Page 11234..1020..»

Archive for the ‘Genetics’ Category

Google News’ "Genetics" Section Is Full of Articles About People Named Gene – Futurism

Sunday, February 14th, 2021

Why is Google pulling up "Genetics" stories about Gene Simmons?Celebrity Gossip

If you try to look up the latest genetics news on Google News right now, youll find less information on the latest biomedical research and perhaps a little bit more about celebrities than you expected.

Google News algorithm seems to be pulling stories about people named Gene into the mix the news feed is full of articles about KISS frontman Gene Simmons, comedian Amy Schumers son Gene, and former National Economic Council Director Gene Sperling. Its a harmless glitch, to be sure, but also a bit puzzling given Googles global leadership in the AI industry.

A Google spokesperson told Futurism that theyre going to look into this, but didnt clarify what went wrong with the Google News algorithm or why.

But from an outsiders perspective, it seems like someone at Google told the algorithm to feature stories that have the word gene in their headline without checking whether they talk about music icons or cellular biology. To be fair, it gets confusing.

Well let you know if Google gets back to us, but the more likely outcome is that the glitch gets quietly fixed without Google announcing that something went wrong. Still, were holding out hope that well learn about some intern who accidentally cranked a big lever with Gene news written on it all the way up or something like that.

In the meantime, feel free to enjoy the feed of carefully-curated biomedical and KISS news that Google put together.

More on questionable science news: This Awful Tabloid Predicts a Killer Asteroid Almost Every Day

More here:
Google News' "Genetics" Section Is Full of Articles About People Named Gene - Futurism

Read More...

Global Animal Genetics Market Forecast to 2027 by Product (Poultry, Porcine, Bovine, Canine), Material (Semen and Embryo), and Services (DNA Typing,…

Sunday, February 14th, 2021

DUBLIN--(BUSINESS WIRE)--The "Animal Genetics Market Forecast to 2027 - COVID-19 Impact and Global Analysis By Product (Poultry, Porcine, Bovine, Canine, and Others), Genetic Material (Semen and Embryo), and Services (DNA Typing, Genetic Trait Tests, Genetic Disease Tests, and Others) and Geography." report has been added to ResearchAndMarkets.com's offering.

Genetic material and Services the market is expected to reach US$ 7,705.23 million by 2027 from US$ 4,778.67 million in 2019. The market is estimated to grow at a CAGR of 6.3% from 2020 to 2027.

Based on product, the market is segmented into poultry, porcine, bovine, canine, and others. In 2019, the porcine segment accounted for the highest share of the market. Growth of this segment is attributed to rise in production of porcine and increase in pork consumption across the globe. The same segment is likely to register highest CAGR in the global animal genetics market during the forecast period.

In terms of genetic material, the animal genetics market is segmented into embryo and semen. The embryo segment held the largest share of the market in 2019, whereas the semen segment is anticipated to register the highest CAGR of 7.0% in the market during the forecast period.

COVID-19 pandemic has become the most significant challenge across the world. This challenge would be frightening, especially in developing countries across the globe, as it may lead to reducing imports due to disruptions in global trade, which further increases the shortages of meat and dairy product supplies, resulting in a considerable price increase. Asian countries such as China, South Korea, and India are severely affected due to COVID-19 outbreak.

NEOGEN Corporation, HENDRIX GENETICS BV, Zoetis Inc., Genus, TOPIGS NORSVIN, Envigo, VetGen, ANIMAL GENETICS INC., ALTA GENETICS INC., and Groupe Grimaud are among the leading companies operating in the animal genetics market.

Key Topics Covered:

1. Introduction

1.1 Scope of the Study

1.2 Report Guidance

1.3 Market Segmentation

2. Animal Genetics Market - Key Takeaways

3. Research Methodology

4. Animal Genetics Market - Market Landscape

4.1 Overview

4.2 PEST Analysis

4.3 Expert Opinions

5. Animal Genetics Market - Key Market Dynamics

5.1 Market Drivers

5.1.1 Growing Preference for Animal Derived Proteins Supplements and Food Products.

5.1.2 Rising Adoption of Progressive Genetic Practices Such as Artificial Insemination (AI) and Embryo Transfer

5.2 Market Restraints

5.2.1 Limited Number of Skilled Professionals in Veterinary Research

5.2.2 Stringent Government Regulations for Animal Genetics

5.3 Market Opportunities

5.3.1 Innovations in Phenotyping Services

5.4 Future Trends

5.4.1 Significant Investments in R&D and Expansions Undertaken by Market Players

5.5 Impact Analysis

6. Animal Genetics Market - Global Analysis

6.1 Global Animal Genetics Marker Revenue Forecast and Analysis

6.2 Global Animal Genetics Market, By Geography - Forecast And Analysis

6.3 Market Positioning of Key Players

7. Animal Genetics Market Analysis - By Product

7.1 Overview

7.2 Animal Genetics Market Revenue Share, by Product (2019 and 2027)

7.3 Poultry

7.4 Porcine

7.5 Bovine

7.6 Canine

8. Animal Genetics Market Analysis - By Genetic Material

8.1 Overview

8.2 Animal Genetics Market Revenue Share, by Genetic Material(2019 and 2027)

8.3 Semen

8.4 Embryo

9. Animal Genetics Market Analysis - By Service

9.1 Overview

9.2 Animal Genetics Market Share, by Service, 2019 and 2027, (%)

9.3 DNA Typing

9.4 Genetic Trait Tests

9.5 Genetic Disease Tests

10. Animal Genetics Market Analysis and Forecasts To 2027 - Geographical Analysis

11. Impact of COVID-19 Pandemic On Global Animal Genetics Market

11.1 North America: Impact Assessment of COVID-19 Pandemic

11.2 Europe: Impact Assessment of COVID-19 Pandemic

11.3 Asia-Pacific: Impact Assessment of COVID-19 Pandemic

11.4 Rest of the World: Impact Assessment of COVID-19 Pandemic

12. Industry Landscape

12.1 Overview

12.2 Growth Strategies Done by the Companies in the Market, (%)

12.3 Organic Developments

12.3.1 Overview

12.4 Inorganic Developments

12.4.1 Overview

13. Company Profiles

For more information about this report visit https://www.researchandmarkets.com/r/6ynx7z

View post:
Global Animal Genetics Market Forecast to 2027 by Product (Poultry, Porcine, Bovine, Canine), Material (Semen and Embryo), and Services (DNA Typing,...

Read More...

Genetics the next frontier of healthcare – Bangkok Post – Bangkok Post

Sunday, February 14th, 2021

China is banking on genetics as the next frontier of modern healthcare. From genetic testing and sequencing to gene therapy and precision medicine, this range of transformative technologies and services can underpin medical treatments and inform lifestyle choices.

Precision medicine -- using genetic information to determine treatments -- enables healthcare to move away from a one-size-fits-all approach where patients are treated with the same therapy, to one where targeted treatments are based on a patient's DNA and biomarkers.

The Chinese government and private sector are leading the charge globally, encouraging nationwide collection of DNA samples and investing in data analysis tools.

The Beijing Genome Institute, the world's largest sequencer and repository of genetic material, says it is capable of decoding the entire genomes of 100,000 people a year for no more than US$100 per person. In 2017, genetic testing was listed in China's 13th Five-Year Plan as one of the key growth strategies for the life sciences sector.

While some companies continue to work on breakthrough technology for whole-genome sequencing, others are focusing on the direct-to-consumer DNA test industry that only analyses small sections of a person's DNA. These consumer tests are marketed at younger people who are interested in their genealogy or are seeking health predictions and suggestions for lifestyle adjustments.

For as little as $3, you can provide a saliva sample to a company in exchange for information such as risks of developing chronic illnesses, how to lose weight and how to care for your skin. This market is expected to generate sales of $405 million in China by next year.

Last December, the consumer genetic testing company Genebox raised $14 million in financing. It has lowered the price a DNA test to 19.90 yuan ($3) since entering the market in 2018. More than 2.2 million people in China had used Genebox's service as of the end of 2019. This number is forecast to increase to 56.8 million by 2022, according to the consultancy Yi Ou.

As mass-market genetic testing becomes more commonplace, and the Chinese government ramps up efforts to develop its national DNA database, observers have raised the issue of privacy and personal data protection.

Companies such as Genebox have committed to not sharing personal information with third parties. However, exceptions exist, including having to comply with laws and regulations, as well as sharing user data with subsidiaries and related organisations for medical research and product development purposes.

Currently, China does not have specific legislation in place to protect personal data, including genetic data, at the national level. However, regulations are being developed. The Standing Committee of the National People's Congress of China has outlined a legislative agenda for a data protection law that is set to be enacted next year.

Overcoming data privacy concerns will be key to unleashing the full benefits of genetic testing. Structural efforts should be made to overcome these issues, such as transparency over how such powerful personal data is used. Close collaboration is needed between genetic testing companies, doctors, patient rights advocates, regulatory agencies and insurers.

Although precision medicine is still in its infancy, it is attracting great interest, including from Thailand. I hope the new privacy laws due to be introduced this year are broad enough to cover these emerging technologies so that we are ready to protect people once they become mainstream.

Link:
Genetics the next frontier of healthcare - Bangkok Post - Bangkok Post

Read More...

Front Range Biosciences Introduces A New Class of THCv Genetics That Will Boost Market Opportunities for New Consumer Experiences and Functional…

Sunday, February 14th, 2021

BOULDER, Colo., Feb. 9, 2021 /PRNewswire/ -- Front Range Biosciences ("FRB"), a cannabis and hemp genetics platform company, leveraging next generation breeding technology and R&D, todaybecame one of the first genetics providers to launch a new product line of high THCv plant varieties, in California, with availability in Colorado through licensed partners leveraging FRB's technology platform. This first generation product line is among the highest producers of THCv available, containing more than 20% total cannabinoids, more than 8% THCv, and over 2% grassy and fruity terpenes. These new varieties yield twice the yield of typical THCv producing plants. THCv is rare and has been an elusive minor cannabinoid until now, with exciting new properties for consumers that report appetite suppression and energizing, less psychoactive experiences.

"FRB is continually developing new genetics to help growers, brands, and consumers find new applications for cannabis," said Dr. Jonathan Vaught, CEO of Front Range Biosciences. "The cannabis market is evolving quickly, and consumers are constantly looking for new and unique experiences, just like in other CPG industries. We are leveraging genomics driven breeding to rapidly develop new products for cannabis companies and brands, unlocking new product opportunities from the incredible diversity of chemistry this plant produces. THCv represents just one of many new products we are making more accessible to the supply chain from this versatile plant through breeding, and we have many other unique products in development for other potential categories like edible ingredients, nutraceuticals and even pharmaceuticals.

This is the first THCv product line from FRB's world-renowned breeding program and expansive cannabis genetics library. This revolutionary THCv variety will pave the way for more unique consumer products, medical research and therapeutics. There is also a growing body of research linking THCv to a number of potential therapeutic benefits, including regulating tremors and seizures in ALS and Parkinson's patients, blocking fight or flight responses in PTSD, and acting as an effective analgesic for treating pain and migraines.

Since FRB's strain debuted on the market in California, it has become a favorite among local consumers. "It has a smooth, spicy-sweet smoke that creates a functional high. The THCv allows me to stay focused throughout the day, and I love that it's the opposite of most cannabis flower and keeps the munchies at bay," said Tricia Goldberg.

FRB's latest offering makes THCv more accessible by providing genetics that drastically increase yields, significantly reduce harvest times, deliver a variety of terpenes for improved flavor, as well as produce significantly higher levels of THCv, compared to the limited number of other THCv genetics that are currently available. These improvements in the finished product profile will open the door for new product opportunities for THCv flower-based products including smokable flower, pre-rolls, and concentrates, providing exciting new experiences for cannabis consumers.

"THCv, along with other minor cannabinoids, terpenes, and even flavonoids, have been a challenging group of traits for breeders to develop while maintaining the level of vigor and yield needed to introduce these products into the supply chain effectively," says Dr. Reggie Gaudino, VP of R&D for Front Range Biosciences. "The many years of genomics and chemistry research our team has been committed to for cannabis is allowing us to help growers and product companies do so much more with the plant than what was possible, even just a few years ago."

Growers have faced challenges producing cannabis containing high THCv content. The price of THCv has remained high due to significant lack of supply, and product availability has been extremely limited. This new class of THCv genetic products provides a timely solution to both issues, creating lucrative opportunities for cultivators and operators.

About Front Range Biosciences

Front Range Biosciences is a premier cannabis and hemp genetics platform company, creating and supporting innovative new products across multiple industries by combining next generation agricultural technologies with the world's top hemp and cannabis R&D program. FRB provides leading-edge solutions to growers, brands, and product manufacturers through its unique varieties of seeds, young plants, and technology licensing to drive product development and production efficiency for cannabis and hemp derived products. Since 2015, the company has been dedicated to creating new product opportunities and solving challenges throughout the supply chain by leveraging proprietary next generation breeding, chemistry, and tissue culture technologies. In addition to FRB's groundbreaking technology, the company has also established genetics services dedicated to the California market and a Shimadzu sponsored Hemp Center of Excellence with top-tier researchers to encourage further innovation in the industry. FRB is the company of choice for cultivators that demand unique, quality, consistent products. For more information on Front Range Biosciences, visit http://www.frontrangebio.com.

Media Contact

MATTIO Communications

frb@mattio.com

View original content to download multimedia:http://www.prnewswire.com/news-releases/front-range-biosciences-introduces-a-new-class-of-thcv-genetics-that-will-boost-market-opportunities-for-new-consumer-experiences-and-functional-products-301224797.html

SOURCE Front Range Biosciences

Original post:
Front Range Biosciences Introduces A New Class of THCv Genetics That Will Boost Market Opportunities for New Consumer Experiences and Functional...

Read More...

Canine genetics, health to be explored at summit – VeterinaryPracticeNews.com

Sunday, February 14th, 2021

Preserving and enhancing genetic diversity in dog breeds is set to be explored at an upcoming virtual educational conference.

Scheduled for Feb. 15 and 16, Embark Veterinarys Canine Health Summit will feature presentations, panel discussions, and interactive sessions presented by various experts across the canine health landscape.

The free event, which targets veterinarians, breeders, and pet owners, will also include a keynote address by Duke University professor, Brian Hare, PhD, MA. Additionally, a roundtable discussion led by the Westminster Kennel Club will explore the history of purebred dogs, and how breeders and owners can work together to improve the long term health and vitality of specific breeds.

This summit is an opportunity to bring together a diverse group of stakeholders who are all committed to canine health and discuss ways to work together to accelerate the pace of discovery in the future, says Embarks chief science officer, Adam Boyko, PhD.

In lieu of registration fees, attendees are invited to contribute to the summits fundraiser, benefiting Morris Animal Foundation to support canine health research. Embark will also provide a matching donation of up to $5,000, the company says.

Morris Animal Foundation, as part of its research portfolio, has a long history of investing in canine genetics research to advance the health of dogs, says the foundations chief development officer, Ryan Welch. Were deeply appreciative of the generosity of Embark, and participants in the Canine Health Summit, for their contributions to help ensure this work continues.

To register, click here.

Originally posted here:
Canine genetics, health to be explored at summit - VeterinaryPracticeNews.com

Read More...

Drug Resistance Conferring Mutation and Genetic Diversity of Mycobacte | IDR – Dove Medical Press

Sunday, February 14th, 2021

Sosina Ayalew,1,2 Teklu Wegayehu,2 Hawult Taye,1 Liya Wassie,1 Selfu Girma,1 Stefan Berg,3 Adane Mihret1

1Armauer Hansen Research Institute, Addis Ababa, Ethiopia; 2Department of Biology, College of Natural Sciences, Arba Minch University (AMU), Arba Minch, Ethiopia; 3Bacteriology Department, Animal and Plant Health Agency, Weybridge, UK

Correspondence: Sosina Ayalew Tel +251 912166324Email absosina2011@gmail.com

Background: Tuberculosis lymphadenitis (TBLN) is a growing public health concern in Ethiopia. However, there is limited information available on gene mutations conferring drug resistance and genetic diversity of M. tuberculosis isolates from TBLN patients.Methods: Drug resistance and genetic diversity analysis were done on 91 M. tuberculosis isolates from culture positive TBLN patients collected between 2016 and 2017. Detection of mutations conferring resistance was carried out using GenoType MTBDRplus VER 2.0. Thereafter, isolates were typed using spoligotyping.Results: Out of the 91 strains, mutations conferring resistance to rifampicin (RIF) and isoniazid (INH) were observed in two (2.2%) and six (6.6%) isolates, respectively. The two RIF resistant isolates displayed a mutation at codon 531 in the rpoB gene with amino acid change of S531L. Among the six INH resistant strains, four isolates had shown mutation at the KatG gene at codon 315 with amino acid change of S315T, one isolate had a mutation at the inhA gene at codon 15 with amino acid change of C15T and one isolate had a mutation at the inhA gene with unknown amino acid change. All drug resistant isolates were from treatment naive TBLN patients. The dominantly identified Spoligo International Types (SITs) were SIT25, SIT149, and SIT53, respectively; these accounted for 43% of the total number of strains. The isolates were grouped into four main lineages; Lineage 1 (2, 2.2%), Lineage 3 (38, 41.7%), Lineage 4 (49, 53.8%) and Lineage 7 (2, 2.2%). Four out of six (66.7%) isolates with drug resistance conferring mutations belonged to clustered strains (strains with shared SIT).Conclusion: The detection of drug resistant conferring mutation in treatment nave TBLN patients together with detection of drug resistant isolates among clustered strains might suggest resistant strains transmission in the community. This needs to be carefully considered to prevent the spread of drug resistant clones in the country.

Keywords: drug resistant, genetic diversity, mutation, tuberculosis lymphadenitis

This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License.By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Visit link:
Drug Resistance Conferring Mutation and Genetic Diversity of Mycobacte | IDR - Dove Medical Press

Read More...

Genetic Origins of Canine Hip Dysplasia Evaluated in Validation Study – Business Wire

Sunday, February 14th, 2021

VANCOUVER, Wash.--(BUSINESS WIRE)--Wisdom Health Genetics, the world leader in pet genetics and maker of the WISDOM PANEL dog DNA test, announced today the publication in BMC Genomics of a study conducted in partnership with the University of Helsinki.

The studyAn across-breed validation study of 46 genetic markers in canine hip dysplasiaconfirms that canine hip dysplasia has a complex genetic origin.

Canine hip dysplasia is a common, painful health condition that affects many different dog breeds. Hip dysplasia is believed to result from both environmental and genetic factors; however, its genetic background has largely remained a mystery.

There has been significant effort to uncover the genetic variants causing canine hip dysplasia, but validation and replication of the results have been difficult for a variety of reasons such as inadequate sample size or complex or inaccurate phenotypes, said Jonas Donner, Ph.D., Discovery Manager at Wisdom Health Genetics. For this study, we were able to leverage an extensive sample size, helping partially solve this validation issue and set us on a path for future discoveries related to canine hip dysplasia.

Researchers at University of Helsinki and Wisdom Health Genetics examined genetic samples from a cohort of more than 1600 dogs across ten different breeds. The study validated more than 20 previously-identified genetic regions across 14 chromosomes associated with canine hip dysplasia; while 20 of the loci were associated with specific breeds, one locus was associated across all ten breeds in the study.

According to Lea Mikkola, who conducted this research as part of her PhD dissertation, this study is one of the most extensive pieces of research into the relationship between DNA and hip dysplasia to date.

Overall, these results indicate that canine hip dysplasia has a complex genetic architecture. Many genes contribute, and those genes are different in different breeds, explains Mikkola.

Additional examination of the loci validated in the study will be essential in helping scientists and veterinarians alike understand the genetic pathways contributing to this debilitating condition.

It is critical to look further into these validated loci in the future to find out the actual causal genes and variants, said Professors Antti Iivanainen and Hannes Lohi, leaders of the research at the University of Helsinki, in the Universitys news release about the hip dysplasia study. It is not an easy task but could reveal insights into disease mechanisms and guide towards better care and treatment of this detrimental condition.

The researchers recommend future validation studies to further understand the complex genetic causes of canine hip dysplasia, especially examinations within both specific and disparate breeds, and across various geographical regions. Additional studies to identify causal genetic variants can also help shed light on the molecular causes of the canine hip dysplasia and direct future diagnostic and treatment options.

About the canine hip dysplasia study:

About Wisdom Health GeneticsThe mission of the Wisdom Health business, a division of Kinship Partners, Inc, is to strengthen the bond between pets and their people through world-leading insights powered by DNA. Wisdom Panel dog DNA testsbacked by WISDOM HEALTH scientific researchcan help pet parents plan better, care smarter, and love longer. For more than a decade, Wisdom Health scientific research has contributed to state-of-the-art genetic tests for companion animals, revolutionizing personalized pet care. By unlocking the secrets of their dog or cat's DNA, pet parents and veterinarians can work together to tailor wellness programs that fit the one-of-a-kind needs of their pets. More than 7,000 veterinarians worldwide recommend and offer Wisdom Panel products. For more information, visit http://www.wisdompanel.com, and follow the Wisdom Panel brand on Facebook and Instagram.

About Kinship Partners, IncKinship is here to help everyone pet parent like a pro. Why? Because our pets make us better humans, and we owe them the best possible care. As allies to pet parents learning on the job, we use our data, products, and services to help people be the best pet parents they can be. We unite changemakers in pet care to break down barriers, open new doors, share insights, and advance our collective knowledge. By reimagining the pet parenting experience and upping peoples confidence, were helping the world find better ways to care.

Our coalition includes our world-leading Wisdom Panel genetic health screening and DNA testing for dogs, the award-winning Whistle GPS dog tracker and health monitor, Pet Insight Project, our ground-breaking science stream that uses AI to turn billions of data points into actionable insights, and partnerships like our Leap Venture Studio accelerator that supports innovators and start-ups, to bring new solutions to pet parents. Kinship is a division of Mars Petcare. Learn more at http://www.kinship.co.

About Mars PetcarePart of Mars, Incorporateda family-owned business with more than a century of history-making diverse products and offering services for people and the pets people lovethe 85,000 Associates across 50+ countries in Mars Petcare are dedicated to one purpose: A BETTER WORLD FOR PETS. With 85 years of experience, our portfolio of almost 50 brands serves the health and nutrition needs of the worlds petsincluding brands PEDIGREE, WHISKAS, ROYAL CANIN, NUTRO, GREENIES, SHEBA, CESAR, IAMS, and EUKANUBA, as well as the Waltham Petcare Science Institute, which has advanced research in the nutrition and health of pets for over 50 years. Mars Petcare is also a leading veterinary health provider through an international network of over 2,000 pet hospitals and diagnostic services including BANFIELD, BLUEPEARL, VCA, Linnaeus, AniCura, and Antech. Were also active in innovation and technology for pets, with Wisdom Panel genetic health screening and DNA testing for dogs, the WHISTLE GPS dog tracker, LEAP VENTURE STUDIO accelerator, and COMPANION FUND programs that drive innovation and disruption in the pet care industry. As a family business guided by our principles, we are privileged with the flexibility to fight for what we believe inand we choose to fight for our purpose: A BETTER WORLD FOR PETS.

View original post here:
Genetic Origins of Canine Hip Dysplasia Evaluated in Validation Study - Business Wire

Read More...

Genetic analysis of symptoms yields new insights into PTSD – Yale News

Friday, January 29th, 2021

Attempts to identify the genetic causes of neuropsychiatric diseases such as post-traumatic stress disorder (PTSD) through large-scale genome-wide analyses have yielded thousands of potential links. The challenge is further complicated by the wide range of symptoms exhibited by those who have PTSD. For instance, does extreme arousal, anger, or irritation experienced by some have the same genetic basis as the tendency to re-experience traumatic events, another symptom of the disorder?

A new study led by researchers at Yale and the University of California-San Diego (UCSD) provides answers to some of these questions and uncovers intriguing genetic similarities between PTSD and other mental health disorders such as anxiety, bipolar disorder, and schizophrenia.

The findings also suggest that existing drugs commonly used for other disorders might be modified to help treat individual symptoms of multiple disorders.

The complexity is still there, but this study helped us chip away at it, said co-senior author Joel Gelernter, theFoundations Fund Professor of Psychiatry and professor of genetics and neurobiology at Yale.

The study was publishedJan. 28 in the journal Nature Genetics.

For the study, the researchers analyzed the complete genomes of more than 250,000 participants in theMillion Veteran Program, a national research program of the U.S. Veterans Administration that studies how genes, lifestyle, and military experiences affect the health and illness of military veterans. Among those participants were approximately 36,000 diagnosed with PTSD.

But instead of looking just for gene variants shared by PTSD patients, they also searched for variants that have been linked to three kinds of clinical symptoms that are experienced, to varying degrees, by those diagnosed with the disorder. These symptom groups, or subdomains, include the re-experience of a traumatic event, hyperarousal or acute anger and irritability, and the avoidance of people or subjects that might be related to past trauma.

While the researchers found underlying genetic commonalities among all three symptom groups, they also discovered specific variants linked to only one or two of the symptoms.

We found a remarkably high degree of genetic relatedness between these three symptom subdomains. But we also wouldnt expect them to be genetically identical, and they are not, Gelernter said. We found biological support for different clinical presentations of PTSD.

The research also showed that some these variants found in subgroups of patient symptoms are also linked to other disorders such as major depression. The results suggest drugs used to treat other disorders might also help treat of PTSD.

Our research pointed to some medications that are currently marketed for other disease states and could be repurposed for PTSD, said co-senior author Murray Stein, Distinguished Professor of Psychiatry and Public Health at UC-San Diego.

Intriguingly, some of the variants linked to all PTSD symptoms have been associated with other neuropsychiatric disorders. For instance, PTSD-associated variants of the geneMAD1L1,which helps regulate cell cycling, have also been linked to schizophrenia and bipolar disorder.

These observations, and the recent finding of GWS [genomewide-significant] association with anxietysuggest thatMAD1L1may be a general risk factor for psychopathology, the authors write.

Read this article:
Genetic analysis of symptoms yields new insights into PTSD - Yale News

Read More...

Press Registration Is Now Open for the 2021 ACMG Annual Clinical Genetics Meeting – A Virtual Experience – PRNewswire

Friday, January 29th, 2021

BETHESDA, Md., Jan. 27, 2021 /PRNewswire/ --The ACMG Annual Clinical Genetics Meeting will be a fully virtual meeting in 2021 and continues to provide groundbreaking research and the latest advances in medical genetics, genomics and personalized medicine. To be held April 1316, experience four days of professional growth, education, networking and collaboration with colleagues from around the world and discover what's shaping the future of genetics and genomics, including several sessions on COVID-19. The 2021 ACMG Meeting Virtual Experience is designed to offer a variety of engaging and interactive educational formats and types of sessionsfrom Scientific Sessions and Workshops to TED-Style Talks, Case-based Sessions, Platform Presentations and Short Courses. The 2021 ACMG Meeting Virtual Experience has something for everyone on the genetics healthcare team and will be available to participate in from the convenience of your home or office.

Interview those at the forefront in medical genetics and genomics, connect with new sources, and get story ideas on the clinical practice of genetics and genomics in healthcare today and for the future. Learn how genetics and genomics research is being integrated and applied into medical practice. Topics include COVID-19, gene editing, cancer genetics, molecular genomics, exome sequencing, pre- and perinatal genetics, diversity/equity and inclusion, biochemical/metabolic genetics, genetic counseling, health services and implementation, legal and ethical issues, therapeutics and more.

Credentialed media representatives on assignment are invited to cover the ACMG Annual Meeting A Virtual Experience on a complimentary basis. Contact Kathy Moran, MBA at [emailprotected]for the Press Registration Invitation Code, which will be needed to register at http://www.acmgmeeting.net.

Abstracts of presentations will be available online in February.

A few 2021 ACMG Annual Meeting highlights include:

Program Highlights:

Two Short Courses Available Starting on Tuesday, April 13:

Cutting-Edge Scientific Concurrent Sessions:

Social Media for the 2021 ACMG Meeting Virtual Experience: As the ACMG Annual Meeting approaches, journalists can stay up to date on new sessions and information by following the ACMG social media pages on Facebook,Twitterand Instagramand by usingthe hashtag #ACMGMtg21 for meeting-related tweets and posts.

The ACMG Annual Meeting website has extensive information at http://www.acmgmeeting.net and will be updated as new information becomes available.

About the American College of Medical Genetics and Genomics (ACMG) and the ACMG Foundation for Genetic and Genomic Medicine (ACMGF)

Founded in 1991, the American College of Medical Genetics and Genomics (ACMG) is the only nationally recognized medical society dedicated to improving health through the clinical practice of medical genetics and genomics and the only medical specialty society in the US that represents the full spectrum of medical genetics disciplines in a single organization. The ACMG is the largest membership organization specifically for medical geneticists, providing education, resources and a voice for more than 2,400 clinical and laboratory geneticists, genetic counselors and other healthcare professionals, nearly 80% of whom are board certified in the medical genetics specialties. ACMG's mission is to improve health through the clinical and laboratory practice of medical genetics as well as through advocacy, education and clinical research, and to guide the safe and effective integration of genetics and genomics into all of medicine and healthcare, resulting in improved personal and public health. Four overarching strategies guide ACMG's work: 1) to reinforce and expand ACMG's position as the leader and prominent authority in the field of medical genetics and genomics, including clinical research, while educating the medical community on the significant role that genetics and genomics will continue to play in understanding, preventing, treating and curing disease; 2) to secure and expand the professional workforce for medical genetics and genomics; 3) to advocate for the specialty; and 4) to provide best-in-class education to members and nonmembers. Genetics in Medicine, published monthly, is the official ACMG journal. ACMG's website (www.acmg.net) offers resources including policy statements, practice guidelines, educational programs and a 'Find a Genetic Service' tool. The educational and public health programs of the ACMG are dependent upon charitable gifts from corporations, foundations and individuals through the ACMG Foundation for Genetic and Genomic Medicine.

Kathy Moran, MBA[emailprotected]

SOURCE American College of Medical Genetics and Genomics

http://www.acmg.net

Continued here:
Press Registration Is Now Open for the 2021 ACMG Annual Clinical Genetics Meeting - A Virtual Experience - PRNewswire

Read More...

Animal Genetics Market Forecast to 2027 – COVID-19 Impact and Global Analysis By Product, Genetic Material, and Services and Geography. -…

Friday, January 29th, 2021

New York, Jan. 26, 2021 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Animal Genetics Market Forecast to 2027 - COVID-19 Impact and Global Analysis By Product, Genetic Material, and Services and Geography." - https://www.reportlinker.com/p06010023/?utm_source=GNW However, the market is likely to get impacted by the limited number of skilled professionals in veterinary research and stringent government regulations for animal genetics during the forecast period.

The branch of genetics that deals with the study of gene variation and inheritance in companion, domestic and wild animals is called as animal genetics.Animal genetics are used for genetic trait testing, DNA testing, and genetic disease treatment.

Animal genetics is one of the best mainstays of livestock development (alongside animal nutrition, animal health, and husbandry concerns such as housing). According to the Food and Agriculture Organization of the United Nations, it is a wide field, ranging from characterization to maintenance to genetic improvement, and involves activities at local, national, regional, and global scales.Increasing population and rapid urbanization across the world has resulted in growing preference for animal derived food products such as dairy products and meat that contain high protein.The demand for animal derived proteins and food products, which, in turn drives the growth of animal genetics market.

Growing focus on developing superior animal breeds using genetic engineering to obtain high reproduction rates for large-scale production of modified breeds is expected to drive animal genetics market during the forecast period.Based on product, the market is segmented into poultry, porcine, bovine, canine, and others.The porcine segment held the largest share of the market in 2019, whereas the same segment is anticipated to register the highest CAGR in the market during the forecast period.

Growth of this segment is attributed to rise in production of porcine and increase in pork consumption across the globe.Based on genetic material, the market is segmented into semen and embryo. The embryo segment held the largest share of the market in 2019, and the semen segment is anticipated to register the highest CAGR in the market during the forecast period.COVID-19 pandemic has become the most significant challenge across the world.This challenge would be frightening, especially in developing countries across the globe, as it may lead to reducing imports due to disruptions in global trade, which further increases the shortages of meat and dairy product supplies, resulting in a considerable price increase.

Asian countries such as China, South Korea, and India are severely affected due to COVID-19 outbreak.The World Health Organization, Food and Drug Administration, American Pet Products Association, American Veterinary Medical Cattle Health, and Welfare Group for Disease Control and Prevention are among the major primary and secondary sources referred for preparing this report.Read the full report: https://www.reportlinker.com/p06010023/?utm_source=GNW

About ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Go here to see the original:
Animal Genetics Market Forecast to 2027 - COVID-19 Impact and Global Analysis By Product, Genetic Material, and Services and Geography. -...

Read More...

Huntsville Hospital, Kailos Genetics work to prevent coronavirus outbreaks in the workplace – WAAY

Friday, January 29th, 2021

Huntsville Hospital and Kailos Genetics are teaming up to offer COVID-19 testing for businesses. Basically, all they have to do is sign up and get tested.

Troy Moore with Kailos Genetics said they're making it easy for businesses to reduce outbreaks in an office.

"The Huntsville hospital staff comes on sight and they perform the collection, and then, they bring the samples back to Kailoss lab over at HudsonAlpha," said Moore.

Businesses can sign up for weekly sentinel testing. Kailos Genetics created a viral wash as a less invasive way to get tested for COVID-19. You will get the results back within four days.

The CEO of Huntsville Hospital, David Spillers, said testing for the virus is vital.

If anything, I think testing has become more important going forward than it has been in the past, particularly with these new strains," he said.

The testing Kailos Genetics uses is able to detect both the COVID-19 we've been seeing and the new variants. Moore said consistent testing is key to reducing COVID-19 in a workplace.

What were looking for is to identify those that are carrying the virus, or have been exposed but arent showing symptoms yet, take them back out before they spread it to others, or catch those people that have been exposed very early so they dont, you know, obviously dont spread it to more," Moore said.

Moore said they will discuss with the businesses how frequently they should do sentinel testing based on individual risk factors.

Read the original post:
Huntsville Hospital, Kailos Genetics work to prevent coronavirus outbreaks in the workplace - WAAY

Read More...

Fionas genetics are hugely valuable in species rebound – WLWT Cincinnati

Friday, January 29th, 2021

Fiona the hippopotamus could play a major role in her species' rebound. The world-famous hippo, who turns 4 this week at the Cincinnati Zoo, has genetics that are pretty valuable, her zookeepers said. She could play a critical role in bringing back a threatened species. Hippos are listed as a vulnerable, meaning they face a high risk of extinction in the wild. Officially, threatened species are those listed as critically endangered, endangered or vulnerable. Hippos are listed as vulnerable due to widespread poaching for meat and ivory, as well as human encroachment. It is the eventual goal to have Fiona breed in an effort to increase her species' numbers, but the timeline on when she will be able to breed remains murky.We anticipate that she will not be sexually mature until about 5 or 6 years old maybe even later than that because Fiona was a preemie, said Wendy Rice, head keeper of Africa Department at Cincinnati Zoo.Fiona was thrust into the spotlight due to her remarkable survival story. Born six weeks premature at the Cincinnati Zoo on Jan. 24, 2017, Fiona weighed only 29 pounds at birth 25 pounds less than the lowest recorded birth weight for her species. But she has rebounded from near-death, now weighing a whopping 1,600 pounds, consistent with a normal hippo her age. Fiona has a long way to go until shes considered full grown. But shes on track and making gains every day, Rice said.Already, Cincinnati's once-baby hippo has reached a certain level of maturity. And, when she's ready, Fiona will likely attempt to breed.Her fate and her love interest will likely be determined by the Hippo Species Survival Plan, a cooperation of all zoos across the United States that house hippos and breed them. The group shares information about captive populations in order to maintain genetic diversity.With Fiona being Henrys only living offspring, her genetics are fairly valuable in that theyre not well represented in the population that we have," Rice said. "Its very likely that she will get a recommendation to breed someday.So what happens then? It's highly unlikely that Fiona would move away from Cincinnati, Rice said. Instead, expect a male suitor to arrive in the Queen City.If and when she gets a recommendation for a breeding partner, theres a really good chance that the boy would have to come to Cincinnati. We do not want to have our princess leave Cincinnati, and the whole city would probably riot if she moved away.But we're still talking at least a year -- probably more -- down the road. In the meantime, Fiona will focus on growing. Right now, Rice said Fiona is probably the human equivalent of a pre-teen girl. She's growing out of her sassy phase and becoming more and more independent of her mother. In the past, wherever Bibi was, thats where Fiona was. Just this past year, shes gotten a little bit braver and bolder. Shes also starting to read boundaries a little bit better with mom. She was pushing the envelope, trying to see what she could get away with. But shes kind of settled down a bit and matured, and she can now read mama really well, Rice said. Even as the hippo matures, Rice said her personality is here to stay.Shes still full of personality and shell still come out here and put a show on for her guests," Rice said." Shell come right up to the glass and make eye contact with people. She understands that theyre here for her and that shes kind of a big deal. I think she appreciates her fandom and tries to give them the best experience possible.

Fiona the hippopotamus could play a major role in her species' rebound.

The world-famous hippo, who turns 4 this week at the Cincinnati Zoo, has genetics that are pretty valuable, her zookeepers said. She could play a critical role in bringing back a threatened species.

Hippos are listed as a vulnerable, meaning they face a high risk of extinction in the wild. Officially, threatened species are those listed as critically endangered, endangered or vulnerable. Hippos are listed as vulnerable due to widespread poaching for meat and ivory, as well as human encroachment.

It is the eventual goal to have Fiona breed in an effort to increase her species' numbers, but the timeline on when she will be able to breed remains murky.

We anticipate that she will not be sexually mature until about 5 or 6 years old maybe even later than that because Fiona was a preemie, said Wendy Rice, head keeper of Africa Department at Cincinnati Zoo.

Fiona was thrust into the spotlight due to her remarkable survival story. Born six weeks premature at the Cincinnati Zoo on Jan. 24, 2017, Fiona weighed only 29 pounds at birth 25 pounds less than the lowest recorded birth weight for her species.

But she has rebounded from near-death, now weighing a whopping 1,600 pounds, consistent with a normal hippo her age.

Fiona has a long way to go until shes considered full grown. But shes on track and making gains every day, Rice said.

Already, Cincinnati's once-baby hippo has reached a certain level of maturity. And, when she's ready, Fiona will likely attempt to breed.

Her fate and her love interest will likely be determined by the Hippo Species Survival Plan, a cooperation of all zoos across the United States that house hippos and breed them. The group shares information about captive populations in order to maintain genetic diversity.

With Fiona being Henrys only living offspring, her genetics are fairly valuable in that theyre not well represented in the population that we have," Rice said. "Its very likely that she will get a recommendation to breed someday.

So what happens then? It's highly unlikely that Fiona would move away from Cincinnati, Rice said. Instead, expect a male suitor to arrive in the Queen City.

If and when she gets a recommendation for a breeding partner, theres a really good chance that the boy would have to come to Cincinnati. We do not want to have our princess leave Cincinnati, and the whole city would probably riot if she moved away.

But we're still talking at least a year -- probably more -- down the road. In the meantime, Fiona will focus on growing.

Right now, Rice said Fiona is probably the human equivalent of a pre-teen girl. She's growing out of her sassy phase and becoming more and more independent of her mother.

In the past, wherever Bibi was, thats where Fiona was. Just this past year, shes gotten a little bit braver and bolder. Shes also starting to read boundaries a little bit better with mom. She was pushing the envelope, trying to see what she could get away with. But shes kind of settled down a bit and matured, and she can now read mama really well, Rice said.

Even as the hippo matures, Rice said her personality is here to stay.

Shes still full of personality and shell still come out here and put a show on for her guests," Rice said." Shell come right up to the glass and make eye contact with people. She understands that theyre here for her and that shes kind of a big deal. I think she appreciates her fandom and tries to give them the best experience possible.

More here:
Fionas genetics are hugely valuable in species rebound - WLWT Cincinnati

Read More...

Digbi Health’s gut-microbiome and genetic-based obesity management program now allows 60,000 Doctors and Providers in Blue Shield of California’s…

Friday, January 29th, 2021

MOUNTAIN VIEW, Calif., Jan. 26, 2021 /PRNewswire/ --Digbi Health, the first company with a clinically proven genetics and gut-microbiome based program to safely and sustainably treat and manage obesity and associated inflammatory gut, skin and cardiometabolic health issues, is now available to Blue Shield of California members, as a fully covered program, on the health plan'sWellvolution platform.

It's the first time over 60,000 physicians and clinicians practicing in California in the Blue Shield of California's network can prescribe a weight-loss program personalized on a person's genetic, gut microbiome and lifestyle. Through the Digbi Health solution, patients are supported by a team of caregivers, led by a physician and care experts trained in nutrition, cognitive behavior therapy, genetics and gut microbiome. Blue Shield of California offers access to Digbi Health through the Wellvolution platform as a fully covered program to members who qualify.

The Digbi Health Precision Care Network (PCN) is a network of physicians practicing precision medicine. As part of that network, physicians get marketing resources to educate their patients about Digbi Health on the Wellvoution platform, access to their patient's dashboard, with patient approval, and additional support from the Digbi Health care concierge team to support their patients between visits to help improve patient outcomes. Digbi Health program members without a physician can also get referred to a specialist in the PCN.

"The development of cardiovascular disease is a matter of genetic predisposition and gut microbiome composition interacting with acquired conditions, and factors such as diet, exercise, and exposure to damaging elements," said Cynthia Thaik, MD. Harvard-trained cardiologist at the Holistic Healing Heart Center and Digbi Health PCN member.

"I have already prescribed Digbi Health to a patient covered by Blue Shield of California for pre-diabetes and hypertension," she added.

Blue Shield of California is taking the lead on personalized and preventive care for their members.

Among participants participating in Wellvolution:

"We are an innovative telehealth company that supports overburdened physicians by redefining care for 100 million Americans who struggle under one-size-fits-all digital health programs, weight loss diets and stigma of "poor self-control" while fighting obesity and associated inflammatory comorbidities," said Ranjan Sinha, CEO and founder of Digbi Health.

About Digbi Health Precision Care NetworkOur network includes healthcare providers from all specialties and practice settings throughout the U.S., including bariatric surgeons, internal medicine, family medicine, chiropractitioners, nutritional experts, and others in the lifestyle and integrative medicine space using genetics, nutrigenomics, gut microbiome and lifestyle risk to treat the complexity of the multifactorial disease of obesity and its' related medical conditions. Providers can sign-up to the network at no charge here.

About Digbi HealthDigbi Health is a first-of-its-kind precision digital therapeutics company that offers a prescription-grade digitally enabled personalized obesity and obesity related gut, skin disorders, hypertension and other cardiometabolic health management programs based on an individual's gut biome, genetic risks, blood markers, and lifestyle factors. Digbi Health and members of its physician network are committed to empowering people to take control of their own health and wellness. Digbi Health is prescribed by doctors, health care providers, and insurance companies.

SOURCE Digbi Health

See the article here:
Digbi Health's gut-microbiome and genetic-based obesity management program now allows 60,000 Doctors and Providers in Blue Shield of California's...

Read More...

Research reveals genetic response of ocean warming and acidification in American lobster – UMaine News – University of Maine – University of Maine

Friday, January 29th, 2021

A team of researchers from the University of Maine Darling Marine Center in Walpole, Bigelow Laboratory for Ocean Sciences in East Boothbay and Maine Department of Marine Resources in West Boothbay Harbor recently published their research on the effects of ocean warming and acidification on gene expression in the earliest life stages of the American lobster.

The work was published in the scientific journal Ecology and Evolution with collaborators from the University of Prince Edward Island and Dalhousie University in Canada.

Leading the study was recent UMaine graduate student Maura Niemisto, who received her masters degree in marine science. Co-authors on the journal article were her advisers Richard Wahle, research professor in UMaines School of Marine Sciences and director of the Lobster Institute, and David Fields, senior research scientist at Bigelow Laboratory for Ocean Sciences.

Co-authors Spencer Greenwood of the University of Prince Edward Island and Fraser Clark of Dalhousie University brought the genetic expertise to the study. Jesica Waller of the Maine Department of Marine Resources conducted some of the initial studies that led to Niemistos experiments, also in the laboratories of Wahle and Fields.

The teams experiments examined the gene regulatory response of postlarval lobsters to the separate and combined effects of warming and acidification anticipated by the end of the 21st century. They found that genes regulating a range of physiological functions, from those controlling shell formation to the immune response, are either up- or down-regulated. Importantly, they observed that the two stressors combined induced a greater gene regulatory response than either stressor alone.

The results from the study indicate that changes in gene expression of postlarval lobster may act as a mechanism to accommodate rapid changes in the ocean environment. Niemisto noted that there is still need for further study to determine how rapidly populations of the species may be able to adapt to changing conditions. To better understand how gene regulation in response to environmental changes functions within the species, we should look at subpopulations and multigenerational studies to determine the extent of species capacity to respond to altered environmental conditions.

Mauras study reveals some of the hidden mechanisms species employ minute to minute and hour to hour at the cellular level to function normally in a variable environment, said Wahle. We need to gain these insights as we take on the larger challenge of understanding how species adapt on the much larger time scale of decades.

According to the National Marine Fisheries Service, the American lobster fishery is the most valuable in North America. The species holds particular socioeconomic importance in the Gulf of Maine, where sea surface temperatures are increasing at a rate faster than most of the worlds oceans and waters are more susceptible to higher rates of acidification.

The center of the American lobster range has been shifting northward in response to warming ocean temperatures. However, little is known about how the species will respond to the combined effects of increasing ocean temperatures and acidification. This study is a first step in answering that question. The species earliest life stages are thought to be especially vulnerable to these climate related challenges.

The research was supported by a grant from the NOAAs Ocean Acidification Program and the National Sea Grant Program. Additional funding for student internships came from Bigelow Laboratorys Research Experience for Undergraduates program, supported by the National Science Foundation.

Contact: Matt Norwood, matthew.norwood@maine.edu; 207.563.8220

See more here:
Research reveals genetic response of ocean warming and acidification in American lobster - UMaine News - University of Maine - University of Maine

Read More...

Spatial patterns and conservation of genetic and phylogenetic diversity of wildlife in China – Science Advances

Friday, January 29th, 2021

Abstract

Genetic diversity and phylogenetic diversity reflect the evolutionary potential and history of species, respectively. However, the levels and spatial patterns of genetic and phylogenetic diversity of wildlife at the regional scale have largely remained unclear. Here, we performed meta-analyses of genetic diversity in Chinese terrestrial vertebrates based on three genetic markers and investigated their phylogenetic diversity based on a dated phylogenetic tree of 2461 species. We detected strong positive spatial correlations among mitochondrial DNA-based genetic diversity, phylogenetic diversity, and species richness. Moreover, the terrestrial vertebrates harbored higher genetic and phylogenetic diversity in South China and Southwest China than in other regions. Last, climatic factors (precipitation and temperature) had significant positive effects while altitude and human population density had significant negative impacts on levels of mitochondrial DNA-based genetic diversity in most cases. Our findings will help guide national-level genetic diversity conservation plans and a post-2020 biodiversity conservation framework.

Biodiversity loss and conservation are among the most concerning global issues. The Convention on Biological Diversity (CBD) was established to develop national strategies for the conservation and sustainable use of biological diversity. An endangerment status assessment of worldwide vertebrates showed that approximately 20% of vertebrates have become threatened (1). In China, the situation is even worse: 21.4% of vertebrates are threatened, including 43.1% of amphibians, 29.7% of reptiles, 26.4% of mammals, 20.4% of fishes, and 10.6% of birds (2). Thus, it is urgent to protect biodiversity regionally and globally. As the most fundamental dimension of biodiversity, genetic diversity is a key basis for species survival and ecosystem functions (3). Higher genetic diversity means higher evolutionary potential and a greater ability to respond to environmental changes (4). An increasing number of studies have shown that genetic factors play a critical role in species endangerment and extinction (57). Thus, assessment and protection of genetic diversity are becoming essential and high-priority strategies for biodiversity conservation (4). However, under the current CBD framework, the goal proposed for genetic diversity focuses mainly on the conservation of farmed and domestic animals and cultivated plants and neglects that of wild animals and plants, which would overlook genetic erosion and harm the evolutionary potential of wildlife (8). Therefore, to better conserve the genetic diversity of wildlife, it is necessary to assess genetic diversity at regional and global scales for use in the scientific designs of natural protected areas and biodiversity conservation strategies. Miraldo et al. (9) presented the first global distribution of genetic diversity for mammals and amphibians using mitochondrial cytochrome b (Cytb) and cytochrome oxidase subunit I (Co1) gene sequences. However, the grid cell size (~150,000 km2) that they used was so large that it was difficult to determine the national- or regional-level pattern of genetic diversity in detail, including in China.

Phylogenetic diversity is the sum of phylogenetic branch lengths for all of the species in an area (10). Phylogenetic diversity measures the time scale of species evolution and reflects the evolutionary history of species (11), which contributes to the selection of biodiversity conservation priority areas (1214). Higher phylogenetic diversity excluding the effect of taxonomic richness indicates a higher proportion of distantly related and anciently diverged taxa (11, 15). Previous studies have shown that regions with higher phylogenetic diversity may not necessarily have higher species diversity, which would result in neglecting the conservation of the regions (11, 16). In this case, the conservation of older evolutionary lineages might be neglected. Thus, monitoring the level and spatial distribution of phylogenetic diversity is also important for effective conservation of biodiversity.

China is one of the countries with the richest biodiversity in the world, harboring more than 3000 terrestrial vertebrates (2). In recent years, with the development of molecular genetics, genetic diversity of many species has been assessed and numerous DNA sequences have been accumulated. In this study, we focus on the patterns of genetic and phylogenetic diversity in Chinese terrestrial vertebrates, using meta-analyses of a large published dataset and a robust dated phylogenetic tree as well as species distribution. We aim to (i) reveal whether positive spatial correlation existed among species richness, genetic diversity, and phylogenetic diversity; (ii) identify hotspot regions of high genetic diversity and high phylogenetic diversity; and (iii) explore the influences of abiotic (precipitation, temperature, and altitude) and biotic (human population) factors on the levels of genetic and phylogenetic diversity. We found that, on the whole, species richness predicted phylogenetic diversity and mitochondrial DNA-based genetic diversity in a positive direction, and higher phylogenetic diversity predicted higher genetic diversity. We identified that the terrestrial vertebrates in South China and Southwest China harbored higher genetic and phylogenetic diversity than in other regions, and central South China was identified as an evolutionary museum, while the Hengduan Mountains was identified as an evolutionary cradle. We also revealed that both mean annual precipitation and temperature had significant positive effects, while altitude and human population density had significant negative impacts on levels of mitochondrial DNA-based genetic diversity in most cases. Our findings provide insights into the spatial patterns and influencing factors of genetic and phylogenetic diversity at a regional scale.

We surveyed the population-level genetic diversity data of Chinese terrestrial vertebrates (mammals, birds, reptiles, and amphibians) based on three molecular markers (mitochondrial Cytb gene sequence, mitochondrial D-loop sequence, and nuclear microsatellites). A total of 287 terrestrial vertebrate species (103 mammals, 59 birds, 31 reptiles, and 94 amphibians) were assessed for population-level genetic diversity with at least one molecular marker, accounting for 9.3% of the 3075 terrestrial vertebrates distributed in China (figs. S1 to S4 and tables S1 to S9). Two unbiased genetic diversity indices, nucleotide diversity () for the Cytb and D-loop sequences and expected heterozygosity (HE) for microsatellite, were used as measures of population-level genetic diversity. In this study, the Cytb-, D-loop, and microsatellite-based genetic diversity measures were analyzed separately (tables S1 to S9). Furthermore, the species-level genetic diversity for three genetic markers was obtained by averaging the population-level genetic diversity values (tables S10 to S12).

The species-level phylogenetic diversity of Chinese terrestrial vertebrates was surveyed on the basis of the coding sequences of five mitochondrial genes (Cytb, Co1, Nd1, 12S rRNA, and 16S rRNA). A total of 2461 terrestrial vertebrates were assessed for phylogenetic diversity with at least one available mitochondrial gene sequence, accounting for 80% of the Chinese terrestrial vertebrates (figs. S5 to S7 and table S13). On the basis of a constructed maximum likelihood phylogenetic tree and 391 available divergence times from the TimeTree database (table S14), we estimated the divergence times of these vertebrates. The results showed that the amphibians first diverged from the fishes and then the reptiles evolved from the amphibians. Both the mammals and birds evolved from the reptiles, with the mammals diverging first. These results are consistent with the general conclusion about the divergence order of the terrestrial groups (17). In this study, we used divergence time as the measure of phylogenetic diversity for further analysis.

We first divided the map of China into 0.5 0.5 (~50 km by 55 km) grid cells and then calculated the species richness, genetic diversity, and phylogenetic diversity within each grid cell. The spatial correlation tests showed that the genetic diversity measures based on mitochondrial Cytb and D-loop sequences were significantly correlated [correlation coefficient (r) = 0.385, P = 0.012]. However, no significant correlation was observed for Cytb versus microsatellites (r = 0.128, P = 0.475) and for D-loop versus microsatellites (r = 0.084, P = 0.463) (fig. S8 and table S15). The inconsistencies in spatial correlations among the three genetic markers were most likely due to different measure rationales (nucleotide diversity versus expected heterozygosity) and evolutionary rates (slowly versus rapidly evolving). The differences in correlation among the different markers were similar to that of Miraldo et al. (9).

The tests for spatial correlations between genetic diversity and species richness revealed a significant positive correlation for Cytb genetic diversity (r = 0.728, P = 0.008), and a marginally significant correlation for D-loop genetic diversity (r = 0.320, P = 0.072) (Fig. 1, A and B). These results were consistent with those of global terrestrial mammals (18) and global marine and freshwater fishes (19). However, a nonsignificant correlation for microsatellite genetic diversity (r = 0.138, P = 0.499) was detected (Fig. 1C and table S15), which was similar to AFLP marker-based genetic diversity assessment of alpine plant communities (20). The differences in correlation showed that the widely discussed correlation relationship between genetic and species diversity was genetic marker dependent.

(A to C) Correlation tests between species richness (SR) and Cytb-, D-loop, and microsatellite-based genetic diversity (GD). (D) Correlation test between SR and phylogenetic diversity (PD). (E to G) Correlation tests between PD and Cytb-, D-loop, and microsatellite-based GD.

The tests for spatial correlations between genetic diversity and phylogenetic diversity showed a significant positive correlation for Cytb (r = 0.722, P = 0.013) and a marginally significant positive correlation for D-loop (r = 0.306, P = 0.089) (Fig. 1, E and F). The results were similar to those of global terrestrial mammals (18). However, the correlation was not significant for microsatellites (r = 0.123, P = 0.566) (Fig. 1G and table S15). In addition, we selected a set of abundant terrestrial vertebrate species with a threatened status rank of LC (Least-Concern) (table S16) and tested the spatial correlations between genetic and phylogenetic diversity. The results were similar to those for all the terrestrial vertebrates (table S17).

A significant positive correlation was detected between phylogenetic diversity and species richness (r = 0.99, P < 0.001) (Fig. 1D and table S15), implying that the regions with high species richness often had high phylogenetic diversity. The significant positive correlation pattern between phylogenetic diversity and species richness may be common, as shown in different large-scale analyses focusing on birds, mammals, and angiosperms (16, 18, 21).

It is generally accepted that Chinas zoogeographical regionalization is divided into the Palaearctic and Oriental realms, including seven zoogeographical regions (22, 23). The Palaearctic realm includes the Northeast China, North China, Inner Mongolia-Xinjiang, and Qinghai-Tibet Plateau regions, while the Oriental realm consists of the Southwest China, Central China, and South China regions. We mapped the genetic diversity data onto the zoogeographical region map of China using a grid size of 0.5 0.5. Overall, the terrestrial vertebrates distributed in the Oriental realm had higher genetic diversity than those in the Palaearctic realm for all three markers (Fig. 2, A to C; fig. S9; and table S18). In the case of zoogeographical regions, the vertebrates in South China harbored the highest genetic diversity for Cytb and microsatellites, suggesting a hotspot region of genetic diversity, whereas those in North China had the lowest genetic diversity for D-loop and microsatellites (table S18). In addition, the Southwest China and west Central China harbored relatively high genetic diversity. The spatial pattern of species richness across the Palaearctic and Oriental realms was similar to that of genetic diversity (Fig. 2D). However, within the zoogeographical regions, the spatial patterns of species richness were somewhat different from those of genetic diversity. The South China region had the highest species richness, whereas the Qinghai-Tibet Plateau and Inner Mongolia-Xinjiang regions harbored the lowest species richness (Fig. 2D). These results suggest that regions with low species richness do not necessarily have low genetic diversity, such as the Qinghai-Tibet Plateau, which should be given more conservation attention. To determine the possible effects of different sample sizes of the grid cells, we examined the frequency distribution of the proportion of species with surveyed genetic diversity data in the grid cells based on the classification of seven zoogeographical regions and found similar frequency distributions on the whole across the seven regions (figs. S10 to S12).

Northeast China (NE), North China (NC), Inner Mongolia-Xinjiang (IX), Qinghai-Tibet Plateau (QT), Southwest China (SW), Central China (CC), and South China (SC). The red line indicates the boundary between the Palaearctic and Oriental realms. (A and B) Spatial patterns of Cytb- and D-loopbased GDs. measured by nucleotide diversity. (C) Spatial pattern of microsatellite-based GD measured by expected heterozygosity. (D) Spatial pattern of SR measured by number of species.

The province-level distributions of genetic diversity based on the three markers demonstrated similar patterns on the whole (figs. S13 and S14). The terrestrial vertebrates distributed in Yunnan, Guangxi, Sichuan, and Guizhou provinces harbored the highest genetic diversity. In contrast, the terrestrial vertebrates distributed in Shanxi, Shandong, Hebei, Liaoning, Jilin, Heilongjiang, and part of Xinjiang had lower genetic diversity. The terrestrial vertebrates in Qinghai and Tibet had intermediate genetic diversity. These results could help guide province-level conservation plans for genetic diversity.

The terrestrial vertebrates in the Oriental realm had significantly higher phylogenetic diversity (PD = 10,390.25 2029.43) than those in the Palaearctic realm (PD = 4942.60 1402.09) (Fig. 3, A and B). The terrestrial vertebrates in South China harbored the highest phylogenetic diversity (PD = 12,327.46 2111.27), and those in Central China and Southwest China had the second highest phylogenetic diversity. The terrestrial vertebrates on the Qinghai-Tibet Plateau had the lowest phylogenetic diversity (PD = 3936.66 1162.35) (Fig. 3B and table S18). The province-level distribution of phylogenetic diversity showed a clear pattern, in which the terrestrial vertebrates in south China had notably higher phylogenetic diversity than those in north China (fig. S15). Specifically, the vertebrates in Yunnan and Guangxi provinces had the highest phylogenetic diversity, and those in Tibet, Xinjiang, and Qinghai had the lowest phylogenetic diversity (fig. S15). These results could help guide province-level conservation plans for phylogenetic diversity.

(A) A dated phylogenetic tree of Chinese terrestrial vertebrates based on five mitochondrial genes (Cytb, Co1, Nd1, 12S rRNA, and 16S rRNA). Ma, million years. (B) Spatial pattern of PD measured by species divergence time. The red line indicates the boundary between the Palaearctic and Oriental realms. (C) Areas with significantly higher or lower PD after controlling for the confounding effect of SR. The red line indicates the boundary between the Palaearctic and Oriental realms.

As shown by the correlation analysis above, the phylogenetic diversity pattern was highly correlated with the species richness pattern (Fig. 1D). To control for the confounding effect of species richness, we detected areas with significantly higher or lower phylogenetic diversity than expected using a randomization method. The result showed that significantly higher phylogenetic diversity occurred in the central South China region, mainly including Hainan and Guangxi provinces, suggesting that these areas harbored many older terrestrial vertebrate lineages, serving as an evolutionary museum (Fig. 3C and fig. S16) (9). This result is similar to that for the phylogenetic diversity of genus-level angiosperms in China, in which the top 5% highest phylogenetic diversity and standard effective size of phylogenetic diversity were mainly located in Guangdong, Guangxi, Guizhou, and Hainan provinces (15). These results suggested that the above areas are phylogenetic diversity hotspots not only for terrestrial vertebrates but also for angiosperms in China, which deserve more conservation efforts. In contrast, significantly lower phylogenetic diversity occurred in the Southwest China region, i.e., the Hengduan Mountains, suggesting that these areas were the centers of recent speciation events and thus contained many younger lineages, serving as an evolutionary cradle (Fig. 3C and fig. S16) (15, 24). This divergence pattern is similar to that of a study on global terrestrial birds (16).

The above correlation results showed that the mitochondrial DNA-based genetic diversity was strongly correlated with species richness. Therefore, to reveal the effects of abiotic and biotic factors on genetic diversity, we performed the semi-part spatially explicit generalized linear mixed modeling (spaGLMM) analysis by regressing genetic diversity against species richness and then using the residuals of models to evaluate the effects of abiotic (mean annual precipitation, mean annual temperature, and altitude) and biotic (human population density) factors. The results showed that most of the genetic diversity measures were well predicted by these factors (Table 1). In detail, mean annual precipitation had a significant positive effect on Cytb-based genetic diversity; mean annual temperature had a significant positive effect on D-loopbased genetic diversity; and altitude and human population density had significant negative impacts on Cytb- and D-loopbased genetic diversity (Table 1). In addition, the spaGLMM analysis with the species richness included as an explanatory variable gave similar results to the semi-part spaGLMM analysis (table S19). Because the relationships between most of the factors and microsatellite-based genetic diversity were different from theoretically expected, here we did not discuss microsatellite-related results.

MAP, mean annual precipitation; MAT, mean annual temperature; ALT, mean altitude; HPD, human population density.

Because the phylogenetic diversity was very strongly correlated with species richness, we also performed the semi-part spaGLMM analysis for phylogenetic diversity. The results showed that the above abiotic and biotic factors had no significant impacts on phylogenetic diversity (Table 1), suggesting that the species richness had a much higher effect on phylogenetic diversity compared to other factors. To test this, we performed the spaGLMM analysis with species richness as an independent variable. The results showed that the importance of species richness was far more than those of other factors, indicating that phylogenetic diversity was mainly affected by species richness (table S19).

This is the first study to assess the correlation between genetic diversity and phylogenetic diversity for all the terrestrial vertebrate groups at a large spatial scale. The findings revealed a significant correlation between genetic and phylogenetic diversity for Cytb-based genetic diversity measure and a marginally significant correlation for D-loopbased measure at a grid cell scale, demonstrating the important role of phylogenetic diversity in predicting level of genetic diversity. In addition, we also found a significant positive correlation between genetic diversity and species richness for Cytb-based genetic diversity measure and a marginally significant correlation for D-loopbased measure. However, no significant correlations were detected between genetic diversity and phylogenetic diversity (or species richness) for microsatellite-based measure, suggesting that these correlations are genetic marker dependent.

Our study is also the first region-level survey and assessment of the genetic and phylogenetic diversity of Chinese terrestrial vertebrates that demonstrated the spatial distribution pattern of diversity and identified the regions of high and low genetic/phylogenetic diversity. The spatial patterns showed that the terrestrial vertebrates in South China and Southwest China harbored not only higher genetic diversity but also higher phylogenetic diversity, highlighting the high conservation priority for these hotspot regions. We also identified key areas with significantly higher or lower phylogenetic diversity after controlling for the effects of species richness and discerned the evolutionary museum and cradle for Chinese terrestrial vertebrates. In particular, we found inconsistencies among the regions in terms of genetic and species diversity. Although the terrestrial vertebrates on the Qinghai-Tibet Plateau had the lowest species richness, they had intermediate genetic diversity, possibly because of less human activity and heterogeneous abiotic effects in this region. The terrestrial vertebrates in North China and Northeast China, which are exposed to more human activity and located in north further in latitude, harbored intermediate species richness but lower genetic diversity. These results were supported by the semi-part spaGLMM analyses, which revealed that abiotic (precipitation, temperature, and altitude) and biotic factors (human population) played important roles in the spatial patterns of genetic diversity.

We investigated the effects of abiotic and biotic factors driving the spatial patterns of genetic and phylogenetic diversity at a grid cell scale. On the whole, the effects of these factors on Cytb- and D-loopbased genetic diversity were consistent with ecological and evolutionary expectations. Mean annual precipitation and temperature had significant positive effects on genetic diversity, because higher precipitation and temperature most likely provide more suitable conditions for species survival, population expansion, and speciation. In contrast, altitude had significant negative impacts on genetic diversity, because higher elevation means harsher living conditions especially for terrestrial vertebrates. For biotic factor, human population density had significant negative impacts on genetic diversity, because higher density means more human activities and more possible interference with wildlife and their habitats.

Our study summarizes the findings of genetic/phylogenetic diversity studies, revealing the basic background of genetic resources in Chinese terrestrial vertebrates, which could facilitate genetic resource protection under the CBD framework and guide future genetic/phylogenetic diversity research and conservation. In addition, compared with the total number of Chinese terrestrial vertebrates, the number of species with surveyed genetic diversity data is relatively small. To better conserve genetic diversity, scientists and managers should cooperate to perform genetic diversity surveys for more species, especially those with an unclear genetic status. Furthermore, the genetic and phylogenetic diversity of freshwater and marine vertebrates should be surveyed and assessed to protect gradually decreasing aquatic genetic resources. Last, our study is the first to use nuclear microsatellite markers to assess large-scale genetic diversity pattern and explore the relationship between genetic and phylogenetic diversity. However, it is worth noting that microsatellite-based correlation and model analyses produced different results from those based on mitochondrial DNA, which cautions us to carefully interpret results from different genetic markers.

We retrieved published literatures of population-level genetic diversity studies from public academic databases. For the English literature, we searched the Web of Science database (http://apps.webofknowledge.com/) using the search rule TS = (species Latin name OR species English name) AND TS = genetic diversity AND TS = population. For the Chinese literature, we searched the CNKI database (www.cnki.net), CQVIP database (www.cqvip.com), and Chinese Science Citation Database (http://sciencechina.cn) using the search rule species Latin name AND genetic diversity. Then, to search the literature as comprehensively as possible, we searched only the species Latin name again for species without related references or with few related references.

We screened the retrieved literature following several steps. First, we used only the literature about wild animal studies and discarded the literature studying captive populations. Second, we focused on population-level studies based on microsatellite, mitochondrial Cytb, or D-loop markers. These three markers have been widely used in population genetics and phylogeographic studies of vertebrates. For microsatellite-based studies, we extracted the expected heterozygosity (HE) values for each population of species as the measure of microsatellite genetic diversity. HE is an unbiased measure and thus insensitive to small sample sizes (25). For mitochondrial Cytb gene and D-loop sequence-based studies, we extracted Neis nucleotide diversity () values for each population of species as the measure of Cytb or D-loop genetic diversity (26). is also unbiased and thus insensitive to small sample sizes (26). If the same population had more than one HE or from different references, we used the mean value as the genetic diversity measure of this population. Last, on the basis of population-level genetic diversity data, we estimated species-level genetic diversity by averaging the population-level genetic diversity values (9). Mean genetic diversity metric has been widely applied in large-scale studies (9, 18, 19).

In total, we compiled a dataset of 287 terrestrial vertebrates, which included 103 mammals, 59 birds, 31 reptiles, and 94 amphibians, accounting for 15.6, 4.1, 6.7, and 18.6% of the respective total numbers of species (figs. S1 and S2). Overall, the assessment proportions for genetic diversity of mammals and amphibians were higher than those of birds and reptiles, with the proportion of birds being the lowest. The number of terrestrial vertebrate species with population-level genetic diversity data based on microsatellite marker (n = 151) was higher than those based on Cytb gene (n = 142) and D-loop (n = 105), accounting for 4.9, 4.6, and 3.4% of the 3075 Chinese terrestrial vertebrates, respectively (figs. S3 and S4).

Sequences of five mitochondrial genes (Cytb, Co1, 12S rRNA, 16S rRNA, and Nd1) were used to reconstruct the phylogeny of Chinese terrestrial vertebrates. The sequences of the five mitochondrial genes were searched in GenBank with the following steps. First, the available mitochondrial reference genomes were downloaded, and the corresponding coding sequences of these genes were extracted. Then, the available coding sequences for the remaining species were directly downloaded from GenBank using the species Latin name and gene name. If more than one sequence was available for the same locus of a species, the sequence with a length similar to that of the corresponding gene was selected. Last, the short genes whose coding sequence length was <300 base pairs were discarded from the dataset. After these steps, we compiled a total of 2461 species including 573 mammals, 1170 birds, 359 reptiles, and 359 amphibians, representing 87.0, 81.0, 77.2, and 71.0% of the respective total numbers of species. Our dataset covered 46 orders, 204 families, and 847 genera. For each gene, the coding sequences of 973 species were extracted from their mitochondrial genomes, while others were directly downloaded from the GenBank database. The numbers of species with Cytb and Co1 sequences were higher than those with Nd1, 12S rRNA, and 16S rRNA sequences (fig. S7).

The coding sequences of each gene were concatenated and aligned by MAFFT (27) with default parameters, and the poorly aligned sites at the beginning and the end were trimmed. Then, the aligned sequences of these five genes were imported into SequenceMatrix software (28) to construct a supermatrix with the gaps treated as missing data. A phylogenetic analysis was performed on this supermatrix using the maximum likelihood method implemented in RAxML 8.2.12 (29) with the ASC_GTRGAMMA model and 1000 bootstrap replicates. Each gene was treated as a partition, and the zebrafish was used as outgroup. On the basis of this phylogenetic tree, we used the penalized likelihood method implemented in treePL (30) to date the divergence times of these vertebrates. A total of 391 available divergence times from TimeTree (31) were selected as calibration points for the dating analysis (table S14). The prime option and through analysis were implemented with optimal parameters.

On the basis of our dated phylogenetic tree and species distribution data, we calculated Faiths phylogenetic diversity of Chinese terrestrial vertebrates using the picante package (32) in R, as widely used in phylogenetic diversity studies (33). In this study, we used divergence time as the measure of phylogenetic diversity of each species.

The distributional ranges of terrestrial vertebrate species (including mammals, amphibians, reptiles, and birds) were derived from the IUCN spatial database (www.iucnredlist.org/resources/spatial-data-download). The range of each species was originally in a vectorized shapefile format and was rasterized into a grid system with a 0.5 0.5 resolution (~50 km by 55 km). We double-checked the rasterized maps to confirm that they matched the original vectorized distributional range maps. The resultant rasterized map of each species was always conservative relative to the original vectorized map, as many margins of species fragmented distributions might not have been recorded as the presence of the species in our 0.5 0.5 grid cells. This is because the areas of these margins were too small in the corresponding grid cells. The map of China used in this study was from Resource and Environment Science and Data Center (www.resdc.cn/data.aspx?DATAID=200). The Latin name of each species was checked to avoid potential synonyms. In total, our gridded distribution database included the occurrence records for 1941 species. After matching with the genetic and phylogenetic data, the final distribution dataset used for the diversity assessment included a total of 180 species for the genetic diversity analysis and 1685 species for the phylogenetic diversity analysis.

Climate data with a 2.5 spatial resolution were collected from the WorldClim database (https://worldclim.org/). We used the two most important climatic variables, mean annual temperature and mean annual precipitation that were calculated for the climate data from 1970 to 2000, as predictors of spatial patterns of genetic and phylogenetic diversity of terrestrial vertebrates in China. Human population density in 2010 in China (in persons per square kilometer) was derived from the Gridded Population of the World collection (https://sedac.ciesin.columbia.edu/data/collection/gpw-v4). Digital elevation data with a 2.5 spatial resolution in China were originally derived from the NASA Shuttle Radar Topographic Mission and downloadable from the WorldClim database. Because we mapped the genetic and phylogenetic diversity using a grid cell size of 0.5 0.5 for each variable (including altitude), we took the average of all values within each grid cell as the variables value for the grid cell.

In many cases in which biodiversity data are collected associated with spatial information (e.g., sampling location coordinates), conventional correlation tests are not valid because the assumption of total independence of samples is violated. For spatial biodiversity data, neighboring locations can present similar biodiversity features (e.g., genetic diversity or phylogenetic diversity as investigated here), which is a phenomenon known as spatial autocorrelation, resulting in nonindependent association of biodiversity information between neighboring locations. To this end, conventional correlation tests can be misleading. To cope with this issue, we used a modified t test to account for spatial autocorrelation (34, 35) when testing the spatial associations between genetic diversity, phylogenetic diversity, and species richness. The test is based on the adjustment of the sample correlation coefficient between the two spatially correlated quantities and requires the estimation of an effective sample size (degrees of freedom).

We performed spatial correlation tests between genetic diversity based on different markers, between genetic diversity and species richness, between genetic diversity and phylogenetic diversity, and between phylogenetic diversity and species richness. In addition, we selected a set of abundant terrestrial vertebrate species with a threatened status rank of LC (2) to further explore the relationship between genetic diversity and phylogenetic diversity. The set of abundant terrestrial vertebrates included 39 species for Cytb, 25 species for D-loop, and 45 species for microsatellite (table S16). We performed the correlation analyses for Cytb-, D-loop, and microsatellite-based genetic diversity separately.

We divided the map of China into 0.5 0.5 grid cells using R software. Then, we mapped the spatial distributional patterns of species richness, genetic diversity, and phylogenetic diversity based on the diversity values calculated for each grid cell. For species richness, we summed the total number of species occurring in the grid cell. For genetic diversity, we summed the genetic diversity values of each species present within the grid cell and divided the total value by the number of species surveyed in the grid cell, as used in (9). For phylogenetic diversity, we summed the divergence times of all species surveyed within the grid cell following the definition of Faiths phylogenetic diversity (10, 15).

To detect grid cells with significantly higher or lower phylogenetic diversity than expected controlling for the confounding effect of species richness, we used a randomization protocol (36). In detail, we first computed the phylogenetic diversity for each grid cell and divided this value by the species richness found in the cell. Then, we used a random swapping algorithm to randomize the species-site binary matrix while fixing the species richness of each grid cell and the range size of each species. The randomization procedure was repeated 1000 times, and the following effective size of phylogenetic diversity-species richness was computedZPD=ObsPDMean(RandPD)SD(RandPD)where ObsPD is the observed phylogenetic diversity-species richness ratio for each grid cell. RandPD represents the random phylogenetic diversity-species richness ratio calculated for each grid cell derived from the randomized species-site matrix. Mean(RandPD) and SD(RandPD) denote the mean and standard deviation of the 1000 random phylogenetic diversity-species richness ratio values, respectively. ZPD approximately followed a standard normal distribution; as such, at the significance level of 0.05, a grid cell was identified as having statistically significantly high phylogenetic diversity given the associated species richness if ZPD > 1.96. Conversely, a grid cell was identified as having statistically significantly low phylogenetic diversity given the associated species richness if ZPD < 1.96.

Species richness might have strong associations with genetic and phylogenetic diversity (37, 38). To explore the effects of factors affecting the spatial patterns of genetic and phylogenetic diversity of Chinese terrestrial vertebrates, we performed a semi-part spaGLMM implemented in the spaMM package (39) in the R environment (40), in which the influence of species richness on genetic or phylogenetic diversity was explicitly partialled out. To do so, we firstly constructed a spaGLMM model in which species richness is the only explanatory variable of genetic or phylogenetic diversity and then we used the residuals of this model for evaluating the impacts of other abiotic and biotic factors on genetic or phylogenetic diversity. In addition, to assess the effect of species richness on genetic and phylogenetic diversity, we also performed the spaGLMM analyses with the species richness as an explanatory variable as well as other factors.

For all the above spaGLMM analyses, a correlation matrix according to the Matrn correlation function was assumed and fitted on the basis of the longitude and latitude information of the center point of each grid cell when fitting the mixed model. The Matrn correlation function, containing a scale parameter and a smoothness parameter, is widely applied to model spatial correlation by including exponential and squared exponential models as special cases (41, 42). For the modeling results of semi-part spaMM analyses, when the confidence interval of the estimated coefficient for an explanatory variable was significantly deviated from zero, the variable was considered to have a significant effect on levels of genetic or phylogenetic diversity.

R. Frankham, J. D. Ballou, D. A. Briscoe, Introduction to Conservation Genetics (Cambridge Univ. Press, 2002).

D. J. Futuyma, Evolution (Oxford Univ. Press, 2013).

R. Z. Zhang, China Animal Geography (Science Press, 1999).

M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging (Springer Press, 2012).

Acknowledgments: We thank Jiekun He for providing the map of zoogeographical regionalization. Funding: This study was supported by the National Natural Science Foundation of China (31821001); the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31000000); the Biodiversity Survey, Monitoring and Assessment Project of Ministry of Ecology and Environment of China (2019HB2096001006); the National Natural Science Foundation of China (31672319); the Youth Innovation Promotion Association, CAS (2016082); and the Special Research Assistant Program of CAS. Author contributions: F.W. conceived and supervised the project. Y.H., H.F., J.C., X.Z., H.W., B.Z., L.Y., X.H., X.S., T.P., W.W., and J.L. performed the data collection. Y.H., H.F., Y.C., J.C., M.W., W.Z., L.Y., and H.H. performed the data analysis. Y.H., H.F., and Y.C. wrote the manuscript with input from F.W. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

See the article here:
Spatial patterns and conservation of genetic and phylogenetic diversity of wildlife in China - Science Advances

Read More...

Huskypoo puppy donated to teen with rare genetic disorder – Tampa Bay Times

Friday, January 29th, 2021

LARGO There are roughly up to 500 boys in the world and only boys who suffer from NEMO deficiency syndrome, a rare genetic illness that affects the nervous system and leave one susceptible to infections.

Peyton Kudrnovsky and his brother Trevor are among them. Two weeks ago, 15-year-old Peyton lost his Golden Retriever Axl Rose, who had been a part of the family for 12 years. Axl always sat by Peytons side during his infusions.

Then on Saturday, his family brought home a new four-legged member of the family: Toby.

Toby is a Huskypoo a mix between a Siberian Husky and a poodle donated to the 15-year-old by the Petland Largo store.

Petland Largo manager Miranda Schimenek said they decided to donate Toby after they learned about Peytons story and the loss of Axl. The store at 10289 Ulmerton Road will also provide veterinary care and training for Toby, according to a press release.

The loss of Axl was particularly hard for Peyton, said his mother Tatiana Lee. Axl had been there every step of the way through the 15-year-olds medical treatments, she said. Axl was given to Peyton by his stepfather, Kyle Resler. But the stepfather died two years ago from cancer.

Over two years ago, we lost a loved one to terminal cancer, the mother said in a statement. Peyton had formed a very close bond with him. He was Peytons support system through the illness and we all miss Kyle very much.

They also miss Axl, who helped the family after they lost their stepfather.

He was there for us through the loss of my sons stepdad, Kyle, and would sit by Peyton as he had his infusions each week he was our rock, and we know he is looking down on us, she said. Toby will be an incredible addition to our family and I cannot thank Petland enough for their incredibly gracious gesture.

Read the original post:
Huskypoo puppy donated to teen with rare genetic disorder - Tampa Bay Times

Read More...

Tikun Olam-Cannbit have developed a revolutionary system for the characterization of genetic fingerprints in order to identify and track cannabis…

Friday, January 29th, 2021

TEL AVIV, Israel, Jan. 28, 2021 /PRNewswire/ --The company 'Tikun Olam Cannbit' (TASE: TKUN)is making history - The company have developed an in-house revolutionary genetic system for the identification and tracking of cannabis strains (cultivars and varieties), through the characterization of the genetic fingerprints based on the DNA sequence of each and every cannabis plant. True to its role, the system is called: Cannabis Genetic Fingerprinting, or 'CGF'.

Putting an end to the mess - the CGF system changes the rules of the game : The characterization of fingerprints by this system is being done by the genetic diagnosis of a variety of unique sequences along the cannabis plant's genome, based on a number of consecutive genetic technologies. The genetic fingerprint is actually a biological and totally natural barcode (Non-GMO), which accompanies the plant throughout its complete life cycle, and in some cases, into the final product.

The CGF system is expected to play as a substantial "game changer" in the cannabis industry, as well as set a standard in terms of strain's identification, genetic stability, uniformity (reducing the deviation ranges in the active ingredients profile), repeatability and thus resulting in improved 'Therapeutic Continuity', IP registration and protection, organization's strains bank management and tracking of cannabis strains in the future cannabis market.

This ability to identify strains accurately and independently has been considered for many decades as a "holy grail" of the cannabis world. A world comprising thousands of strains, with no ability to identify which is which in an objective manner, or to effectively track and monitor strains over time in the global space.

Till today, the identification of cannabis plants has been based on the characterization of its observable measured traits . Traits such as plant's height, color tone of the leaf, stem's diameter, the measured active ingredients profile and many more expressed and variable characteristics. However, the plant's traits are in fact varying, depending on hundreds of external varying factors, unrelated to the plant itself or its identity. Factors in the level of environmental conditions, cultivation methods, storage, as well as measurements and procedures. Factors such as lighting and radiation, fertilizers, humidity, pests, diseases, temperature, measurement tools, work methods and many other variable factors. Depending on these variables, the characteristics of the tested plant may also vary along with his identity, which is diagnosed accordingly.

Apart from the obvious use of the CGF system to identify unknown cannabis plants and hence also to identify different types of products, the company believes that based on this system, the process of registering strains as an IP rights, can also be substantially improved and streamlined.

The CGF system is currently in the commercialization phase which is expected to provide a cost effective, fast technical platform and to enable ongoing and big scale commercial use.

FOR MORE INFORMATION: Eliana Horenczyk [emailprotected]

SOURCE Tikun Olam Cannbit

Read more here:
Tikun Olam-Cannbit have developed a revolutionary system for the characterization of genetic fingerprints in order to identify and track cannabis...

Read More...

‘Sticking with what we have and selecting superior genetics seen as the way forward’ – Agriland

Friday, January 29th, 2021

Sticking with what we have and selecting for superior genetics rather than importing genetics from New Zealand is seen as the way forward for Irish sheep farmers, according to Nicola Featherstone.

Nicola was speaking at the first of two virtual Teagasc Sheep Conferences which were held yesterday evening (Tuesday, January 26).

Teagasc Walsh Scholar Nicola gave an update on the INZAC trial in Teagasc Athenry, Co. Galway, which compares 1-star and 5-star Irish ewes with elite New Zealand ewes.

One question put to Nicola during yesterdays session was how relevant did she think New Zealand sheep are in an Irish context and if they are far superior to what we have here in Ireland?

She explained: During my time in New Zealand, along with visiting a number of farms, I also collaborated with a consultancy company and over there we generated a model and that model looked at all different scenarios that we could put into practice here in Ireland.

For example, whether or not we would look at importing New Zealand genetics or should we stick with what we have here in Ireland or maybe a mixture of both.

From looking at the results, it showed that the benefit, in terms of genetics and economics, would be greater for the Irish industry if we stuck with what we have rather than importing New Zealand genetics, as long as we source our genetics from more progressive breeders.

So, essentially, it means that we need commercial farmers to drive demand towards sourcing animals of superior genetics.

If we stick with the system we have which identifies the elite animals, in terms of being 5-stars, then this is the best way forward for Irish sheep farmers.

RELATED STORIES

See the original post here:
'Sticking with what we have and selecting superior genetics seen as the way forward' - Agriland

Read More...

Cure Genetics Collaborates with Boehringer Ingelheim to Develop Novel AAV Vectors Enabling the Next-generation Liver-targeted Gene Therapy -…

Friday, January 22nd, 2021

SUZHOU, China, Jan. 18, 2021 /PRNewswire/ -- Cure Genetics announced a collaboration with Boehringer Ingelheim to develop novel Adeno-Associated Virus (AAV) vectorsleveraging Cure Genetics' proprietary VELPTM platform to develop next-generation gene therapies. This new collaboration combines Boehringer Ingelheim's experience in disease biology and gene therapy development with Cure Genetics' AAV expertise in library construction and highly efficient in vivo AAV screening. The aim is to provide potential new AAV serotypes for patients.

The clinical applications of existing AAV serotypes are limited by some of their features, such as low transduction efficiency, low tissue specificity and immunogenicity. Therefore, finding new AAV serotypes to overcome these challenges becomes critical for the majority, if not all, AAV-based gene therapies.

Comparing to other traditional vector engineering technologies, Cure Genetics' proprietary VELPTM platform encompasses key methodical innovations, including a comprehensive strategy of engineering a plasmid library with high complexity and an effective ratio. the optimized AAV production protocol ensures high genome-capsid correspondence and world-class production capacity, and the most physiologically relevant models for vector selection and validation. It enables a significantly shorter process to find the "right" AAV vectors with almost all possibility effectively covered.

Boehringer Ingelheim aspires to develop the next generation of medical breakthroughs and gene therapy is one of the focuses under exploration by the team of Research Beyond Borders. The advanced VELPTM technology platform may provide effective solutions in increasing the efficiency of novel AAV screening and help further expand our efforts in the area of gene therapy development.

"This is the very first time that a global pharmaceutical group is collaborating with a Chinese biotech in the cutting-edge field of AAV vector engineering. We appreciate the recognition of Boehringer Ingelheim's recognition of our VELPTM platform. Novel AAV vectors enlarging the therapeutic window is key to unfolding the potential of gene therapy, which is also Cure Genetics' innovative focus . We believe, together with visionary partners like Boehringer Ingelheim, the quality of life for more patients in need can be improved by next-generation gene therapy." stated Dr. Qiushi Li, Cure Genetics' Chief Operating Officer.

The collaboration with Cure Genetics was initiated by Boehringer Ingelheim China External Innovation Hub. It consists of three business units: Research Beyond Borders, Business Development and Licensing, and Venture Fund. The hub is committed to becoming the preferred partner of China's biopharmaceutical industry and bringing more Chinese innovative partnership projects to enrich Boehringer Ingelheim's global R&D pipeline, thereby ultimately benefiting more patients. So far, Boehringer Ingelheim China External Innovation Hub has established various partnerships with reputable research institutions and biotech companies in China.

About Cure Genetics

Cure Genetics is a biotech company founded in 2016, committed to expanding the frontier of gene therapy via its innovative technology of gene editing and gene delivery. With the world-leading AAV manufacturing capability, Cure Genetics' proprietary VELPTM platform enables a fast yet systematic design, selection and optimization of AAV vectors with special features and significantly better performance of in vivo gene delivery, which will empower AAV-based gene therapy to be applied in a much broader range of disease treatments.

SOURCE Boehringer Ingelheim; Cure Genetics

More:
Cure Genetics Collaborates with Boehringer Ingelheim to Develop Novel AAV Vectors Enabling the Next-generation Liver-targeted Gene Therapy -...

Read More...

Midlothian bug genetics innovator launches insect breeding facility and creates jobs – The Scotsman

Friday, January 22nd, 2021

BusinessA Midlothian-based agri-food biotech business that specialises in bugs has launched a new insect breeding facility and created several jobs.

Friday, 22nd January 2021, 12:30 pm

Founded by entrepreneur and PhD graduate Thomas Farrugia, Beta Bugs develops and distributes insect breeds as a source of protein for animal feed. It has expanded its team from five to ten to help drive into the wider agri-food markets.

Following the completion of his PhD and his first tasting of insects on a trip to Antwerp, Farrugia joined Deep Science Ventures where he began researching how environmentally friendly and versatile insect-based products could be and how they could provide a different source of protein which could change the feeding habits of livestock and fish farms.

He launched Beta Bugs as an insect genetics company in 2017, with the goal of creating high-performance breeds of black soldier fly to accelerate the growth of the insect farming sector.

Over the last 18 months the company based at the Easter Bush Campus has secured 133,000 of private investment alongside 1.2 million in grant funding, including 100,000 from Scottish Governments Unlocking Ambition programme and 84,000 from the Pivotal Enterprise Resilience Fund to help the company grow its operations during the coronavirus restrictions.

Support for the firm from Business Gateway Midlothian has included help with establishing the companys operations within the Science Zone in Midlothian and scaling up its breeding programme at the Easter Bush Campus, which now houses the dedicated insect breeding facility.

Farrugia said: We are delighted to be in a position to expand our team and build a dedicated insect breeding facility thanks to help from various organisations including Business Gateway Midlothian who have been instrumental in our growth since we started out.

Having our own adviser to keep us right along the way and signpost us to other available resources has been invaluable and really helped us to carve out a niche for ourselves in the UK and international genetic insect market.

Annie Watt, Business Gateway Midlothian lead, said: Beta Bugs is an innovative insect-breeding company leading the way in creating genetics for the fast growing insects-as-feed industry, which we are delighted to support.

A message from the Editor:

See the original post here:
Midlothian bug genetics innovator launches insect breeding facility and creates jobs - The Scotsman

Read More...

Page 11234..1020..»


2021 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick