by the single gavage of Loganin. Similar to previous studies, the results reminded that the anti-oxidant effect of Loganin might be the basis of its renal protection.36,37 The evidence presented supported the strong relationship between mitochondrial dysfunction and abundant oxidative stress.38 In the work, we found the mitochondrial membrane potential loss and calcium overload were obvious in the kidney tissue after CLP procedure, indicating mitochondrial dysfunction occurred in the septic kidney. Not surprisingly, improved mitochondrial function reflected by elevated mitochondrial membrane potential and decreased calcium overload in the septic kidney was concurrently remitted by Loganin. The above results indicated that the anti-oxidation and mitochondrial function protection might be the basis for nephroprotective effects of Loganin.

Except for providing energy for cells, mitochondria are also involved in differentiation information transmission and apoptosis.39 Given that apoptosis, an important factor contributing to AKI progression, is worthy to be studied. Under the pathological conditions, cytochrome c in the inter-membrane space of mitochondria was released to cytoplasm, recruited apoptosome formation, and thereby inducing pathological apoptosis.40 Our data showed CLP surgery caused cytochrome c migration from mitochondrial inter-membrane space to the cytoplasm, which could be reversed by Loganin treatment. To evaluate apoptosis occurrence in the kidney, TUNEL staining and apoptosis-related protein expressions (cleaved caspase-3, Bax, and Bcl-2) were detected. Fortunately, apoptosis could be inhibited by Loganin treatment in vivo and in vitro in a dose-dependent form, indicating the anti-apoptosis effects of Loganin.

Several lines of evidence showed that Nrf2 is a redox-sensitive transcription factor modulating the transcription of oxidative stress-associated genes.41 Meanwhile, the salutary effects of Loganin in type 2 diabetic db/db might be mediated by Nrf2 introduction to the nuclei.28 Therefore, we speculated that Loganin might also alleviate septic AKI by activating Nrf2-related signalling pathway. Fortunately, we found that Loganin administration promoted Nrf2 nuclear translocation and HO-1 activation. Next, the in vitro studies were implemented to confirm whether Nrf2/HO-1 signaling was involved in the beneficial effect of Loganin in LPS-treated HK2 cells. Similar to the experimental results in vivo, Loganin alleviated oxidative stress injury, restored mitochondrial function, and inhibited apoptosis in LPS-stimulated HK2 cells, which could be diminished by the specific Nrf2 inhibitor ML385. Although it has not been confirmed that Nrf2 is a direct target of Loganin, our experimental results show that Nrf2/HO-1 signaling pathway is closely related to its protective effect. The key point regulating apoptosis, AKT phosphorylation, was also measured in our work. Analogously, Loganin increased the phosphorylation of AKT in the injured kidney and LPS-stimulated HK2 cells. Besides, the salutary effects also diminished in vitro by LY294002, the broad-spectrum inhibitor of PI3K, indicating AKT pathway is associated with the property of Loganin. According to the validating results of in vitro experiments, our study suggested that Loganin alleviated septic AKI through regulating oxidative stress injury, mitochondrial function, and apoptosis in tubular epithelial cells, which might attribute to the involvement of AKT and Nrf2/HO-1 signaling. However, the direct target of Loganin remained to be explored, which was the focus of our future work.

Above all, our work suggested that Loganin possessed the property to remit AKI in septic mice by regulation of oxidative stress mitochondrial function and apoptosis tubular epithelial cells via AKT and Nrf2/HO-1 signaling, which might provide a new therapeutic strategy for septic AKI.

AKI, acute kidney injury; CLP, cecal ligation and puncture; GSH-Px, glutathione peroxidase; LPS, lipopolysaccharides; HO-1, heme-oxygenase 1; Keap1, Kelch-like ECH associating protein 1; MDA, malonaldehyde; Nrf2, nuclear factor E2-related factor 2; ROS, reactive oxygen species; SOD, superoxide dismutase.

This research was supported by grants from the National Natural Science Foundation of China (No. 81571871 and 81770276) and Nn10 program of Harbin Medical University Cancer Hospital.

The authors declared no conflicts of interest for this work.

1. Christensen MG, Johnsen N, Skals M, et al. Prevention of P2 Receptor-Dependent Thrombocyte Activation by Pore-Forming Bacterial Toxins Improves Outcome in A Murine Model of Urosepsis. Int J Mol Sci. 2020;21(16):5652. doi:10.3390/ijms21165652

2. Singer M, Deutschman CS, Seymour C, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315:801810. doi:10.1001/jama.2016.0287

3. Zou Z, Wang Q, Zhou M, et al. Protective effects of P2X7R antagonist in sepsisinduced acute lung injury in mice via regulation of circ_0001679 and circ_0001212 and downstream Pln, Cdh2, and Nprl3 expression. J Gene Med. 2020;11:e3261.

4. Navegantes-Lima KC, Monteiro VVS, de Frana Gaspar SL, et al. Agaricus brasiliensis Mushroom Protects Against Sepsis by Alleviating Oxidative and Inflammatory Response. Front Immunol. 2020;11:1238.

5. Li Y, Zhai P, Zheng Y, Zhang J, Kellum JA, Peng Z. Csf2 Attenuated Sepsis-Induced Acute Kidney Injury by Promoting Alternative Macrophage Transition. Front Immunol. 2020;11:1415.

6. World Health Organization, WHO Sepsis Technical Expert Meeting, Who. 2018 136. https://www.who.int/servicedeliverysafety/areas/sepsis_meeting2018/en/. Accessed January 19, 2021.

7. Nwafor D, Brown C. A novel role for tissue-nonspecific alkaline phosphatase at the blood-brain barrier during sepsis. Neural Regen Res. 2021;16:99.

8. Bagshaw SM, Lapinsky S, Dial S, et al. Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med. 2009;35:871881.

9. Shigehiko U, John K, Rinaldo B, et al. Acute renal failure in critically ill patients, a multinational, multicenter study. JAMA. 2010;130:158161.

10. Bagshaw SM, Laupland KB, Doig CJ, et al. Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: a population-based study. Crit Care. 2005;9(6):R7009. doi:10.1186/cc3879

11. Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011;121(11):42104221. doi:10.1172/JCI45161

12. Opatrilova R, Kubatka P, Caprnda M, et al. Nitric oxide in the pathophysiology of retinopathy: evidences from preclinical and clinical researches. Acta Ophthalmol. 2018;96(3):222231. doi:10.1111/aos.13384

13. Fei L, Jingyuan X, Fangte L, et al. Preconditioning with rHMGB1 ameliorates lung ischemia-reperfusion injury by inhibiting alveolar macrophage pyroptosis via the Keap1/Nrf2/HO-1 signaling pathway. J Transl Med. 2020;18(1):301. doi:10.1186/s12967-020-02467-w

14. Garrido-Pascual P, Alonso-Varona A, Castro B, Burn M, Palomares T. H2O2-preconditioned human adipose-derived stem cells (HC016) increase their resistance to oxidative stress by overexpressing Nrf2 and bioenergetic adaptation. Stem Cell Res Ther. 2020;11(1):335. doi:10.1186/s13287-020-01851-z

15. Yifan Z, Benxiang N, Zheng X, et al. Ceftriaxone Calcium Crystals Induce Acute Kidney Injury by NLRP3-Mediated Inflammation and Oxidative Stress Injury. Oxid Med Cell Longev. 2020;2020:6428498. doi:10.1155/2020/6428498

16. Luo J, Li X, Li X, et al. Selenium-Rich Yeast protects against aluminum-induced peroxidation of lipide and inflammation in mice liver. BioMetals. 2018;31(6):10511059. doi:10.1007/s10534-018-0150-2

17. Diao C, Chen Z, Qiu T, et al. Inhibition of PRMT5 Attenuates Oxidative Stress-Induced Pyroptosis via Activation of the Nrf2/HO-1 Signal Pathway in a Mouse Model of Renal Ischemia-Reperfusion Injury. Oxid Med Cell Longev. 2019;2019:2345658. doi:10.1155/2019/2345658

18. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89116. doi:10.1146/annurev.pharmtox.46.120604.141046

19. Zhou X, Liu Z, Ying K, et al. WJ-39, an Aldose Reductase Inhibitor, Ameliorates Renal Lesions in Diabetic Nephropathy by Activating Nrf2 Signaling. Oxid Med Cell Longev. 2020;2020:7950457. doi:10.1155/2020/7950457

20. Irazabal MV, Torres VE. Reactive Oxygen Species and Redox Signaling in Chronic Kidney Disease. Cells. 2020;9(6):1342. doi:10.3390/cells9061342

21. Zhang X, Zhu Y, Zhou Y, Fei B. Activation of Nrf2 Signaling by Apelin Attenuates Renal Ischemia Reperfusion Injury in Diabetic Rats. Diabetes Metab Syn Obesity. 2020;13:21692177. doi:10.2147/DMSO.S246743

22. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007;12(5):913922. doi:10.1007/s10495-007-0756-2

23. Dodd-O JM, Welsh LE, Salazar JD, et al. Effect of NADPH oxidase inhibition on cardiopulmonary bypass-induced lung injury. Am J Physiol. 2004;287(2):H92736.

24. Ruffolo SC, Breckenridge DG, Nguyen M, et al. BID-dependent and BID-independent pathways for BAX insertion into mitochondria. Cell Death Differ. 2000;7(11):11011108. doi:10.1038/sj.cdd.4400739

25. Lee KY, Sung SH, Kim SH, Jang YP, Oh TH, Kim YC. Cognitive-enhancing activity of loganin isolated from Cornus officinalis in scopolamine-induced amnesic mice. Arch Pharm Res. 2009;32(5):677683. doi:10.1007/s12272-009-1505-6

26. Shi R, Han Y, Yan Y, et al. Loganin exerts sedative and hypnotic effects via modulation of the serotonergic system and GABAergic neurons. Fron Pharmacol. 2019;10:409. doi:10.3389/fphar.2019.00409

27. Li Y, Li Z, Shi L, et al. Loganin inhibits the inflammatory response in mouse 3T3L1 adipocytes and mouse model. Int Immunopharmacol. 2016;36:173179. doi:10.1016/j.intimp.2016.04.026

28. Park CH, Tanaka T, Kim JH, et al. Hepato-protective effects of loganin, iridoid glycoside from Corni Fructus, against hyperglycemia-activated signaling pathway in liver of type 2 diabetic db/db mice. Toxicology. 2011;290(1):1421. doi:10.1016/j.tox.2011.08.004

29. Liu K, Xu H, Lv G, et al. Loganin attenuates diabetic nephropathy in C57BL/6J mice with diabetes induced by streptozotocin and fed with diets containing high level of advanced glycation end products. Life Sci. 2015;123:7885. doi:10.1016/j.lfs.2014.12.028

30. Kim H, Youn K, Ahn M-R, et al. Neuroprotective effect of loganin against A 2535 -induced injury via the NF-B-dependent signaling pathway in PC12 cells. Food Funct. 2015;6(4):11081116. doi:10.1039/C5FO00055F

31. Dejager L, Pinheiro I, Dejonckheere E, Libert C. Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol. 2011;19(4):198208. doi:10.1016/j.tim.2011.01.001

32. Doi K, Leelahavanichkul A, Yuen PST, Star RA. Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest. 2009;119(10):28682878. doi:10.1172/JCI39421

33. Sung P-H, Lo Chang C, Tsai T-H, et al. Apoptotic adipose-derived mesenchymal stem cell therapy protects against lung and kidney injury in sepsis syndrome caused by cecal ligation puncture in rats. Stem Cell Res Therapy. 2013;4(6):155. doi:10.1186/scrt385

34. Kim JY, Leem J, Hong HL. Protective effects of spa0355, a thiourea analogue, against lipopolysaccharide-induced acute kidney injury in mice. Antioxidants. 2020;9:113.

35. Chen X, Liu W, Xiao J, et al. FOXO3a accumulation and activation accelerate oxidative stress-induced podocyte injury. FASEB J. 2020;34(10):1330013316. doi:10.1096/fj.202000783R.

36. Xia S, Lin H, Liu H, et al. Honokiol Attenuates Sepsis-Associated Acute Kidney Injury via the Inhibition of Oxidative Stress and Inflammation. Inflammation. 2019;42(3):826834. doi:10.1007/s10753-018-0937-x

37. Zhao H, Liu Z, Shen H, Jin S, Zhang S. Glycyrrhizic acid pretreatment prevents sepsis-induced acute kidney injury via suppressing inflammation, apoptosis and oxidative stress. Eur J Pharm. 2019;2019:9299. doi:10.1016/j.ejphar.2016.04.006

38. Ge M, Fontanesi F, Merscher S, Fornoni A. The Vicious Cycle of Renal Lipotoxicity and Mitochondrial Dysfunction. Front Physiol. 2020;11:732.

39. Clavier A, Rincheval-Arnold A, Colin J, Mignotte B, Gunal I. Apoptosis in Drosophila: which role for mitochondria? Apoptosis. 2016;21:239251.

40. Liang S, Sun K, Wang Y, et al. Role of Cyt-C/caspases-9,3, Bax/Bcl-2 and the FAS death receptor pathway in apoptosis induced by zinc oxide nanoparticles in human aortic endothelial cells and the protective effect by alpha-lipoic acid. Chem Biol Interact. 2016;258:4051.

41. Feng X, Guan W, Zhao Y, et al. Dexmedetomidine ameliorates lipopolysaccharide-induced acute kidney injury in rats by inhibiting inflammation and oxidative stress via the GSK-3/Nrf2 signaling pathway. J Cell Physiol. 2019;234:1899419009.

See more here:
[Full text] Loganin Attenuates Septic Acute Renal Injury with the Participation of | DDDT - Dove Medical Press

Read More...

Joint inflammation: Causes, treatment, and symptoms – Medical News Today

Sunday, February 14th, 2021

Joint inflammation can lead to swollen, painful joints. Depending on the cause, it can affect one particular joint or be more widespread, affecting multiple joints throughout the body.

Inflammation is the bodys normal immune response to an injury, infection, or irritant. Allergies, wounds, and diseases can all cause inflammation. The most common causes of joint inflammation are injuries and inflammatory arthritis.

Pain and inflammation resulting from injuries usually resolve, but inflammatory arthritis is a chronic condition that may get worse with time. Keep reading to learn more.

Joint inflammation occurs when the immune system or damaged tissue releases chemicals that cause swelling and other symptoms in a joint. It can affect just one joint, such as when a person sustains an injury. However, certain medical conditions can lead to multiple instances of joint inflammation throughout the body.

When a joint is inflamed, the blood vessels around it dilate to allow more blood to reach it. White blood cells, which play a crucial role in the bodys immune response, rush to the inflamed site, where they work to fight any infection or irritant.

This response leads to inflammation in this area. The joint may feel hot or painful, and the inflammation may intensify the pain of an underlying injury or infection.

In the short term, inflammation helps the body fight off dangerous invaders. However, chronic inflammation can damage the joint.

The most common causes of joint inflammation are:

An injury to a joint usually causes localized inflammation. However, it can sometimes cause inflammation in several joints if they are very close together. For example, if a person injures their foot, they might have joint inflammation in several toes.

Swelling is the bodys natural response to an injury. Inflammation helps the body deliver nutrients and white blood cells to an injured joint to fight off infection and promote healing.

However, inflammation is painful, and intense swelling may actually slow healing. Anyone who experiences inflammation that is serious enough to interfere with everyday functioning should see a doctor.

Arthritis is a group of conditions that affect joint health. Inflammatory forms of arthritis cause inflammation in the joints. Most types of inflammatory arthritis are chronic, progressive conditions. They may begin in one joint but eventually progress to other joints.

Some examples of inflammatory arthritis include:

Many types of inflammatory arthritis are autoimmune diseases, which means that they appear when the bodys immune system mistakenly attacks healthy tissue.

However, some infections can also cause inflammatory arthritis. Septic arthritis happens when a joint becomes infected. Sometimes, an infection in another area of the body travels through the bloodstream to a joint.

This type of inflammation is not chronic and usually gets better with treatment. Without quick treatment, though, there is a risk of permanent damage to the joints and bones.

Learn more about inflammatory arthritis here.

Some symptoms of joint inflammation include:

When the symptoms appear following an injury, inflammation is usually just a short-term response to the injury.

People who notice ongoing inflammation or pain may have arthritis. Joint pain that occurs with a fever or following an infection may signal a joint infection that requires immediate medical treatment.

The right treatment for inflammation depends on the cause. Some minor injuries will improve on their own with rest and time. More serious injuries may require medical treatment or even surgery.

People with a bacterial infection often need antibiotics. In severe cases, they may need to stay in the hospital.

For serious injuries and chronic inflammation, these medical treatments may help:

Several home remedies can help with most types of inflammation, regardless of the cause:

A person should contact a doctor or healthcare provider if:

It is necessary to go to the emergency room or call 911 if:

Inflammation comes in many forms, and it can affect a single joint or many joints throughout the body.

Short-term joint inflammation from an injury usually goes away on its own.

While chronic inflammation can be difficult to treat and may get worse with time, various medications can help. A person can contact a doctor for help managing all forms of inflammation.

Originally posted here:
Joint inflammation: Causes, treatment, and symptoms - Medical News Today

Read More...

[Full text] Encephalopathy Induced by Preventive Administration of Acyclovir in a | IJGM – Dove Medical Press

Sunday, February 14th, 2021

Introduction

Acyclovir (ACV) neurotoxicity is a neuropsychiatric condition induced by the administration of the anti-herpetic drugs ACV and valacyclovir (VACV).1 VACV is the prodrug of ACV. Usually, various neuropsychiatric symptoms, such as disturbance of consciousness, tremor, and myoclonus, occur within 2 days after initiating the therapy.13 Hallucinations are also common.13 It is presumed that elevated blood levels of ACV and its metabolite, 9-carboxymethoxymethylguanine (CMMG), are involved in the development of ACV-induced encephalopathy4 and that age and renal dysfunction are risk factors.5

Bortezomib/dexamethasone (BD) therapy is one of the standard regimens for patients with symptomatic multiple myeloma who have severe renal impairment.6 In bortezomib-containing regimens, low-dose oral ACV is recommended for herpes zoster prophylaxis.7,8

We present a case of encephalopathy caused by the administration of VACV for herpes zoster prophylaxis in a patient with renal dysfunction due to multiple myeloma.

Renal dysfunction was diagnosed in a 70-year-old man who visited our hospital for a medical checkup. His serum creatinine level and creatinine clearance rate were 8.78 mg/dL (normal range: 0.531.02 mg/dL) and 8 mL/min (normal range: 80180 mL/min), respectively. He was diagnosed with BenceJones protein -type multiple myeloma based on the presence of 40% plasma cells in his bone marrow (10% or more of plasma cells is considered definitive of the disease) and BenceJones proteinuria (M proteinuria of 4.8 g/day). Additionally, the diagnosis of symptomatic multiple myeloma (International Staging System stage 3) was based on the presence of renal dysfunction. Renal biopsy revealed cast nephropathy known as myeloma kidney, in which large amounts of BenceJones proteins formed casts that blocked the tubules (Figure 1). BD therapy was initiated with concurrent VACV for herpes zoster prophylaxis. We administered a reduced dose VACV of 500 mg three times a week because of the patients renal impairment, based on the drug information on VACV provided in the UpToDate database.9 His renal function was monitored twice per week during therapy. Six weeks later, during his second course of BD therapy, the patient was hospitalized because of impaired consciousness. He displayed no other symptoms during hospitalization.

Figure 1 Histology of kidney tissue showing myeloma cast nephropathy. (A) Hematoxylin and eosin stain (magnification 200). (B) Periodic acid-Schiff stain (magnification 400).

On admission, his vital signs were as follows: Glasgow Coma Scale score, E2, V4, M4; body temperature, 36.5C; blood pressure, 145/79 mmHg; pulse rate, 73 beats/min; respiratory rate, 15 breaths/min; and SpO2, 96%. His vital signs were normal, and there were no remarkable neurological abnormalities except for disturbance of consciousness. Table 1 summarizes the results of patients blood test on admission. The results, including renal function, were unchanged. Brain magnetic resonance imaging and cerebrospinal fluid analysiscell counts 1/L, protein 40 mg/dL, glucose 98 mg/dL, reference blood glucose level 125 mg/dLrevealed no abnormalities. There was no new electrolyte, endocrine hormone abnormality, or suggestion of epilepsy. Therefore, we suspected drug-induced disturbance of consciousness and suspended the BD and VACV therapy. Three days after discontinuing the drugs, his level of consciousness returned to normal, and the BD therapy was restarted after 20 days of drug interruption. The Naranjo score10 for estimating the probability of adverse drug reactions was 7 points. In this scoring system, 9 points indicate high probability for adverse reactions and 58 points indicate probability for adverse reactions.10 In all Japan, the laboratories do not have facilities to measure ACV/CMMG levels. Though his blood level of ACV could not be measured, the clinical diagnosis was ACV neurotoxicity based on his response to the suspension of the therapy, the high Naranjo score, and the lack of other contributing factors. We theorized that ACV blood levels gradually increased over the long-term administration of oral VACV owing to renal dysfunction. Figure 2 illustrates his clinical course.

Table 1 Results of the Patients Admission Blood Tests

Figure 2 Clinical course of the patient after starting bortezomib/dexamethasone therapy. BD therapy: Bortezomib was administered at a dose of 1.3 mg/m2 on Days 1, 4, 8, and 11 with dexamethasone (20 mg) administered on Days 1 and 2, 4 and 5, 8 and 9, and 11 and 12. The 21-day regimen administered in 2 cycles was defined as 1 course.

The patient underwent 9 cycles of BD therapy and achieved complete remission. We administered 250 mg of famciclovir for herpes zoster prophylaxis, three times a week, between cycles 4 to 9. One year after the end of treatment, he remained in remission. His creatinine level recovered and remained stable at 45 mg/dL in response to the treatment. He did not exhibit any sequelae of ACV encephalopathy.

We presented a case of ACV-induced encephalopathy caused by the administration of VACV for herpes zoster during the treatment of multiple myeloma in a man with renal dysfunction. To the best of our knowledge, this is the first report of ACV neurotoxicity in a patient taking low-dose VACV for herpes zoster prophylaxis. This case illustrates that ACV or VACV should be used with caution in patients with myeloma-associated renal dysfunction, even if used in low doses for herpes zoster prophylaxis.

In all Japan, the laboratories do not have facilities to measure ACV/CMMG levels. However, we diagnosed ACV-induced encephalopathy based on his clinical course, the high Naranjo score, the lack of other contributing factors. ACV or VACV can cause renal tubular obstruction secondary to crystal-induced nephropathy, and direct action of the ACV aldehyde can cause acute kidney injury; these can lead to increased blood concentrations of ACV and CMMG and cause encephalopathy.2,11 In this case, our patient exhibited BenceJones proteinuria. Increased excretion of BenceJones proteins may have damaged the tubular epithelium or formed casts that blocked the renal tubules, leading to myeloma cast nephropathy. It is the most common cause of myeloma-associated renal injury and may cause renal dysfunction.12,13 Though the renal dysfunction in our patient was stable at a low level, we theorized that long-term preventive oral VACV therapy gradually led to increased plasma concentrations of ACV and CMMG, resulting in encephalopathy.

In this case, the VACV prophylaxis resulted in ACV-induced encephalopathy, even though we administered it at a dose lower than the recommended dose for patients with renal dysfunction. ACV-induced encephalopathy has been observed in patients administered with extremely high doses (10 mg/kg every hour) of the drug or in cases of renal failure without dose adjustment.4 It has often been reported in elderly people and patients with impaired renal function,5 but it has occurred in patients without renal dysfunction and young patients.14 In all cases, ACV-induced encephalopathy developed owing to the ACV or VACV treatment for herpes simplex or zoster virus. There were no reports that ACV-induced encephalopathy developed with prophylactic administration. Myeloma kidney with BenceJones proteinuria causes kidney renal tubular damage, which is disproportionate to the degree of renal impairment suggested by the creatinine level. Thus, it is presumed that it inhibits the excretion of drugs, including ACV, in renal tubules, resulting in an elevated blood concentration. It is difficult to measure ACV and CMMG blood levels. Therefore, even with the recommended level of ACV or VACV prophylaxis for renal impairment, it is not possible to predict ACV neurotoxicity, such as impaired consciousness and impaired renal function.

In conclusion, among patients with multiple myeloma with BenceJones proteinuria, the renal tubules are easily damaged, and the plasma concentration of ACV is likely to increase and induce ACV neurotoxicity. Careful monitoring of the level of consciousness is necessary during preventive ACV therapy in patients with renal dysfunction.

ACV, acyclovir; BD, bortezomib/dexamethasone; CMMG, 9-carboxymethoxymethylguanine; VACV, valacyclovir.

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Written informed consent was obtained from the patient for the publication of this case report and accompanying images.

All authors contributed to the conception, study design, execution, acquisition of data, analysis and interpretation, drafting and revising the article, and critically reviewing the article; provided final approval of the version to be published; and agreed to be accountable for all aspects of the work.

There is no funding to report.

The authors declare that they have no conflicts of interest.

1. Rashiq S, Briewa L, Mooney M, Giancarlo T, Khatib R, Wilson FM. Distinguishing acyclovir neurotoxicity from encephalomyelitis. J Intern Med. 1993;234:507511. doi:10.1111/j.1365-2796.1993.tb00785.x

2. Asahi T, Tsutsui M, Wakasugi M, et al. Valacyclovir neurotoxicity: clinical experience and review of the literature. Eur J Neurol. 2009;16:457460. doi:10.1111/j.1468-1331.2008.02527.x

3. Adair JC, Gold M, Bond RE. Acyclovir neurotoxicity: clinical experience and review of the literature. South Med J. 1994;87:12271231. doi:10.1097/00007611-199412000-00006

4. Chowdhury MA, Derar N, Hasan S, Hinch B, Ratnam S, Assaly R. Acyclovir-induced neurotoxicity: a case report and review of literature. Am J Ther. 2016;23:e941e943. doi:10.1097/MJT.0000000000000093

5. Das V, Peraldi MN, Legendre C. Adverse neuropsychiatric effects of cytomegalovirus prophylaxis with valaciclovir in renal transplant recipients. Nephrol Dial Transplant. 2006;21:13951401. doi:10.1093/ndt/gfk031

6. Harousseau JL, Attal M, Avet-Loiseau H, et al. Bortezomib plus dexamethasone is superior to vincristine plus doxorubicin plus dexamethasone as induction treatment prior to autologous stem-cell transplantation in newly diagnosed multiple myeloma: results of the IFM 2005-01 Phase III trial. J Clin Oncol. 2010;28:46214629. doi:10.1200/JCO.2009.27.9158

7. Chanan-Khan A, Sonneveld P, Schuster MW, et al. Analysis of herpes zoster events among bortezomib-treated patients in the phase III APEX study. J Clin Oncol. 2008;26:47844790. doi:10.1200/JCO.2007.14.9641

8. San Miguel JF, Schlag R, Khuageva NK, et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med. 2008;359:906917. doi:10.1056/NEJMoa0801479

9. UpToDate. Valaciclovir: drug information. Available from: https://www.uptodate.com/contents/valacyclovir-drug-information?search=valacyclovir&topicRef=8337&source=see_link#F50991799. Accessed January 17, 2021.

10. Naranjo CA, Busto U, Sellers EM, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther. 1981;30:239245. doi:10.1038/clpt.1981.154

11. Sacchetti D, Alawadhi A, Albakour M, Rapose A. Herpes zoster encephalopathy or acyclovir neurotoxicity: a management dilemma. BMJ Case Rep. 2014;2014:bcr2013201941. doi:10.1136/bcr-2013-201941

12. Hutchison CA, Batuman V, Behrens J, et al. The pathogenesis and diagnosis of acute kidney injury in multiple myeloma. Nat Rev Nephrol. 2011;8:4351. doi:10.1038/nrneph.2011.168

13. Leung N, Rajkumar SV. Renal manifestations of plasma cell disorders. Am J Kidney Dis. 2007;50:155165. doi:10.1053/j.ajkd.2007.05.007

14. Izumo A, Sakai K, Tamura Y. Acyclovir-induced neurotoxicity in an elderly patient: report of a case. J Japan Soc Emerg Med. 2017;20:763768.

Read more:
[Full text] Encephalopathy Induced by Preventive Administration of Acyclovir in a | IJGM - Dove Medical Press

Read More...

Creative Medical Technology Holdings Identifies and Files Patent on Novel Mechanism of ImmCelz Therapeutic Activity – PRNewswire

Wednesday, February 3rd, 2021

PHOENIX, Feb. 1, 2021 /PRNewswire/ --(OTC CELZ) Creative Medical Technology Holdings, Inc. announced today new data demonstrating that administration of ImmCelz to animals with a variety of conditions results is a significant surge of the protein hepatocyte growth factor (HGF-1). When scientists blocked the effects of HGF in ImmCelz treated animals, the therapeutic effects where significantly inhibited. The data suggests one of the molecular mechanisms of action of ImmCelz is mediated by production of this therapeutic molecule.

"One of the drawbacks of many cellular therapies is their complicated, and many times ill-defined mechanisms of action." Said Dr. Amit Patel, co-founder of the company and co-inventor of the patent application. "I am proud of our scientific team for focusing not only on the exploration of therapeutic benefits of ImmCelz in a wide variety of diseases, but also on homing in on mechanisms of action. We have previously reported ImmCelz induces T regulatory cells and endogenous neurogenesis.1 The current data suggests that HGF-1 may be acting upstream of these effects."

To date the Company has reported therapeutic activity of ImmCelz in models of rheumatoid arthritis,2 stroke,3 type 1 diabetes,4 kidney failure5 and liver failure.6 The data disclosed today are supported by independent studies which have shown HGF-1 is capable of inducing T regulatory cells7,8 and stimulating neurogenesis.9,10

"Cellular immunotherapy has commanded extremely lucrative valuations for companies in early stages of clinical trials." Said Timothy Warbington, President and CEO of Creative Medical Technology Holdings. "We believe for regenerative immunotherapy products such as ImmCelz to attract similar valuations, understanding of biological mechanisms of action is important. I commend our scientific collaborators for their work that resulted in this current patent filing."

About Creative Medical Technology HoldingsCreative Medical Technology Holdings, Inc. is a commercial stage biotechnology company specializing in regenerative medicine/stem cell technology in the fields of immunotherapy, urology, neurology and orthopedics and is listed on the OTC under the ticker symbol CELZ. For further information about the company, please visitwww.creativemedicaltechnology.com.

Forward Looking StatementsOTC Markets has not reviewed and does not accept responsibility for the adequacy or accuracy of this release. This news release may contain forward-looking statements including but not limited to comments regarding the timing and content of upcoming clinical trials and laboratory results, marketing efforts, funding, etc. Forward-looking statements address future events and conditions and, therefore, involve inherent risks and uncertainties. Actual results may differ materially from those currently anticipated in such statements. See the periodic and other reports filed by Creative Medical Technology Holdings, Inc. with the Securities and Exchange Commission and available on the Commission's website atwww.sec.gov.

Creativemedicaltechnology.comwww.StemSpine.com http://www.Caverstem.com http://www.Femcelz.com ImmCelz.com

1 Creative Medical Technology Holdings Identifies Mechanism of Action of ImmCelz Stroke Regenerative Activity (prnewswire.com)2 Creative Medical Technology Holdings Reports Positive Preclinical Data on ImmCelz Immunotherapy Product in Rheumatoid Arthritis Model | BioSpace3 Creative Medical Technology Holdings Identifies Mechanism of Action of ImmCelz Stroke Regenerative Activity (prnewswire.com)4 Creative Medical Technology Holdings Announces Positive Data and Patent Filing Using ImmCelz to Treat Type 1 Diabetes (prnewswire.com)5 Creative Medical Technology Holdings Files Patent based on Positive Data on Renal Failure using ImmCelz Regenerative Immunotherapy (prnewswire.com)6 Creative Medical Technology Holdings Announces Reversion of Liver Failure Using ImmCelz Personalized Cellular Immunotherapy in Preclinical Model | Nasdaq7 https://pubmed.ncbi.nlm.nih.gov/22158517/ 8 https://pubmed.ncbi.nlm.nih.gov/20332205/ 9 https://pubmed.ncbi.nlm.nih.gov/21683144/ 10 https://pubmed.ncbi.nlm.nih.gov/20963849/

SOURCE Creative Medical Technology Holdings, Inc.

Home

Continue reading here:
Creative Medical Technology Holdings Identifies and Files Patent on Novel Mechanism of ImmCelz Therapeutic Activity - PRNewswire

Read More...

How Coronavirus Damages Lung Cells Within Mere Hours And What Drugs Could Halt COVID-19 Infection – SciTechDaily

Wednesday, February 3rd, 2021

Human lung cells (blue) infected with SARS-CoV-2 (red). Courtesy of Hekman, et al. Credit: Courtesy of Hekman, et al.

Multipronged BU research team finds 18 FDA-approved drugs that could halt coronavirus infection earlier.

What if scientists knew exactly what impact the SARS-CoV-2 virus had inside our lung cells, within the first few hours of being infected? Could they use that information to find drugs that would disrupt the virus replication process before it ever gets fully underway? The discovery that several existing FDA-approved drugsincluding some originally designed to fight cancercan stop coronavirus in its tracks indicates the answer is a resounding yes.

A team of Boston University researchershailing from BUs National Emerging Infectious Diseases Laboratories (NEIDL), the Center for Regenerative Medicine (CReM) at BUs Medical Campus, and BUs Center for Network Systems Biology (CNSB)embarked on a months-long, collaborative and interdisciplinary quest, combining multiple areas of expertise in virology, stem cellderived lung tissue engineering, and deep molecular sequencing to begin answering those questions. They simultaneously infected tens of thousands of human lung cells with the SARS-CoV-2 virus, and then tracked precisely what happens in all of those cells during the first few moments after infection. As if that was not complicated enough, the team had to cool their entire high-containment research facility inside the NEIDL to a brisk 61 degrees Fahrenheit.

The result of that challenging and massive undertaking? The BU team has revealed the most comprehensive map to date of all the molecular activities that are triggered inside lung cells at the onset of coronavirus infection. They also discovered there are at least 18 existing, FDA-approved drugs that could potentially be repurposed to combat COVID-19 infections shortly after a person becomes infected. Experimentally, five of those drugs reduced coronavirus spread in human lung cells by more than 90 percent. Their findings were recently published in Molecular Cell.

Now, academic and industry collaborators from around the world are in contact with the team about next steps to move their findings from bench to bedside, the researchers say. (Although COVID-19 vaccines are starting to be rolled out, its expected to take the better part of a year for enough people to be vaccinated to create herd immunity. And there are no guarantees that the current vaccine formulations will be as effective against future SARS-CoV-2 strains that could emerge over time.) More effective and well-timed therapeutic interventions could help reduce the overall number of deaths related to COVID-19 infections.

What makes this research unusual is that we looked at very early time points [of infection], at just one hour after the virus infects lung cells. It was scary to see that the virus already starts to damage the cells so early during infection, says Elke Mhlberger, one of the studys senior investigators and a virologist at BUs NEIDL. She typically works with some of the worlds most lethal viruses like Ebola and Marburg.

The most striking aspect is how many molecular pathways are impacted by the virus, says Andrew Emili, another of the studys senior investigators, and the director of BUs CNSB, which specializes in proteomics and deep sequencing of molecular interactions. The virus does wholesale remodeling of the lung cellsits amazing the degree to which the virus commandeers the cells it infects.

Viruses cant replicate themselves because they lack the molecular machinery for manufacturing proteinsthats why they rely on infecting cells to hijack the cells internal machinery and use it to spread their own genetic material. When SARS-CoV-2 takes over, it completely changes the cells metabolic processes, Emili says, and even damages the cells nuclear membranes within three to six hours after infection, which the team found surprising. In contrast, cells infected with the deadly Ebola virus dont show any obvious structural changes at these early time points of infection, and even at late stages of infection, the nuclear membrane is still intact, Mhlberger says.

The nuclear membrane surrounds the nucleus, which holds the majority of a cells genetic information and controls and regulates normal cellular functions. With the cell nucleus compromised by SARS-CoV-2, things rapidly take a bad turn for the entire cell. Under siege, the cellswhich normally play a role in maintaining the essential gas exchange of oxygen and carbon dioxide that occurs when we breathedie. As the cells die, they also emit distress signals that boost inflammation, triggering a cascade of biological activity that speeds up cell death and can eventually lead to pneumonia, acute respiratory distress, and lung failure.

I couldnt have predicted a lot of these pathways, most of them were news to me, says Andrew Wilson, one of the studys senior authors, a CReM scientist, and a pulmonologist at Boston Medical Center (BMC), BUs teaching hospital. At BMC, Bostons safety net hospital, Wilson has been on the front lines of the COVID-19 pandemic since March 2020, trying to treat and save the sickest patients in the hospitals ICU. Thats why our [experimental] model is so valuable.

Science is the answerif we use science to ask the lung cells what goes wrong when they are infected with coronavirus, the cells will tell us. Darrell Kotton

The team leveraged the CReMs organoid expertise to grow human lung air sac cells, the type of cell that lines the inside of lungs. Air sac cells are usually difficult to grow and maintain in traditional culture and difficult to extract directly from patients for research purposes. Thats why much coronavirus research to date by other labs has relied on the use of more readily available cell types, like kidney cells from monkeys. The problem with that is kidney cells from monkeys dont react the same way to coronavirus infection as lung cells from humans do, making them a poor model for studying the viruswhatever is learned from them doesnt easily translate into clinically relevant findings for treating human patients.

Our organoids, developed by our CReM faculty, are engineered from stem cellstheyre not identical to the living, breathing cells inside our bodies, but they are the closest thing to it, says Darrell Kotton, one of the studys senior authors. He is a director of the CReM and a pulmonologist at BMC, where he has worked alongside Wilson in the ICU treating COVID-19 patients. The two of them often collaborated with Mhlberger, Emili, and other members of their research team via Zoom calls that they managed to join during brief moments of calm in the ICU.

In another recent study using the CReMs engineered human lung cells, the research team confirmed that existing drugs remdesivir and camostat are effective in combating the virus, though neither is a perfect fix for controlling the inflammation that COVID-19 causes. Remdesivir, a broad-use antiviral, has already been used clinically in coronavirus patients. But based on the new studys findings that the virus does serious damage to cells within hours, setting off inflammation, the researchers say theres likely not much that antiviral drugs like remdesivir can do once an infection has advanced to the point where someone would need to be put on a ventilator in the ICU. [Giving remdesivir] cant save lives if the disease has already progressed, Emili says.

Seeing how masterfully SARS-CoV-2 commandeers human cells and subverts them to do the manufacturing work of replicating the viral genome, it reminded the researchers of another deadly invader.

I was surprised that there are so many similarities between cancer cells and SARS-CoV-2-infected cells, Mhlberger says. The team screened a number of cancer drugs as part of their study and found that several of them are able to block SARS-CoV-2 from multiplying. Like viruses, cancer cells want to replicate their own genomes, dividing over and over again. To do that, they need to produce a lot of pyrimidine, a basic building block for genetic material. Interrupting the production of pyrimidineusing a cancer drug designed for that purposealso blocks the SARS-CoV-2 genome from being built. But Mhlberger cautions that cancer drugs typically have a lot of side effects. Do we really want to use that heavy stuff against a virus? she says. More studies will be needed to weigh the pros and cons of such an approach.

The findings of their latest study took the four senior investigators and scientists, postdoctoral fellows, and graduate students from their laboratories almost four months, working nearly around the clock, to complete the research. Of critical importance to the teams leaders was making sure that the experimental setup had rock-solid foundations in mimicking whats actually happening when the SARS-CoV-2 virus infects people.

Science is the answerif we use science to ask the lung cells what goes wrong when they are infected with coronavirus, the cells will tell us, Kotton says. Objective scientific data gives us hints at what to do and has lessons to teach us. It can reveal a path out of this pandemic.

Hes particularly excited about the outreach the team has received from collaborators around the world. People with expertise in supercomputers and machine learning are excited about using those tools and the datasets from our publication to identify the most promising drug targets [for treating COVID-19], he says.

Kotton says the theme thats become obvious among COVID-19 clinicians and scientists is understanding that timing is key. Once a patient is on a ventilator in the ICU, we feel limited in what we can do for their body, he says. Timing is everything, its crucial to identify early windows of opportunity for intervention. You can keep guessing and hope we get luckyor you [do the research] to actually understand the infection from its inception, and take the guesswork out of drug development.

Reference: Actionable Cytopathogenic Host Responses of Human Alveolar Type 2 Cells to SARS-CoV-2 by Ryan M. Hekman, Adam J. Hume, Raghuveera Kumar Goel, Kristine M. Abo, Jessie Huang, Benjamin C. Blum, Rhiannon B. Werder, Ellen L. Suder, Indranil Paul, Sadhna Phanse, Ahmed Youssef, Konstantinos D. Alysandratos, Dzmitry Padhorny, Sandeep Ojha, Alexandra Mora-Martin, Dmitry Kretov, Peter E.A. Ash, Mamta Verma, Jian Zhao, J.J. Patten, Carlos Villacorta-Martin, Dante Bolzan, Carlos Perea-Resa, Esther Bullitt, Anne Hinds, Andrew Tilston-Lunel, Xaralabos Varelas, Shaghayegh Farhangmehr Ulrich Braunschweig, Julian H. Kwan, Mark McComb, Avik Basu, Mohsan Saeed, Valentina Perissi, Eric J. Burks, Matthew D. Layne, John H. Connor, Robert Davey, Ji-Xin Cheng, Benjamin L. Wolozin, Benjamin J. Blencowe, Stefan Wuchty, Shawn M. Lyons, Dima Kozakov, Daniel Cifuentes, Michael Blower, Darrell N. Kotton, Andrew A. Wilson, Elke Mhlberger and Andrew Emili, 18 November 2020, Molecular Cell.DOI: 10.1016/j.molcel.2020.11.028

This research was funded by the National Institutes of Health, the Australian National Health and Medical Research Council, the Pulmonary Fibrosis Foundation, the Massachusetts Consortium on Pathogen Readiness, the C3.ai Digital Transformation Institute, the Canadian Institutes of Health Research, and Fast Grants.

Read the original here:
How Coronavirus Damages Lung Cells Within Mere Hours And What Drugs Could Halt COVID-19 Infection - SciTechDaily

Read More...

Mini kidneys bioprinted in the lab – Lab + Life Scientist

Friday, December 4th, 2020

Researchers from the Murdoch Childrens Research Institute (MCRI) and biotech company Organovo have used cutting-edge technology to bioprint miniature human kidneys in the lab, paving the way for new treatments for kidney failure and possibly lab-grown transplants. Their study has been published in the journal Nature Materials.

Like squeezing toothpaste out of a tube, extrusion-based 3D bioprinting uses a bioink made from a stem cell paste, squeezed out through a computer-guided pipette to create artificial living tissue in a dish. According to MCRI Professor Melissa Little, a world leader in modelling the human kidney, this new bioprinting method is faster and more reliable than previous methods, allowing the whole process to be scaled up. 3D bioprinting could now create about 200 mini kidneys in 10 minutes without compromising quality.

From larger than a grain of rice to the size of a fingernail, bioprinted mini kidneys fully resemble a regular-sized kidney, including the tiny tubes and blood vessels that form the organs filtering structures called nephrons. Prof Little said the mini organs will be used to screen drugs to find new treatments for kidney disease or to test if a new drug was likely to injure the kidney.

Drug-induced injury to the kidney is a major side effect and difficult to predict using animal studies; bioprinting human kidneys are a practical approach to testing for toxicity before use, she said.

In the study, researchers tested the toxicity of aminoglycosides a class of antibiotics that commonly damage the kidney. Prof Little said, We found increased death of particular types of cells in the kidneys treated with aminoglycosides.

By generating stem cells from a patient with a genetic kidney disease, and then growing mini kidneys from them, also paves the way for tailoring treatment plans specific to each patient, which could be extended to a range of kidney diseases.

Prof Little said the study also showed that 3D bioprinting of stem cells can produce large enough sheets of kidney tissue needed for transplants. She noted, 3D bioprinting can generate larger amounts of kidney tissue but with precise manipulation of biophysical properties, including cell number and conformation, improving the outcome.

Prof Little said prior to this study the possibility of using mini kidneys to generate transplantable tissue was too far away to contemplate, but that may no longer be the case.

The pathway to renal replacement therapy using stem cell-derived kidney tissue will need a massive increase in the number of nephron structures present in the tissue to be transplanted, she said.

By using extrusion bioprinting, we improved the final nephron count, which will ultimately determine whether we can transplant these tissues into people.

Image credit: stock.adobe.com/au/bluebay2014

Please follow us and share on Twitter and Facebook. You can also subscribe for FREE to our weekly newsletters and bimonthly magazine.

Read more from the original source:
Mini kidneys bioprinted in the lab - Lab + Life Scientist

Read More...

Telix Pharmaceuticals Limited Acquires TheraPharm GmbH, Broadening Reach to Hematologic Cancers and Transplant Medicine – BioSpace

Friday, December 4th, 2020

MELBOURNE, Australia and BAAR, Switzerland, Nov. 29, 2020 (GLOBE NEWSWIRE) -- Telix Pharmaceuticals Limited (ASX: TLX, Telix, the Company) announces it has entered into an agreement with Scintec Diagnostics GmbH (Scintec) to acquire TheraPharm GmbH (TheraPharm), a Swiss-German biotechnology company developing innovative diagnostic and therapeutic solutions in the field of hematology.

The acquisition of TheraPharm provides Telix with access to a portfolio of patents, technologies, production systems, clinical data and know-how in relation to the use of Molecularly Targeted Radiation (MTR) in hematology and immunology. TheraPharm is developing antibody MTR technology against CD66, a cell surface target highly expressed by neutrophils (a type of white blood cell) and tumor-infiltrating lymphocytes. As such, the technology has potentially very broad applications in the diagnosis and treatment of hematologic diseases (e.g. blood cancers), lymphoproliferative disorders and immune-mediated diseases (e.g. lupus, and multiple sclerosis). Of particular interest is the demonstrated use of the technology to safely and effectively perform bone marrow conditioning (BMC) prior to bone marrow stem cell transplant.

Telix CEO, Dr. Christian Behrenbruch stated, Telix is committed to extending and improving the lives of patients with serious diseases. As such, the acquisition of TheraPharm and its MTR assets are uniquely aligned to Telixs mission and technical strengths in antibody engineering and radiochemistry. TheraPharms technology has a significant role to play in BMC and stem cell transplantation across a broad range of blood cancers and rare diseases. The current approach to BMC employs highly toxic drugs that have a poor morbidity and mortality profile, and for which many patients are ineligible. MTR offers an excellent safety profile that may greatly expand the number of patients able to undergo life prolonging stem cell transplantation while greatly reducing the hospitalisation burden and cost associated with such procedures.

TheraPharm co-founder and Managing Director, Dr. Klaus Bosslet added, Over the past 5 years, TheraPharm, in collaboration with Dr. Kim Orchard from the University of Southampton (UK), has made excellent progress developing 90Y-besilesomab for the treatment of hematologic cancers and several related conditions including multiple myeloma, leukemia and amyloidosis. This unique asset is a logical addition to Telixs portfolio, offering a potentially rapid development path to a first commercial indication for the treatment of patients with SALA, while at the same time having potentially broad applications for stem cell transplantation in patients with more common cancers of the blood, including multiple myeloma and leukemia. We look forward to joining the Telix team in order to expedite the development of products for this under-served field.

Full transaction details, including financial terms, can be found via the Telix website and ASX portal here.

About Hematopoietic Stem Cell Transplant (HSCT)

Bone marrow conditioning (BMC) followed by hematopoietic stem cell transplantation (HSCT) is presently performed to treat patients with hematologic malignancies (blood cancers), with the objective of extending patient survival or achieving cure. HSCT is also performed for a broad range of non-cancer conditions. HSCT is preferentially performed in countries of high income (Europe >30,000, Americas >20,000, worldwide >65,000 p.a., respectively) and is growing at around 5% annually.

About Systemic Amyloid Light-Chain Amyloidosis (SALA)

SALA is a rare, but serious protein deposition disease, caused by a protein known as amyloid that is produced by abnormal plasma cells residing in the bone marrow. As amyloid accumulates in the organs of the body, organ function will eventually deteriorate, ultimately causing organ failure. SALA has an estimated prevalence of 30,000 and 45,000 in United States and Europe, respectively and while a rare disease, SALA portends a very poor prognosis, with a median survival from diagnosis of ~11 months if untreated.

The current standard of care comprises of induction therapy (typically cyclophosphamide, bortezomib, dexamethasone) plus high dose melphalan BMC, followed by HSCT. This approach is typically only accessible to a small proportion of patients (<20%) who are able to tolerate induction therapy and melphalan BMC.

About Telix Pharmaceuticals Limited

Telix is a clinical-stage biopharmaceutical company focused on the development of diagnostic and therapeutic products using Molecularly Targeted Radiation (MTR). Telix is headquartered in Melbourne, Australia with international operations in Belgium, Japan and the United States. Telix is developing a portfolio of clinical-stage oncology products that address significant unmet medical needs in prostate, kidney and brain cancer. Telix is listed on the Australian Securities Exchange (ASX: TLX). For more information visit http://www.telixpharma.com.

AboutTheraPharm GmbH

TheraPharm is a biotechnology company specialised in the research, development and manufacturing of monoclonal antibodies for targeted radiation of hematopoietic malignant and non-malignant diseases, lymphoproliferative diseases, conditioning for allogeneic stem cells as well as in diagnostics of inflammatory diseases and bone marrow metastases.

Read more:
Telix Pharmaceuticals Limited Acquires TheraPharm GmbH, Broadening Reach to Hematologic Cancers and Transplant Medicine - BioSpace

Read More...

News briefing: Four biotechs announce IPO terms, setting the pace to round out a busy year; FDA sets PDUFA date for Kadmon’s graft-versus-host drug -…

Friday, December 4th, 2020

Four more biotechs set the terms for their IPOs, lining up yet another busy week on Wall Street.

Silverback Therapeutics, which initially filed for a $100 million raise, is now shooting for $125 million from 7 million shares at a range of $17 to $19. About $70 million is tagged for the companys lead Phase I/Ib antibody-drug conjugate, SBT6050, for advanced or metastatic HER2-expressing solid tumors. Interim data from the Phase I dose-escalation cohorts are expected in the second half of 2021. Another $55 million is set aside for Silverbacks two other candidates, which have yet to reach the clinic.

Kinnate Biopharma is looking for a $170 million raise, and set a $16 to $18 range for its 10 million share offering. About $105 is earmarked for its RAF inhibitors, including its lead preclinical candidate KIN002787 for patients with lung cancer, melanoma and other solid tumors. An IND is coming in the first half of 2021, the company says. Back in August, it hooked a $98 million Series C.

Seer also set its shares at a $16 to $18 range. The company, which is working on next-gen proteome analysis tests, is offering 8.8 million shares, going for a $150 raise. About $65.0 million would go to its Proteograph Product Suite, which already has one collaborator and could have a second by the end of the year.

Sigilon Therapeutics is seeking $101 million from 5.6 million shares at a $17 to $19 range. Between $30 to $35 million will be set aside for its lead candidate, SIG-001, which is in a Phase I/II trial to prevent bleeding episodes in patients with hemophilia A. Another $30 to $35 million would fund a scale-up of the companys GMP manufacturing processes SIG-001 and SIG-005, its preclinical candidate for patients with mucopolysaccharidosis type 1, or MPS-1.

More than 72 biotech and biopharma companies and counting have hit Nasdaq so far this year, and head of healthcare listings Jordan Saxe predicted rounding out the year with just under $14 billion in proceeds.

Kadmons chronic graft-versus-host drug belumosudil is in the FDAs hands.

The agency accepted the biotechs NDA under its real-time oncology review (RTOR) pilot program, and set the PDUFA date for May 30, 2021. The submission was based on positive results from a pivotal, open-label trial dubbed ROCKstar, which enrolled 132 patients who had received at least two prior lines of therapy.

Belumosudil is designed to tamp down the inflammatory response seen after hematopoietic stem cell transplant by blocking Rho-associated coiled-coil kinase 2 (ROCK2). Instead of a comparator arm, Kadmon set the bar at a 30% overall response rate, based on conversations with the FDA. Patients were given 200 mg of the drug either once or twice daily. At six months after the completion of enrollment, Kadmon saw an ORR of 73% and 75% in the respective arms.

Thats it for data, until the full report is read out at ASH in December. The companys stock $KDMN was up 6.68% on Monday, at $4.39 per share.Kadmon was founded by Sam Waksal, the biotech exec who was sentenced to prison for his insider trading conviction involving Martha Stewart.

Hookipa Pharma said no one from a small group of Phase II participants treated with its prophylactic cytomegalovirus vaccine came down with the disease, according to interim results.

The analysis was based on 41 participants 8 of whom received 3 doses, 19 of whom received 2 doses, and 14 of whom received a placebo. Compared to the placebo, researchers saw a 48% reduction in CMV viremia, and a 42% reduction in the use of antiviral therapy. There were no cases of CMV disease in the treatment arm, compared to 2 in the placebo group.

While these interim data are from a small group of patients, they offer early insight into the potential of a three-dose schedule of HB-101 to help protect kidney transplant recipients against CMV disease, CEO Joern Aldag said in a statement.

The candidate is going head-to-head with Modernas mRNA-1647, which produced positive results from a proof-of-concept study back in January. Researchers said they saw an increasing level of neutralizing antibody titers in those who had received a third vaccination.

This could really be a company builder, CEO Stphane Bancel said at the time, adding that the candidate could turn into a $2 billion to $5 billion annual franchise.

Here is the original post:
News briefing: Four biotechs announce IPO terms, setting the pace to round out a busy year; FDA sets PDUFA date for Kadmon's graft-versus-host drug -...

Read More...

Government of Canada and JDRF Canada announce new research funding to accelerate stem cell-based therapies for type 1 diabetes – Philippine Canadian…

Friday, December 4th, 2020

There are more than 300,000 Canadians living with type 1 diabetes (T1D), an autoimmune disease with no known cause or cure, resulting in the dysfunction, damage or loss of pancreatic beta cells that produce insulin in our bodies. People with T1D must treat themselves with insulin several times per day to keep their blood glucose levels normal, and despite their best efforts, they often experience serious, and even life-threatening, complications.

To mark the end of Diabetes Awareness Month, Sonia Sidhu, Member of Parliament for Brampton South, on behalf of the Honourable Patty Hajdu, Minister of Health, announced an investment of $6 million through the CIHR-JDRF Partnership to Defeat Diabetes for two Canadian research teams to accelerate the development of stem cell-based therapies for the treatment of T1D.

Stem cells show great promise as a source of insulin-producing cells that could be transplanted to provide a new source of insulin, to replace dysfunctional, damagedor lost pancreatic beta cells. Canada has a remarkable legacy in leading discoveries in this area. Stem cells were discovered in Toronto in 1961, and in 2000, a team in Edmonton were the first to pioneer transplantation of pancreatic islets (the part of the pancreas that contains insulin-producing cells). These achievements represent important steps toward a treatment that will allow people with T1D to live healthy lives without daily insulin injections.

The research teams are led by Dr. Maria Cristina Nostro at the University Health Network and the University of Toronto and Dr. Francis Lynn at the BC Childrens Hospital Research Institute and the University of British Columbia. The teams will build on Canadas demonstrated research excellence and leadership in clinical islet transplantation, stem cell biology, diabetes, immunology and genetic engineering to accelerate stem cell-based therapies for T1D. They will work in collaboration with other Canadian researchers to tackle some of the biggest scientific challenges that impede our progress in this area and move us closer to a future where people with T1D will no longer rely on insulin therapy.

This funding was provided by the Canadian Institutes of Health Research Institute of Nutrition, Metabolism and Diabetes (CIHR-INMD), and JDRF Canada, through the CIHR-JDRF Partnership to Defeat Diabetes established in 2017. Each partner will invest $3 million over five years. This investment is part of a large research initiative,100 Years of Insulin: Accelerating Canadian Discoveries to Defeat Diabetes, funded by CIHR and partners. This initiative commemorates the 100th anniversary of the discovery of insulin to be marked in 2021a discovery that changed the lives of millions of Canadians and people around the world and won researchers Sir Frederick Banting and John Macleod the Nobel Prize in Physiology or Medicine.

More here:
Government of Canada and JDRF Canada announce new research funding to accelerate stem cell-based therapies for type 1 diabetes - Philippine Canadian...

Read More...

Merck Announces KEYNOTE-598 Trial Evaluating KEYTRUDA in Combination With Ipilimumab Versus KEYTRUDA Monotherapy in Certain Patients With Metastatic…

Wednesday, November 11th, 2020

Merck Announces KEYNOTE-598 Trial Evaluating KEYTRUDA (pembrolizumab) in Combination With Ipilimumab Versus KEYTRUDA Monotherapy in Certain Patients With Metastatic Non-Small Cell Lung Cancer To Stop for Futility and Patients to Discontinue Ipilimumab

Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced that it will be stopping KEYNOTE-598, a Phase 3 trial investigating KEYTRUDA, Mercks anti-PD-1 therapy, in combination with ipilimumab (Yervoy ), compared with KEYTRUDA monotherapy, for the first-line treatment of patients with metastatic non-small cell lung cancer (NSCLC) whose tumors express PD-L1 (tumor proportion score [TPS] 50%) with no EGFR or ALK genomic tumor aberrations. Merck is discontinuing the study following the recommendation of an independent Data Monitoring Committee (DMC), which determined the benefit/risk profile of the combination did not support continuing the trial. At an interim analysis, the combination of KEYTRUDA and ipilimumab showed no incremental benefit in overall survival (OS) or progression-free survival (PFS), the studys dual primary endpoints, compared with KEYTRUDA alone and crossed futility boundaries. No new safety signals for KEYTRUDA monotherapy were observed, however the combination of KEYTRUDA and ipilimumab was associated with a higher incidence of grade 3-5 adverse events (AEs), serious AEs, and AEs leading to discontinuation or death, compared with KEYTRUDA monotherapy. Merck will inform study investigators of the recommendation from the DMC and the DMC is advising that patients in the study discontinue treatment with ipilimumab/placebo. Data from this study will be submitted for presentation at an upcoming scientific congress and communicated to regulatory agencies.

We conducted KEYNOTE-598 in order to explicitly explore whether combining our anti-PD-1 therapy, KEYTRUDA, with ipilimumab provided additional benefits beyond treatment with KEYTRUDA alone in the metastatic non-small cell lung cancer setting, said Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories. It is very clear that in this study, the addition of ipilimumab did not add clinical benefit but did add toxicity. KEYTRUDA monotherapy remains a standard of care for the treatment of certain patients with metastatic non-small cell lung cancer whose tumors express PD-L1.

While the combination of an anti-PD-1 therapy plus ipilimumab has been approved in certain indications, studies supporting these approvals have, for the most part, not compared the combination directly with anti-PD-1 monotherapy. Bristol Myers Squibb has reported topline results of CheckMate-915, a Phase 3 study in adjuvant melanoma that directly compared treatment with ipilimumab in combination with an anti-PD-1 therapy versus the anti-PD-1 therapy alone. In two separate news releases issued over the last year, the company announced the study did not meet its co-primary endpoints in the all-comer population or in patients whose tumors expressed PD-L1

Merck has an extensive clinical development program in lung cancer and is advancing multiple registration-enabling studies with KEYTRUDA in combination with other treatments and as monotherapy. The lung program is evaluating KEYTRUDA across all stages of disease and lines of therapy in over 200 trials with more than 10,000 patients.

About KEYNOTE-598

KEYNOTE-598 (ClinicalTrials.gov, NCT03302234 ) is a randomized, double-blind, Phase 3 trial investigating KEYTRUDA in combination with ipilimumab compared to KEYTRUDA monotherapy for the first-line treatment of patients with metastatic NSCLC whose tumors express PDL1 (TPS 50%) with no EGFR or ALK genomic tumor aberrations. The dual primary endpoints are OS and PFS. Secondary endpoints include objective response rate, duration of response and safety. The study enrolled 568 patients who were randomized (1:1) to receive:

About Lung Cancer

Lung cancer, which forms in the tissues of the lungs, usually within cells lining the air passages, is the leading cause of cancer death worldwide. Each year, more people die of lung cancer than die of colon and breast cancers combined. The two main types of lung cancer are non-small cell and small cell. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for about 85% of all cases. Small cell lung cancer (SCLC) accounts for about 10% to 15% of all lung cancers. Before 2014, the five-year survival rate for patients diagnosed in the U.S. with NSCLC and SCLC was estimated to be 5% and 6%, respectively.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patients likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult patients with relapsed or refractory classical Hodgkin lymphoma (cHL).

KEYTRUDA is indicated for the treatment of pediatric patients with refractory cHL, or cHL that has relapsed after 2 or more lines of therapy.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High or Mismatch Repair Deficient Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer

KEYTRUDA is indicated for the first-line treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Tumor Mutational Burden-High

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [10 mutations/megabase (mut/Mb)] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Cutaneous Squamous Cell Carcinoma

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) that is not curable by surgery or radiation.

Selected Important Safety Information for KEYTRUDA

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients. Pneumonitis occurred in 8% (31/389) of patients with cHL receiving KEYTRUDA as a single agent, including Grades 3-4 in 2.3% of patients.

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (

Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (

Hepatotoxicity in Combination With Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (

Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (

Immune-Mediated Skin Reactions

Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

Other Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barr syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and post-marketing use.

Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Fatal and other serious complications can occur in patients who receive allogeneic hematopoietic stem cell transplantation (HSCT) before or after being treated with a PD-1/PD-L1 blocking antibody. Transplant-related complications include hyperacute graft-versus-host disease (GVHD), acute GVHD, chronic GVHD, hepatic veno-occlusive disease (VOD) after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between PD-1/PD-L1 blockade and allogeneic HSCT. Follow patients closely for evidence of transplant-related complications and intervene promptly. Consider the benefit versus risk of treatment with a PD-1/PD-L1 blocking antibody prior to or after an allogeneic HSCT.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-204, KEYTRUDA was discontinued due to adverse reactions in 14% of 148 patients with cHL. Serious adverse reactions occurred in 30% of patients; those 1% included pneumonitis, pneumonia, pyrexia, myocarditis, acute kidney injury, febrile neutropenia, and sepsis. Three patients died from causes other than disease progression. The most common adverse reactions (20%) were upper respiratory tract infection (41%), musculoskeletal pain (32%), diarrhea (22%), and pyrexia, fatigue, and cough (20% each).

Go here to see the original:
Merck Announces KEYNOTE-598 Trial Evaluating KEYTRUDA in Combination With Ipilimumab Versus KEYTRUDA Monotherapy in Certain Patients With Metastatic...

Read More...

KEYTRUDA (pembrolizumab) Plus LENVIMA (lenvatinib) Demonstrated Statistically Significant Improvement in Progression-Free Survival (PFS), Overall…

Wednesday, November 11th, 2020

KENILWORTH, N.J., & WOODCLIFF LAKE, N.J.--(BUSINESS WIRE)--Merck (NYSE: MRK):

KEYTRUDA (pembrolizumab) Plus LENVIMA (lenvatinib) Demonstrated Statistically Significant Improvement in Progression-Free Survival (PFS), Overall Survival (OS) and Objective Response Rate (ORR) Versus Sunitinib as First-Line Treatment for Patients With Advanced Renal Cell Carcinoma

LENVIMA Plus Everolimus Also Showed Statistically Significant Improvement in PFS and ORR Endpoints Versus Sunitinib

Results of Investigational Phase 3 KEYNOTE-581/CLEAR Trial (Study 307) to be Presented at Upcoming Medical Meeting

Merck (NYSE: MRK), known as MSD outside the United States and Canada, and Eisai today announced new investigational data demonstrating positive top-line results from the pivotal Phase 3 KEYNOTE-581/CLEAR trial (Study 307). In the trial, the combinations of KEYTRUDA, Mercks anti-PD-1 therapy, plus LENVIMA, the orally available multiple receptor tyrosine kinase inhibitor discovered by Eisai, and LENVIMA plus everolimus were evaluated versus sunitinib for the first-line treatment of patients with advanced renal cell carcinoma (RCC). KEYTRUDA plus LENVIMA met the trials primary endpoint of progression-free survival (PFS) and its key secondary endpoints of overall survival (OS) and objective response rate (ORR), demonstrating a statistically significant and clinically meaningful improvement in PFS, OS and ORR versus sunitinib in the intention-to-treat (ITT) study population. LENVIMA plus everolimus also met the trials primary endpoint of PFS and a key secondary endpoint of ORR, demonstrating a statistically significant and clinically meaningful improvement in PFS and ORR versus sunitinib in the ITT study population. The ITT population included patients across all Memorial Sloan Kettering Cancer Center (MSKCC) risk groups (favorable, intermediate and poor). The safety profiles of both KEYTRUDA plus LENVIMA and LENVIMA plus everolimus were consistent with previously reported studies. Merck and Eisai will discuss these data with regulatory authorities worldwide, with the intent to submit marketing authorization applications based on these results, which will be presented at an upcoming medical meeting.

The results for KEYTRUDA plus LENVIMA versus sunitinib, which showed a statistically significant improvement in progression-free survival, overall survival and objective response rate, build on the growing scientific evidence that supports the investigation of KEYTRUDA-based combinations for the first-line treatment of advanced renal cell carcinoma, said Dr. Gregory Lubiniecki, Associate Vice President, Oncology Clinical Research, Merck Research Laboratories. Merck and Eisai are committed to working together to continue to explore the potential of the KEYTRUDA plus LENVIMA combination, particularly in areas of great unmet need such as renal cell carcinoma.

The results from KEYNOTE-581/CLEAR (Study 307) support the potential use of KEYTRUDA plus LENVIMA for the first-line treatment of advanced RCC. These data also support the potential first-line use of LENVIMA plus everolimus, which is already approved in advanced RCC following prior antiangiogenic therapy, said Dr. Takashi Owa, Vice President, Chief Medicine Creation and Chief Discovery Officer, Oncology Business Group at Eisai. These findings energize our efforts as we continue to advance our understanding and address the unmet needs of patients with difficult-to-treat cancers.

Merck and Eisai are continuing to study the KEYTRUDA plus LENVIMA combination through the LEAP (LEnvatinib And Pembrolizumab) clinical program across 19 trials in 13 different tumor types (endometrial carcinoma, hepatocellular carcinoma, melanoma, non-small cell lung cancer, RCC, squamous cell carcinoma of the head and neck, urothelial cancer, biliary tract cancer, colorectal cancer, gastric cancer, glioblastoma, ovarian cancer and triple-negative breast cancer).

About KEYNOTE-581/CLEAR (Study 307)

KEYNOTE-581/CLEAR (Study 307) is a multi-center, randomized, open-label, Phase 3 trial (ClinicalTrials.gov, NCT02811861) evaluating LENVIMA in combination with KEYTRUDA or in combination with everolimus versus sunitinib for the first-line treatment of patients with advanced RCC. The primary endpoint is PFS by independent review per RECIST v1.1 criteria. Key secondary endpoints include OS, ORR and safety. The study enrolled approximately 1,050 patients who were randomized to one of three treatment arms to receive:

About Renal Cell Carcinoma (RCC)

Worldwide, it is estimated there were more than 403,000 new cases of kidney cancer diagnosed and more than 175,000 deaths from the disease in 2018. In the U.S. alone, it is estimated there will be nearly 74,000 new cases of kidney cancer diagnosed and almost 15,000 deaths from the disease in 2020. Renal cell carcinoma is by far the most common type of kidney cancer; about nine out of 10 kidney cancers are RCCs. Renal cell carcinoma is about twice as common in men as in women. Most cases of RCC are discovered incidentally during imaging tests for other abdominal diseases. Approximately 30% of patients with RCC will have metastatic disease at diagnosis, and as many as 40% will develop metastases after primary surgical treatment for localized RCC. Survival is highly dependent on the stage at diagnosis, and with a five-year survival rate of 12% for metastatic disease, the prognosis for these patients is poor.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult patients with relapsed or refractory classical Hodgkin lymphoma (cHL).

KEYTRUDA is indicated for the treatment of pediatric patients with refractory cHL, or cHL that has relapsed after 2 or more lines of therapy.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High or Mismatch Repair Deficient Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer

KEYTRUDA is indicated for the first-line treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Endometrial Carcinoma

KEYTRUDA, in combination with LENVIMA, is indicated for the treatment of patients with advanced endometrial carcinoma that is not MSI-H or dMMR, who have disease progression following prior systemic therapy and are not candidates for curative surgery or radiation. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trial.

Tumor Mutational Burden-High

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [10 mutations/megabase (mut/Mb)] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Cutaneous Squamous Cell Carcinoma

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) that is not curable by surgery or radiation.

Selected Important Safety Information for KEYTRUDA (pembrolizumab)

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

Hepatotoxicity in Combination With Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

Immune-Mediated Skin Reactions

Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

Other Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barr syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.

Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptorblocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (20%) was fatigue (25%).

Read the original here:
KEYTRUDA (pembrolizumab) Plus LENVIMA (lenvatinib) Demonstrated Statistically Significant Improvement in Progression-Free Survival (PFS), Overall...

Read More...

Gilead and Kite to Share Latest Scientific Advances in Hematologic Malignancies at ASH 2020 – Investing News Network

Wednesday, November 11th, 2020

16 Abstracts, Including Three Oral Presentations, Highlight Breadth of Companys Innovation in Immuno-Oncology for Patients with Blood Cancers

Kite Data Highlight Yescarta Long-Term Efficacy in Relapsed/Refractory Large B-Cell Lymphoma, its Potential as An Earlier Line of Therapy in DLBCL, as well as Results in Other Cancers, and One-Year Follow-up Results for Tecartus in Relapsed Mantle Cell Lymphoma

Magrolimab Demonstrates Continued Response Rates in Updated Results of Phase 1b Study of Acute Myeloid Leukemia Patients, Including Those with TP53 Mutation

Gilead Sciences, Inc. (Nasdaq: GILD) and Kite, a Gilead Company, today announced that 16 abstracts, including three oral presentations from the companies combined immuno-oncology research and development programs, have been accepted for presentation at the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition. The meeting, which is being held virtually on December 5-8, 2020, will feature presentations on Yescarta (axicabtagene ciloleucel), Tecartus (brexucabtagene autoleucel, KTE-X19) and other ongoing research from Kites chimeric antigen receptor (CAR) T cell therapy development program, as well as magrolimab, Gileads first-in-class, investigational anti-CD47 monoclonal antibody.

This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20201105005130/en/

The evidence supporting our innovation in hematologic malignancies continues to grow, providing assurance of the lasting and positive impact our diverse oncology pipeline could achieve over time, said Merdad Parsey, MD, PhD, Chief Medical Officer, Gilead Sciences. We continue to see broad potential across our oncology portfolio anchored by Kite in cell therapy and Gileads anti-CD47 monoclonal antibody to transform care for patients with hard-to-treat blood cancers.

New Long-Term Efficacy Data and the Potential of CAR T Therapy for More Patients

Building on three-year data presented at ASH 2019, overall survival results at four years from the pivotal ZUMA-1 trial of Yescarta in patients with refractory large B-cell lymphoma will be presented (Abstract #1187). Additionally, new data include one-year follow-up results from the ZUMA-2 study evaluating KTE-X19 in relapsed or refractory mantle cell lymphoma (Abstract #1120), as well as several studies evaluating the potential of Yescarta in new indications include an interim analysis of ZUMA-12 in first-line large B-cell lymphoma among patients with high-risk features (Abstract #405) and the ZUMA-5 primary analysis in relapsed or refractory indolent non-Hodgkin lymphoma (NHL), including follicular lymphoma (FL) and marginal zone lymphoma (MZL; Abstract #700).

Data from the ZUMA-5 primary analysis form the basis for the supplemental Biologics License Application (sBLA) for Yescarta currently under review by the U.S. Food & Drug Administration (FDA). Yescarta has previously been granted a Breakthrough Therapy Designation by the FDA for relapsed or refractory FL or MZL after at least two prior therapies and has been granted a Priority Review with a target action date, under the Prescription Drug User Fee Act (PDUFA), of March 5, 2021.

Our data at ASH build on the established strengths of our CAR T franchise, including practice-changing potential in new cancers, said Ken Takeshita, MD, Kites Global Head of Clinical Development. As we become the first company to present four-year CAR T data from a pivotal study in large B-cell lymphoma and continue to expand our leadership in cell therapy across different hematologic malignancies and into earlier lines of therapy, we remain committed to bringing the benefits of cell therapies to as many patients as possible.

Harnessing Potential First-in-Class Anti-CD47 Antibody in Difficult-to-Treat Malignancies

Researchers will give an oral presentation of updated results from the Phase 1b study of magrolimab in patients with previously-untreated acute myeloid leukemia (AML) who cannot undergo treatment with intensive chemotherapy, including patients with TP53 -mutant AML (Abstract #330). The FDA recently assigned Breakthrough Designation to magrolimab, in combination with azacitidine for the treatment of adult patients with newly-diagnosed MDS including intermediate-, high-, or very high-risk tumor types to expedite the development and regulatory review of this investigational treatment. Magrolimab also received PRIME Designation for treatment of MDS from the European Medicines Agency (EMA).

Dates and times for all accepted abstracts are as follows:

Area of Focus, Presentation Number and Date/Time

Abstract Title

Oral Presentations

Acute Myeloid Leukemia

Abstract #330

Sunday, Dec 6

(12:30pm ET / 9:30am PT)

The First-in-Class Anti-CD47 Antibody Magrolimab Combined with Azacitidine Is Well-Tolerated and Effective in AML Patients: Phase 1b Results

Large B-cell Lymphoma

Abstract #405

Sunday, Dec 6

(4:15pm ET / 1:15pm PT)

Interim Analysis of ZUMA-12: A Phase 2 Study of Axicabtagene Ciloleucel (Axi-Cel) as First-Line Therapy in Patients (Pts) with High-Risk Large B Cell Lymphoma (LBCL)

Non-Hodgkin Lymphoma Abstract #700

Monday, Dec 7

(4:30pm ET / 1:30pm PT)

Primary Analysis of ZUMA-5: A Phase 2 Study of Axicabtagene Ciloleucel (Axi-Cel) in Patients With Relapsed/Refractory (R/R) Indolent Non-Hodgkin Lymphoma (iNHL)

Poster Presentations

Follicular Lymphoma

Abstract #1145

Saturday, Dec 5

(10:00am ET / 7:00am PT)

Safety Profile of Idelalisib in Patients with Refractory Follicular Lymphoma: Interim Analysis of a Noninterventional Study

Large B-cell Lymphoma Abstract #1187

Saturday, Dec 5

(10:00am ET / 7:00am PT)

Long-Term Survival and Gradual Recovery of B Cells in Patients With Refractory Large B Cell Lymphoma Treated With Axicabtagene Ciloleucel (Axi-Cel)

Large B-cell Lymphoma Abstract #2100

Sunday, Dec 6

(10:00am ET / 7:00am PT)

Outcomes of Patients (Pts) in ZUMA-9, A Multicenter, Open-Label Study of Axicabtagene Ciloleucel (Axi-Cel) in Relapsed/Refractory Large B Cell Lymphoma (R/R LBCL) for Expanded Access and Commercial Out-of-Specification (OOS) Product

Large B-cell Lymphoma

Abstract #1224

Saturday, Dec 5

(10:00am ET / 7:00am PT)

The First Retrospective Commercial Claims-Based Analysis of CAR T Treated Patients With Relapsed or Refractory Large B-Cell Lymphoma (R/R LBCL)

Large B-cell Lymphoma

Abstract #2500

Sunday, Dec 6

(10:00am ET / 7:00am PT)

Cost and Healthcare Utilization in Relapsed/Refractory Diffuse Large B-Cell Lymphoma: A Real-World Analysis of Medicare Beneficiaries Receiving Chimeric Antigen Receptor T-Cell Vs. Autologous and Allogeneic Hematopoietic Stem Cell Transplants

Large B-cell Lymphoma

Abstract #2548

Sunday, Dec 6

(10:00am ET / 7:00am PT)

Burden of Illness and Outcomes in the 2nd Line Treatment of Large B-Cell Lymphoma: A Real-World Comparison of Medicare Beneficiaries with and without Stem Cell Transplants

Large B-cell Lymphoma

Abstract #1646

Saturday, Dec 5

(10:00am ET / 7:00am PT)

Lines of Therapy in Patients with Relapsed or Refractory Large B-Cell Lymphoma and Stem Cell Transplant-Intended Treatment

Mantle Cell Lymphoma

Abstract #1120

Saturday, Dec 5

(10:00am ET / 7:00am PT)

One-Year Follow-Up of ZUMA-2, the Multicenter, Registrational Study of KTE-X19 in Patients With Relapsed/Refractory Mantle Cell Lymphoma

Mantle Cell Lymphoma

Abstract #1126

Saturday, Dec 5

(10:00am ET / 7:00am PT)

Pharmacological Profile and Clinical Outcomes of KTE-X19 by Prior Bruton Tyrosine Kinase Inhibitors (BTKi) Exposure or Mantle Cell Lymphoma (MCL) Morphology in Patients With Relapsed/Refractory (R/R) MCL in the ZUMA-2 Trial

Non-Hodgkin Lymphoma

Abstract #2036

Sunday, Dec 6

(10:00am ET / 7:00am PT)

Retreatment With Axicabtagene Ciloleucel (Axi-Cel) in Patients With Relapsed/Refractory Indolent Non-Hodgkin Lymphoma in ZUMA-5

Trials-In-Progress

Acute Lymphoblastic Leukemia & Non-Hodgkin Lymphoma

Abstract #1896

Sunday, Dec 6

(10:00am ET / 7:00am PT)

ZUMA-4: A Phase 1/2 Multicenter Study of KTE-X19 in Pediatric and Adolescent Patients With Relapsed/Refractory B Cell Acute Lymphoblastic Leukemia or Non-Hodgkin Lymphoma

Large B-cell Lymphoma

Abstract #2103

Sunday, Dec 6

(10:00am ET / 7:00am PT)

ZUMA-19: A Phase 1/2 Multicenter Study of Lenzilumab Use with Axicabtagene Ciloleucel (Axi-Cel) in Patients (Pts) With Relapsed or Refractory Large B Cell Lymphoma (R/R LBCL)

Online Publication

Follicular Lymphoma

Efficacy Outcomes of Treatments for Double Relapsed/Refractory Follicular Lymphoma (R/R FL): A Systematic Literature Review

For more information, including a complete list of abstract titles at the meeting, please visit: https://ash.confex.com/ash/2020/webprogram/start.html .

Yescarta was the first CAR T cell therapy to be approved by the FDA for the treatment of adult patients with relapsed or refractory large B-cell lymphoma after two or more lines of systemic therapy, including diffuse large B-cell lymphoma (DLBCL) not otherwise specified, primary mediastinal large B-cell lymphoma, and high grade B-cell lymphoma and DLBCL arising from FL. Yescarta is not indicated for the treatment of patients with primary central nervous system lymphoma. In July, Tecartus became the first CAR T cell therapy to receive accelerated approval from the FDA for the treatment of relapsed or refractory mantle cell lymphoma, based on overall response rate and durability of response. Continued approval for this indication may be contingent upon additional data from a confirmatory trial. The U.S. Prescribing Information for Yescarta and Tecartus each have BOXED WARNINGS for the risks of CRS and neurologic toxicities, and Yescarta and Tecartus are each approved with a risk evaluation and mitigation strategy (REMS) due to these risks; see below for Important Safety Information.

The uses of Yescarta in relapsed or refractory FL or MZL or as a first-line treatment for patients with large B-cell lymphoma and high-risk genetics are investigational and not approved anywhere globally. Its efficacy and safety have not been established for these indications.

Magrolimab is investigational and not approved anywhere globally. Its efficacy and safety have not been established. More information about clinical trials with magrolimab is available at http://www.clinicaltrials.gov .

ABOUT MAGROLIMAB

Magrolimab is a first-in-class, investigational monoclonal antibody against CD47 and macrophage checkpoint inhibitor that is designed to interfere with recognition of CD47 by the SIRP receptor on macrophages, thus blocking the dont eat me signal used by cancer cells to avoid being ingested by macrophages. Magrolimab is being developed in several hematologic and solid tumor malignancies, including MDS. Magrolimab has been granted Fast Track Designation for the treatment of MDS, AML, DLBCL and FL. Magrolimab has also been granted Orphan Drug Designation by the FDA and EMA for treatment of MDS and AML.

About Yescarta

Original post:
Gilead and Kite to Share Latest Scientific Advances in Hematologic Malignancies at ASH 2020 - Investing News Network

Read More...

The great reset: new danger on the horizon – Amandala

Wednesday, November 11th, 2020

Belize City, Nov. 2, 2020 Most people in Belize are either taken up these days with finding a job/income, with fears of COVID-19, or with anticipation of the General Elections of Nov. 11, 2020. But lurking in the shadows is a much more dangerous foe.

In the past it was called The New World Order, but that has been so discredited, that the wizard behind the curtain had to change the name to The Great Reset. What is this Great Reset?

The Great Reset is a new social contract that ties you to it through an electronic ID linked to your bank account and health records, and a social credit ID that will dictate every facet of your life. While the COVID-19 pandemic is being used as a justification for the Great Reset movement, the agenda has nothing to do with health and everything to do with a long-term plan to monitor and control the world through digital surveillance and artificial intelligence.

The Great Reset and the Fourth Industrial Revolution are rebranded terms for the old New World Order, melded with the trans-humanist movement. Technocracy (which is the new name for Fascism) is an economic system of resource allocation that revolves around computer technology in particular artificial intelligence, digital surveillance, and Big Data (5G) collection and the digitization of industry and government, which in turn allows for the automation of social engineering and social rule, thereby doing away with the need for democratically elected leadership.

While the real plan is to usher in a tech-driven dystopia free of democratic controls, the elites speak of this plan as a way to bring us back into harmony with nature the Green New Deal. Importantly, the pandemic is being used to destroy local economies around the world, which will then allow the World Economic Forum to come in through the IMF and rescue debt-ridden countries through facilitated financial bailouts.

However, the price for this salvation is your personal freedom and liberty. And, again, one of the aspects of the Fascist plan is to eliminate national borders and nationalism in general.

Who are the main actors behind the Great Reset?

Bill Gates and the World Economic Forum, along with the United Nations (which keeps a relatively low profile), appear to be at the heart of the big boys agenda. Gates is also the largest money-bag for the World Health Organization the medical branch of the U.N. Other key partners that play important roles in the implementation of the elites/globalists agenda include foundations such as the Rockefeller Foundation, the Rockefeller Brothers Fund, the Ford Foundation, Bloomberg Philanthropies, the UN Foundation, and George Soros Open Society Foundation; companies such as: Avanti Communications, a British provider of satellite technology with global connectivity, and 2030 Vision, a partnership of technology giants that is aimed at providing the infrastructure and technology solutions needed to realize the U.N.s 2030 Sustainable Development Goals. 2030 Vision is also partnered with Frontier 2030, which is a partnership of organizations under the helm of the World Economic Forum.

These organizations include the major Wall Street bankers/financiers; Google, the No. 1 Big Data collector in the world and a leader in AI services; MasterCard, which is leading the globalist charge to develop digital IDs and banking services, and Salesforce, a global leader in cloud computing, the internet of things and artificial intelligence.

Incidentally, Salesforce is led by Marc Benioff, who is also on the World Economic Forums board of directors, and Professor Klaus Schwab, chairman of the World Economic Forum.

Most Belizeans know little or nothing about the trans-humanist movement, or Human 2.0, which is geared at transcending biology through computer technology. Or, as Dr. Carrie Madej of USA explains in a blog, their goal is to meld human biology with computer technology and artificial intelligence. Two visible proponents of trans-humanism are Ray Kurzweil (director of engineering at Google since 2012) and Elon Musk (founder of SpaceX, Tesla and Neuralink). According to Dr. Madej, today we may be standing at the literal crossroads of trans-humanism, thanks to the fast approaching release of one or more mRNA COVID-19 vaccines.

Many of the COVID 19 vaccines https://articles.mercola.com/sites/articles/archive/2020/05/22/coronavirus-vaccine-timetable.aspx are not conventional vaccines. Their design is aimed at manipulating your very biology, and therefore have the potential to alter the biology of the entire human race. Conventional vaccines train your body to recognize and respond to the proteins of a particular virus by injecting a small amount of the actual viral protein into your body, thereby triggering an immune response from your body and the development of antibodies.This is not what happens with an mRNA vaccine. The theory behind these vaccines is that when you inject the mRNA into your cells, it will stimulate your cells to manufacture their own viral protein. The mRNA COVID-19 vaccine will be the first of its kind. No mRNA vaccine has ever been licensed before. And, to add insult to injury, theyre forgoing all animal safety testing.

Madej has reviewed the background of certain individuals participating in the race for a COVID-19 vaccine, which include Moderna co-founder Derrick Rossi, a Harvard researcher who successfully reprogrammed stem cells using modified RNA, thus changing the function of the stem cells. Moderna was founded on this concept of being able to modify human biological function through genetic engineering.

The mRNA vaccines are designed to instruct your cells to make the SARS-CoV-2 spike protein, the glycoprotein that attaches to the ACE2 receptor of the cell. The idea is that by creating the SARS-CoV-2 spike protein, your immune system will mount a response to it and begin producing antibodies to the virus.

However, as we now know, Moderna is having problems, because both the CEO and CFO have, according to the Wall Street Journal, dumped their shares and sold everything, making some $350 million + dollars.

But the biggest insult by the globalists to our intelligence is the censorship of the news about the research done by genetic analysis using the Oak Ridge National Lab supercomputer called the Summit which has revealed an interesting new hypothesis that helps explain the disease progression of COVID-19. A September 1, 2020 Medium article1 by Thomas Smith reviewed the findings of what is now referred to as the Bradykinin hypothesis.

As reported by Smith, the computer crunched data on more than 40,000 genes obtained from 17,000 genetic samples.

Summit is the second-fastest computer in the world, but the process which involved analysing 2.5 billion genetic combinations still took more than a week. When Summit was done, researchers analysed the results. It was, in the words of Dr. Daniel Jacobson, lead researcher and chief scientist for computational systems biology at Oak Ridge, a eureka moment.

Bradykinin is a chemical that helps regulate your blood pressure and is controlled by your renin-angiotensin system (RAS). As explained in the Academic Press book on vitamin D (which has a significant impact on the RAS):

The renin-angiotensin system (RAS) is a central regulator of renal and cardiovascular functions. Over-activation of the RAS leads to renal and cardiovascular disorders, such as hypertension and chronic kidney disease, the major risk factors for stroke, myocardial infarction, congestive heart failure, progressive atherosclerosis, and renal failure.

The Bradykinin hypothesis provides a model that helps explain some of the more unusual symptoms of COVID-19, including its bizarre effects on the cardiovascular system. It also strengthens the hypothesis that vitamin D plays a really important role in the disease.

Your ACE2 receptors are the primary gateways of the virus, as the virus spike protein binds to the ACE2 receptor. As explained2 by Smith:

COVID-19 infection generally begins when the virus enters the body through ACE2 receptors in the nose The virus then proceeds through the body, entering cells in other places where ACE2 is also present But once Covid-19 has established itself in the body, things start to get really interesting The data Summit analysed shows that COVID-19 isnt content to simply infect cells that already express lots of ACE2 receptors. Instead, it actively hijacks the bodys own systems, tricking it into up-regulating ACE2 receptors in places where theyre usually expressed at low or medium levels, including the lungs.

In this sense, COVID-19 is like a burglar who slips in your unlocked second-floor window and starts to ransack your house. Once inside, though, they dont just take your stuff they also throw open all your doors and windows so their accomplices can rush in and help pillage more efficiently.

The end result is a Bradykinin storm, and according to the researchers, this appears to be an important factor in many of COVID-19s lethal effects, even more so than the Cytokine storms associated with the disease. As Bradykinin accumulates, the more serious COVID-19 symptoms appear. Mounting clinical data suggest COVID-19 is actually primarily a vascular disease rather than a respiratory one, and runaway Bradykinin build-up help explain this.

The good news is that since Bradykinin storms are to blame, there are a number of already existing drugs (Icatibant, Danazol, Stanozolol) that can help prevent Bradykinin storms, and there are many other safe, inexpensive strategies like nebulized peroxide, ozone, molecular hydrogen, steroids, exogenous ketones, and Quercetin with zinc, vitamin D, and high-dose vitamin C.

And there are two reports by the American CDC. One says that 70.6% of COVID-19 patients always wore a mask3. The other says only 6% of all COVID-19 deaths were due ONLY to coronavirus4. And yet another said that the common seasonal flu caused more deaths than COVID-19.

So, if COVID-19 deaths are not what is being reported by the mass media, if the SAR CoV-2 virus is not as deadly to humans, then why the lockdowns, the face masks, the social distancing, the destruction of the way we live, of our economies? Why? Why?

But not all men are blind. On Oct 25, 2020, the Archbishop of Ulpiana, former Apostolic Nuncio to the United States of America, Carlo Maria Vigano, wrote an open letter (which over 100 million Americans have read) to President Donald Trump. The letter is long and is all over the internet. This is some of it:

at this hour in which the fate of the whole world is being threatened by a global conspiracy against God and humanityin the midst of the silence of both civil and religious authoritiesthis historical moment sees the forces of Evil aligned in a battle against the children of Lightwe see heads of nations and religious leaders pandering to this suicide of Western culture and its Christian soul, while the fundamental rights of citizens and believers are denied in the name of a health emergency that is revealing itself more and more fully as instrumental to the establishment of an inhuman faceless tyranny.

A global plan called the Great Reset is underway. Its architect is a global lite that wants to subdue all of humanity, imposing coercive measures with which to drastically limit individual freedoms and those of entire populations Behind the world leaders who are the accomplices and executors of this infernal project, there are unscrupulous characters who finance the World Economic Forum and Event 201, promoting their agenda.

The purpose of the Great Reset is the imposition of a health dictatorship aiming at the imposition of liberticidal measures, hidden behind tempting promises of ensuring a universal income and cancelling individual debt. The price of these concessions from the International Monetary Fund will be the renunciation of private property and adherence to a program of vaccination against Covid-19 and Covid-21 promoted by Bill Gates with the collaboration of the main pharmaceutical groups. Beyond the enormous economic interests that motivate the promoters of the Great Reset, the imposition of the vaccination will be accompanied by the requirement of a health passport and a digital ID, with the consequent contact tracing of the population of the entire world. Those who do not accept these measures will be confined in detention camps or placed under house arrest, and all their assets will be confiscated.

Mr President, I imagine that you are already aware that in some countries the Great Reset will be activated between the end of this year and the first trimester of 2021. For this purpose, further lockdowns are planned, which will be officially justified by a supposed second and third wave of the pandemic. But this world, Mr. President, includes people, affections, institutions, faith, culture, traditions, and ideals: people and values that do not act like automatons, who do not obey like machines, because they are endowed with a soul and a heart, because they are tied together by a spiritual bond that draws its strength from above, from that God that our adversaries want to challenge, just as Lucifer did at the beginning of time with his non serviam.

Until a few months ago, it was easy to smear as conspiracy theorists those who denounced these terrible plans, which we now see being carried out down to the smallest detail. No one, up until last February, would ever have thought that, in all of our cities, citizens would be arrested simply for wanting to walk down the street, to breathe, to want to keep their business open, to want to go to church on Sunday. Yet, now it is happening all over the world.

Mr. President, you have clearly stated that you want to defend the nation One Nation under God, fundamental liberties, and non-negotiable values that are denied and fought against today. It is you, dear President, who are the one who opposes the deep state, the final assault of the children of darkness.

For this reason, it is necessary that all people of goodwill be persuaded of the epochal importance of the imminent election Your adversary is also our adversary: it is the Enemy of the human race, He who is a murderer from the beginning (Jn 8:44).

And yet, in the midst of this bleak picture, this apparently unstoppable advance of the Invisible Enemy, an element of hope emerges. The adversary does not know how to love, and it does not understand that it is not enough to assure a universal income or to cancel mortgages in order to subjugate the masses and convince them to be branded like cattle. This people, which for too long has endured the abuses of a hateful and tyrannical power, is rediscovering that it has a soul; it is understanding that it is not willing to exchange its freedom for the homogenization and cancellation of its identity; it is beginning to understand the value of familial and social ties, of the bonds of faith and culture that unite honest people.

This Great Reset is destined to fail because those who planned it do not understand that there are still people ready to take to the streets to defend their rights, to protect their loved ones, to give a future to their children and grandchildren. The levelling inhumanity of the globalist project will shatter miserably in the face of the firm and courageous. To be an instrument of Divine Providence is a great responsibility, for which you will certainly receive all the graces of state that you need, since they are being fervently implored for you by the many people who support you with their prayers.

Meanwhile, here in Belize, we kill our so-called COVID-19 patients. Ventilators will kill you. Doctors of Belize, read the report of the US Oak Ridge National Lab on COVID-19. NO one needs to die anymore from COVID-19. US President Trump, who is 74 years old, was cured after 3 days of COVID-19.

And by the time you read this article, the world will know who won the elections in the United States.

Curfew on Nov. 11, election night in Belize, is part of the Globalist agenda. Let the people celebrate their victory. Open the churches, the schools, the bars; open the society. Send the globalist/elites back to Hell with Lucifer.

(Footnotes)1https://elemental.medium.com/a-supercomputer-analyzed-covid-19-and-an-interesting-new-theory-has-emerged-31cb8eba9d63

2ibid3https://www.cdc.gov/mmwr/volumes/69/wr/mm6936a5.htmRead the table at the end.4https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/index.html

Link:
The great reset: new danger on the horizon - Amandala

Read More...

Teladoc Is A Strong Buy: A Radical Healthcare Change Will Come – Seeking Alpha

Wednesday, November 11th, 2020

Introduction

Last week, the Teladoc (TDOC) and Livongo (LVGO) merger was completed. That means that Livongo doesn't trade anymore. If you still had your Livongo shares, you got (or will get if your broker is a bit slower) 0.5920 per share of Livongo in Teladoc shares plus cash of $11.33, paid with a special dividend of $7.09 on October 29th, and the rest when your shares were changed to Teladoc shares.

(Source)

As a former shareholder of Livongo, you may not be completely familiar with how Teladoc is positioned now. If there is a buy-out or a merger, that always generates mixed feelings, or at least it should. If it doesn't, it means that you had a bad stock in your portfolio.

With Potential Multibaggers, my marketplace service here on Seeking Alpha, I try to find multibaggers early on. I picked Livongo as a Potential Multibagger on December 26, 2019. The stock then traded at $24.86 and had a market cap of just $2.5B. The stock returned 462.2%, so it's more than a fivebagger in less than a year. But still, quite a few shareholders, from both companies, didn't feel great about the merger.

I think Teladoc could still be a multibagger at this point for patient investors. I think most investors underestimate that this combined company could represent the future of our healthcare system. In this article, written from a bird's eye perspective, I will try to explain why.

I think a lot of people know that the American healthcare system (and that of most Western countries) is unsustainable. It's too expensive but nobody seems to find a way out to cut costs.

The problem is that our healthcare is one of the last sectors that has not been disrupted by tech yet. The system originates from a time when bigger was better because it was more affordable to have standard procedures. Long ago, there was a family doctor and he knew you and you knew him and you had a personal relationship with that man (female doctors almost didn't exist back then).

After the Second World War, two evolutions emerged that made this system unsustainable: people reached a higher and higher age and the Baby Boomers were born. That put pressure on both ends of the healthcare system and the solutions were more scale and introducing standard procedures, so the productivity of healthcare workers became higher. Specialized care also contributed to more efficiency. And it worked.

But there was a side effect. People don't feel connected to the people that should care for them. They often feel treated like numbers, like patients at best, but mostly not like individual people. I'm not throwing a stone here at doctors, nurses and other healthcare workers. They often share that feeling. They don't have the time to deeply care about people. Their time is limited, they have to reach the quota. A doctor is not paid for listening to you. He's paid per patient that he handles. In other words, the less he or she listens, the more the doctor is incentivized. And that wears out a lot of healthcare workers.

Normally, such a market would correct itself. If you are not properly served in Lowe's (LOW), you go to Home Depot (HD) or the other way around. If one is really not giving enough attention to its clients, the company will go bankrupt eventually. That's where the efficiency of the market plays its role.

But in healthcare, the patients are not the customers. They are the goods, as it were. Customers are the paying party. And who pays for healthcare costs? Exactly, the insurance companies. Their only objective is as little costs as possible and that's why they pay per visit, for example.

But this creates the strange effect that a doctor that treats you very well is only paid once, while a bad doctor, who follows the wrong procedure and has to repair the damage or gives the wrong diagnosis, is rewarded each time he or she treats you and so earns more money than the good doctor.

To fix the healthcare system, a little reparation here and there won't help. We saw in the last decades that tech has entered almost every industry and has disrupted industries completely. Think of how Amazon (AMZN) made Sears obsolete. The same thing should (and probably will) happen in healthcare.

Disruption comes from the Latin verb 'disrumpere', which means to break apart and that is what healthcare needs: breaking things apart to build them up again. The bottom line of every healthcare reform should be to use tech and turn the system upside down. Health should be rewarded and paid for, not sickness.

All insurance is meant for emergency cases, except for healthcare insurance. Doctors are incentivized to do as many consults and tests as possible because someone makes money on that: the doctor himself or the hospital, mostly both. A hospital, for example, makes 10 or 20 times more money if you go to the emergency room than if you use an online platform to talk to a telehealth doctor.

As a patient, if you see a doctor, most of that little time you spend with him or her is dedicated to tests, collecting data. But suppose the doctor already would have all the data when you come in and he or she has already been able to look into your case, your history, and tens of up-to-date data points before you came in, that doctor could have time for that which we all crave when we visit a doctor: talking about what you exactly have and what it means, what we can do to get better, a discussion about what the underlying cause could be, talking about the psychological effects that your condition brings with it, what the best plan of action would be for you, etc. In other words, the doctor could become some kind of health coach, a professional that, with the help of precise data, could prescribe a trajectory to better health, hold you accountable, help you when sticking to the plan is tough etc. A doctor could partly become a real healthcare worker, not just a sickcare worker.

That would mean that you wouldn't have to visit a doctor as often. If you have a chronic condition, you could be monitored 24/7 by sensors, assisted by AI, as Livongo does for diabetes. You are not only monitored but you also get health nudges. That means that you would know exactly what is the right path for you. And that path is much more individualized than most people can imagine.

Hemant Taneja, a venture capitalist of General Catalyst who founded Livongo with Glen Tullman, calls this new space in healthcare 'health assurance'.

(Hemant Taneja, right, together with Livongo founder Glen Tullman, source)

Taneja is convinced that health assurance industry will see several $100B+ companies. I suspect that he was the great driving force behind the Livongo/Teladoc merger, together with Glen Tullman. They realized that Livongo can become so much more combined with Teladoc than on its own.

This is how health assurance is defined:

Health assurance is an emerging category of consumer-centric, data-driven healthcare services that are designed to bend the cost curve of care and help us stay well. Built on the principles of open technology standards, these services employ empathetic user design and responsible AI. This is the future of your health experience.

If you want to know more about this, you could read Taneja's interesting book Unhealthcare.

(Source)

Now that you know the basics of the concept of health assurance, I think you can see the potential for Teladoc and Livongo in this market. There is no company that is as well-positioned as the combination of Teladoc and Livongo. Livongo brings measuring, data collection and especially AI to the table, Teladoc has a worldwide network of telehealth.

Investors who just see what there is now could get scared away from Teladoc. They look at the number of telehealth visits that could slow down after the peak of the coronavirus and they are afraid that Teladoc will just have been a COVID-19-induced fad. But if you look at the future, you see that this company could be in the sweet spot when healthcare will be disrupted over the next decade.

Insurance companies will help them with this. As we have already seen, they just want to pay as little as possible. Livongo saved insurance companies $88 per patient per month. The reason: the monitoring of diabetes patients, the fact that they have a diabetes coach that is always available and the health nudges reduce the medical costs dramatically. $88 per patient per month means more than $1,000 per year per patient. I think you see the potential.

Besides that, the patients also feel freer than before. Their diabetes doesn't control their lives as much. They need less medication and if they need it, the data will indicate it before the attack.

This is just for diabetes. That's already a big market. But Livongo doesn't just focus on diabetes but also on hypertension and obesity. Those are two huge markets as well. The hypertension market is estimated to be $23B in 2026 and the obesity treatment market is estimated to be around $20B in 2026. But suppose you add the weight loss market to this, which is worth about $70B in the US alone, and you can see the potential.

The obesity-related healthcare costs are estimated at around $147B annually, so this might mean big savings for healthcare spending.

There will certainly be other companies in this space than just Livongo and Teladoc, companies that will also focus on other domains, but so far, I don't see any competitor that is as advanced as Livongo/Teladoc is.

When I pick a Potential Multibagger, I turn a company inside out and that means that I know Livongo, its founders Glen Tullman and Hemant Taneja and what the company exactly does really well.

I didn't know Teladoc as well before the merger was announced. I had it on my watchlist, but I had not done a really deep dive. When I did, I found a lot that I liked. This statement by Teladoc's CEO Jason Gorevic on the closing of the merger is worth reading word for word if you want to understand the combination of the companies:

Both Teladoc Health and Livongo were founded with the same mission: to create a new kind of healthcare experience, one that empowers people everywhere to live their healthiest life. Today's news (the merger, FGTV) dramatically accelerates our ability to make this a reality for the tens of millions of consumers and healthcare professionals we serve around the world. Together, our team will achieve the full promise of whole-person virtual care, leveraging our combined applied analytics, expert guidance and connected technology to deliver, enable and empower better health outcomes."

There are a few critical phrases here. Let's look at them one by one.

"a new kind of healthcare experience" This is the disruption that I mentioned. Not just fine-tuning the current system, but a completely fresh start.

"one that empowers people everywhere to live their healthiest life".

This is the health assurance that I was talking about. Helping people to live their healthiest life is the reverse of what the current healthcare system thrives on. Empowerment means that people will be able to decide for themselves and take their health into their own hands. The 'everywhere' in this phrase refers to the global footprint Teladoc has.

"whole-person virtual care"

This refers to everything from health assurance to data, treatment plans, health nudges, and specialized diagnosis and surgery. Teladoc/Livongo will be the only one-stop-shop for taking your healthcare into your own hands. Healthcare is one of the few paternalistic sectors left. Paternalistic here means: "We know everything, you don't. Your only function is to give us the money and shut up."

Again, that's not throwing a stone to healthcare workers. I have a really, really deep respect for the people working in healthcare and this pandemic has highlighted even more how crucial they are. Several of my friends work in the sector.

They actually often feel the same frustration as patients. They don't have enough time to really listen, which would help them to diagnose more accurately, they have to do too much administration, they lose precious time gathering simple data and there are no efficient follow-up programs. Most healthcare workers would love to have the time to establish a human connection with each of their patients and listen to every detail that could count. But there is just no time. That's why a lot of people seek help from all kinds of coaches.

This is Teladoc's representation of whole-person care:

(Source)

Let's look into this in a bit more detail.

As you see from the graph, and I think this is really important, the category Wellness and Prevention is included in that care too. It is explained as 'Complete regular screenings and improve nutrition, exercise and well-being'. That means planning your health.

No company flies blindly and every company has a clearly-defined goal for the future often with step-by-step roadmaps. But for health, the advice is often: "Eat well and exercise." That's like saying to a company: "Execute well and make money." In other words, although it's true, it's too general.

A personal note here to illustrate what I mean. For years, I was very tired and I had trouble staying awake after meals or after drinking coffee. The advice I got from my doctors? Eat healthily, do regular exercise.

I found out 5 years ago that I have a milk allergy but I had to find out all about what it meant for my life (dairy-free cooking, avoiding almost all cookies, but also potato chips etc.) on my own. It would have been great to have a specialist that could have coached me there.

The example of my own life is just to illustrate the truth about healthcare that we all intuitively know but that is not acknowledged enough under this system: we are all individuals, with our differences, our unique needs. In stock terms, we are as different as a steel producer stock and a SaaS stock. I'm a man of 6 feet and 5 inches and almost always, I get the same dose of medicine as a woman of barely 5 feet high.

We are on the brink of other breakthroughs in healthcare: stem cell therapy, gene therapy, cheap genome sequencing, CRISPR, and many more. All these trends point in one direction: individualized healthcare. Medicine will not be a mass-produced, mass-prescribed drug anymore. We will evolve to personalized medicine.

Initially, people will be split into different groups based on certain data points (age, weight, condition...) and later it will be really about you, the individual. Your genome, your microbiome, your allergies, your reactions to certain drugs, everything will be known and taken into account for your prescription. Lots of medicines contain milk, for example, as a filling agent. Each time again, I have to say this to a doctor and sometimes there are even no medicines on the market without milk. These will be produced in the individualized healthcare that will come, if only for me. Medicines will be prepared on who you are, not on who the masses are.

But it will be much more than just medicines. Which supplements should you take? What is the perfect exercise regimen for your type of body? How could you build up your condition for that marathon or triathlon you always dreamed of without the risk of an injury because of your specific body composition? What are the best shoes for your feet so they can be 3D-printed? What is the best diet for the specific microbes that you have in your gut? What are the diseases you are genetically susceptible to and what can you change in your lifestyle to prevent them?

Don't get me wrong, I'm not a pie-in-the sky thinker. This will not be for the first years, of course not. And at first, it could be unevenly distributed, as a lot has been throughout healthcare's history. The first individualized programs could come with a hefty price ticket. But probably that will democratize, as a lot of procedures have in healthcare. Or maybe it will democratize from the start but with different degrees of quality, a bit like smartwatches.

The medical know-how of Teladoc, its wide network of doctors and health specialists, combined with Livongo's AI, data gathering and processing capabilities, make that this company is, like no other that I know, prepared for the future of healthcare.

I haven't seen any other AI healthcare platform that even comes close to that of Livongo at this point. With its AI+AI approach (aggregate, interpret + apply, iterate) it has already learned a lot, both from the whole pool of patients as from individual patients. With more patients because of the merger, there will be more data and more data means more insights and new products over time.

And Livongo will double down on its AI and data analysis. Revealera.com is a website that looks at jobs, job openings and it tries to find relevant information from these data.

It showed that of all publicly-traded companies, Livongo had the highest percentage of job openings that require data science and machine learning. 16% of Livongo's jobs openings ask for experience in those fields.

This clearly shows to me that Teladoc/Livongo is skating where the puck will be, not just where it is.

If you look at the combination of the two companies that merged, you can see that they are very complementary. These are Teladoc's key growth strategies and in blue, Livongo could help to accelerate Teladoc's strategy:

(Source)

The companies estimate that there will be $500M in synergies.

(Source)

Now, I know that it's all too common in an acquisition or a merger to overestimate these synergies by a wide margin. But in this case, I think the synergy opportunities are actually very conservative. The companies even acknowledge that in their merger presentation:

There will be a lot of cross-selling, as there is only a 25% overlap in the customers of the companies. Even before the merger officially was closed, Livongo was cross-sold in two deals already by Teladoc.

The first deal was Fresenius Medical Care, a company specialized in working with patients that suffer from CKD (chronic kidney disease). Partnerships and distribution are quintessential in healthcare and in its field, Fresenius is a big player. It provides dialysis for 347,000 kidney patients. The press release of Fresenius explains:

This marks the first time Livongo will use its robust virtual care solutions to specifically support those with CKD and is a significant step forward in Fresenius Medical Care's efforts to provide a more coordinated care experience. With earlier intervention, Fresenius Health Partners also seeks to increase optimal dialysis starts, as well as offer earlier evaluation of transplantation and home dialysis options.

This shows that the possibilities for Livongo to branch out are numerous.

The second deal was with Florida Blue, part of GuideWell Mutual Holding. Together with its merging partner Teladoc, Livongo will offer Florida Blue members with diabetes virtual care, including connected devices, advanced data science, and telehealth.

Being the only one-stop-shop for digital healthcare will provide Teladoc/Livongo with a competitive advantage that others simply don't have at the moment. The companies shared an example about Claire, an imaginary future client. You can see the different stages and situations in which she can be helped by Teladoc after the merger with Livongo:

As you can see, there is not a single moment in the whole process that Claire has to leave the platform. In this way, Teladoc and Livongo show that they are very complimentary. And the data component of Livongo, combined with preventive healthcare, gives Teladoc a lot of flexibility to introduce even more products, each one more and more targeted and eventually personalized.

There are risks to every investment, of course, although I generally believe that too many investors overemphasize risk. What is risk? Risk is not the same as volatility, no matter what some want you to believe. Volatility is risky if you are a short-term investor. If you need the money in 2 years, volatility is a risk. But if you need the money in, let's say, 20 years, why would it matter if a certain stock is up or down 50% this year or the next?

If you read the great book 100 baggers by Chris Mayer, you'll see that ALL (!) of the 100 baggers (stocks that turn your $10K into $1M) saw drops of 50% and more at least once. Most several times, and often they dropped substantially more than 50%.

Risk is the chance that you will lose your money permanently, not volatility. That also means that you should look at risks in their context. All companies make mistakes and if you sell because of a mistake, you'll never find multibaggers. Do I need to remind you of the Amazon Fire phone, the Netflix Quikster failure, the Windows phone, Google Plus and so many more mistakes? Don't let one failed product mislead you. The company as a whole is much more important.

Having said that, what will I keep my eyes on for Teladoc?

First, I want to see that Livongo really has an impact on Teladoc because health assurance is more a part of what Livongo does right now. There is a risk that Teladoc doesn't leverage Livongo's capacities enough.

The second element that I will watch is how the two companies work together when it comes to company culture. Teladoc has a good tracking record when it comes to acquisitions and giving them a place where they feel good inside of the company but this merger with Livongo is on a whole different level. I see some good signs because Teladoc CEO Jason Gorevic and Livongo's founder and executive chairman have already come out together several times and the two seem to share the same vision.

The third and final element of risk that I want to touch on is competition. At this moment, I don't see any competitor that is even close to Teladoc after the merger with Livongo but that can always change fast, of course. On the other hand, this market is so big that there will be several winners. And the size of the market, that's the next topic of this article.

The market cap of the combined company is around $30B at this moment. For Potential Multibagger stocks, I want to see the possibility that the stock could be a tenbagger in the next 10 years. For Teladoc, I think this is still possible, despite its already substantial market cap. The company has everything it needs to start a new era in healthcare as I showed, and it's in a gigantic market. This is the title of recent research:

Global Digital Health Market was Valued at USD 111.4 billion in 2019 and is Expected to Reach USD 510.4 billion by 2025, Observing a CAGR of 29.0% during 2020-2025

Teladoc operates in a TAM (total addressable market) of $510B in 2025 and at this moment it is the only 360 digital health company. That's a great position to be in. For those who wouldn't know: TAM is the yearly total addressable market. The fact that Teladoc projects a CAGR (compound annual growth rate) of 30% to 40% seems conservative to me. If you would add the synergies, it will be at least to the higher end of that margin, in my opinion.

If Teladoc could just bring in 3% of that TAM of 2025, that would already mean $15.3B. If you slap a P/S ratio of 20 on that, you already have a company with a market cap of more than $300B. A P/S of 20 might seem aggressive but for a company growing at more than 30% per year and gross margins which will probably be in the mid-70s, I think it's very reasonable. You can tinker with the numbers but the conclusion to me is always that if Teladoc executes well, it has the potential to become a giant.

I'm not saying that the company will already have 3% of the global digital health market by 2025, mind you. I think revenue of 1% of the TAM, about $5.1B, is possible at that moment, though, and much more growth will be in the pipeline.

There are always a lot of ifs but when I look at Teladoc, I can see the potential to become really big, ten times or more bigger than today.

With a lot of healthcare disruption knocking at the door, such as cheap genome sequencing, CRISPR, personalized medicines and much more, data will become more and more important for healthcare. Livongo's AI will add that to Teladoc.

The combination of Teladoc and Livongo definitely has the first-mover advantage in a very important and big emerging market because it can provide a 360 degrees one-stop-shop for personalized digital healthcare.

If you have enjoyed this article, feel free to hit the "Follow" button next to my name.

In the meantime, keep growing!

Potential Multibaggers focuses on finding multibaggers early on.

Potential Multibaggers is not for those who trade in and out of stocks but for long-term investors who want life-changing returns.

More here:
Teladoc Is A Strong Buy: A Radical Healthcare Change Will Come - Seeking Alpha

Read More...

COVID Drug Given to Trump Developed From Aborted Fetus Cells – Quint Fit

Saturday, October 10th, 2020

Embryonic stem cell research has been always disputed by the 2020 Republican party. In 2019, Trumps administration paused funding for government scientists to work on studies involving embryonic stem cells, affecting about $31m in research, according to Science Magazine.

Regeneron, on the other hand, doesnt consider these cells fetal tissue because the HEK-293T line of cells has been immortalized and they divide and regenerate themselves in the laboratory.

The investigational drug has been in clinical trials since June. Even though early results from a trial with around 300 non-hospitalised COVID patients showed the drug was safe and could reduce viral levels and improve symptoms, the data is yet to be peer-reviewed.

According to CNN, the treatment is not yet approved for any use from the US FDA. The company, however, is in talks for an emergency approval. Regeneron has also confirmed that it had provided the drug under a compassionate use request for President Trump from the doctors.

(Make sure you don't miss fresh news updates from us. Click here to stay updated)

See the article here:
COVID Drug Given to Trump Developed From Aborted Fetus Cells - Quint Fit

Read More...

Laid off from ImmunoGen, an ex-Genzyme and Shire exec heads to an ARCH upstart – Endpoints News

Saturday, October 10th, 2020

ImmunoGen CBO Blaine McKee got laid off after the company had a big Phase III failure last March, but by the time his official exit came around in December, he already landed a plum new gig. ARCH Venture Partners had tapped the longtime executive to run a biotech willing to spend a lot of cash in an area that had gone under-invested: kidney disease.

Now that biotech is emerging from stealth mode with 12 employees, $51 million in Series A funding from ARCH and UCB Venture and two new methods of directly attacking a disease and an organ that drug developers have long only tried to mitigate from the side. Theyve also got a new name: Walden Biosciences.

Its horribly served, poorly served, there hasnt been much innovation for years, McKee told Endpoints News. Were not looking to slow the progression of renal diseases, were not looking to make a modest impact on renal disease, we want to full on stop or reverse the progression of renal disease.

Although a couple recent upstarts have altered the picture, for years the majority of drugs in biotech pipelines have treated the chronic conditions that often trigger kidney diseases, CSO Alex Duncan noted. Thats been on particularly acute display over the past year, as AstraZeneca gradually rolled out what theyve billed as unprecedented data on their SGLT2 diabetes drug Farxiga. Those data showed a 40% reduction in risk of kidney progression or cardiovascular death, but that was in patients regardless of diabetes status and in some ways an outlier.

Pharma has tended to focus on, well, lets treat the diabetes and we should be able to treat the kidney disease, Duncan, a Medimmune and AstraZeneca vet who last worked at the cancer biotech Agenus, told Endpoints. Well, that hasnt happened.

McKee, a longtime Genzyme executive who ran corporate development for Shire before the Takeda buyout, will direct a platform culled from the labs of Jochen Reiser and Sanja Sever at Massachusetts General Hospital and Harvard. Although they have yet to nominate lead candidates, their approach can be split into two different biological mechanisms.

In one path, theyll look to target a protein known as soluble urokinase plasminogen activator receptor, or simply: suPAR. Researchers have known for years that the protein, when overproduced elsewhere in the body, can flow through the blood and cause harmful inflammation in the kidney. Theyve subsequently largely used it as a biomarker. But Walden says they can use antibodies to basically neutralize suPARs before they reach the kidney, returning it to normal levels an approach akin to the antibodies now being developed to neutralize SARS-CoV-2 before it enters cells.

In the second path, theyll look to activate a protein called dynamin. The protein helps support the physical structure of the kidney itself, and in a 2015 Nature Medicine paper, Sever and Reiser describe how a small molecule that continually activates the receptor can help maintain the kidneys structure and ameliorate disease in animals. The approach, Duncan said, could allow patients to keep on meds they would have discontinued because of renal side effects.

Even with the damage that might be being caused from conditions outside of the kidney, we can make the proper filtration apparatus inside, Duncan said.

As they look to push the two programs, Walden will be boosted by a key regulatory change, McKee said. The FDA in 2018 changed their guidelines to allow companies to use the reduction of protein in the urine as an acceptable endpoint for accelerated approval. That, he said, could shave off years of development time.

He said thats what helped other VCs enter the field over the last 5 years, including Third Rock with GoldFinch in 2016 and Versant with Chinook in 2019.

Theyll be looking to put their first drug into the clinic in 2022.

Continued here:
Laid off from ImmunoGen, an ex-Genzyme and Shire exec heads to an ARCH upstart - Endpoints News

Read More...

Page 11234..10..»


2021 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick