header logo image


Page 34«..1020..32333435

Archive for October, 2019

RSS Feeds – ClinicalTrials.gov

Wednesday, October 2nd, 2019

RSS allows you to receive information and updates from a Web site. This page explains how to set up RSS feeds that will notify you of new study information on ClinicalTrials.gov. Subscribing to an RSS feed saves you time because you will not have to check each study record in your search results for updates.

RSS feeds can provide updates to the results of a specific search, on all recently addedstudy records,or on all recently modified studies. The RSS feed will automatically list additions and updates to your search results in either your Internet browser or a feed reader (see How to Subscribe to a Feed).

Creating an RSS feed for a specific search allows you to easily access and browse study records meeting your search criteria that have been first posted or last update posted in the last 14 days. To create the feed from the Search Results page, follow the instructions provided in the example below.

To practice creating an RSS feed for a targeted search for recruiting studies about the condition Huntington Disease, follow these steps:

To read the RSS feed updates, you need a reader, also called an aggregator. Readers can be Web based (for example, Google Reader), part of your browser (for example, Microsoft Internet Explorer, Mozilla Firefox), part of your e-mail client (for example, Microsoft Outlook), or installed on your computer. Web-based and e-mail client readers let you read RSS feeds from any computer. Feed subscriptions in your browser or reader software installed on your computer will be available only on the computer used to subscribe to the feeds.

The steps below describe how to subscribe to an RSS feed using MS Internet Explorer or Mozilla Firefox. The process may be slightly different for other browsers. Refer to your browser's help files for more information.

In your browser, create or open the RSS feed that you want to subscribe to. (See the instructions for creating an RSS Feed for a Specific Search.) To create an RSS feed for all studies on ClinicalTrials.gov, do not enter any words in the search boxes, click on Search or Search all studies (depending on which page you are on).

To practice subscribing to a feed for Recruiting studies on Huntington Disease using your browser, follow these steps:

After you have subscribed, you can view the RSS feed at any time using the same browser. The title of each feed item is the title of the study record that has been added or updated. Click on the title to open the study record page on ClinicalTrials.gov.

Your feed may be empty sometimes. This happens when there are no recent additions or updates to your original search results.

To delete the feed, right-click on it in your Feeds or Bookmarks list and select Delete.

In your browser, create or open the RSS feed that you want to subscribe to. (See the instructions for creating an RSS Feed for a Specific Search.) Copy the URL of the RSS feed page open in your browser and paste it into your feed reader application or software.

The process for subscribing to a feed varies, depending on the feed reader software. The feed reader's instructions should explain how to modify the RSS feed name or delete the feed.

Instead of subscribing to an RSS feed, you can use your browser to bookmark a Search Results page or label it as a "favorite." For example, a bookmarked Search Results page for studies on anticonvulsants recruiting in Chicago would appear as "Search of: Recruiting Studies | Anticonvulsants | United States, Illinois | Chicago - List Results - ClinicalTrials.gov" in your list of bookmarks or favorites. Each time you visit the page, you will see all the current results for your search, including records that have been recently added or updated and records that have not changed.

This page last reviewed in September 2017

See the original post:
RSS Feeds - ClinicalTrials.gov

Read More...

The Relationship Between Telomeres, Aging, and Cancer

Wednesday, October 2nd, 2019

All cells have a programmed lifespan by which they are synthesized, multiply, and eventually undergo apoptosis (cell death) when they are no longer functional.

It often helps to think of cellular replication as old-fashioned photocopy machine: the more a cell copies itself, the more blurry and misaligned the image becomes. Over time, the genetic material of the cell (DNA) begins to fracture and the cell itself becomes a pale copy of the original. When this happens, programmed cell death allows a new cell to take over and keep the systems running.

The number of times a cell can divide is bounded by a phenomenon known as the Hayflick limit. This describes the action by which the process of division (known as mitosis) progressively degrades the genetic material, specifically the part of DNA called a telomere.

The Hayflick limit dictates that the average cell will divide between 50 to 70 times before apoptosis.

Chromosomes are thread-like structures located inside the nucleus of a cell. Each chromosome is made of protein and a single molecule of DNA.

At each end of a chromosome is a telomere which people will often compare to the plastic tips at the ends of a shoelace. Telomeres are important because they prevent chromosomes from unraveling, sticking to each other, or fusing into a ring.

Each time a cell divides, the double-stranded DNA separates in order for the genetic information to be copied. When this happens, the DNA coding is duplicated but not the telomere. When the copy is complete and mitosis begins, the place where the cell is snipped apart is at the telomere.

As such, with each cell generation, the telomere gets shorter and shorter until it can no longer maintain the integrity of the chromosome. It is then that apoptosis occurs.

Scientists can use the length of a telomere to determine the age of a cell and how many more replications it has left. As cellular division slows, it undergoes a progressive deterioration known as senescence, which we commonly refer to as aging. Cellular senescence explains why our organs and tissues begin to change as we grow older. In the end, all of our cells are "mortal" and subject to senescence.

All, that is, but one. Cancers cells are the one cell type that can truly be considered "immortal." Unlike normal cells, cancer cells do not undergo programmed cell death but can continue to multiply without end.

This, in and of itself, disrupts the balance of cellular replication in the body. If one type of cell is allowed to replicate unchecked, it can supplant all others and undermine key biological functions. This is what happens with cancer and why these "immortal" cells can cause disease and death.

It is believed that cancer occurs because a genetic mutation can trigger the production of an enzyme, known as telomerase, which prevents telomeres from shortening.

While every cell in the body has the genetic coding to produce telomerase, only certain cells actually need it. Sperm cells, for example, need to the switch off telomere shortening in order to make more than 50 copies of themselves; otherwise, pregnancy could never occur.

If a genetic mishap inadvertently turns telomerase production on, it can cause abnormal cells to multiply and form tumors. It is believed that as life expectancy rates continue to grow, the chances of this occur will not only become greater but eventually become inevitable.

Continue reading here:
The Relationship Between Telomeres, Aging, and Cancer

Read More...

How Sauna Use May Boost Longevity – YouTube

Wednesday, October 2nd, 2019

Get the brand new, comprehensive article I wrote on how sauna may affect longevity HERE: http://www.foundmyfitness.com/?sendme...

In this video Dr. Rhonda Patrick summarizes a recent study that found that frequency of sauna use was associated with decreased risk of death. Using the sauna 2-3 times per week was associated with 24% lower all-cause mortality and 4-7 times per week decreased all-cause mortality by 40%.

Rhonda discusses some possible mechanisms that could be responsible for the effect on longevity including the increased production of heat shock proteins (HSPs) and activation of the longevity gene, Foxo3. Heat stress increases the production of heat shock proteins, which prevent protein aggregation and protect against cardiovascular and neurodegenerative diseases. Heat stress also activates FOXO3, which activates many other genes that protect against the stress of aging including DNA damage, damage to proteins and lipids, loss of stem cell function, loss of immune function, cellular senescence and more.

Crowdfund more videos:http://www.patreon.com/foundmyfitness

Subscribe on YouTube:http://www.youtube.com/subscription_c...

Subscribe to the podcast:http://itunes.apple.com/us/podcast/fo...

Twitter:http://twitter.com/foundmyfitness

Facebook:http://www.facebook.com/foundmyfitness

Continue reading here:
How Sauna Use May Boost Longevity - YouTube

Read More...

Stem Cell Therapy Cost? – Regenexx

Wednesday, October 2nd, 2019

There is no shortage of clinics out there offering stem cell therapy. How much does stem cell therapy cost? How much is too much? Are you getting what you pay for? Lets dig in.

Our focus here on stem cell therapy cost is for orthopedic procedures as thats our area of expertise and something where we can benchmark and compare apples to apples. However, before we can get into that, we must first discuss different types of treatment, which can be broken down into a couple of categories. Stem cell therapy cost generally depends on:

Youll see dollar signs below by each item in each category which Ill explain how to use later.

Whats being injected is critical to determining stem cell therapy cost. However, who is injecting it and where the procedure is performed and other details will modify these costs. We can break this part down into:

Numbers 1 and 2 here are procedures where all of the injections are performed on the same day, while number 3 takes a few weeks to grow cells. The advertised cost of birth tissue procedures and same-day bone marrow or fat procedures are similar, usually in the 4-8K USD range. However, this is where we find our biggest opportunity for patient rip-offs. Let me explain.

The biggest problem that we encounter in these same-day stem cell procedures is when the product has no live cells, let alone stem cells. Multiple studies now by university and private scientists demonstrate that the amniotic fluid and umbilical cord products being hawked at seminars all over the US are all non-viable tissue. So, right upfront, youre actually getting massively overcharged if a clinic claims that this is a stem cell procedure. In fact, these birth tissue procedures are more similar to platelet-rich plasma injections as both contain growth factors that can help healing, but neither contain stem cells. PRP procedures run in 1-2K range for a single joint, so thats the appropriate price range for birth tissue procedures. To find out more about the issue with birth tissues being advertised as stem cells, see my video below:

Culture-expanded cells are grown to bigger numbers over 1-3 weeks and then injected. These procedures can not be performed legally in the US, so they are performed in other countries like the Cayman Islands, Panama, parts of Europe, or China as examples. They generally run 15-30K.

Stem cell therapy cost should be tied to who performs these procedures. Which medical providers commonly inject the cells?

We regrettably dont see a big correlation between stem cell therapy cost and the level of training of the provider performing the procedure. For example, a nurse practitioner (NP) or physicians assistant (PA) has about half of the training of the average physician specialist, but the cost of a stem cell procedure performed by a nurse is often similar to a specialist physician. Obviously, a medical provider with far less training should cost less than one with twice the training.

Stem cell therapy cost is often tied to the location where the procedure is performed. For example:

One of the most interesting things out there in the world of stem cell procedures is that we see procedures being performed outside of medical clinics and hospitals, often in alternative medicine clinics. The issue is that the level of sterility, regulation, safety equipment, and technology is higher in a medical setting, but often alternative health clinics run by chiropractors, naturopaths, and acupuncturists charge just as much or more than actual medical clinics who have better technology and more highly trained staff. Hence, a procedure in a place thats barely capable of supporting you as a patient if something goes wrong should cost much less than a place designed to help you with the latest technology and most highly trained staff.

Stem cell therapy cost should also be tied to how the procedure is performed and commonly there a few treatment delivery types out there:

Starting an IV doesnt take much expertise. In addition, if you get stem cells intravenous, 97% will end up in your lungs and few will end up where you have pain, Hence, you need to inject them locally. One way to do that would be to inject them blind, without imaging guidance, which also takes little expertise. However, there is no way to tell if the cells got to where they were supposed to be placed. Finally, you can use imaging guidance to ensure that the cells will get to the right spot. Thats either ultrasound or fluoroscopy (real-time x-ray) or both. As a rule, you should pay much less for an IV or blind injection and more for an image-guided injection.

Stem cell therapy cost is often directly tied to the number of spots that get injected. For example:

Most clinics that inject joints to treat arthritis will inject simply into the joint, which should cost less as thats less work. Some clinics will also inject multiple structures within the joint or around it, adding time and expertise to the procedure. Injecting multiple joints would be a similar increase in work. Finally, some clinics will also inject multiple areas in and around multiple joints, which would be the most expensive.

To figure out the stem cell therapy cost take the price range above and apply the dollar sign modifiers. So single dollar signs should push you toward the low end of the price range and double or triple towards the higher end. Now lets take some concrete examples.

Example 1: A common stem cell procedure performed in a local chiropractors office.

As discussed above, the right price for birth tissues is about what you would pay for PRP, so thats 1-2K. All of these single dollars signs would push you toward a cost thats lower than the average stem cell therapy price. Hence, this is about a 1-2K procedure.

Now lets go to the other end of that spectrum: A bone marrow concentrate procedure delivered by a physician specialist in a medical office:

Same day bone marrow stem cell procedures run in the 4-8K range. All of these two dollars signs would push you toward the higher end of that range.

Obviously, we have dramatic differences in what I priced out above. The chiro clinic with a nurse injecting birth tissues blindly in a clinic not designed for this type of work is a lower quality affair. The opposite is true with my second example. So like anything else in life, you get what you pay for.

To learn more about how to choose the right stem cell clinic based on quality, read my mini-book on the topic (click on the book cover to download the PDF):

The upshot? Figuring out stem cell therapy cost is not that hard, you just need to know what it is youre buying. Just like that fake Gucci purse that looks good but falls apart in a few months, or that real one that lasts a lifetime, how much you spend is usually associated with the quality of what you buy. However, use the dollar signs to see if the stem cell procedure youre buying is over or underpriced!

Visit link:
Stem Cell Therapy Cost? - Regenexx

Read More...

UV Eye Protection | The Vision Council

Wednesday, October 2nd, 2019

The sun emits three kinds of ultraviolet radiation: UVA, UVB and UVC. While UVC is absorbed by the Earths atmosphere, UVB radiation is only partially blocked and can burn the skin and eyes. UVA rays are not filtered and cause the most damage to vision health, according to the World Health Organization.

The Vision Councils most recent VisionWatch survey reveals American adults experience symptoms like irritation in the eye (15.5 percent), trouble seeing (13.5 percent), wrinkles around the eye (8.3 percent), red or swollen eyes (5.9 percent), sunburn on the eyelids (3.7 percent), sunburn of the eye (2.5 percent) and cancer on or around the eye (.6 percent) from prolonged UV exposure. Additionally, the most common time American adults report spending time outdoors is 2-4 p.m. (39.8 percent), and the number one thing that concerns them most about UV eye exposure is vision loss (28.2 percent). However, 27 percent report they dont typically wear sunglasses when they are outside.

Additional findings show:

Q: Does the darkness of the lenses equate to higher UV protection?A: No. However, 39.4 percent of American adults believe it does. Dark lenses without adequate UV protection can be worse than wearing no sunglasses at all because they cause the eye's pupil to dilate, which then increases retinal exposure to unfiltered UV.

Q: Do all sunglasses offer UVA/UVB protection?A: No. Since shielding the eyes from damaging radiation is crucial, it is imperative to look for a label, sticker or tag indicating UV protection before purchasing a pair of sunglasses.

Q: When do UV rays affect the eyes?A: UV radiation is present year-round, so despite the season or weather. So it's important to wear proper eye and skin protection while outside during daylight hours.

Q: What should be considered when purchasing a pair of sunglasses?A: Protection, daily activities, comfort and personal style.

The Vision Council encourages everyone to wear sunglasses whenever they're outdoors during daylight hours, and to have an annual eye exam with an eyecare provider. Only 27 percent of American adults report they have an annual eye exam and talk to their eyecare provider about UV eye protection, and 29.7 percent report their child(ren) has an annual eye exam and talk to their eyecare provider about their UV eye protection. However, eyecare providers can make recommendations regarding sunglasses tailored to an individuals unique vision and lifestyle needs. Additionally, sunglasses are also considered a style accessory that can elevate any look! Individuals should start a collection to coincide with their varying activities and ever-changing wardrobes.

Don't forget to celebrate National Sunglasses Day on June 27 by posting a photo with your favorite sunglasses tagging @TheVisionCouncil, and using #NationalSunglassesDay and #SunglassSelfie. For more information, visit nationalsunglassesday.com.

Read the rest here:
UV Eye Protection | The Vision Council

Read More...

The Center For Sight: Lufkin TX Eye Care Surgery, Lenses …

Wednesday, October 2nd, 2019

The Center For Sight: Lufkin TX Eye Care Surgery, Lenses & More Our desire is to be your trusted choice in eye care.

Welcome to The Center For Sight

In 1981, Dr. Richard J. Ruckman opened The Center For Sights first location in Lufkin, Texas with a vision to provide his patients with high-level eye care through enhanced technology, skilled professionals and his personal commitment to excellence. Since then, The Center For Sight has grown to serve East Texas with its main office in Lufkin ,and satellite office in Livingston.

The mission of The Center For Sight has been, Our Focus is You! We strive to make our patients feel like our family and to provide all levels of eye care, including eye examinations, contact lens evaluations and fittings, complex medical evaluations, cataract surgery and prescription glasses. Our team of doctors and staff is among the finest, and we work hard to preserve and improve the vision and health of each and every one of our patients. Our desire is to be your trusted choice in eye care. Welcome to The Center For Sight!

Visit Both of Our Locations!

We have two locations for your convenience. Located in Lufkin and Livingston, we're ready to provide you with an exceptional experience, no matter which location you visit! Get quality eye care, whether you need contact lenses or eye surgery. Call today to schedule an appointment!

Need Prescription Sunglasses?

Invest in a pair of stylish prescription sunglasses at The Center for Sight! We'll make sure your pair of sunglasses fit perfectly to your face, giving you full comfort. Our sunglasses are built to perform, with the best quality and brands.

2 Medical Center Blvd.Lufkin, TX 75904

Call UsPhone 1: (936) 634- 8434Phone 2: (800) 833-5777

HoursMon: 8:00AM-5:00PMTue: 8:00AM-7:00PMWed: 8:00AM-5:00PMThu: 8:00AM-5:00PMFri: 8:00am-12:30pmSat: ClosedSun: Closed

SEE ALL LOCATIONS

200 Ogletree DriveLivingston, TX 77351

Call UsPhone 1: (936) 328-5600Phone 2: (800) 734-9086

HoursMon: 8:00AM-5:00PMTue: 8:00AM-7:00PMWed: 8:00AM-5:00PMThu: 8:00AM-5:00PMFri: 8:00am-12:30pmSat: ClosedSun: Closed

SEE ALL LOCATIONS

See the article here:
The Center For Sight: Lufkin TX Eye Care Surgery, Lenses ...

Read More...

Ethical Issues in Stem Cell Research | Endocrine Reviews …

Wednesday, October 2nd, 2019

Abstract

Stem cell research offers great promise for understanding basic mechanisms of human development and differentiation, as well as the hope for new treatments for diseases such as diabetes, spinal cord injury, Parkinsons disease, and myocardial infarction. However, human stem cell (hSC) research also raises sharp ethical and political controversies. The derivation of pluripotent stem cell lines from oocytes and embryos is fraught with disputes about the onset of human personhood. The reprogramming of somatic cells to produce induced pluripotent stem cells avoids the ethical problems specific to embryonic stem cell research. In any hSC research, however, difficult dilemmas arise regarding sensitive downstream research, consent to donate materials for hSC research, early clinical trials of hSC therapies, and oversight of hSC research. These ethical and policy issues need to be discussed along with scientific challenges to ensure that stem cell research is carried out in an ethically appropriate manner. This article provides a critical analysis of these issues and how they are addressed in current policies.

I.

Introduction

II.

Multipotent Stem Cells

A.

Cord blood stem cells

B.

Adult blood stem cells

III.

Embryonic Stem Cell Research

A.

Existing embryonic stem cell lines

B.

New embryonic stem cell lines from frozen embryos

C.

Ethical concerns about oocyte donation for research

IV.

Somatic Cell Nuclear Transfer (SCNT)

V.

Fetal Stem Cells

VI.

Induced Pluripotent Stem Cells (iPS Cells)

VII.

Stem Cell Clinical Trials

VIII.

Institutional Oversight of Stem Cell Research

STEM CELL RESEARCH offers great promise for understanding basic mechanisms of human development and differentiation, as well as the hope for new treatments for diseases such as diabetes, spinal cord injury, Parkinsons disease, and myocardial infarction (1). Pluripotent stem cells perpetuate themselves in culture and can differentiate into all types of specialized cells. Scientists plan to differentiate pluripotent cells into specialized cells that could be used for transplantation.

However, human stem cell (hSC) research also raises sharp ethical and political controversies. The derivation of pluripotent stem cell lines from oocytes and embryos is fraught with disputes regarding the onset of human personhood and human reproduction. Several other methods of deriving stem cells raise fewer ethical concerns. The reprogramming of somatic cells to produce induced pluripotent stem cells (iPS cells) avoids the ethical problems specific to embryonic stem cells. With any hSC research, however, there are difficult dilemmas, including consent to donate materials for hSC research, early clinical trials of hSC therapies, and oversight of hSC research (2). Table 1 summarizes the ethical issues that arise at different phases of stem cell research.

TABLE 1

Ethical issues at different phases of stem cell research

TABLE 1

Ethical issues at different phases of stem cell research

Adult stem cells and cord blood stem cells do not raise special ethical concerns and are widely used in research and clinical care. However, these cells cannot be expanded in vitro and have not been definitively shown to be pluripotent.

Hematopoietic stem cells from cord blood can be banked and are widely used for allogenic and autologous stem cell transplantation in pediatric hematological diseases as an alternative to bone marrow transplantation.

Adult stem cells occur in many tissues and can differentiate into specialized cells in their tissue of origin and also transdifferentiate into specialized cells characteristic of other tissues. For example, hematopoietic stem cells can differentiate into all three blood cell types as well as into neural stem cells, cardiomyocytes, and liver cells.

Adult stem cells can be isolated through plasmapheresis. They are already used to treat hematological malignancies and to modify the side effects of cancer chemotherapy. Furthermore, autologous stem cells are being used in clinical trials in patients who have suffered myocardial infarction. Their use in several other conditions has not been validated or is experimental, despite some claims to the contrary (3).

Pluripotent stem cell lines can be derived from the inner cell mass of the 5- to 7-d-old blastocyst. However, human embryonic stem cell (hESC) research is ethically and politically controversial because it involves the destruction of human embryos. In the United States, the question of when human life begins has been highly controversial and closely linked to debates over abortion. It is not disputed that embryos have the potential to become human beings; if implanted into a womans uterus at the appropriate hormonal phase, an embryo could implant, develop into a fetus, and become a live-born child.

Some people, however, believe that an embryo is a person with the same moral status as an adult or a live-born child. As a matter of religious faith and moral conviction, they believe that human life begins at conception and that an embryo is therefore a person. According to this view, an embryo has interests and rights that must be respected. From this perspective, taking a blastocyst and removing the inner cell mass to derive an embryonic stem cell line is tantamount to murder (4).

Many other people have a different view of the moral status of the embryo, for example that the embryo becomes a person in a moral sense at a later stage of development than fertilization. Few people, however, believe that the embryo or blastocyst is just a clump of cells that can be used for research without restriction. Many hold a middle ground that the early embryo deserves special respect as a potential human being but that it is acceptable to use it for certain types of research provided there is good scientific justification, careful oversight, and informed consent from the woman or couple for donating the embryo for research (5).

Opposition to hESC research is often associated with opposition to abortion and with the pro-life movement. However, such opposition to stem cell research is not monolithic. A number of pro-life leaders support stem cell research using frozen embryos that remain after a woman or couple has completed infertility treatment and that they have decided not to give to another couple. This view is held, for example, by former First Lady Nancy Reagan and by U.S. Senator Orrin Hatch.

On his Senate website, Sen. Hatch states: The support of embryonic stem cell research is consistent with pro-life, pro-family values.

I believe that human life begins in the womb, not a Petri dish or refrigerator . To me, the morality of the situation dictates that these embryos, which are routinely discarded, be used to improve and save lives. The tragedy would be in not using these embryos to save lives when the alternative is that they would be discarded (6).

In 2001, President Bush, who holds strong pro-life views, allowed federal National Institutes of Health (NIH) funding for stem cell research using embryonic stem cell lines already in existence at the time, while prohibiting NIH funding for the derivation or use of additional embryonic stem cell lines. This policy was a response to a growing sense that hESC research held great promise for understanding and treating degenerative diseases, while still opposing further destruction of human embryos. NIH funding was viewed by many researchers as essential for attracting scientists to make a long-term commitment to study the basic biology of stem cells; without a strong basic science platform, therapeutic breakthroughs would be less likely.

President Bushs rationale for this policy was that the embryos from which these lines were produced had already been destroyed. Allowing research to be carried out on the stem cell lines might allow some good to come out of their destruction. However, using only existing embryonic stem cell lines is scientifically problematic. Originally, the NIH announced that over 60 hESC lines would be acceptable for NIH funding. However, the majority of these lines were not suitable for research; for example, they were not truly pluripotent, had become contaminated, or were not available for shipping. As of January 2009, 22 hESC lines are eligible for NIH funding. However, these lines may not be safe for transplantation into humans, and long-standing lines have been shown to accumulate mutations, including several known to predispose to cancer. In addition, concerns have been raised about the consent process for the derivation of some of these NIH-approved lines (7). The vast majority of scientific experts, including the Director of the NIH under President Bush, believe that a lack of access to new embryonic stem cell lines hinders progress toward stem cell-based transplantation (8). For example, lines from a wider range of donors would allow more patients to receive human leukocyte agent matched stem cell transplants (9).

Currently, federal funds may not be used to derive new embryonic stem cell lines or to work with hESC lines not on the approved NIH list. NIH-funded equipment and laboratory space may not be used for research on nonapproved hESC lines. Both the derivation of new hESC lines and research with hESC lines not approved by NIH may be carried out under nonfederal funding. Because of these restrictions on NIH funding, a number of states have established programs to fund stem cell research, including the derivation of new embryonic stem cell lines. California, for example, has allocated $3 billion over 10 yr to stem cell research.

Under President Obama, it is expected that federal funding will be made available to carry out research with hESC lines not on the NIH list and to derive new hESC lines from frozen embryos donated for research after a woman or couple using in vitro fertilization (IVF) has determined they are no longer needed for reproductive purposes. However, federal funding may not be permitted for creation of embryos expressly for research or for derivation of stem cell lines using somatic cell nuclear transfer (SCNT) (10, 11).

Women and couples who undergo infertility treatment often have frozen embryos remaining after they complete their infertility treatment. The disposition of these frozen embryos is often a difficult decision for them to make (12). Some choose to donate these remaining embryos to research rather than giving them to another couple for reproductive purposes or destroying them. Several ethical concerns come into play when a frozen embryo is donated, including informed consent from the woman or couple donating the embryo, consent from gamete donors involved in the creation of the embryo, and the confidentiality of donor information.

Since the Nuremburg Code, informed consent has been regarded as a basic requirement for research with human subjects. Consent is particularly important in research with human embryos (13). Members of the public and potential donors of embryos for research hold strong and diverse opinions on the matter. Some consider all embryo research to be unacceptable; others only support some forms of research. For instance, a person might consider infertility research acceptable but object to research to derive stem cell lines or research that might lead to patents or commercial products (14). Obtaining informed consent for potential future uses of the donated embryo respects this diversity of views. Additionally, people commonly place special emotional and moral significance on their reproductive materials, compared with other tissues (15).

In the United States, federal regulations on research permit a waiver of informed consent for the research use of deidentified biological materials that cannot be linked to donors (16). Thus, logistically it would be possible to carry out embryo and stem cell research on deidentified materials without consent. For example, during IVF procedures, oocytes that fail to fertilize or embryos that fail to develop sufficiently to be implanted are ordinarily discarded. These materials could be deidentified and then used by researchers. Furthermore, if infertility patients have frozen embryos remaining after they complete treatment, they are routinely contacted by the IVF program to decide whether they want to continue to store the embryos (and to pay freezer storage fees), to donate them to another infertile woman or couple, or to discard them. If a patient chooses to discard the embryos, it would be possible to instead remove identifiers and use them for research. Still another possibility involves frozen embryos from patients who do not respond to requests to make a decision regarding the disposition of frozen embryos. Some IVF practices have a policy to discard such embryos and inform patients of this policy when they give consent for the IVF procedures. Again, rather than discard such frozen embryos, it is logistically feasible to deidentify them and give them to researchers.

However, the ethical justifications for allowing deidentified biological materials to be used for research without consent do not always hold for embryo research (13). For example, one rationale for allowing the use of deidentified materials is that the ethical risks are very low; there can be no breach of confidentiality, which is the main concern in this type of research. A second rationale is that people would not object to having their materials used in such a manner if they were asked. However, this assumption does not necessarily hold in the context of embryo research. A 2007 study found that 49% of women with frozen embryos would be willing to donate them for research (12). Such donors might be offended or feel wronged if their frozen embryos were used for research that they did not consent to. Deidentifying the materials would not address their concerns.

Frozen embryos may be created with sperm or oocytes from donors who do not participate any further in assisted reproduction or childrearing. Some people argue that consent from gamete donors is not required for embryo research because they have ceded their right to direct further usage of their gametes to the artificial reproductive technology (ART) patients. However, gamete donors who are willing to help women and couples bear children may object to the use of their genetic materials for research. In one study, 25% of women who donated oocytes for infertility treatment did not want the embryos created to be used for research (17). This percentage is not unexpected because reproductive materials have special significance, and many people in the United States oppose embryo research. Little is known about the wishes of sperm donors concerning research.

There are substantial practical differences between obtaining consent for embryo research from oocyte donors and from sperm donors. ART clinics can readily discuss donation for research with oocyte donors during visits for oocyte stimulation and retrieval. However, most ART clinics obtain donor sperm from sperm banks and generally have no direct contact with the donors. Furthermore, sperm is often donated anonymously to sperm banks, with strict confidentiality provisions.

As a matter of respect for gamete donors, their wishes regarding stem cell derivation should be determined and respected (13). Gamete donors who are willing to help women and couples bear children may object to the use of their genetic materials for research. Specific consent for stem cell research from both embryo and gamete donors was recommended by the National Academy of Sciences 2005 Guidelines for Human Embryonic Stem Cell Research and has been adopted by the California Institute for Regenerative Medicine (CIRM), the state agency funding stem cell research (18, 19). This consent requirement need not imply that embryos are people or that gametes or embryos are research subjects.

Confidentiality must be carefully protected in embryo and hESC research because breaches of confidentiality might subject donors to unwanted publicity or even harassment by opponents of hESC research (20). Although identifying information about donors must be retained in case of audits by the Food and Drug Administration as part of the approval process for new therapies, concerns about confidentiality may deter some donors from agreeing to be recontacted.

Recently, confidentiality of personal health care information has been violated through deliberate breaches by staff, through break-ins by computer hackers, and through loss or theft of laptop computers. Files containing the identities of persons whose gametes or embryos were used to derive hESC lines should be protected through heightened security measures (20). Any computer storing such files should be locked in a secure room and password-protected, with access limited to a minimum number of individuals on a strict need-to-know basis. Entry to the computer storage room should also be restricted by means of a card-key, or equivalent system, that records each entry. Audit trails of access to the information should be routinely monitored for inappropriate access. The files with identifiers should be copy-protected and double encrypted, with one of the keys held by a high-ranking institutional official who is not involved in stem cell research. The computer storing these data should not be connected to the Internet. To protect information from subpoena, investigators should obtain a federal Certificate of Confidentiality. Human factors in breaches of confidentiality should also be considered. Personnel who have access to these identifiers might receive additional background checks, interviews, and training. The personnel responsible for maintaining this confidential database and contacting any donor should not be part of any research team.

hESC research using fresh oocytes donated for research raises several additional ethical concerns as well, as we next discuss (21).

Concerns about oocyte donation specifically for research are particularly serious in the wake of the Hwang scandal in South Korea, in which widely hailed claims of deriving human SCNT lines were fabricated. In addition to scientific fraud, the scandal involved inappropriate payments to oocyte donors, serious deficiencies in the informed consent process, undue influence on staff and junior scientists to serve as donors, and an unacceptably high incidence of medical complications from oocyte donation (2224). In California, some legislators and members of the public have charged that infertility clinics downplay the risks of oocyte donation (19). CIRM has put in place several protections for women donating oocytes in state-funded stem cell research.

The medical risks of oocyte retrieval include ovarian hyperstimulation syndrome, bleeding, infection, and complications of anesthesia (25). These risks may be minimized by the exclusion of donors at high-risk for these complications, careful monitoring of the number of developing follicles, and adjusting the dose of human chorionic gonadotropin administered to induce ovulation or canceling the cycle (25).

Because severe hyperovulation syndrome may require hospitalization or surgery, women donating oocytes for research should be protected against the costs of complications of hormonal stimulation and oocyte retrieval (19). The United States does not have universal health insurance. As a matter of fairness, women who undergo an invasive procedure for the benefit of science and who are not receiving payment beyond expenses should not bear any costs for the treatment of complications. Even if a woman has health insurance, copayments and deductibles might be substantial, and if she later applied for individual-rated health insurance, her premiums might be prohibitive. Compensation for research injuries has been recommended by several U.S. panels (26) but has not been adopted because of difficulties calculating long-term actuarial risk and assessing intervening factors that could contribute to or cause adverse events.

Requiring free care for short-term complications of oocyte donation is feasible. In California, research institutions must ensure free treatment to oocyte donors for direct and proximate medical complications of oocyte retrieval in state-funded research. The term direct and proximate is a legal concept to determine how closely an injury needs to be connected to an event or condition to assign responsibility for the injury to the person who carried out the event or created the condition. Commercial insurance policies are available to cover short-term complications of oocyte retrieval. CIRM allows state stem cell grants to cover the cost of such insurance. The rationale for making research institutions responsible for treatment is that they are in a better position than individual researchers to identify insurance policies and would have an incentive to consider extending such coverage to other research injuries.

If women in infertility treatment share oocytes with researcherseither their own oocytes or those from an oocyte donortheir prospect of reproductive success may be compromised because fewer oocytes are available for reproductive purposes (21). In this situation, the physician carrying out oocyte retrieval and infertility care should give priority to the reproductive needs of the patient in IVF. The highest quality oocytes should be used for reproductive purposes (21).

As discussed in Section B. 2, in IVF programs some oocytes fail to fertilize, and some embryos fail to develop sufficiently to be implanted. Such materials may be donated to researchers. To protect the reproductive interests of donors, several safeguards should be in place (20). For the donation of fresh embryos for research, the determination by the embryologist that an embryo is not suitable for implantation and therefore should be discarded is a matter of judgment. Similarly, the determination that an oocyte has failed to fertilize and thus cannot be used for reproduction is a judgment call. To avoid any conflict of interest, the embryologist should not know whether a woman has agreed to research donation and also should receive no funding from grants associated with the research. Furthermore, the treating infertility physicians should not know whether or not their patients agree to donate materials for research.

Many jurisdictions have conflicting policies about payment to oocyte donors. Reimbursement to oocyte donors for out-of-pocket expenses presents no ethical problems because donors gain no financial advantage from participating in research. However, payment to oocyte donors in excess of reasonable out-of-pocket expenses is controversial, and jurisdictions have conflicting policies that may also be internally inconsistent (27, 28).

Good arguments can be made both for and against paying donors of research oocytes more than their expenses (29). On the one hand, some object that such payments induce women to undertake excessive risks, particularly poorly educated women who have limited options for employment, as occurred in the Hwang scandal. Such concerns about undue influence, however, may be addressed without banning payment. For example, participants could be asked questions to ensure that they understood key features of the study and that they felt they had a choice regarding participation (19). Also, careful monitoring and adjustment of hormone doses can minimize the risks associated with oocyte donation (25). A further objection is that paying women who provide research oocytes undermines human dignity because human biological materials and intimate relationships are devalued if these materials are bought and sold like commodities (14, 30).

On the other hand, some contend that it is unfair to ban payments to donors of research oocytes, while allowing women to receive thousands of U.S. dollars to undergo the same procedures to provide oocytes for infertility treatment (29). Moreover, healthy volunteers, both men and women, are paid to undergo other invasive research procedures, such as liver biopsy, for research purposes. Furthermore, bans on payment for oocyte donation for research have been criticized as paternalistic, denying women the authority to make decisions for themselves (31). On a pragmatic level, without such payment, it is very difficult to recruit oocyte donors for research.

In California, CIRM has instituted heightened requirements for informed consent for oocyte donation for research (19). The CIRM regulations go beyond requirements for disclosure of information to oocyte donors (19). The major ethical issue is whether donors appreciate key information about oocyte donation, not simply whether the information has been disclosed to them or not. As discussed previously, in other research settings, research participants often fail to understand the information in detailed consent forms (32). CIRM thus reasons that disclosure, while necessary, is not sufficient to guarantee informed consent. In CIRM-funded research, oocyte donors must be asked questions to ensure that they comprehend the key features of the research (19). Evaluating comprehension is feasible because it has been carried out in other research contexts, such as in HIV prevention trials in the developing world (33). According to testimony presented to CIRM, evaluation of comprehension has also been carried out with respect to oocyte donation for clinical infertility services.

Pluripotent stem cell lines whose nuclear DNA matches a specific person have several scientific advantages. Stem cell lines matched to persons with specific diseases can serve as in vitro models of diseases, elucidate the pathophysiology of diseases, and screen potential new therapies. Lines matched to specific individuals also offer the promise of personalized autologous stem cell transplantation.

One approach to creating such lines is through SCNT, the technique that produced Dolly the sheep. In SCNT, reprogramming is achieved after transferring nuclear DNA from a donor cell into an oocyte from which the nucleus has been removed. However, creating human SCNT stem cell lines has not only been scientifically impossible to date but is also ethically controversial (34, 35).

Some people who object to SCNT believe that creating embryos with the intention of using them for research and destroying them in that process violates respect for nascent human life. Even those who support deriving stem cell lines from frozen embryos that would otherwise be discarded sometimes reject the intentional creation of embryos for research. In rebuttal, however, some argue that pluripotent entities created through SCNT are biologically and ethically distinct from embryos (36).

There are several compelling objections to using SCNT for human reproduction. First, because of errors during reprogramming of genetic material, cloned animal embryos fail to activate key embryonic genes, and newborn clones misexpress hundreds of genes (37, 38). The risk of severe congenital defects would be prohibitively high in humans. Second, even if SCNT could be carried out safely in humans, some object that it violates human dignity and undermines traditional, fundamental moral, religious, and cultural values (34). A cloned child would have only one genetic parent and would be the genetic twin of that parent. In this view, cloning would lead children to be regarded more as products of a designed manufacturing process than gifts whom their parents are prepared to accept as they are. Furthermore, cloning would violate the natural boundaries between generations (34). For these reasons, cloning for reproductive purposes is widely considered morally wrong and is illegal in a number of states. Moreover, some people argue that because the technique of SCNT can be used for reproduction, its development and use for basic research should be banned.

Because of the shortage of human oocytes for SCNT research, some scientists wish to use nonhuman oocytes to derive lines using human nuclear DNA. These so-called cytoplasmic hybrid embryos raise a number of ethical concerns. Some opponents fear the creation of chimerasmythical beasts that appear part human and part animal and have characteristics of both humans and animals (39). Opponents may feel deep moral unease or repugnance, without articulating their concerns in more specific terms. Some people view such hybrid embryos as contrary to a moral order embodied in the natural world and in natural law. In this view, each species has a particular moral purpose or goal, which mankind should not try to change. Others view such research as an inappropriate crossing of species barriers, which should be an immutable part of natural design. Finally, some are concerned that there may be attempts to implant these embryos for reproductive purposes.

In rebuttal, supporters of such research point out that the biological definitions of species are not natural and immutable but empirical and pragmatic (4042). Animal-animal hybrids of various sorts, such as the mule, exist and are not considered morally objectionable. Moreover, in medical research, human cells are commonly injected into nonhuman animals and incorporated into their functioning tissue. Indeed, this is widely done in research with all types of stem cells to demonstrate that cells are pluripotent or have differentiated into the desired type of cell. In addition, some concerns can be addressed through strict oversight (40), for example prohibiting reproductive uses of these embryos and limiting in vitro development to 14 d or the development of the primitive streak, limits that are widely accepted for other hESC research. Finally, some people regard repugnance per se an unconvincing guide to ethical judgments. People disagree over what is repugnant, and their views might change over time. Blood transfusion and cadaveric organ transplantation were originally viewed as repugnant but are now widely accepted practices. Furthermore, after public discussion and education, many people overcome their initial concerns.

Pluripotent stem cells can be derived from fetal tissue after abortion. However, use of fetal tissue is ethically controversial because it is associated with abortion, which many people object to. Under federal regulations, research with fetal tissue is permitted provided that the donation of tissue for research is considered only after the decision to terminate pregnancy has been made. This requirement minimizes the possibility that a womans decision to terminate pregnancy might be influenced by the prospect of contributing tissue to research. Currently there is a phase 1 clinical trial in Battens disease, a lethal degenerative disease affecting children, using neural stem cells derived from fetal tissue (43, 44).

Somatic cells can be reprogrammed to form pluripotent stem cells (45, 46), called induced pluripotential stem cells (iPS cells). These iPS cell lines will have DNA matching that of the somatic cell donors and will be useful as disease models and potentially for allogenic transplantation.

Early iPS cell lines were derived by inserting genes encoding for transcription factors, using retroviral vectors. Researchers have been trying to eliminate safety concerns about inserting oncogenes and insertional mutagenesis. Reprogramming has been successfully accomplished without known oncogenes and using adenovirus vectors rather than retrovirus vectors. A further step was the recent demonstration that human embryonic fibroblasts can be reprogrammed to a pluripotent state using a plasmid with a peptide-linked reprogramming cassette (47, 48). Not only was reprogramming accomplished without using a virus, but the transgene can be removed after reprogramming is accomplished. The ultimate goal is to induce pluripotentiality without genetic manipulation. Because of unresolved problems with iPS cells, which currently preclude their use for cell-based therapies, most scientists urge continued research with hESC (49).

iPS cells avoid the heated debates over the ethics of embryonic stem cell research because embryos or oocytes are not used. Furthermore, because a skin biopsy to obtain somatic cells is relatively noninvasive, there are fewer concerns about risks to donors compared with oocyte donation. The Presidents Council on Bioethics called iPS cells ethically unproblematic and acceptable for use in humans (39). Neither the donation of materials to derive iPS cells nor their derivation raises special ethical issues.

Some potential downstream uses of iPS cell derivatives may be so sensitive as to call into question whether the original somatic cell donors would have agreed to such uses (50). iPS cells will be shared widely among researchers who will carry out a variety of studies with iPS cells and derivatives, using common and well-accepted scientific practices, such as:

Genetic modifications of cells

Injection of derived cells into nonhuman animals to demonstrate their function, including the injection into the brains of nonhuman animals.

Large-scale genome sequencing

Sharing cell lines with other researchers, with appropriate confidentiality protections, and

Patenting scientific discoveries and developing commercial tests and therapies, with no sharing of royalties with donors (51).

These standard research techniques are widely used in other types of basic research, including research with stem cells from other sources. Generally, donors of biological materials are not explicitly informed of these research procedures, although such disclosure is now proposed for whole genome sequencing (52, 53).

Such studies are of fundamental importance in stem cell biology, for example to characterize the lines and to demonstrate that they are pluripotent. Large-scale genome sequencing will yield insights about the pathogenesis of disease and identify new targets for therapy. Injection of human stem cells into the brains of nonhuman animals will be required for preclinical testing of cell-based therapies for many conditions, such as Parkinsons disease, Alzheimers disease, and stroke.

However, some downstream research could also raise ethical concerns. For example, large-scale genome sequencing may evoke concerns about privacy and confidentiality. Donors might consider it a violation of privacy if scientists know their future susceptibility to many genetic diseases. Furthermore, it may be possible to reidentify the donor of a deidentified large-scale genome sequence using information in forensic DNA databases or at an Internet company offering personal genomic testing (54, 55). Other donors may object to their cells being injected into animals. For example, they may oppose all animal research, or they may have religious objections to the mixing of human and animal species. The injection of human neural progenitor cells into nonhuman animals has raised ethical concerns about animals developing characteristics considered uniquely human (56, 57). Still other donors may not want cell lines derived from their biological materials to be patented as a step toward developing new tests and therapies. People are unlikely to drop such objections even if the cell lines were deidentified or even if many years had passed since the original donation. Thus there may be a tension between respecting the autonomy of donors and obtaining scientific benefit from research, which can be resolved during the process of obtaining consent for the original donation of materials.

It would be unfortunate if iPS cell lines that turned out to be extremely useful scientifically (for example because of robust growth in tissue culture) could not be used in additional research because the somatic cell donor objected. One approach to avoid this is to preferentially use somatic cells from donors who are willing to allow all such basic stem cell research and to be contacted for future sensitive research that cannot be anticipated at the time of consent (50). Donors could also be offered the option of consenting to additional specific types of sensitive but not fundamental downstream research, such as allogenic transplantation into other humans and reproductive research involving the creation of totipotent entities.

Because these concerns about consent for sensitive downstream research also apply to other types of stem cells, it would be prudent to put in place similar standards for consent to donate materials for derivation of other types of stem cells. However, these concerns are particularly salient for iPS cells because of the widespread perception that these cells raise no serious ethical problems and because they are likely to play an increasing role in stem cell research.

Transplantation of cells derived from pluripotent stem cells offers the promise of effective new treatments. However, such transplantation also involves great uncertainty and the possibility of serious risks. Some stem cell therapies have been shown to be effective and safe, for example hematopoietic stem cell transplants for leukemia and epithelial stem cell-based treatments for burns and corneal disorders (58). However, there are some clinics around the world already exploiting patients hopes by purporting to offer effective stem cell therapies for seriously ill patients, typically for large sums of money, but without credible scientific rationale, transparency, oversight, or patient protections (58). Although supporting medical innovation under very limited circumstances, the International Society for Stem Cell Research has decried such use of unproven hSC transplantation.

These clinical trials should follow ethical principles that guide all clinical research, including appropriate balance of risks and benefits and informed, voluntary consent. Additional ethical requirements are also warranted to strengthen trial design, coordinate scientific and ethics review, verify that participants understand key features of the trial, and ensure publication of negative findings (59). These measures are appropriate because of the highly innovative nature of the intervention, limited experience in humans, and the high hopes of patients who have no effective treatments.

The risks of innovative stem cell-based interventions include tumor formation, immunological reactions, unexpected behavior of the cells, and unknown long-term health effects (58). Evidence of safety and proof of principle should be established through appropriate preclinical studies in relevant animal models or through human studies of similar cell-based interventions. Requirements for proof of principle and safety should be higher if cells have been manipulated extensively in vitro or have been derived from pluripotent stem cells (58).

Even with these safeguards, however, because of the highly innovative nature of the intervention and limited experience in humans, unanticipated serious adverse events may occur. In older clinical trials of transplantation of fetal dopaminergic neurons into persons with Parkinsons disease, transplanted cells failed to improve clinical outcomes (60, 61). Indeed, about 15% of subjects receiving transplantation late developed disabling dyskinesias, with some needing ablative surgery to relieve these adverse events (60, 61). Although the transplanted cells localized to the target areas of the brain, engrafted, and functioned to produce the intended neurotransmitters, appropriately regulated physiological function was not achieved. Participants in phase I trials may not thoroughly understand the possibility that hESC transplantation might make their condition worse.

Problems with informed consent are well documented in phase I clinical trials. Participants in cancer clinical trials commonly expect that they will benefit personally from the trial, although the primary purpose of phase I trials is to test safety rather than efficacy (62). This tendency to view clinical research as providing personal benefit has been termed the therapeutic misconception (32, 63). Analyses of cancer clinical trials reveal that the information in consent forms generally is adequate. However, in early phase I gene transfer clinical trials, researchers descriptions of the direct benefit to participants commonly were vague, ambiguous, and indeterminate (64).

Participants in phase I stem cell-based clinical trials might overestimate their benefits and underestimate the risks. The scientific rationale for hSC transplantation and preclinical results may seem compelling. In addition, highly optimistic press coverage might reinforce unrealistic hopes.

Several measures may enhance informed consent in early stem cell-based clinical trials (59). First, researchers should describe the risks and prospective benefits in a realistic manner. Researchers need to communicate the distinction between the long-term hope for effective treatments and the uncertainty inherent in any phase I trial. Participants in phase I studies need to understand that the intervention has never been tried before in humans for the specific condition, that researchers do not know whether it will work as hoped, and that the great majority of participants in phase I studies do not receive a direct benefit.

Second, investigators in hESC clinical trials should discuss a broader range of information with potential participants than in other clinical trials. The doctrine of informed consent requires researchers to discuss with potential participants information that is pertinent to their decision to volunteer for the clinical trial (65). Generally, the relevant information concerns the nature of the intervention being studied and the risks and prospective benefits. However, in hESC transplantation, nonmedical issues may be prominent or even decisive for some participants. Individuals who regard the embryo as having the moral status of a person would likely have strong objections to receiving hESC transplants. Although this intervention might benefit them medically, such individuals might regard it as complicit with an immoral action. Thus researchers in clinical trials of hESC transplantation should inform eligible participants that transplanted materials originated from human embryos.

Third, and most important, researchers should verify that participants have a realistic understanding of the clinical trial (59). The crucial ethical issue about informed consent is not what researchers disclose in consent forms or discussions, but rather what the participants in clinical trials understand. In other contexts, some researchers have ensured that participants understand the key features of the trial by assessing their comprehension. In HIV clinical trials in developing countries, where it has been alleged that participants did not understand the trial, many researchers are now testing each participant to be sure he or she understands the essential features of the research (33). Such direct assessment of participants understanding of the study has been recommended more broadly in contexts in which misunderstandings are likely (26). We urge that such tests of comprehension be carried out in phase I trials of hSC transplantation (58, 59).

Careful attention to consent in highly innovative clinical trials might prevent controversies later. In early clinical trials of organ transplantation, the implantable totally artificial heart, and gene transfer, the occurrence of serious adverse events led to allegations that study participants had not truly understood the nature of the research (6668). The resulting ethical controversies brought about negative publicity and delays in subsequent clinical trials.

Human stem cell research raises some ethical issues that are beyond the mission of institutional review boards (IRBs) to protect human subjects, as well as the expertise of IRB members. There should be a sound scientific justification for using human oocytes and embryos to derive new human stem cell lines. However, IRBs usually do not carry out in-depth scientific review. Some ethical issues in hESC research do not involve human subjects protection, for example the concern that transplanting human stem cells into nonhuman animals might result in characteristics that are regarded as uniquely human.

See more here:
Ethical Issues in Stem Cell Research | Endocrine Reviews ...

Read More...

Peripheral stem cell transplantation – Wikipedia

Wednesday, October 2nd, 2019

Peripheral blood stem cell transplantation (PBSCT), also called "Peripheral stem cell support",[1] is a method of replacing blood-forming stem cells destroyed, for example, by cancer treatment. PBSCT is now a much more common procedure than its bone marrow harvest equivalent, this is in-part due to the ease and less invasive nature of the procedure.[2][3] Studies suggest that PBSCT has a better outcome in terms of the number of hematopoietic stem cell (CD34+ cells) yield.[4]

Immature hematopoietic stem cells in the circulating blood that are similar to those in the bone marrow are collected by apheresis from a potential donor (PBSC collection). The product is then administered intravenously to the patient after treatment. The administered hematopoietic stem cells then migrate to the recipient's bone marrow, a process known as stem cell homing, where the transplanted cells override the previous bone marrow. This allows the bone marrow to recover, proliferate and continue producing healthy blood cells.

The transplantation may be autologous (an individual's own blood cells saved earlier), allogeneic (blood cells donated by someone else with matching HLA), or syngeneic (blood cells donated by an identical twin). The apheresis procedure typically lasts for 46 hours, depending on the donor's total blood volume.[5]

Granulocyte colony stimulating factor (GCSF) are naturally occurring glycoproteins that stimulate white blood cell proliferation. Filgrastim is a synthetic form of GCSF produced in E.coli.[6] PBSC donors are given a course of GCSF prior to PBSC collection, this ensures a better outcome, as stem cell proliferation increases, thus increasing the number of peripheral stem cells in circulation.The course is usually given over a 4-day period prior to PBSC collection.[7] Mild bone pain usually results due to the excessive stem cell crowding within the bone marrow.

Since allogeneic PBSCT involves transformation of blood between different individuals, this naturally carries more complications than autologous PBSCT.[8]For example, calculations must be made to ensure consistency in the amount of total blood volume between the donor and recipient. If the total blood volume of the donor is less than that of the recipient (such as when a child is donating to an adult), multiple PBSCT sessions may be required for adequate collection. Performing such a collection in a single setting could result in risks such as hypovolemia, which could lead to cardiac arrest, thus health care providers must exercise careful precaution when considering donor-recipient matching in allogeneic PBSCT[9]

An early example of a successful peripheral stem cell transplant was carried out in the wake of the 1999 Tokaimura nuclear accident. One of the two technicians who received the highest dose of radiation was treated with PBSCT in an attempt to restore his destroyed immune system. Cells from the patient's sister's bone marrow were administered, and in the following weeks successfully began dividing and differentiating into leukocytes, but several weeks later, the cells were found to have been mutated by the radiation still present within the patient's body, and were observed carrying out autoimmune responses.[10] Later studies on the incident and subsequent use of PBSCT found that the transplant had also induced neoendothelialization of the aortic endothelium.[11]

This article incorporatespublic domain material from the U.S. National Cancer Institute document "Dictionary of Cancer Terms".

Originally posted here:
Peripheral stem cell transplantation - Wikipedia

Read More...

Genetics of Kidney Cancer (Renal Cell Cancer) (PDQ …

Wednesday, October 2nd, 2019

More than 55% of VHL-affected individuals develop only multiple renal cell cysts. The VHL-associated RCCs that occur are characteristically multifocal and bilateral and present as a combined cystic and solid mass.[66] Among individuals with VHL, the cumulative RCC risk has been reported as 24% to 45% overall. RCCs smaller than 3 cm in this disease tend to be low grade (Fuhrman nuclear grade 2) and minimally invasive,[67] and their rate of growth varies widely.[68] An investigation of 228 renal lesions in 28 patients who were followed up for at least 1 year showed that transition from a simple cyst to a solid lesion was infrequent.[66] Complex cystic and solid lesions contained neoplastic tissue that uniformly enlarged. These data may be used to help predict the progression of renal lesions in VHL. Figure 1 depicts bilateral renal tumors in a patient with VHL.

EnlargeFigure 1. von Hippel-Lindau diseaseassociated renal cell cancers are characteristically multifocal and bilateral and present as a combined cystic and solid mass. Red arrow indicates a lesion with a solid and cystic component, and white arrow indicates a predominantly solid lesion.

Tumors larger than 3 cm may increase in grade as they grow, and metastasis may occur.[68,69] RCCs often remain asymptomatic for long intervals.

Patients can also develop pancreatic cysts, cystadenomas, and pancreatic NETs.[2] Pancreatic cysts and cystadenomas are not malignant, but pancreatic NETs possess malignant characteristics and are typically resected if they are 3 cm or larger (2 cm if located in the head of the pancreas).[70] A review of the natural history of pancreatic NETs shows that these tumors may demonstrate nonlinear growth characteristics.[71]

Retinal manifestations, first reported more than a century ago, were one of the first recognized aspects of VHL. Retinal hemangioblastomas (also known as capillary retinal angiomas) are one of the most frequent manifestations of VHL and are present in more than 50% of patients.[72] Retinal involvement is one of the earliest manifestations of VHL, with a mean age at onset of 25 years.[1,2] These tumors are the first manifestation of VHL in nearly 80% of affected individuals and may occur in children as young as 1 year.[2,73,74]

Retinal hemangioblastomas occur most frequently in the periphery of the retina but can occur in other locations such as the optic nerve, a location much more difficult to treat. Retinal hemangioblastomas appear as a bright orange spherical tumor supplied by a tortuous vascular supply. Nearly 50% of patients have bilateral retinal hemangioblastomas.[72] The median number of lesions per affected eye is approximately six.[75] Other retinal lesions in VHL can include retinal vascular hamartomas, flat vascular tumors located in the superficial aspect of the retina.[76]

Longitudinal studies are important for the understanding of the natural history of these tumors. Left untreated, retinal hemangioblastomas can be a major source of morbidity in VHL, with approximately 8% of patients [72] having blindness caused by various mechanisms, including secondary maculopathy, contributing to retinal detachment, or possibly directly causing retinal neurodegeneration.[77] Patients with symptomatic lesions generally have larger and more numerous retinal hemangioblastomas. Long-term follow-up studies demonstrate that most lesions grow slowly and that new lesions do not develop frequently.[75,78]

Hemangioblastomas are the most common disease manifestation in patients with VHL, affecting more than 70% of individuals. A prospective study assessed the natural history of hemangioblastomas.[79] The mean age at onset of CNS hemangioblastomas is 29.1 years (range, 773 y).[80] After a mean follow-up of 7 years, 72% of the 225 patients studied developed new lesions.[81] Fifty-one percent of existing hemangioblastomas remained stable. The remaining lesions exhibited heterogeneous growth rates, with cerebellar and brainstem lesions growing faster than those in the spinal cord or cauda equina. Approximately 12% of hemangioblastomas developed either peritumoral or intratumoral cysts, and 6.4% were symptomatic and required treatment. Increased tumor burden or total tumor number detected was associated with male sex, longer follow-up, and genotype (all P < .01). Partial germline deletions were associated with more tumors per patient than were missense variants (P < .01). Younger patients developed more tumors per year. Hemangioblastoma growth rate was higher in men than in women (P < .01). Figures 2 and 3 depict cerebellar and spinal hemangioblastomas, respectively, in patients with VHL.

EnlargeFigure 2. Hemangioblastomas are the most common disease manifestation in patients with von Hippel-Lindau disease. The left panel shows a sagittal view of brainstem and cerebellar lesions. The middle panel shows an axial view of a brainstem lesion. The right panel shows a cerebellar lesion (red arrow) with a dominant cystic component (white arrow).

EnlargeFigure 3. Hemangioblastomas are the most common disease manifestation in patients with von Hippel-Lindau disease. Multiple spinal cord hemangioblastomas are shown.

The rate of pheochromocytoma formation in the VHL patient population is 25% to 30%.[82,83] Of patients with VHL-associated pheochromocytomas, 44% developed disease in both adrenal glands.[84] The rate of malignant transformation is very low. Levels of plasma and urine normetanephrine are typically elevated in patients with VHL,[85] and approximately two-thirds will experience physical manifestations such as hypertension, tachycardia, and palpitations.[82] Patients with a partial loss of VHL function (Type 2 disease) are at higher risk of pheochromocytoma than are VHL patients with a complete loss of VHL function (Type 1 disease); the latter develop pheochromocytoma very rarely.[13,14,82,86] The rate of VHL germline pathogenic variants in nonsyndromic pheochromocytomas and paragangliomas was very low in a cohort of 182 patients, with only 1 of 182 patients ultimately diagnosed with VHL.[87]

Paragangliomas are rare in VHL patients but can occur in the head and neck or abdomen.[88] A review of VHL patients who developed pheochromocytomas and/or paragangliomas revealed that 90% of patients manifested pheochromocytomas and 19% presented with a paraganglioma.[84]

The mean age at diagnosis of VHL-related pheochromocytomas and paragangliomas is approximately 30 years,[83,89] and patients with multiple tumors were diagnosed more than a decade earlier than patients with solitary lesions in one series (19 vs. 34 y; P < .001).[89] Diagnosis of pheochromocytoma was made in patients as young as 5 years in one cohort,[83] providing a rationale for early testing. All 21 pediatric patients with pheochromocytomas in this 273-patient cohort had elevated plasma normetanephrines.[83]

VHL patients may develop multiple serous cystadenomas, pancreatic NETs, and simple pancreatic cysts.[1] VHL patients do not have an increased risk of pancreatic adenocarcinoma. Serous cystadenomas are benign tumors and warrant no intervention. Simple pancreatic cysts can be numerous and rarely cause symptomatic biliary duct obstruction. Endocrine function is nearly always maintained; occasionally, however, patients with extensive cystic disease requiring pancreatic surgery may ultimately require pancreatic exocrine supplementation.

Pancreatic NETs are usually nonfunctional but can metastasize (to lymph nodes and the liver). The risk of pancreatic NET metastasis was analyzed in a large cohort of patients, in which the mean age at diagnosis of a pancreatic NET was 38 years (range, 1668 y).[90] The risk of metastasis was lower in patients with small primary lesions (3 cm), in patients without an exon 3 pathogenic variant, and in patients whose tumor had a slow doubling time (>500 days). Nonfunctional pancreatic NETs can be followed by imaging surveillance with intervention when tumors reach 3 cm. Lesions in the head of the pancreas can be considered for surgery at a smaller size to limit operative complexity.

ELSTs are adenomatous tumors arising from the endolymphatic duct or sac within the posterior part of the petrous bone.[91] ELSTs are rare in the sporadic setting, but are apparent on imaging in 11% to 16% of patients with VHL. Although these tumors do not metastasize, they are locally invasive, eroding through the petrous bone and the inner ear structures.[91,92] Approximately 30% of VHL patients with ELSTs have bilateral lesions.[91,93]

ELSTs are an important cause of morbidity in VHL patients. ELSTs evident on imaging are associated with a variety of symptoms, including hearing loss (95% of patients), tinnitus (92%), vestibular symptoms (such as vertigo or disequilibrium) (62%), aural fullness (29%), and facial paresis (8%).[91,92] In approximately half of patients, symptoms (particularly hearing loss) can occur suddenly, probably as a result of acute intralabyrinthine hemorrhage.[92] Hearing loss or vestibular dysfunction in VHL patients can also present in the absence of radiologically evident ELSTs (approximately 60% of all symptomatic patients) and is believed to be a consequence of microscopic ELSTs.[91]

Hearing loss related to ELSTs is typically irreversible; serial imaging to enable early detection of ELSTs in asymptomatic patients and resection of radiologically evident lesions are important components in the management of VHL patients.[94,95] Surgical resection by retrolabyrinthine posterior petrosectomy is usually curative and can prevent onset or worsening of hearing loss and improve vestibular symptoms.[92,94]

Tumors of the broad ligament can occur in females with VHL and are known as papillary cystadenomas. These tumors are extremely rare, and fewer than 20 have been reported in the literature.[96] Papillary cystadenomas are histologically identical to epididymal cystadenomas commonly observed in males with VHL.[97] One important difference is that papillary cystadenomas are almost exclusively observed in patients with VHL, whereas epididymal cystadenomas in men can occur sporadically.[98] These tumors are frequently cystic, and although they become large, they generally have a fairly indolent behavior.

Fluid-filled epididymal cysts, or spermatoceles, are very common in adult men. In VHL, the epididymis can contain more complex cystic neoplasms known as papillary cystadenomas, which are rare in the general population. More than one-third of all cases of epididymal cystadenomas reported in the literature and most cases of bilateral cystadenomas have been reported in patients with VHL.[99] These well-circumscribed lesions have variable amounts of cystic and papillary components that are lined with epithelial cuboidal or columnar clear cells.[100] Among symptomatic patients, the most common presentation of epididymal cystadenoma is a painless, slow-growing scrotal swelling. The differential diagnoses of epididymal tumors include adenomatoid tumor (which is the most common tumor in this site), metastatic ccRCC, and papillary mesothelioma.[101]

In a small series, histological analysis did not reveal features typically associated with malignancy, such as mitotic figures, nuclear pleomorphism, and necrosis. Lesions were strongly positive for CK7 and negative for RCC. Carbonic anhydrase IX (CAIX) was positive in all tumors. PAX8 was positive in most cases. These features were reminiscent of clear cell papillary RCC, a relatively benign form of RCC without known metastatic potential.[97]

See the article here:
Genetics of Kidney Cancer (Renal Cell Cancer) (PDQ ...

Read More...

Stem Cell Therapy|PRP Injections – Regenerative Medicine

Wednesday, October 2nd, 2019

At Regenerative Medical Institute we strive to provide the safest and most effective care for our patients. Our Regenerative Medicine Program was developed to give our patients access to the most advanced treatment options with proven results. In recent years scientists and doctors have made tremendous advances in moving regenerative medicine into the mainstream as a treatment for many diseases and disorders. The reparative procedures offered at Regenerative Medical Institute, PLLC will repair damaged tissues and get you back to your active lifestyle without the need for surgery.

If youre suffering from ongoing, nagging chronic pain that hasnt benefited from other treatments,you could benefit from an exciting new area of pain management known as regenerative medicine.

These minimally-invasive treatments offer patients pain relief, while reducing the likelihood of infectionand avoiding the need for surgery. For many patients, regenerative medicines can help them get their livesback by jump-starting their bodys own natural healing processes.

Regenerative medicine includes treatments like PRP therapy and stem cell therapy.The most common conditions that have been successfully treated using regenerative medical procedures includearthritis and injuries to cartilage, tendons, muscle, bone, spinal discs, and other tissue types. For many patients,it can help them:

Chronic pain can affect a persons ability to function during daily activities and their job responsibilities. Pain increases a persons rate of physician appointments, disability claims, and loss of productivity. Using estimates from both acute and chronic pain conditions, back pain alone accounts for pain in approximately 100 million adults in the U.S.

For these patients, regenerative medicine (Stem Cells and/or PRP) may be able to help. Regenerative medicines are cutting-edge therapies that use chemistry, medicine, robotics, biology, computer science, genetics, and engineering to construct a biologically compatible structure for many different tissues found in the body. Although relatively new in the field of acute and chronic pain management, regenerative medical procedures do date back as early as 1962.

To learn More About The Regenerative Medicine Treatments Available Please Click the Links Below:

Platelet-Rich Plasma (PRP)

Stem Cell Therapy-Refill and Revive

Stem Cell Therapy Info

Stem Cell Injections

NyDyn Stem Cell Brochures for Patients

FDA Guidelines for PRP Usage

Guidelines for PRP in Sports Medicine

Statements made on this website have not been evaluated by the Food and Drug Administration. The information contained herein is not intended to diagnose, treat, cure or prevent any disease.

Read the rest here:
Stem Cell Therapy|PRP Injections - Regenerative Medicine

Read More...

College of Veterinary Medicine | Washington State University

Wednesday, October 2nd, 2019

Where have all the frogs gone? It happened again that morning. During their rounds, zookeepers found another tank of dead blue poison dart frogs.Read More

A Neuroscientists Quest to Prevent Hearing Loss Nearly 30 million people in the United States have some type of hearing loss, mostly due to aging.Read More

Working together so Kenyans can help Kenyans When Paul Allen visited East Africa, he saw how peoples daily lives could be improved and the desire for local institutions to better serve people in need.Read More

Impact Report 2017-18 119: The age of the college. The WSU College of Veterinary Medicine was established in 1899. It is the 5th oldest veterinary college in the United States.Read More

A painted horse helps students learn anatomy A life-sized painted fiberglass horse will now help WSU undergraduate and veterinary students learn anatomy thanks to a generous donor.Read More

Teaching science students visual literacy life skills Students who study molecular biosciences cant actually see what they are learning.Read More

Read more from the original source:
College of Veterinary Medicine | Washington State University

Read More...

10 Reasons to Oppose Genetic Engineering – NW RAGE

Wednesday, October 2nd, 2019

10 Reasons to Oppose Genetic Engineering

2. Health risksGenetic engineering can make foods that were once safe to eat a threat to people with allergies. Because this process is unpredictable, new substances can develop in engineered foods. The FDA knows this and does some testing, but there are no guarantees.

Besides the new allergies, inserting genes into plants and animals can cause existing genes to react in unknown ways, including reduced nutritional values and changes in organism quality.

4. Biodiversity in dangerEngineering specific traits into select species threatens the planets biodiversity by upsetting the natural balance. Engineered organisms spread uncontained into the wild. They also spread their genes into the gene pool. Once engineered organisms are released, there will be no recalls, and as they continue to upset nature, it may be impossible to undo the damage.

5. Genetic engineering is about corporate control of agricultureThe reason to engineer and patent a seed is to make money off of a captive market. Although some family farmers in the US are using this technology, they are not the driving force behind its creation. Genetically engineered crops further lock farmers into a cycle of dependence on quick fix techno schemes with royalty fees and debts to the bank.

6. Organic Agriculture is at RiskGenetically engineered plants do not recognize buffer zones and containment fields. They will drift and they will be carried wherever fate will have it. Contamination of conventional and organic crops isn't a matter of if, its a matter of when. These new creations have proven impossible to contain outside of a lab.

So who will be liable when this contamination occurs? Not the Biotech companies. Currently there are few if any laws assigning liability to life's new architects. The laws that do exist are concerned with intellectual property rights. It seems the court want to be certain you pay for every GE seed that grows, whether you planted it or not.

8. Increase in insecticide and herbicide useWhen plants are engineered to resist insecticides, farmers spray more insecticide on the plants. Couple that with pests building up insecticide resistance because of the larger usage and you have a company selling more chemicals, an environment more polluted, and a farmer more dependent.

9. Monopolization of food productionThe spread of genetic engineering coincides with widening legal possibilities to patent plants and their genes. Patents on food bear the intrinsic danger that a few transnational corporations obtain exclusive control over the whole chain of food production, from the gene to the dish. Initial conflicts over patent rights in Northern America show how, in the future, farmers may lose some of the rights concerning their crops. Patents on life are not compatible with the concept of intellectual property rights. They confer rights which go far beyond what the "inventor" has really accomplished.

Source: Basic outline and text adapted and borrowed from The Church's Statement on Genetic Engineering 2003.

Original post:
10 Reasons to Oppose Genetic Engineering - NW RAGE

Read More...

Regulation of genetic engineering – Wikipedia

Wednesday, October 2nd, 2019

The regulation of genetic engineering varies widely by country. Countries such as the United States, Canada, Lebanon and Egypt use substantial equivalence as the starting point when assessing safety, while many countries such as those in the European Union, Brazil and China authorize GMO cultivation on a case-by-case basis. Many countries allow the import of GM food with authorization, but either do not allow its cultivation (Russia, Norway, Israel) or have provisions for cultivation, but no GM products are yet produced (Japan, South Korea). Most countries that do not allow for GMO cultivation do permit research.[1]One of the key issues concerning regulators is whether GM products should be labeled. Labeling of GMO products in the marketplace is required in 64 countries.[2] Labeling can be mandatory up to a threshold GM content level (which varies between countries) or voluntary. A study investigating voluntary labeling in South Africa found that 31% of products labeled as GMO-free had a GM content above 1.0%.[3] In Canada and the USA labeling of GM food is voluntary,[4] while in Europe all food (including processed food) or feed which contains greater than 0.9% of approved GMOs must be labelled.[5]

There is a scientific consensus[6][7][8][9] that currently available food derived from GM crops poses no greater risk to human health than conventional food,[10][11][12][13][14] but that each GM food needs to be tested on a case-by-case basis before introduction.[15][16][17] Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe.[18][19][20][21] The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation.[22][23][24][25]

There is no evidence to support the idea that the consumption of approved GM food has a detrimental effect on human health.[26][27][28] Some scientists and advocacy groups, such as Greenpeace and World Wildlife Fund, have however called for additional and more rigorous testing for GM food.[27]

The development of a regulatory framework concerning genetic engineering began in 1975, at Asilomar, California. The first use of Recombinant DNA (rDNA) technology had just been successfully accomplished by Stanley Cohen and Herbert Boyer two years previously and the scientific community recognized that as well as benefits this technology could also pose some risks.[29] The Asilomar meeting recommended a set of guidelines regarding the cautious use of recombinant technology and any products resulting from that technology.[30] The Asilomar recommendations were voluntary, but in 1976 the US National Institute of Health (NIH) formed a rDNA advisory committee.[31] This was followed by other regulatory offices (the United States Department of Agriculture (USDA), Environmental Protection Agency (EPA) and Food and Drug Administration (FDA)), effectively making all rDNA research tightly regulated in the USA.[32]

In 1982 the Organisation for Economic Co-operation and Development (OECD) released a report into the potential hazards of releasing genetically modified organisms (GMOs) into the environment as the first transgenic plants were being developed.[33] As the technology improved and genetically organisms moved from model organisms to potential commercial products the USA established a committee at the Office of Science and Technology (OSTP) to develop mechanisms to regulate the developing technology.[32] In 1986 the OSTP assigned regulatory approval of genetically modified plants in the US to the USDA, FDA and EPA.[34]

The basic concepts for the safety assessment of foods derived from GMOs have been developed in close collaboration under the auspices of the OECD, the World Health Organization (WHO) and Food and Agriculture Organization (FAO). A first joint FAO/WHO consultation in 1990 resulted in the publication of the report Strategies for Assessing the Safety of Foods Produced by Biotechnology in 1991.[35] Building on that, an international consensus was reached by the OECDs Group of National Experts on Safety in Biotechnology, for assessing biotechnology in general, including field testing GM crops.[36] That Group met again in Bergen, Norway in 1992 and reached consensus on principles for evaluating the safety of GM food; its report, The safety evaluation of foods derived by modern technology concepts and principles was published in 1993.[37] That report recommends conducting the safety assessment of a GM food on a case-by-case basis through comparison to an existing food with a long history of safe use. This basic concept has been refined in subsequent workshops and consultations organized by the OECD, WHO, and FAO, and the OECD in particular has taken the lead in acquiring data and developing standards for conventional foods to be used in assessing substantial equivalence.[38][39]

The Cartagena Protocol on Biosafety was adopted on 29 January 2000 and entered into force on 11 September 2003.[40] It is an international treaty that governs the transfer, handling, and use of genetically modified (GM) organisms. It is focused on movement of GMOs between countries and has been called a de facto trade agreement.[41] One hundred and fifty-seven countries are members of the Protocol and many use it as a reference point for their own regulations.[42] Also in 2003 the Codex Alimentarius Commission of the FAO/WHO adopted a set of "Principles and Guidelines on foods derived from biotechnology" to help countries coordinate and standardize regulation of GM food to help ensure public safety and facilitate international trade.[43] and updated its guidelines for import and export of food in 2004,[44]

The European Union first introduced laws requiring GMO's to be labelled in 1997.[45] In 2013, Connecticut became the first state to enact a labeling law in the USA, although it would not take effect until other states followed suit.[46]

Institutions that conduct certain types of scientific research must obtain permission from government authorities and ethical committees before they conduct any experiments. Universities and research institutes generally have a special committee that is responsible for approving any experiments that involve genetic engineering. Many experiments also need permission from a national regulatory group or legislation. All staff must be trained in the use of GMOs and in some laboratories a biological control safety officer is appointed. All laboratories must gain approval from their regulatory agency to work with GMOs and all experiments must be documented.[47] As of 2008 there have been no major accidents with GMOs in the lab.[48]

The legislation covering GMOS was initially covered by adapting existing regulations in place for chemicals or other purposes, with many countries later developing specific policies aimed at genetic engineering.[49] These are often derived from regulations and guidelines in place for the non-GMO version of the organism, although they are more severe. In many countries now the regulations are diverging, even though many of the risks and procedures are similar. Sometimes even different agencies are responsible, notably in the Netherlands where the Ministry of the Environment covers GMOs and the Ministry of Social Affairs covers the human pathogens they are derived from.[48]

There is a near universal system for assessing the relative risks associated with GMOs and other agents to laboratory staff and the community. They are then assigned to one of four risk categories based on their virulence, the severity of disease, the mode of transmission, and the availability of preventive measures or treatments. There are some differences in how these categories are defined, such as the World Health Organisation (WHO) including dangers to animals and the environment in their assessments. When there are varying levels of virulence the regulators base their classification on the highest. Accordingly there are four biosafety levels that a laboratory can fall into, ranging from level 1 (which is suitable for working with agents not associated with disease) to level 4 (working with life threatening agents). Different countries use different nomenclature to describe the levels and can have different requirements for what can be done at each level.[48]

In Europe the use of living GMOs are regulated by the European Directive on the contained use of genetically modified microorganisms (GMMs).[47] The regulations require risk assessments before use of any contained GMOs is started and assurances that the correct controls are in place. It provides the minimal standards for using GMMs, with individual countries allowed to enforce stronger controls.[50] In the UK the Genetically Modified Organisms (Contained Use) Regulations 2014 provides the framework researchers must follow when using GMOs. Other legislation may be applicable depending on what research is carried out. For workplace safety these include the Health and Safety at Work Act 1974, the Management of Health and Safety at Work Regulations 1999, the Carriage of Dangerous Goods legislation and the Control of Substances Hazardous to Health Regulations 2002. Environmental risks are covered by Section 108(1) of the Environmental Protection Act 1990 and The Genetically Modified Organisms (Risk assessment) (Records and Exemptions) Regulations 1996.[51]

In the USA the National Institute of Health (NIH) classifies GMOs into four risk groups. Risk group one is not associated with any diseases, risk group 2 is associated with diseases that are not serious, risk group 3 is associated with serious diseases where treatments are available and risk group 4 is for serious diseases with no known treatments.[47] In 1992 the Occupational Safety and Health Administration determined that its current legislation already adequately covers the safety of laboratory workers using GMOs.[49]

Australia has an exempt dealing for genetically modified organisms that only pose a low risk. These include systems using standard laboratory strains as the hosts, recombinant DNA that does not code for a vertebrate toxin or is not derived from a micro-organism that can cause disease in humans. Exempt dealings usually do not require approval from the national regulator. GMOs that pose a low risk if certain management practices are complied with are classified as notifiable low risk dealings. The final classification is for any uses of GMOs that do not meet the previous criteria. These are known as licensed dealings and include cloning any genes that code for vertebrate toxins or using hosts that are capable of causing disease in humans. Licensed dealings require the approval of the national regulator.[52]

Work with exempt GMOs do not need to be carried out in certified laboratories. All others must be contained in a Physical Containment level 1 (PC1) or Physical Containment level 2 (PC2) laboratories. Laboratory work with GMOs classified as low risk, which include knockout mice, are carried out in PC1 lab. This is the case for modifications that do not confer an advantage to the animal or doesn't secrete any infectious agents. If a laboratory strain that is used isn't covered by exempt dealings or the inserted DNA could code for a pathogenic gene, it must be carried out in a PC2 laboratory.[52]

The approaches taken by governments to assess and manage the risks associated with the use of genetic engineering technology and the development and release of GMOs vary from country to country, with some of the most marked differences occurring between the United States and Europe. The United States takes on a less hands-on approach to the regulation of GMOs than in Europe, with the FDA and USDA only looking over pesticide and plant health facets of GMOs.[53] Despite the overall global increase in the production in GMOs, the European Union has still stalled GMOs fully integrating into its food supply.[54] This has definitely affected various countries, including the United States, when trading with the EU.[54][55]

European Union enacted regulatory laws in 2003 that provided possibly the most stringent GMO regulations in the world.[5] All GMOs, along with irradiated food, are considered "new food" and subject to extensive, case-by-case, science-based food evaluation by the European Food Safety Authority (EFSA). The criteria for authorization fall in four broad categories: "safety," "freedom of choice," "labelling," and "traceability."[56]

The European Parliament's Committee on the Environmental, Public Health, and Consumer Protection pushed forward and adopted a "safety first" principle regarding the case of GMOs, calling for any negative health consequences from GMOs to be held liable.

However, although the European Union has had relatively strict regulations regarding the genetically modified food, Europe is now allowing newer versions of modified maize and other agricultural produce. Also, the level of GMO acceptance in the European Union varies across its countries with Spain and Portugal being more permissive of GMOs than France and the Nordic population.[57] One notable exception however is Sweden. In this country, the government has declared that the GMO definition (according to Directive 2001/18/EC[58]) stipulates that foreign DNA needs to be present in an organism for it to qualify as a genetically modified organisms. Organisms that thus have the foreign DNA removed (for example via selective breeding[59]) do not qualify as GMO's, even if gene editing has thus been used to make the organism.[60]

In Europe the EFSA reports to the European Commission who then draft a proposal for granting or refusing the authorisation. This proposal is submitted to the Section on GM Food and Feed of the Standing Committee on the Food Chain and Animal Health and if accepted it will be adopted by the EC or passed on to the Council of Agricultural Ministers. Once in the Council it has three months to reach a qualified majority for or against the proposal, if no majority is reached the proposal is passed back to the EC who will then adopt the proposal.[5] However, even after authorization, individual EU member states can ban individual varieties under a 'safeguard clause' if there are "justifiable reasons" that the variety may cause harm to humans or the environment. The member state must then supply sufficient evidence that this is the case.[61] The Commission is obliged to investigate these cases and either overturn the original registrations or request the country to withdraw its temporary restriction.

The U.S. regulatory policy is governed by the Coordinated Framework for Regulation of Biotechnology[62] The policy has three tenets: "(1) U.S. policy would focus on the product of genetic modification (GM) techniques, not the process itself, (2) only regulation grounded in verifiable scientific risks would be tolerated, and (3) GM products are on a continuum with existing products and, therefore, existing statutes are sufficient to review the products."[63]

For a genetically modified organism to be approved for release in the U.S., it must be assessed under the Plant Protection Act by the Animal and Plant Health Inspection Service (APHIS) agency within the USDA and may also be assessed by the FDA and the EPA, depending on the intended use of the organism. The USDA evaluate the plants potential to become weeds, the FDA reviews plants that could enter or alter the food supply,[64] and the EPA regulates genetically modified plants with pesticide properties, as well as agrochemical residues.[65]

The level of regulation in other countries lies in between Europe and the United States.

Common Market for Eastern and Southern Africa (COMASA) is responsible for assessing the safety of GMOs in most of Africa, although the final decision lies with each individual country.[66]

India and China are the two largest producers of genetically modified products in Asia.[67] The Office of Agricultural Genetic Engineering Biosafety Administration (OAGEBA) is responsible for regulation in China,[68] while in India it is the Institutional Biosafety Committee (IBSC), Review Committee on Genetic Manipulation (RCGM) and Genetic Engineering Approval Committee (GEAC).[69]

Brazil and Argentina are the 2nd and 3rd largest producers of GM food.[70] In Argentine assessment of GM products for release is provided by the National Agricultural Biotechnology Advisory Committee (environmental impact), the National Service of Health and Agrifood Quality (food safety) and the National Agribusiness Direction (effect on trade), with the final decision made by the Secretariat of Agriculture, Livestock, Fishery and Food.[71] In Brazil the National Biosafety Technical Commission is responsible for assessing environmental and food safety and prepares guidelines for transport, importation and field experiments involving GM products, while the Council of Ministers evaluates the commercial and economical issues with release.[71]

Health Canada and the Canadian Food Inspection Agency[72] are responsible for evaluating the safety and nutritional value of genetically modified foods released in Canada.[73]

License applications for the release of all genetically modified organisms in Australia is overseen by the Office of the Gene Technology Regulator, while regulation is provided by the Therapeutic Goods Administration for GM medicines or Food Standards Australia New Zealand for GM food. The individual state governments can then assess the impact of release on markets and trade and apply further legislation to control approved genetically modified products.[74][75]

One of the key issues concerning regulators is whether GM products should be labeled. Labeling can be mandatory up to a threshold GM content level (which varies between countries) or voluntary. A study investigating voluntary labeling in South Africa found that 31% of products labeled as GMO-free had a GM content above 1.0%.[3] In Canada and the United States labeling of GM food is voluntary,[4] while in Europe all food (including processed food) or feed which contains greater than 0.9% of approved GMOs must be labelled.[5] In the US state of Oregon., voters rejected Measure 27, which would have required labeling of all genetically modified foods.[80] Japan, Malaysia, New Zealand, and Australia require labeling so consumers can exercise choice between foods that have genetically modified, conventional or organic origins.[81]

The Cartagena Protocol sets the requirements for the international trade of GMO's between countries that are signatories to it. Any shipments contain genetically modified organisms that are intended to be used as feed, food or for processing must be identified and a list of the transgenic events be available.

"Substantial equivalence" is a starting point for the safety assessment for GM foods that is widely used by national and international agenciesincluding the Canadian Food Inspection Agency, Japan's Ministry of Health and Welfare and the U.S. Food and Drug Administration, the United Nations Food and Agriculture Organization, the World Health Organization and the OECD.[82]

A quote from FAO, one of the agencies that developed the concept, is useful for defining it: "Substantial equivalence embodies the concept that if a new food or food component is found to be substantially equivalent to an existing food or food component, it can be treated in the same manner with respect to safety (i.e., the food or food component can be concluded to be as safe as the conventional food or food component)".[83] The concept of substantial equivalence also recognises the fact that existing foods often contain toxic components (usually called antinutrients) and are still able to be consumed safelyin practice there is some tolerable chemical risk taken with all foods, so a comparative method for assessing safety needs to be adopted. For instance, potatoes and tomatoes can contain toxic levels of respectively, solanine and alpha-tomatine alkaloids.[84][85]

To decide if a modified product is substantially equivalent, the product is tested by the manufacturer for unexpected changes in a limited set of components such as toxins, nutrients, or allergens that are present in the unmodified food. The manufacturer's data is then assessed by a regulatory agency, such as the U.S. Food and Drug Administration. That data, along with data on the genetic modification itself and resulting proteins (or lack of protein), is submitted to regulators. If regulators determine that the submitted data show no significant difference between the modified and unmodified products, then the regulators will generally not require further food safety testing. However, if the product has no natural equivalent, or shows significant differences from the unmodified food, or for other reasons that regulators may have (for instance, if a gene produces a protein that had not been a food component before), the regulators may require that further safety testing be carried out.[37]

A 2003 review in Trends in Biotechnology identified seven main parts of a standard safety test:[86]

There has been discussion about applying new biochemical concepts and methods in evaluating substantial equivalence, such as metabolic profiling and protein profiling. These concepts refer, respectively, to the complete measured biochemical spectrum (total fingerprint) of compounds (metabolites) or of proteins present in a food or crop. The goal would be to compare overall the biochemical profile of a new food to an existing food to see if the new food's profile falls within the range of natural variation already exhibited by the profile of existing foods or crops. However, these techniques are not considered sufficiently evaluated, and standards have not yet been developed, to apply them.[87]

Transgenic animals have genetically modified DNA. Animals are different from plants in a variety of waysbiology, life cycles, or potential environmental impacts.[88] GM plants and animals were being developed around the same time, but due to the complexity of their biology and inefficiency with laboratory equipment use, their appearance in the market was delayed.[89]

There are six categories that genetically engineered (GE) animals are approved for:[90]

The literature about Biodiversity and the GE food/feed consumption has sometimes resulted in animated debate regarding the suitability of the experimental designs, the choice of the statistical methods or the public accessibility of data. Such debate, even if positive and part of the natural process of review by the scientific community, has frequently been distorted by the media and often used politically and inappropriately in anti-GE crops campaigns.

Domingo, Jos L.; Bordonaba, Jordi Gin (2011). "A literature review on the safety assessment of genetically modified plants" (PDF). Environment International. 37 (4): 734742. doi:10.1016/j.envint.2011.01.003. PMID21296423. In spite of this, the number of studies specifically focused on safety assessment of GM plants is still limited. However, it is important to remark that for the first time, a certain equilibrium in the number of research groups suggesting, on the basis of their studies, that a number of varieties of GM products (mainly maize and soybeans) are as safe and nutritious as the respective conventional non-GM plant, and those raising still serious concerns, was observed. Moreover, it is worth mentioning that most of the studies demonstrating that GM foods are as nutritional and safe as those obtained by conventional breeding, have been performed by biotechnology companies or associates, which are also responsible of commercializing these GM plants. Anyhow, this represents a notable advance in comparison with the lack of studies published in recent years in scientific journals by those companies.

Krimsky, Sheldon (2015). "An Illusory Consensus behind GMO Health Assessment" (PDF). Science, Technology, & Human Values. 40 (6): 132. doi:10.1177/0162243915598381. I began this article with the testimonials from respected scientists that there is literally no scientific controversy over the health effects of GMOs. My investigation into the scientific literature tells another story.

And contrast:

Panchin, Alexander Y.; Tuzhikov, Alexander I. (January 14, 2016). "Published GMO studies find no evidence of harm when corrected for multiple comparisons". Critical Reviews in Biotechnology. 37 (2): 15. doi:10.3109/07388551.2015.1130684. ISSN0738-8551. PMID26767435. Here, we show that a number of articles some of which have strongly and negatively influenced the public opinion on GM crops and even provoked political actions, such as GMO embargo, share common flaws in the statistical evaluation of the data. Having accounted for these flaws, we conclude that the data presented in these articles does not provide any substantial evidence of GMO harm.

The presented articles suggesting possible harm of GMOs received high public attention. However, despite their claims, they actually weaken the evidence for the harm and lack of substantial equivalency of studied GMOs. We emphasize that with over 1783 published articles on GMOs over the last 10 years it is expected that some of them should have reported undesired differences between GMOs and conventional crops even if no such differences exist in reality.

and

Yang, Y.T.; Chen, B. (2016). "Governing GMOs in the USA: science, law and public health". Journal of the Science of Food and Agriculture. 96 (6): 185155. doi:10.1002/jsfa.7523. PMID26536836. It is therefore not surprising that efforts to require labeling and to ban GMOs have been a growing political issue in the USA (citing Domingo and Bordonaba, 2011).

Overall, a broad scientific consensus holds that currently marketed GM food poses no greater risk than conventional food... Major national and international science and medical associations have stated that no adverse human health effects related to GMO food have been reported or substantiated in peer-reviewed literature to date.

Despite various concerns, today, the American Association for the Advancement of Science, the World Health Organization, and many independent international science organizations agree that GMOs are just as safe as other foods. Compared with conventional breeding techniques, genetic engineering is far more precise and, in most cases, less likely to create an unexpected outcome.

Pinholster, Ginger (October 25, 2012). "AAAS Board of Directors: Legally Mandating GM Food Labels Could "Mislead and Falsely Alarm Consumers"". American Association for the Advancement of Science. Retrieved February 8, 2016.

"REPORT 2 OF THE COUNCIL ON SCIENCE AND PUBLIC HEALTH (A-12): Labeling of Bioengineered Foods" (PDF). American Medical Association. 2012. Archived from the original (PDF) on 7 September 2012. Retrieved March 21, 2017. Bioengineered foods have been consumed for close to 20 years, and during that time, no overt consequences on human health have been reported and/or substantiated in the peer-reviewed literature.

GM foods currently available on the international market have passed safety assessments and are not likely to present risks for human health. In addition, no effects on human health have been shown as a result of the consumption of such foods by the general population in the countries where they have been approved. Continuous application of safety assessments based on the Codex Alimentarius principles and, where appropriate, adequate post market monitoring, should form the basis for ensuring the safety of GM foods.

"Genetically modified foods and health: a second interim statement" (PDF). British Medical Association. March 2004. Retrieved March 21, 2016. In our view, the potential for GM foods to cause harmful health effects is very small and many of the concerns expressed apply with equal vigour to conventionally derived foods. However, safety concerns cannot, as yet, be dismissed completely on the basis of information currently available.

When seeking to optimise the balance between benefits and risks, it is prudent to err on the side of caution and, above all, learn from accumulating knowledge and experience. Any new technology such as genetic modification must be examined for possible benefits and risks to human health and the environment. As with all novel foods, safety assessments in relation to GM foods must be made on a case-by-case basis.

Members of the GM jury project were briefed on various aspects of genetic modification by a diverse group of acknowledged experts in the relevant subjects. The GM jury reached the conclusion that the sale of GM foods currently available should be halted and the moratorium on commercial growth of GM crops should be continued. These conclusions were based on the precautionary principle and lack of evidence of any benefit. The Jury expressed concern over the impact of GM crops on farming, the environment, food safety and other potential health effects.

The Royal Society review (2002) concluded that the risks to human health associated with the use of specific viral DNA sequences in GM plants are negligible, and while calling for caution in the introduction of potential allergens into food crops, stressed the absence of evidence that commercially available GM foods cause clinical allergic manifestations. The BMA shares the view that that there is no robust evidence to prove that GM foods are unsafe but we endorse the call for further research and surveillance to provide convincing evidence of safety and benefit.

Originally posted here:
Regulation of genetic engineering - Wikipedia

Read More...

Master of Science in Genetic Counseling | Medical and …

Wednesday, October 2nd, 2019

The Genetic Counseling Graduate Program at IU School of Medicine is a 21-month Masters level program thats accredited by the Accreditation Council for Genetic Counseling (ACGC). The program offers comprehensive training and hands-on clinical experience to prepare students for a challenging and rewarding career in genetic counseling. The programs faculty and staff are proud to have contributed to the training of accomplished genetic counselors for more than 25 years.

Students learn through a variety of courses on genetics, laboratory and psychosocial topics as well as through extensive clinical experience and individual clinical research. Graduates of this MS program are accomplished in all areas of genetic counseling, including cancer, prenatal and pediatric genetics, public health genomics and industry, and they have a strong record of success on the ABGC board examination.

The Genetic Counseling Graduate Program curriculumbegins with a fall semester of didactic courses and clinical observations that focus on the basics of human genetics and enable students to begin practical application of skills in clinical case research and preparation, medical documentation, and patient counseling in the clinical setting. Clinical rotations begin in the spring semester of the first year and continue throughout the summer semester and entire second academic year. Successful completion of the Genetic Counseling graduate program at IU School of Medicine leads to a Master of Science degree in medical genetics.

Students in this program are supervised by supportive, experienced, licensed certified genetic counselors and board-certified medical geneticists. The curriculum offers deep clinical experience, which requires active participation in all aspects of the case preparation, counseling and follow-up as well as experience across numerous specialty areas, including pediatrics, cancer, prenatal diagnostics, metabolism, cardiovascular genetics, neurogenetics, and more.

More here:
Master of Science in Genetic Counseling | Medical and ...

Read More...

What is genetic testing? – Genetics Home Reference – NIH

Wednesday, October 2nd, 2019

Genetic testing is a type of medical test that identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a persons chance of developing or passing on a genetic disorder. More than 1,000 genetic tests are currently in use, and more are being developed.

Several methods can be used for genetic testing:

Chromosomal genetic tests analyze whole chromosomes or long lengths of DNA to see if there are large genetic changes, such as an extra copy of a chromosome, that cause a genetic condition.

Genetic testing is voluntary. Because testing has benefits as well as limitations and risks, the decision about whether to be tested is a personal and complex one. A geneticist or genetic counselor can help by providing information about the pros and cons of the test and discussing the social and emotional aspects of testing.

Originally posted here:
What is genetic testing? - Genetics Home Reference - NIH

Read More...

Embryo – Wikipedia

Wednesday, October 2nd, 2019

An embryo is an early stage of development of a multicellular diploid eukaryotic organism. In general, in organisms that reproduce sexually, an embryo develops from a zygote, the single cell resulting from the fertilization of the female egg cell by the male sperm cell. The zygote possesses half the DNA from each of its two parents. In plants, animals, and some protists, the zygote will begin to divide by mitosis to produce a multicellular organism. The result of this process is an embryo.

In human pregnancy, a developing fetus is considered as an embryo until the ninth week, fertilization age, or eleventh-week gestational age. After this time the embryo is referred to as a fetus.[1]

First attested in English in the mid-14c., the word embryon derives from Medieval Latin embryo, itself from Greek (embruon), lit. "young one",[2] which is the neuter of (embruos), lit. "growing in",[3] from (en), "in"[4] and (bru), "swell, be full";[5] the proper Latinized form of the Greek term would be embryum.

In animals, the development of the zygote into an embryo proceeds through specific recognizable stages of blastula, gastrula, and organogenesis. The blastula stage typically features a fluid-filled cavity, the blastocoel, surrounded by a sphere or sheet of cells, also called blastomeres. In a placental mammal, an ovum is fertilized in a fallopian tube through which it travels into the uterus. An embryo is called a fetus at a more advanced stage of development and up until birth or hatching. In humans, this is from the eleventh week of gestation. However, animals which develop in eggs outside the mother's body, are usually referred to as embryos throughout development; e.g. one would refer to a chick embryo, not a "chick fetus", even at later stages.

During gastrulation the cells of the blastula undergo coordinated processes of cell division, invasion, and/or migration to form two (diploblastic) or three (triploblastic) tissue layers. In triploblastic organisms, the three germ layers are called endoderm, ectoderm, and mesoderm. The position and arrangement of the germ layers are highly species-specific, however, depending on the type of embryo produced. In vertebrates, a special population of embryonic cells called the neural crest has been proposed as a "fourth germ layer", and is thought to have been an important novelty in the evolution of head structures.

During organogenesis, molecular and cellular interactions between germ layers, combined with the cells' developmental potential, or competence to respond, prompt the further differentiation of organ-specific cell types.[citation needed] For example, in neurogenesis, a subpopulation of ectoderm cells is set aside to become the brain, spinal cord, and peripheral nerves. Modern developmental biology is extensively probing the molecular basis for every type of organogenesis, including angiogenesis (formation of new blood vessels from pre-existing ones), chondrogenesis (cartilage), myogenesis (muscle), osteogenesis (bone), and many others.

In botany, a seed plant embryo is part of a seed, consisting of precursor tissues for the leaves, stem (see hypocotyl), and root (see radicle), as well as one or more cotyledons. Once the embryo begins to germinategrow out from the seedit is called a seedling (plantlet).

Bryophytes and ferns also produce an embryo, but do not produce seeds. In these plants, the embryo begins its existence attached to the inside of the archegonium on a parental gametophyte from which the egg cell was generated. The inner wall of the archegonium lies in close contact with the "foot" of the developing embryo; this "foot" consists of a bulbous mass of cells at the base of the embryo which may receive nutrition from its parent gametophyte. The structure and development of the rest of the embryo varies by group of plants. As the embryo has expanded beyond the enclosing archegonium, it is no longer termed an embryo.

Embryos are used in various fields of research and in techniques of assisted reproductive technology. An egg may be fertilized in vitro and the resulting embryo may be frozen for later use.The potential of embryonic stem cell research, reproductive cloning, and germline engineering are currently being explored. Prenatal diagnosis or preimplantation diagnosis enables testing embryos for diseases or conditions.

Cryoconservation of animal genetic resources is a practice in which animal germplasms, such as embryos are collected and stored at low temperatures with the intent of conserving the genetic material.

The embryos of Arabidopsis thaliana have been used as a model to understand gene activation, patterning, and organogenesis of seed plants.[6]

In regards to research using human embryos, the ethics and legalities of this application continue to be debated.[7][8][9]

Researchers from MERLN Institute and the Hubrecht Institute in the Netherlands managed to grow samples of synthetic rodent embryoids, combining certain types of stem cells. This method may assist scientists to understand the very first moments of the process of the birth of a new life, which, in turn, can lead to the emergence of new effective methods to combat infertility and other genetic diseases.[10]

Fossilized animal embryos are known from the Precambrian, and are found in great numbers during the Cambrian period. Even fossilized dinosaur embryos have been discovered.[11]

Some embryos do not survive to the next stage of development. When this happens naturally, it is called spontaneous abortion or miscarriage.[12] There are many reasons why this may occur. The most common natural cause of miscarriage is chromosomal abnormality in animals[13] or genetic load in plants.[14]

In species which produce multiple embryos at the same time, miscarriage or abortion of some embryos can provide the remaining embryos with a greater share of maternal resources. This can also disturb the pregnancy, causing harm to the second embryo. Genetic strains which miscarry their embryos are the source of commercial seedless fruits.

Abortion is the process of artificially (non-naturally) removing the embryo through deliberate pharmaceutical or surgical methods.

Read more:
Embryo - Wikipedia

Read More...

What were some of the ethical, legal, and social …

Wednesday, October 2nd, 2019

The Ethical, Legal, and Social Implications (ELSI) program was founded in 1990 as an integral part of the Human Genome Project. The mission of the ELSI program was to identify and address issues raised by genomic research that would affect individuals, families, and society. A percentage of the Human Genome Project budget at the National Institutes of Health and the U.S. Department of Energy was devoted to ELSI research.

The ELSI program focused on the possible consequences of genomic research in four main areas:

Privacy and fairness in the use of genetic information, including the potential for genetic discrimination in employment and insurance.

The integration of new genetic technologies, such as genetic testing, into the practice of clinical medicine.

Ethical issues surrounding the design and conduct of genetic research with people, including the process of informed consent.

The education of healthcare professionals, policy makers, students, and the public about genetics and the complex issues that result from genomic research.

Follow this link:
What were some of the ethical, legal, and social ...

Read More...

Are moles determined by genetics? – Genetics Home …

Wednesday, October 2nd, 2019

Moles are very common, especially in people with fair skin. Moles are overgrowths of skin cells called melanocytes, but the genetic factors involved in their development are not well understood. Although moles, like tumors, are an overgrowth of cells, moles are almost always noncancerous (benign). Perhaps because most moles are benign, scientists have not studied them extensively, and not much is known about their genetics. Similar numbers of moles seem to occur on individuals of different generations of a family, so a tendency to develop moles seems to be inherited, but the inheritance pattern is not well understood.

Most moles occur on parts of the body that are exposed to the sun (ultraviolet radiation), and the number of moles an individual has may increase after extended time in the sun. Moles usually begin to occur in childhood. These moles are called acquired melanocytic nevi (and include the subtype epidermal nevus). It is common for new moles to appear during times when hormone levels change, such as adolescence and pregnancy. During an individuals lifetime, moles may change in appearance; hair may grow out of them, and they can change in size and shape, darken, fade, or disappear. Infants and the elderly tend to have the fewest moles.

Sometimes, moles are present at birth or develop during infancy. These moles, which are called congenital nevi, are almost always benign. Rarely, a very large mole, called a giant congenital melanocytic nevus, is present at birth. In rare cases, the most serious type of skin cancer (called melanoma) may develop in this type of mole.

Large, irregularly shaped and colored moles called dysplastic nevi or atypical moles can occur at any age. Although not common, they tend to be numerous, and they increase a persons risk of melanoma. Heredity contributes to the development of dysplastic nevi and to having a higher-than-average number of benign moles. Spending a lot of time in the sun can also increase the number of moles a person has. However, moles are often found on areas of the body that are not exposed, which suggests that factors other than ultraviolet radiation from the sun, perhaps hormones or other biologic processes, are involved in triggering the development of acquired melanocytic nevi and dysplastic nevi.

Although the genetics of melanoma has been widely studied, much less is known about genes involved in the development of benign moles. Variations in several genes, including FGFR3, PIK3CA, HRAS, and BRAF, are involved with benign moles. The most-studied of these is the BRAF gene. A mutation in BRAF leads to the production of an altered protein that causes melanocytes to aggregate into moles. This altered protein also triggers the production of a tumor-suppressor protein called p15 that stops moles from growing too big. In rare cases, BRAF mutations together with deletion of the CDKN2A gene causes a lack of p15, which creates the potential for mole cells to grow uncontrollably and become cancerous (malignant). The formation of cancer is increasingly likely when combined with environmental factors, such as cell damage caused by ultraviolet radiation exposure.

In susceptible individuals (those with fair skin, light hair, skin that burns instead of tans, a family history of melanoma, and genetic risk factors such as deletion of or mutations in the CDKN2A gene), ultraviolet radiation from repeated sun exposure can damage existing moles, increasing their risk of becoming malignant. Research has shown that individuals who have an abundance of moles are at an increased risk of melanoma. However, some people who are diagnosed with melanoma have few moles, and melanoma often develops in areas of the body that are not exposed to the sun. Researchers are working to identify additional susceptibility genes to better understand the genetics of moles and their relationship with cancer.

Plasmeijer EI, Nguyen TM, Olsen CM, Janda M, Soyer HP, Green AC. The natural history of common melanocytic nevi: a systematic review of longitudinal studies in the general population. J Invest Dermatol. 2017 Sep;137(9):2017-2018. doi: 10.1016/j.jid.2017.03.040. Epub 2017 May 18. PubMed: 28528913.

Roh MR, Eliades P, Gupta S, Tsao H. Genetics of melanocytic nevi. Pigment Cell Melanoma Res. 2015 Nov;28(6):661-72. doi: 10.1111/pcmr.12412. PubMed: 26300491. Free full-text available from PubMed Central: PMC4609613.

Silva JH1, S BC, Avila AL, Landman G, Duprat Neto JP. Atypical mole syndrome and dysplastic nevi: identification of populations at risk for developing melanoma - review article. Clinics (Sao Paulo). 2011;66(3):493-9. PubMed: 21552679. Free full-text available from PubMed Central: PMC3072014.

Here is the original post:
Are moles determined by genetics? - Genetics Home ...

Read More...

How to Boost Your Immune System – draxe.com

Wednesday, October 2nd, 2019

We are continually exposed to organisms that are inhaled, swallowed or inhabit our skin and mucous membranes. Whether or not these organisms lead to disease is decided by the integrity of our bodys defense mechanisms, or immune system. When our immune system is working properly, we dont even notice it. But when we have an under- or over-active immune system, we are at a greater risk of developing infections and other health conditions.

If you are wondering how to boost your immune system, look no further these 10 antimicrobial, immune-stimulating and antiviral supplements and essential oils can be used at home to improve your health.

The immune system is an interactive network oforgans, cells and proteins that protect the body from viruses and bacteria or any foreign substances. The immune system works to neutralize and remove pathogens like bacteria, viruses, parasites or fungi that enter the body, recognize and neutralize harmful substances from the environment, and fight against the bodys own cells that have changes due to an illness. (1)

The cells of the immune system originate in the bone marrow, then migrate to guard the peripheral tissues, circulating in the blood and in the specialized system of vessels called the lymphatic system.

When our immune system is working properly, we dont even notice it. Its when the performance of our immune system is compromised that we face illness. Underactivity of the immune system results in severe infections and tumors of immunodeficiency, while overactivity results in allergic and autoimmune diseases. (2)

For our bodys natural defenses to run smoothly, the immune system must be able to differentiate between self and non-self cells, organisms and substances. Non-self substances are called antigens, which includes the proteins on the surfaces of bacteria, fungi and viruses. When the cells of the immune system detect the presence of an antigen, the immune system recalls stored memories in order to quickly defend itself against known pathogens.

However, our own cells also have surface proteins, and its important that the immune system does not work against them. Normally, the immune system has already learned at an earlier stage to identify these cells proteins as self, but when it identifies its own body as non-self, this is called an autoimmune reaction. (3)

The amazing thing about the immune system is that its constantly adapting and learning so that the body can fight against bacteria or viruses that change over time. There are two parts of the immune system our innate immune system works as a general defense against pathogens and our adaptive immune system targets very specific pathogens that the body has already has contact with. These two immune systemscomplement each other in any reaction to a pathogen or harmful substance. (4)

Before learning exactly how to boost your immune system, first understand that most immune disorders result from either an excessive immune response or an autoimmune attack. Disorders of the immune system include:

Allergiesare a immune-mediated inflammatory response to normally harmless environmental substances known as allergens, which results in one or more allergic diseases such as asthma, allergic rhinitis, atopic dermatitis and food allergies. When the body overreacts to an allergen, such as dust, mold or pollen, it causes an immune reaction that leads to the development of allergy symptoms.

Allergies and asthma is a growing epidemic, affecting people of all ages, races, genders and socioeconomic statuses. In the U.S., it is estimated that more than 35 million people, mostly children, suffer from asthma symptoms. (5)An immune response to an allergic can be mild, from coughing and a runny nose, to a life-threatening reaction known as anaphylaxis. A person becomes allergic to a substance when the body develops antigens against it and has a reaction upon repeated exposure to that substance.

An immune deficiency disease is when the immune system is missing one or more of its parts, and it reacts too slowly to a threat. Immune deficiency diseases can be caused by medications or illness, or it may be a genetic disorder, which is called primary immunodeficiency. (6)

Some immune deficiency diseases include severe combined immune deficiency, common variable immune deficiency, human immunodeficiency virus/acquired immune deficient syndrome (HIV/AIDS), drug-induced immune deficiency and graft versus host syndrome. All of these conditions are due to a severe impairment of the immune system, which leads to infections that are sometimes life-threatening.

Autoimmune diseases cause your immune system to attack your own bodys cells and tissues in response to an unknown trigger. Autoimmune diseases have registered an alarming increase worldwide since the end of the Second World War, with more than 80 autoimmune disorders and increases in both the incidence and prevalence of these conditions. (7)

Fiftymillion Americans are living with an autoimmune disease today, and for many of them, its hard to get an accurate diagnosis right away. In fact, it often takes about five years to receive a diagnosis because autoimmune disease symptoms are so disparate and vague. Examples of autoimmune diseases include rheumatoid arthritis, lupus, inflammatory bowel disease, multiple sclerosis, type 1 diabetes, psoriasis, Graves disease (overactive thyroid), Hashimotos disease (underactive thyroid) and vasculitis.

Treatment for autoimmune diseases typically focus on reducing the immune systems activity, but your first line of defense should be addressing leaky gut and removing foods and factors that damage the gut. Several studies have shown that increased intestinal permeability is associated with several autoimmune diseases, and it appears to be involved in disease pathogenesis. (8)

When searching for how to boost your immune system, look to these 10 herbs, supplements and essential oils.

Many of echinaceas chemical constituents are powerful immune system stimulants that can provide significant therapeutic value. Research shows that one of the most significant echinacea benefits is its effects when used on recurring infections. A 2012 study published in Evidence-Based Complementary and Alternative Medicine found that echinacea showed maximal effects on recurrent infections, and preventive effects increased when participants used echinacea to prevent the common cold. (9)

A 2003 study conducted at the University of Wisconsin Medical School found that echinacea demonstrates significant immunomodulatory activities. After reviewing several dozen human experiments, including a number of blind randomized trials, researchers indicate that echinacea has several benefits, including immunostimulation, especially in the treatment of acute upper respiratory infection. (10)

The berries and flowers of the elder plant have been used as medicine for thousands of years. Even Hippocrates, the father of medicine, understood that this plant was key for how to boost your immune system. He used elderberry because of its wide array of health benefits, including its ability to fight colds, the flu, allergies and inflammation. Several studies indicate that elderberry has the power to boost the immune system, especially because it has proven to help treat the symptoms of the common cold and flu.

A study published in the Journal of International Medical Research found that when elderberry was used within the first 48 hours of onset of symptoms, the extract reduced the duration of the flu, with symptoms being relieved on an average of four days earlier. Plus, the use of rescue medication was significantly less in those receiving elderberry extract compared with placebo. (11)

Dating back to ancient times, silver was a popular remedy to stop the spread of diseases. Silver has historically and extensively been used as a broad-spectrum antimicrobial agent. Research published in the Journal of Alternative and Complementary Medicine suggests that colloidal silver wasable to significantly inhibit the growth the bacteria grown under aerobic and anaerobic conditions. (12)

To experience colloidal silver benefits, it can be used in several ways. How toboost your immune system with this supplement? Simply take one drop of true colloidal silver with internally. It can also be applied to the skin to help heal wounds, sores and infections. Always keep in mind that it should not be used for more than 14 days in a row.

You may come across many warnings about colloidal silver causing an irreversible condition called argyria (when people turn blue); however, this is caused by the misuse of products that are not true colloidal silver, like ionic or silver protein. (13)

Because leaky gut is a major cause of food sensitivities, autoimmune disease and immune imbalance or a weakened immune system, its important to consume probiotic foods and supplements. Probiotics are good bacteria that help you digest nutrients that boost the detoxification of your colon and support your immune system.

Research published in Critical Reviews in Food Science and Nutrition suggests that probiotic organisms may induce different cytokine responses. Supplementation of probiotics in infancy could help prevent immune-mediated diseases in childhood by improving the gut mucosal immune system and increasing the number of immunoglobulin cells and cytokine-producing cells in the intestines. (14)

Astragalusis a plant within the bean and legumes family that has a very long history as an immune system booster and disease fighter. Its root has been used as an adaptogen inTraditional Chinese Medicine for thousands of years. Although astragalus is one of the least studied immune-boosting herbs, there are some preclinical trials that show intriguing immune activity. (15)

A recent review published in the American Journal of Chinese Medicine found that astragalus-based treatments have demonstrated significant improvementof the toxicity induced by drugs such as immunosuppressants and cancer chemotherapeutics. Researchers concluded that astragalus extract has a beneficial effect on the immune system, and it protects the body from gastrointestinal inflammation and cancers. (16)

Ayurvedic medicine has relied ongingers ability for how toboost yourimmune system before recorded history. Its believed that ginger helps to break down the accumulation of toxins in our organs due to its warming effects. Its also known to cleanse the lymphatic system, our network of tissues and organs that help rid the body of toxins, waste and other unwanted materials.

Ginger root and ginger essential oil can treat a wide range of diseases with its immunonutrition and anti-inflammatory responses. Research shows that ginger has antimicrobial potential, which helps in treating infectious diseases. Its also known for its ability to treat inflammatory disorders that are caused by infectious agents such as viruses, bacteria and parasites, as well as physical and chemical agents like heat, acid and cigarette smoke. (17)

7. Ginseng

The ginseng plant, belonging to the Panax genus, can help you to boost your immune system and fight infections. The roots, stems and leaves of ginseng have been used for maintaining immune homeostasis and enhancing resistance to illness or infection. Ginseng improves the performance of your immune system by regulating each type of immune cell, including macrophages, natural killer cells, dendritic cells, T cells and B cells. It also has antimicrobial compounds that work as a defense mechanism against bacterial and viral infections. (18)

A study published in the American Journal of Chinese Medicine found that ginseng extract successfully induced antigenspecific antibody responses when it was administered orally. Antibodies bind to antigens, such as toxins or viruses, and keep them from contacting and harming normal cells of the body. Because of ginsengs ability to play a role in antibody production, it helps the body to fight invading microorganisms or pathogenic antigens. (19)

Vitamin D can modulate the innate and adaptive immune responses and a vitamin D deficiency is associated with increased autoimmunity as well as an increased susceptibility to infection. Research shows that vitamin D works to maintain tolerance and promote protective immunity. There have been multiple cross-sectional studies that associate lower levels of vitamin D with increased infection. (20)

One study conducted at Massachusetts General Hospital included 19,000 participants, and it showed that individuals with lower vitamin D levels were more likely to report a recent upper respiratory tract infection than those with sufficient levels, even after adjusting for variables such as season, age, gender, body mass and race. (21) Sometimes addressing a nutritional deficiency is how to boost your immune system.

Myrrh is a resin, or sap-like substance, that is one of the most widely used essential oils in the world. Historically, myrrh was used to treat hay fever, clean and heal wounds and stop bleeding. Myrrh strengthens the immune system with its antiseptic, antibacterial and antifungal properties. (22)

A 2012 study validated myrrhs enhanced antimicrobial efficacy when used in combination with frankincense oil against a selection of pathogens. Researchers concluded that myrrh oil has anti-infective properties and can help to boost your immune system. (23)

Oregano essential oil is known for its healing and immune-boosting properties. It fights infections naturally due to its antifungal, antibacterial, antiviral and anti-parasite compounds. A 2016 study published in Critical Reviews in Food Science and Nutrition found that the main compounds in oregano that are responsible for its antimicrobial activity include carvacrol and thymol. (24)

Several scientific studies found that oregano oil exhibited antibacterial activity againsta number of bacterial isolates and species, includingB. laterosporus andS. saprophyticus. (25)

I should also stress the importance of incorporating physical activity into your daily and weekly regimen to strengthen your immune system. A 2018 human study published in Aging Cell revealed that high levels of physical activity and exercise improve the immunosenescence (gradual deterioration of the immune system) in older adults aged 55 through 79, compared to those in the same age group who were physically inactive. The study also highlights that physical activity doesnt protect against all of the immunosenescence that occurs. However, the decrease in a persons immune system function and activity can be influenced by decreased physical activity in addition to age. (26)

In the quest for how to boost your immune system, proceed with some caution. If you are using these immune-boosting herbs and essential oils, remember that the products are extremely potent and should not be taken for more than two weeks at a time. Giving yourself a break in between long doses is important.

Also, if you are pregnant, be cautious when using essential oils and reach out to your health care provider before doing so. Any time you are using natural remedies like plant supplements, its a good idea to do it under the care of your doctor or nutritionist.

From the sound of it, you might think leaky gut only affects the digestive system,but in reality it can affect more. Because Leaky Gut is so common, and such an enigma,Im offering a free webinar on all things leaky gut.Click here to learn more about the webinar.

Go here to see the original:
How to Boost Your Immune System - draxe.com

Read More...

Immune System (for Teens) – KidsHealth

Wednesday, October 2nd, 2019

Larger text sizeLarge text sizeRegular text size

Whether you're stomping through the showers in your bare feet after gym class or touching the bathroom doorknob, you're being exposed to germs. Fortunately for most of us, the immune system is constantly on call to do battle with bugs that could put us out of commission.

The immune (pronounced: ih-MYOON) system, which is made up of special cells, proteins, tissues, and organs, defends people against germs and microorganisms every day. In most cases, the immune system does a great job of keeping people healthy and preventing infections. But sometimes, problems with the immune system can lead to illness and infection.

The immune system is the body's defense against infectious organisms and other invaders. Through a series of steps called the immune response, the immune system attacks organisms and substances that invade our systems and cause disease. The immune system is made up of a network of cells, tissues, and organs that work together to protect the body.

The cells that are part of this defense system include white blood cells, also called leukocytes (pronounced: LOO-kuh-sytes). They come in two basic types (more on these below), which combine to seek out and destroy the organisms or substances that cause disease.

Leukocytes are produced and stored in many locations throughout the body, including the thymus, spleen, and bone marrow. For this reason, they are called the lymphoid (pronounced: LIM-foyd) organs. There are also clumps of lymphoid tissue throughout the body, primarily in the form of lymph nodes, that house the leukocytes.

The leukocytes circulate through the body between the organs and nodes by means of the lymphatic (pronounced: lim-FAT-ik) vessels. (You can think of the lymphatic vessels as a type of highway between the rest stops that are the lymphoid organs and lymph nodes.) Leukocytes can also circulate through the blood vessels. In this way, the immune system works in a coordinated manner to monitor the body for germs or substances that might cause problems.

There are two basic types of leukocytes:

A number of different cells are considered phagocytes. The most common type is the neutrophil (pronounced: NOO-truh-fil), which primarily fights bacteria. So when doctors are worried about a bacterial infection, sometimes they order a blood test to see if a patient has an increased number of neutrophils triggered by the infection. Other types of phagocytes have their own jobs to make sure that the body responds appropriately to a specific type of invader.

There are two kinds of lymphocytes: the B lymphocytes and the T lymphocytes. Lymphocytes start out in the bone marrow and either stay and mature there to become B cells or leave for the thymus gland, where they mature to become T cells.

B lymphocytes and T lymphocytes have separate jobs to do: B lymphocytes are like the body's military intelligence system, seeking out their targets and sending defenses to lock onto them. T cells are like the soldiers, destroying the invaders that the intelligence system has identified. Here's how it works.

A foreign substance that invades the body is called an antigen (pronounced: AN-tih-jun). When an antigen is detected, several types of cells work together to recognize and respond to it. These cells trigger the B lymphocytes to produce antibodies (pronounced: AN-tye-bah-deez). Antibodies are specialized proteins that lock onto specific antigens. Antibodies and antigens fit together like a key and a lock.

Once the B lymphocytes recognize specific antigens, they develop a memory for the antigen and will produce antibodies the next time the antigen enters a person's body. That's why if someone gets sick with a certain disease, like chickenpox, that person typically doesn't get sick from it again.

This is also why we use immunizations to prevent certain diseases. The immunization introduces the body to the antigen in a way that doesn't make a person sick, but it does allow the body to produce antibodies that will then protect that person from future attack by the germ or substance that produces that particular disease.

Although antibodies can recognize an antigen and lock onto it, they are not capable of destroying it without help. That is the job of the T cells. The T cells are part of the system that destroys antigens that have been tagged by antibodies or cells that have been infected or somehow changed. (There are actually T cells that are called "killer cells.") T cells are also involved in helping signal other cells (like phagocytes) to do their jobs.

Antibodies can also neutralize toxins (poisonous or damaging substances) produced by different organisms. Lastly, antibodies can activate a group of proteins called complement that are also part of the immune system. Complement assists in killing bacteria, viruses, or infected cells.

All of these specialized cells and parts of the immune system offer the body protection against disease. This protection is called immunity.

Humans have three types of immunity innate, adaptive, and passive:

Everyone is born with innate (or natural) immunity, a type of general protection that humans have. Many of the germs that affect other species don't harm us. For example, the viruses that cause leukemia in cats or distemper in dogs don't affect humans. Innate immunity works both ways because some viruses that make humans ill such as the virus that causes HIV/AIDS don't make cats or dogs sick either.

Innate immunity also includes the external barriers of the body, like the skin and mucous membranes (like those that line the nose, throat, and gastrointestinal tract), which are our first line of defense in preventing diseases from entering the body. If this outer defensive wall is broken (like if you get a cut), the skin attempts to heal the break quickly and special immune cells on the skin attack invading germs.

We also have a second kind of protection called adaptive (or active) immunity. This type of immunity develops throughout our lives. Adaptive immunity involves the lymphocytes (as in the process described above) and develops as children and adults are exposed to diseases or immunized against diseases through vaccination.

Passive immunity is "borrowed" from another source and it lasts for a short time. For example, antibodies in a mother's breast milk provide an infant with temporary immunity to diseases that the mother has been exposed to. This can help protect the infant against infection during the early years of childhood.

Everyone's immune system is different. Some people never seem to get infections, whereas others seem to be sick all the time. As people get older, they usually become immune to more germs as the immune system comes into contact with more and more of them. That's why adults and teens tend to get fewer colds than kids their bodies have learned to recognize and immediately attack many of the viruses that cause colds.

Disorders of the immune system can be broken down into four main categories:

Immunodeficiencies (pronounced: ih-myoon-o-dih-FIH-shun-seez) happen when a part of the immune system is not present or is not working properly.

Sometimes a person is born with an immunodeficiency these are called primary immunodeficiencies. (Although primary immunodeficiencies are conditions that a person is born with, symptoms of the disorder sometimes may not show up until later in life.)

Immunodeficiencies also can be acquired through infection or produced by drugs. These are sometimes called secondary immunodeficiencies.

Immunodeficiencies can affect B lymphocytes, T lymphocytes, or phagocytes.The most common immunodeficiency disorder is IgA deficiency, in which the body doesn't produce enough of the antibody IgA, an immunoglobulin found primarily in the saliva and other body fluids that help guard the entrances to the body. People with IgA deficiency tend to have allergies or get more colds and other respiratory infections, but the condition is usually not severe.

Acquired (or secondary) immunodeficiencies usually develop after a person has a disease, although they can also be the result of malnutrition, burns, or other medical problems. Certain medicines also can cause problems with the functioning of the immune system.

Acquired (secondary) immunodeficiencies include:

Newborns can get HIV infection from their mothers while in the uterus, during the birth process, or during breastfeeding. Teens and adults can get HIV infection by having unprotected sexual intercourse with an infected person or from sharing contaminated needles for drugs, steroids, or tattoos.

In addition, people with autoimmune disorders or who have had organ transplants may need to take immunosuppressant medications. These medicines can also reduce the immune system's ability to fight infections and can cause secondary immunodeficiency.

In autoimmune disorders, the immune system mistakenly attacks the body's healthy organs and tissues as though they were foreign invaders.

Some autoimmune diseases include:

Allergic disorders happen when the immune system overreacts when exposued to antigens in the environment. The substances that provoke such attacks are called allergens. The immune response can cause symptoms such as swelling, watery eyes, and sneezing, and even a life-threatening reaction called anaphylaxis. Taking medications called antihistamines can relieve most symptoms.

Allergic disorders include:

Cancer happens when cells grow out of control. This can also happen with the cells of the immune system. Leukemia, which involves abnormal overgrowth of leukocytes, is the most common childhood cancer. Lymphoma involves the lymphoid tissues and is also one of the more common childhood cancers. With current medications most cases of both types of cancer in kids and teens are curable.

Although immune system disorders usually can't be prevented, you can help your immune system stay stronger and fight illnesses by staying informed about your condition and working closely with the doctor.

And if you're lucky enough to be healthy, you can help your immune system keep you that way by washing your hands often to avoid infection, eating right, getting plenty of exercise,and getting regular medical checkups.

Read the original:
Immune System (for Teens) - KidsHealth

Read More...

Page 34«..1020..32333435


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick