header logo image


Page 28«..1020..27282930..40..»

Archive for December, 2020

Healthcare Nanotechnology (Nanomedicine) Market Research Report with Revenue, Gross Margin, Market Share and Future Prospects till 2026 – The Market…

Friday, December 4th, 2020

The Healthcare Nanotechnology (Nanomedicine) Market grew in 2019, as compared to 2018, according to our report, Healthcare Nanotechnology (Nanomedicine) Market is likely to have subdued growth in 2020 due to weak demand on account of reduced industry spending post Covid-19 outbreak. Further, Healthcare Nanotechnology (Nanomedicine) Market will begin picking up momentum gradually from 2021 onwards and grow at a healthy CAGR between 2021-2025

Deep analysis about market status (2016-2019), competition pattern, advantages and disadvantages of products, industry development trends (2019-2025), regional industrial layout characteristics and macroeconomic policies, industrial policy has also been included. From raw materials to downstream buyers of this industry have been analysed scientifically. This report will help you to establish comprehensive overview of the Healthcare Nanotechnology (Nanomedicine) Market

Get a Sample Copy of the Report at: https://i2iresearch.com/report/global-healthcare-nanotechnology-(nanomedicine)-market-2020-market-size-share-growth-trends-forecast-2025/#download-sample

The Healthcare Nanotechnology (Nanomedicine) Market is analysed based on product types, major applications and key players

Key product type:NanomedicineNano Medical DevicesNano DiagnosisOther

Key applications:AnticancerCNS ProductAnti-infectiveOther

Key players or companies covered are:AmgenTeva PharmaceuticalsAbbottUCBRocheCelgeneSanofiMerck & CoBiogenStrykerGilead SciencesPfizer3M CompanyJohnson & JohnsonSmith & NephewLeadiant BiosciencesKyowa Hakko KirinShireIpsenEndo International

The report provides analysis & data at a regional level (North America, Europe, Asia Pacific, Middle East & Africa , Rest of the world) & Country level (13 key countries The U.S, Canada, Germany, France, UK, Italy, China, Japan, India, Middle East, Africa, South America)

Inquire or share your questions, if any: https://i2iresearch.com/report/global-healthcare-nanotechnology-(nanomedicine)-market-2020-market-size-share-growth-trends-forecast-2025/

Key questions answered in the report:1. What is the current size of the Healthcare Nanotechnology (Nanomedicine) Market, at a global, regional & country level?2. How is the market segmented, who are the key end user segments?3. What are the key drivers, challenges & trends that is likely to impact businesses in the Healthcare Nanotechnology (Nanomedicine) Market?4. What is the likely market forecast & how will be Healthcare Nanotechnology (Nanomedicine) Market impacted?5. What is the competitive landscape, who are the key players?6. What are some of the recent M&A, PE / VC deals that have happened in the Healthcare Nanotechnology (Nanomedicine) Market?

The report also analysis the impact of COVID 19 based on a scenario-based modelling. This provides a clear view of how has COVID impacted the growth cycle & when is the likely recovery of the industry is expected to pre-covid levels.

Contact us:i2iResearch info to intelligenceLocational Office: *India, *United States, *GermanyEmail: [emailprotected]Toll-free: +1-800-419-8865 | Phone: +91 98801 53667

Visit link:
Healthcare Nanotechnology (Nanomedicine) Market Research Report with Revenue, Gross Margin, Market Share and Future Prospects till 2026 - The Market...

Read More...

Technion Harvey prize in science awarded to Israeli, American professors – The Jerusalem Post

Friday, December 4th, 2020

Technion's Harvey prize in Chemical Engineering and Medical Sciences for 2019-2020, one of its most prestigious awards, went to Professor Joseph DeSimone of Stanford University and Professor Raphael Mechoulam of the Hebrew University, according to a Wednesday press release from the university.

In 2016, DeSimone was recognized by US President Barack Obama for his achievements and leadership in innovative technology.

Mechoulam, of the School of Pharmacology in the Faculty of Medicine at the Hebrew University of Jerusalem, was given the award for his innovative research into the components, mechanisms of action, and implications for human health of the cannabinoid system. Born in Bulgaria in 1930, Mechoulam immigrated to Israel and joined the Weizmann Institute in 1960, later becoming a professor at the Hebrew University. Mechoulam is the first researcher to have isolated the psychoactive part of cannabis ,called THC (Tetrahydrocannabinol), and mapped its structure and its major elements, Cannabidiol, CBD, which is increasingly used for medicinal purposes.

Mechoulam's long history of achievement was also recognized, as he won the Israel Prize in Exact Sciences Chemistry (2000) and the Kolthoff Prize in Chemistry from the Technion. The Jerusalem Post also recognized him as one of its most 50 influential Jews.

The Harvey Prize is awarded each year for outstanding achievements in a wide variety of fields, including science and technology, human health, and contributions to humanity. Beyond the $75,000 prize, the award has become a good indicator for the Nobel Prize, with some 30% receiving both.

cnxps.cmd.push(function () { cnxps({ playerId: '36af7c51-0caf-4741-9824-2c941fc6c17b' }).render('4c4d856e0e6f4e3d808bbc1715e132f6'); });

See the original post:
Technion Harvey prize in science awarded to Israeli, American professors - The Jerusalem Post

Read More...

Cancer Nanomedicine Market Size, Comprehensive Analysis, Development Strategy, Future Plans and Industry Growth with High CAGR by Forecast 2026 |…

Friday, December 4th, 2020

Global Cancer Nanomedicine Market Survey Research Report

The Global Intelligence Insights added a new report Global Cancer Nanomedicine Market: Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2016 2024 in its database, which provides an expert and in-depth analysis of key business trends and future market development prospects, key drivers and restraints, profiles of major market players, segmentation and forecasting.

Market Overview:

Cancer Nanomedicine Market to grow from USD 761.85 billion in 2016 and reach USD 918.74 billion by 2020, growing at a CAGR of 4.8% during the forecast period.

The global Cancer Nanomedicine Market report offers a complete overview of the Cancer Nanomedicine Market globally. It presents real data and statistics on the inclinations and improvements in global Cancer Nanomedicine Markets. It also highlights manufacturing, abilities & technologies, and unstable structure of the market. The global Cancer Nanomedicine Market report elaborates the crucial data along with all important insights related to the current market status.

The report additionally provides a pest analysis of all five along with the SWOT analysis for all companies profiled in the report. The report also consists of various company profiles and their key players; it also includes the competitive scenario, opportunities, and market of geographic regions. The regional outlook on the Cancer Nanomedicine market covers areas such as Europe, Asia, China, India, North America, and the rest of the globe.

Note In order to provide more accurate market forecast, all our reports will be updated before delivery by considering the impact of COVID-19.

Get sample copy of thisreport @ https://www.globalintelligenceandinsights.com/request-sample-1004167

Top Key Players: Abraxis BioScience,Access Pharmaceuticals,Alnylam Pharmaceuticals,Arrowhead Research,BIND Biosciences,Epeius Biotechnologies,Nanobiotix,NanoCarrier,Nippon Kayaku,Samyang,Takeda Pharmaceutical

The main goal for the dissemination of this information is to give a descriptive analysis of how the trends could potentially affect the upcoming future of Cancer Nanomedicine market during the forecast period. This markets competitive manufactures and the upcoming manufactures are studied with their detailed research. Revenue, production, price, market share of these players is mentioned with precise information.

Market Dynamics:

The report analyzes the factors impacting the growth and the current market trends influencing the global Cancer Nanomedicine market. Detailed pricing information with ex-factory prices of various products by key manufacturers form a crucial part of the report. Competition analysis, along with regional government policies affecting the Cancer Nanomedicine market provides a detailed overview of the current status and prospects of the market. The impact of the ever-growing global population, coupled with technological advancements affecting the global Cancer Nanomedicine market is also covered in the report.

Drivers & Constraints:

The report provides extensive information about the factors driving the global Cancer Nanomedicine market. Factors influencing the growth of the Cancer Nanomedicine market, along with technological advancements, are discussed extensively in the report. The current restraints of the market, limiting the growth and their future impact are also analyzed in the report. The report also discusses the impact of rising consumer demand, along with global economic growth on the Cancer Nanomedicine market.

Regional Segment Analysis:

This report provides pinpoint analysis for changing competitive dynamics. It offers a forward-looking perspective on different factors driving or limiting market growth. It provides a five-year forecast assessed on the basis of how they Cancer Nanomedicine Market is predicted to grow. It helps in understanding the key product segments and their future and helps in making informed business decisions by having complete insights of market and by making in-depth analysis of market segments.

Key questions answered in the report include:

What will the market size and the growth rate be in 2026?

What are the key factors driving the Global Cancer Nanomedicine Market?

What are the key market trends impacting the growth of the Global Cancer Nanomedicine Market?

What are the challenges to market growth?

Who are the key vendors in the Global Cancer Nanomedicine Market?

What are the market opportunities and threats faced by the vendors in the Global Cancer Nanomedicine Market?

Trending factors influencing the market shares of the Americas, APAC, Europe, and MEA.

The report includes six parts, dealing with:

1.) Basic information;

2.) The Asia Cancer Nanomedicine Market;

3.) The North American Cancer Nanomedicine Market;

4.) The European Cancer Nanomedicine Market;

5.) Market entry and investment feasibility;

6.) The report conclusion.

Reasons for Buying this Report:

This report provides pin-point analysis for changing competitive dynamics

It provides a forward looking perspective on different factors driving or restraining market growth

It provides a six-year forecast assessed on the basis of how the market is predicted to grow

It helps in understanding the key product segments and their future

It provides pin point analysis of changing competition dynamics and keeps you ahead of competitors

It helps in making informed business decisions by having complete insights of market and by making in-depth analysis of market segments

TABLE OF CONTENT:

1 Report Overview

2 Global Growth Trends

3 Market Share by Key Players

4 Breakdown Data by Type and Application

5 United States

6 Europe

7 China

8 Japan

9 Southeast Asia

10 India

11 Central & South America

12 International Players Profiles

13 Market Forecasts 2019-2025

14 Analysts Viewpoints/Conclusions

15 Appendixes

Get Up to 20% Discount on this Premium Report @ https://www.globalintelligenceandinsights.com/request-sample-1004167

If you have any special requirements, please let us know and we will offer you the report as you want.

About Us:

Global Intelligence and Insights is one of the top resellers of market research reports, including market intelligence, data solutions, competitive positioning, and custom intelligence to an array of organizations globally. Our customer portfolio includes business organizations from fortune 500 companies, SMEs, start-ups, financial technology start-ups, and venture capitalists. We have an exhaustive database of market research reports provided by more than 20 leading publishers across different industry verticals.

We provide tailored solutions that can be utilized to solve business challenges and problems faced by organizations in different regions. Additionally, our bouquet of solutions assists enterprises in strategic planning and staying ahead of the competition while getting access to extensive market forecast and trend mapping over the future course of time. In addition to the market forecast and other vital components of the market analysis, our reports include in-depth micro-macro analysis of the market, which aids the customers in analyzing the market ecosystem, thus assisting in the existing and new players in the development of strategic plans.

Contact Us:

Global Intelligence Insights

Bruno Abraham

US: +1-571-577-4575

202 Church Street SE,

Suite 301, Leesburg,

VA 20175

[emailprotected]

The rest is here:
Cancer Nanomedicine Market Size, Comprehensive Analysis, Development Strategy, Future Plans and Industry Growth with High CAGR by Forecast 2026 |...

Read More...

Visualization nanozyme based on tumor microenvironment unlocking for intensive combination therapy of breast cancer – Science Advances

Friday, December 4th, 2020

Abstract

Nanozymes as artificial enzymes that mimicked natural enzymelike activities have received great attention in cancer therapy. However, it remains a great challenge to design nanozymes that precisely exert its activity in tumor without producing off-target toxicity to surrounding normal tissues. Here, we report a synergetic enhancement strategy through the combination between nanozyme and tumor vascular normalization to destruct tumors, which was based on tumor microenvironment (TME) unlocking. This nanozyme that we developed not only has photothermal properties but also can produce reactive oxygen species efficiently under the stimulation of TME. Moreover, this nanozyme also showed remarkable imaging performance in fluorescence imaging in the second near-infrared region and magnetic resonance imaging for visualization tracing in vivo. The process of combination therapy showed remarkable therapeutic effect for breast cancer. This study provides a therapeutic strategy by the cooperation between multifunctional nanozyme and tumor vascular normalization for intensive combination therapy of breast cancer.

Breast cancer is the most frequent malignancy in women worldwide and is a heterogeneous disease on the molecular level (1). The heterogeneity of breast cancer tissue usually makes it easy to cause multidrug resistance of tumor, tumor recurrence, or metastasis, which leads to the decline of therapeutic effect (2). The principal reason is that there are differences from genotype to phenotype in the same tumor, resulting in different sensitivity, growth speed, invasion ability, prognosis, and other aspects of tumor cells to drugs (35). A more accurate combination therapy based on tumor heterogeneity could give full play to the maximum effect, produce minimum side effects, and avoid the occurrence of multidrug resistance (68). Recently, combination therapy has been extremely advocated in clinical application. For instance, the simultaneous administration of two or multiple therapeutic agents would modulate different signaling pathways involved in the tumor progression (9, 10), bringing many advantages including synergetic responses, reduced drug resistance, and mitigatory side effects. Therefore, it is of great significance to develop a multimode tumor cooperative therapy system to improve the therapeutic effect of breast cancer.

In the early 1970s, as a young surgeon who frequently encountered cancer in patients, Judah Folkman observed that tumor tissue was enriched by an extraordinarily high number of blood vessels that were fragile and often hemorrhagic (11, 12). The angiogenesis translational research started at that time and has lasted for nearly 50 years. At present, the results show that blocking angiogenesis can retard tumor growth, but it may also increase metastasis paradoxically (13, 14). This issue may be solved by vessel normalization, including increasing pericyte coverage, improving tumor vessel perfusion, reducing the permeability of blood vessels, and mitigating hypoxia consequently (15). Therefore, the normalization of tumor blood vessels is closely related to the regulation of tumor microenvironment (TME). Both humanized monoclonal antibody bevacizumab as the first antivascular endothelial growth factor (VEGF) agents and plasmid expressing interfering RNA targeting VEGF (shVEGF) have been used in cancer therapy (16). In 2017, Zhang elucidated an unexpected role of T helper 1 (TH1) cells in vasculature and immune reprogramming. This finding confirmed that tumor blood vessels and immune system can affect each others functions and proposed that TH1 cells may be a marker and a determinant of both immune checkpoint blockade and anti-angiogenesis efficacy (15). Thus, the combined therapy with tumor vessel normalization is expected to improve the therapeutic effect of breast cancer.

Since Gao et al. (17) reported the first evidence of Fe3O4 nanoparticles (NPs) as peroxidase mimetics in 2007, various nanomaterials have been identified that have intrinsic enzyme-like activities (18, 19). Because of the similar enzymatic kinetics and mechanisms of natural enzymes under physiological conditions, this kind of nanomaterials is called nanozyme (20). The past decade have witnessed the rapid development of nanozymes in biomedical applications including immunoassays, biosensors, antibacterial, and antibiofilm agents (21, 22). Tailored to the specific TME, including the excessive production of acid and hydrogen peroxide, the introduction of highly active nanozyme, through Fenton and Fenton-like reactions to produce reactive oxygen species (ROS), has been used in the chemodynamic therapy (CDT) of cancer (23). A great challenge for in vivo application of nanozyme is the precise control of the selective execution of the desired activity because off-target activity will lead to unpredictable side effects. For instance, Fe3O4 NPs have peroxidase-like activity to increase reactive ROS under acidic pH. However, these NPs exhibit catalase-like activity in neutral condition, which will lead to removal of ROS (24). In the process of ROS-related treatment, the former is beneficial to improve the therapeutic effect, while the latter should be inhibited. Therefore, it is necessary to design a strategy to coordinate the activity of nanozyme through the regulation of TME for optimal functioning upon entering of the nanozyme into its target cell.

As a proof of concept, we have constructed a previously unknown strategy to regulate TME by tumor vessel normalization to optimize the anticancer effect of visualizational nanozyme. Primarily, monodisperse core-shell Ag2S@Fe2C heterogeneous NPs were synthesized by seeded growth-based thermal decomposition method in organic phase. Afterward, to improve the tumor targeting, we designed a precise targeting NP-based nanozyme system (Ag2S@Fe2C-DSPE-PEG-iRGD) by coating a tumor-homing penetration peptidemodified Distearoyl phosphoethanolamine-PEG-iRGD peptide (DSPE-PEG-iRGD) on the surface of Ag2S@Fe2C NPs. This nanozyme showed remarkable intracellular uptake, good fluorescence performance, and up-regulation of ROS production in 4T1 cells. Furthermore, this nanozyme displayed high-resolution bioimaging effect in vivo in 4T1 breast cancerbearing mice, which included fluorescence imaging in the second near-infrared region (NIR-II) and magnetic resonance imaging (MRI). Moreover, the improved therapeutic effect was observed by the treatment of Ag2S@Fe2C-DSPE-PEG-iRGD after combination with the tumor vascular normalization based on bevacizumab during the treatment in 4T1 breast cancerbearing mice. Our study provides a new therapeutic strategy by the cooperation between catalysis of imaging-guided nanozyme and tumor vascular normalization for intensive combination therapy of breast cancer.

The scheme of the combination therapeutic strategy was shown in Fig. 1, including the schematic illustration of combination therapeutic strategy (Fig. 1A) and biochemical process for multifunctional Ag2S@Fe2C-DSPE-PEG-iRGD in breast cancer cell (Fig. 1B). Subsequently, the schematic design of core-shell Ag2S@Fe2C-DSPE-PEG-iRGD is presented in Fig. 2A. First, monodispersed Ag2S@Fe2C NPs were synthesized by seed-mediated growth method with thermal decomposition in organic phase. The synthesis of Ag2S@Fe2C NPs comprises two steps: (i) the preparation of Ag2S quantum dots (QDs) (fig. S1) and (ii) the iron carbide coating on the surface of Ag2S QDs to obtain Ag2S@Fe2C NPs (Fig. 2B). Ag2S QDs were prepared by thermal decomposition of a source precursor of Ag(DDTC) [(C2H5)2NCS2Ag]. (25). Fe2C phase around Ag2S QDs is regulated by ammonium bromide (NH4Br), which has been reported in our previous studies (26, 27). Because the selective adsorption of Br ions weakened the bonding between Fe and C atoms, the process could promote the formation of low-carbon iron carbide phase. Transmission electron microscope (TEM) images in Fig. 2B have shown that Ag2S cores were semisurrounded by the Fe2C domains with a thickness of ~3 nm. The high-resolution TEM (HRTEM) image depicted in Fig. 2C shows a lattice spacing between two (200) adjacent planes in Ag2S of 0.244 nm and distance of 0.209 nm corresponding to the (101) planes of hexagonal Fe2C. Furthermore, energy-dispersive x-ray (EDX) line scan of Ag2S@Fe2C NPs was shown in Fig. 2 (D and E), which has confirmed the composition and core-shell structure of Ag2S@Fe2C NPs. The results of x-ray diffraction (Fig. 2F) patterns were consistent with the characterization of TEM. However, the Fe2C shell was protected from further oxidization by a 1-nm Fe3O4 shell with a spacing of 2.97 between the (220) planes of magnetite. The x-ray photoelectron spectroscopy (XPS) of Fe 2p (Fig. 2G and fig. S2) has confirmed the main existence of Fe0 in Ag2S@Fe2C NPs, and the weak satellite peaks are due to the local oxidation of NPs (26). The existence of Ag+ was confirmed by the XPS of Ag 3d (Fig. 2F and fig. S2). DSPE-PEG-iRGD was synthesized by covalent bonding between DSPE-PEG-NHS (N-hydroxysuccinimide) and tumor-homing penetration peptide iRGD (CRGDKGPDC) subsequently (fig. S3) (28). Ag2S@Fe2C-DSPE-PEG and Ag2S@Fe2C-DSPE-PEG-iRGD were formulated using water/oil (W/O) emulsion method (29). The formation of Ag2S@Fe2C-DSPE-PEG-iRGD nanozyme was confirmed by the Fourier transform infrared spectrometer (fig. S4). The red shift of the absorption peak for the stretching vibration of the CO from carboxyl group (1635 cm1) to amide bond (1689 cm1) proves the amination of DSPE-PEG-NHS and iRGD (fig. S4, i and iv). The existence of vibration absorption peaks (3410 and 1480 cm1) for NH bond (fig. S4, iv) proved the obtaining of DSPE-PEG-iRGD. The hydrodynamic diameters of Ag2S@Fe2C-DSPE-PEG-iRGD were 90.1 20.3 nm (fig. S5A), and the zeta potential of Ag2S@Fe2C-DSPE-PEG-iRGD was 12.2 mV (fig. S5B). The lifetime decays of Ag2S@Fe2C-DSPE-PEG-iRGD ( = 218.16 ns, excitation = 808 nm) were shown in Fig. 2I, which has proved that the NPs exhibit good luminescent property. The field-dependent magnetization curve of Ag2S@Fe2C NPs and Ag2S@Fe2C-DSPE-PEG-iRGD was measured at room temperature. After the modification of DSPE-PEG-iRGD, the magnetic saturation value is reduced from 116.97 to 50.12 electromagnetic unit (emu) g1 (fig. S5C). This result proves that Ag2S@Fe2C-DSPE-PEG-iRGD can be used as contrast agent in T2-MRI. Besides, better absorption capacity for light in the NIR was observed in Ag2S@Fe2C-DSPE-PEG-iRGD compared to Ag2S@Fe2C in fig. S5D.

(A) Schematic illustration of combination therapeutic strategy. (B) Schematic diagram of biochemical process for multifunctional Ag2S@Fe2C-DSPE-PEG-iRGD in breast cancer cell. PTT, photothermal therapy.

(A) Schematic illustration of the designed Ag2S@Fe2C-DSPE-PEG-iRGD core-shell heterojunctions. (B) TEM image of Ag2S@Fe2C NPs. (C) HRTEM image of Ag2S@Fe2C NPs. (D and E) EDX line scan of Ag2S@Fe2C NPs: Fe (blue), Ag (red), and S (black). (F) X-ray diffraction patterns of Ag2S@Fe2C NPs. High-resolution XPS spectra of (G) Fe 2p and (H) Ag 3d obtained from Ag2S@Fe2C. (I) Lifetime decays of Ag2S@Fe2C-DSPE-PEG-iRGD (excitation = 808 nm). a.u., arbitrary units.

The biodegradation performance of Ag2S@Fe2C-DSPE-PEG was evaluated by time-dependent fluorescence spectra in 48 hours (Fig. 3A). With the prolongation of dispersion time of Ag2S@Fe2C-DSPE-PEG in phosphate-buffered saline (PBS) buffer (pH 5.4). The fluorescence intensity increases with time at the emission wavelength of 410 nm, which has demonstrated that carbon QDs (C QDs) are produced during the degradation of Ag2S@Fe2C-DSPE-PEG (30). The fluorescence spectra of Ag2S@Fe2C-DSPE-PEG were dispersed in PBS buffer (pH 7.4), and PBS buffer (pH 5.4) after 7 days further confirmed the stability of pH-dependent Ag2S@Fe2C-DSPE-PEG in fig. S6A. Subsequently, the evaluation of peroxidase-like activity of Ag2S@Fe2C-DSPE-PEG with different pH values was shown in Fig. 3B and fig. S6B. The peroxidase-like activity increases with the decrease of pH value. Moreover, TEM images of the Ag2S@Fe2C-DSPE-PEG after degradation in PBS with pH value of 5.4 in 48 hours was revealed in Fig. 3C. After 6 hours, the NPs maintain the integrity generally with only slight morphological changes (arrow indicated). After 24 hours, degradation occurred in most of NPs from morphology and size. In addition, the free state of Ag2S QDs can be observed in the TEM image. After 48 hours, the morphology of the NPs is completely disrupted and residues of the C QDs can be observed (arrow indicated). Since C QDs and graphene oxide (GO) have a similar structure, the fluorescence property can be determined by the states of the sp2 sites (31). Moreover, the samples that were obtained from Ag2S@Fe2C NP degradation in HCl solution (1 M) before and after 12 hours (fig. S7A) were characterized by XPS (fig. S7B). Normalized high-resolution XPS spectra of C 1s proved the existence of low-valence carbon. Moreover, as shown in fig. S7C, the carbon K edge spectrum of samples collected above shows a clear sp2 signal with energy loss peaks at 283 eV (1s *) and 293 eV (1s *), which proved the existence of sp2-hybridized carbon in Ag2S@Fe2C NPs (32). Therefore, we can infer that these sp2-hybridized carbons were obtained during the thermal decomposition synthesis of Ag2S@Fe2C NPs. To further prove the above speculation, the biodegradation behavior and structural evolution of Ag2S@Fe2C-DSPE-PEG were further evaluated in 4T1 cells. After 24 hours of intracellular coincubation, Ag2S@Fe2C-DSPE-PEG was almost degraded into ultrasmall NPs. These results were exhibited in bio-TEM images in Fig. 3D.

(A) Time-dependent fluorescence spectra of Ag2S@Fe2C-DSPE-PEG dispersed in PBS buffer solution (pH 5.4, excitation = 370 nm, Em = 410 nm). (B) Peroxidase-like activity of Ag2S@Fe2C-DSPE-PEG with different pH values (5.4, 6.5, and 7.4). Photo credit: Zhiyi Wang, Peking University, China. (C) TEM images (scale bars, 50 nm) of the Ag2S@Fe2C-DSPE-PEG after degradation in PBS (pH 5.4) for 0, 6, 24, and 48 hours. (D) Bio-TEM images (scale bar, 2 m) of 4T1 cells incubated with Ag2S@Fe2C-DSPE-PEG for 24 hours (scale bars, 500 nm) of different regions enlarged. (E) Schematic representation of the degradation process of the Ag2S@Fe2C-DSPE-PEG in the physiological environment.

On the basis of the above experimental results, Fig. 3E illustrated the degradation process of Ag2S@Fe2C-DSPE-PEG. The external DSPE-PEG degraded gradually because of hydrolysis of the ester linkage into segments (reduced molecular weight), oligomers and monomers, and lastly carbon dioxide and water (33) after the Ag2S@Fe2C-DSPE-PEG were dispersed in the physiological environment. Degradation of DSPE-PEG disrupts the NPs and triggers release of Fe2+ and C QDs from the Fe2C shell, which degrades rapidly if it is not protected by DSPE-PEG. After the degradation of Fe2C shell, Ag2S QDs were commonly found in bio-TEM images. Because the C QDs and Ag2S QDs are relatively stable in physiological environment, it is beneficial to be metabolized out of the body through the kidney and liver (34, 35). The unique biodegradability of the Ag2S@Fe2C-DSPE-PEG not only circumvents rapid degradation of the optical performance but also enables harmless clearance from the body in a reasonable period after the end of therapeutic functions in vivo.

The modification by DSPE-PEG-iRGD enhanced the biocompatibility of NPs under physiological conditions, which was proved by cell counting kit-8 (CCK8) assay in fig. S8. The cellular uptake of Ag2S@Fe2C-DSPE-PEG-iRGD in 4T1 cells was evaluated by multidimensional confocal microfluorescence imaging system in Fig. 4A (excitation = 808 nm). These results revealed that a minority of red fluorescence could be observed in 4T1 cells treated with Ag2S@Fe2C-DSPE-PEG, indicating the limited cellular uptake. However, much stronger red fluorescence could be found after coincubation with Ag2S@Fe2C-DSPE-PEG-iRGD, which is mainly located in cytoplasm, instead of nuclei [staining by 4,6-diamidino-2-phenylindole (DAPI), excitation = 405 nm]. These results suggested that the Ag2S@Fe2C-DSPE-PEG-iRGD performed higher cellular uptake after the modification with tumor-homing penetration peptide iRGD.

Subsequently, we further evaluated the nanozyme activity of Ag2S@Fe2C-DSPE-PEG-iRGD in cancer cells. Because nonfluorescent dihydrorhodamine 123 (DHR123) can be oxidized by ROS into green fluorescent rhodamine 123, DHR123 was used as an intracellular ROS indicator (36). Fortunately, the strongest fluorescence intensity was shown in the group of Ag2S@Fe2C-DSPE-PEG-iRGD under the irradiation of 808-nm laser, which demonstrated that the nanozyme activity of Ag2S@Fe2C-DSPE-PEG-iRGD was also enhanced compared with other groups (Fig. 4B). In the previous study, we reported the evaluation method of photothermal efficiency of nanomaterials (27, 37, 38). These results in fig. S11 demonstrated that Ag2S@Fe2C-DSPE-PEG-iRGD is a highly efficient photothermal therapy agent. The 4T1 cell killing ability was evaluated in fluorescence micrographs in Fig. 4C [costained by calcein-AM and propidium iodide (PI)]. The group of Ag2S@Fe2C-DSPE-PEG-iRGD under the irradiation of 808-nm laser showed the maximum range of dead cell markers, which proved that it has the strongest killing efficiency of 4T1 cells. Furthermore, corresponding flow cytometry data of the 4T1 cells stained with PI (dead cells, red fluorescence) was shown in Fig. 4D after incubation with saline only, the irradiation of 808-nm laser only, Ag2S@Fe2C-DSPE-PEG-iRGD, and Ag2S@Fe2C-DSPE-PEG-iRGD under the irradiation of 808-nm laser. These results are consistent with above.

(A) Confocal laser scanning microscopy images (scale bars, 5 m) of in 4T1 cells treated with saline, Ag2S@Fe2C-DSPE-PEG, and Ag2S@Fe2C-DSPE-PEG-iRGD in NIR-II. (B) Singlet oxygen generation evaluated by DHR123 in 4T1 cells treated with saline only, laser only, Ag2S@Fe2C-DSPE-PEG, and Ag2S@Fe2C-DSPE-PEG + laser (scale bars, 50 m). (C) Fluorescence images (scale bars, 100 m) of the 4T1 cells stained with calcein-AM (live cells, green fluorescence) and PI (dead cells, red fluorescence) after incubation with saline only, laser only, Ag2S@Fe2C-DSPE-PEG, and Ag2S@Fe2C-DSPE-PEG + laser. (D) Corresponding flow cytometry data of the 4T1 cells stained with PI (dead cells, red fluorescence) after incubation with saline only, laser only, Ag2S@Fe2C-DSPE-PEG, and Ag2S@Fe2C-DSPE-PEG + laser.

The fluorescent emission spectrum of Ag2S@Fe2C and Ag2S@Fe2C-DSPE-PEG-iRGD in NIR-II was shown in Fig. 5A. Under the excitation of 808-nm laser, the fluorescent emission wavelength is 1071 nm. Subsequently, fluorescence imaging in NIR-II was carried out to track the in vivo behaviors of Ag2S@Fe2C-DSPE-PEG and Ag2S@Fe2C-DSPE-PEG-iRGD (20 mg kg1, 200 ml) after intravenous injection into 4T1 breast cancerbearing nude mice, with the excitation wavelength of 808 nm (Fig. 5B). The tumor site of Ag2S@Fe2C-DSPE-PEG-iRGD group showed strong luminescence signals after 12 hours (Fig. 5C). In contrast, no obvious fluorescence signal appeared in the tumor site for Ag2S@Fe2C-DSPE-PEG even after 24 hours. Moreover, the targeting capacity of Ag2S@Fe2C-DSPE-PEG and Ag2S@Fe2C-DSPE-PEG-iRGD was evaluated by ex vivo imaging of main organs (liver, spleen, lung, heart, and kidney) and tumors of mice after intravenous injection for 24 hours. Obvious fluorescence signals were clearly observed in the liver, tumor, and the main blood vessels near the tumor (Fig. 5B). The real-time movie of fluorescence imaging in NIR-II has been improved during the tail vein injection of Ag2S@Fe2C-DSPE-PEG-iRGD (movie S1), which demonstrated that the nanozyme could achieve high-resolution microscopic imaging of blood vessels in mice, especially at the tumor site. These results reflect not only the advantages of fluorescence imaging in NIR-II with deeper tissue penetration but also the remarkable targeting effect of the Ag2S@Fe2C-DSPE-PEG-iRGD for 4T1 breast cancer.

(A) The fluorescent emission spectrum of Ag2S@Fe2C and Ag2S@Fe2C-DSPE-PEG-iRGD in NIR-II under the excitation of 808-nm laser. (B) Real-time NIR-II fluorescence images of 4T1 breast cancerbearing mice after intravenous injection of Ag2S@Fe2C-DSPE-PEG and Ag2S@Fe2C-DSPE-PEG-iRGD. Ex vivo fluorescence images of heart (i), kidney (ii), spleen (iii), liver (iv), lung (v), and tumor (vi), which were obtained at 48 hours after injection. Photo credit: Zhiyi Wang, Peking University, China. (C) The fluorescence intensities of the tumor after intravenous injection of Ag2S@Fe2C-DSPE-PEG and Ag2S@Fe2C-DSPE-PEG-iRGD, respectively. (D) T2 relaxation rate (1/T2) as a function of Fe concentration for the Ag2S@Fe2C-DSPE-PEG-iRGD. (E) Real-time MRI of 4T1 breast cancerbearing mice after intravenous injection of Ag2S@Fe2C-DSPE-PEG and Ag2S@Fe2C-DSPE-PEG-iRGD. (F) The relative MRI signal intensities changing at the tumor site after intravenous injection of Ag2S@Fe2C-DSPE-PEG and Ag2S@Fe2C-DSPE-PEG-iRGD, respectively. (G) The wide-field images show the Ag2S@Fe2C-DSPE-PEG-iRGD luminescence signals in liver and spleen at 1 and 14 days. (H) The excretion of Ag2S@Fe2C-DSPE-PEG-iRGD from mouse liver and spleen can be seen by plotting the signal intensity in these organs (normalized to liver signal observed at 1 day) as a function of time over 2 weeks. (I) Biodistribution of Ag2S@Fe2C-DSPE-PEG-iRGD in main organs and feces of Ag2S@Fe2C-DSPE-PEG-iRGDtreated mice at 14 days. Error bars, means SD (n = 3).

After calculation, the r2 value of Ag2S@Fe2C-DSPE-PEG was around 127.9 mM1 s1 when dispersed in water (Fig. 5D). Furthermore, we assessed the T2-weighted MRI capability in vivo after intravenous injection of Ag2S@Fe2C-DSPE-PEG and Ag2S@Fe2C-DSPE-PEG-iRGD (20 mg kg1, 200 ml) into 4T1 breast cancerbearing nude mice. Figure 5E clearly indicates that the Ag2S@Fe2C-DSPE-PEG-iRGD show stronger signal intensity and make the tumor darker than Ag2S@Fe2C-DSPE-PEG after 24 hours of injection. These results suggest higher accumulations of Ag2S@Fe2C-DSPE-PEG-iRGD at the tumor sites owing to the active targeting by tumor-homing penetration peptide iRGD. Therefore, Ag2S@Fe2C NPs have the potential to be the agents for T2-weighted MRI.

The luminescence signal intensity in the main organs of mice, including liver and spleen, kept decreasing within the monitored time period of 14 days (Fig. 5, G and H). All the urine and feces excreted from mice were collected, and Ag was quantitatively detected by inductively coupled plasma optical emission spectrometry, revealing that ~90% of injected Ag2S@Fe2C-DSPE-PEG-iRGD was excreted from the body in 14 days (Fig. 5I). This rapid, high-degree excretion could promote clinical translation of Ag2S@Fe2C-DSPE-PEG-iRGD.

As mentioned before, angiogenesis as a physiologically complex process of proliferation and migration of endothelial cells could be suppressed by bevacizumab, which will benefit more for the tumor vascular normalization. We evaluated angiogenesis suppression effect of murine bevacizumab by fluorescence imaging in NIR-II and immunohistochemical analysis of CD31. Figure 6A showed the experimental diagram of 4T1 breast cancer angiogenesis by bevacizumab, which was imaged in NIR-II by intraperitoneal injection of low-dose Ag2S@Fe2C-DSPE-PEG-iRGD in 4T1 breast cancerbearing mice. Comparing to the group of saline injection, tumor angiogenesis inhibition effect by bevacizumab was demonstrated in the tumor site in the first 10 days (Fig. 6, B and C, and fig. S10). Then, tumor grew rapidly. Furthermore, the real-time movie of fluorescence imaging in NIR-II was provided in 0 and 20 days for each group (movies S2 to S5). These results also proved that bevacizumab cannot be used as a single drug for tumor. Moreover, CD31 immunohistochemical staining of harvested 4T1 tumor after 20 days was shown in Fig. 6D. We can clearly observe that the tumor vascular density in bevacizumab injection group is notably less than the control group, which is consistent with fluorescence imaging results. Therefore, bevacizumab could influence the tumor vascular normalization of 4T1 breast cancer.

(A) Schematic illustration of self-monitoring for inhibition of tumor angiogenesis by Ag2S@Fe2C-DSPE-PEG-iRGD after intraperitoneal injection of saline and bevacizumab. (B) Real-time NIR-II fluorescence images of 4T1 breast cancerbearing mice after intraperitoneal injection of normal saline and bevacizumab by Ag2S@Fe2C-DSPE-PEG-iRGD. (C) Representative photograph for volume change of tumor after intraperitoneal injection of normal saline and bevacizumab in 20 days. Inset: Corresponding harvested 4T1 breast cancer after 20 days. Photo credit: Zhiyi Wang, Peking University, China. (D) CD31 immunohistochemical staining of harvested 4T1 breast cancer after 20 days. Error bars, means SD (n = 5).

Combination therapy (i.e., photothermal therapy, CDT, and tumor vascular normalization) was investigated by treatment of 4T1 breast cancerbearing mice in vivo. Figure 7A showed the schematic illustration of the therapy process. When laser irradiation is applied to Ag2S@Fe2C-DSPE-PEG-iRGDinjected mice, the local temperature of the tumor site rapidly increases from 37 to 54.7C within 5 min, but for the mice treated with Ag2S@Fe2C-DSPE-PEG, the temperature only reaches to 46.8C (Fig. 7B and fig. S10A). These results confirmed the superior targeting capability of Ag2S@Fe2C-DSPE-PEG-iRGD, which is consistent with the above results of bioimaging. Furthermore, the biodistribution of Ag after intravenous injection for 3 days was detected by inductively coupled plasma mass spectrometry, which confirmed the targeting capacity of Ag2S@Fe2C-DSPE-PEG-iRGD in vivo (fig. S10B). Comparing with other groups, the remarkable antitumor efficiency of Ag2S@Fe2C-DSPE-PEG-iRGD was demonstrated by tumor volume with significant inhibition and elimination in vivo (Fig. 7, C and D, and fig. S10C). The growth status of representative nude mice in each group at the time interval of 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, and 30 days throughout the treatment period was observed (Fig. 7C and fig. S10D). The tumor of harvested mice injected with Ag2S@Fe2C-DSPE-PEG-iRGD and bevacizumab under the laser irradiation (808 nm, 0.3 W cm2) was completely eradicated after treatment. An obvious damage was evidenced to the tumor cells of mice by cell necrosis and apoptosis in the group of injection with Ag2S@Fe2C-DSPE-PEG-iRGD and bevacizumab after laser irradiation. Mice treated with other groups showed less necrotic areas (Fig. 7E). These results showed that Ag2S@Fe2C-DSPE-PEG-iRGD was an efficient nanozyme as targeting nanomaterials with antitumor capacity in 4T1 breast cancerbearing mice.

(A) Schematic illustration of Ag2S@Fe2C-DSPE-PEG-iRGD nanocapsule-based tumor therapy. (B) Real-time thermal infrared images of 4T1 breast cancerbearing mice after intravenous injection of saline, Ag2S@Fe2C-DSPE-PEG + laser, Ag2S@Fe2C-DSPE-PEG + laser + bevacizumab, Ag2S@Fe2C-DSPE-PEG-iRGD + laser, and Ag2S@Fe2C-DSPE-PEG-iRGD + laser + bevacizumab under 808-nm laser irradiation (0.3 W cm2, 5 min). (C) Representative photograph for volume change of tumor in the different treatments in 30 days. Photo credit: Zhiyi Wang, Peking University, China. (D) Volume change of tumor in the different treatments. (E) H&E-stained images of tumor regions with different treatments. Error bars, means SD (n = 5), unpaired t test.

Subsequently, toxicity analysis of these NPs was investigated in vivo. There was no decrease in the weight of the mice in each group during the treatment, which demonstrates the low toxicity of the Ag2S@Fe2C-DSPE-PEG-iRGD (fig. S10C). The histological analysis was done by hematoxylin and eosin (H&E) staining of the main organs after the treatment to study the damage in acute and chronic stages. No tissue necrosis was observed in the main organs (heart, liver, spleen, lung, and kidney) for the seven groups (fig. S12), demonstrating that the Ag2S@Fe2C-DSPE-PEG-iRGD have no significant side effects in vivo.

The complicated TME has brought great challenge to the therapeutic effect of nanomedicine for a long time. As mentioned above, it is almost impossible for specific nanoagents to penetrate the tumor through targeted effect to achieve effective accumulation and cell uptake and then excrete through metabolism after treatment. To overcome the multiple biological barriers during the drug delivery, nanomedicine should be rationally designed. In this work, a precise targeting NP-based nanozyme system (Ag2S@Fe2C-DSPE-PEG-iRGD) was developed for theranostics of breast cancer. At the cellular level, the nanozyme showed the efficient capacity of cell uptake and ROS production. In addition, this nanozyme has developed prominent luminescence in NIR-II and MRI contrast properties, which will be helpful to the visual tracking in vivo. As a result, the improved therapeutic effect was observed by the treatment of Ag2S@Fe2C-DSPE-PEG-iRGD after combination with the tumor vascular normalization based on bevacizumab during the treatment in 4T1 breast cancerbearing mice. Furthermore, ~90% of injected Ag2S@Fe2C-DSPE-PEG-iRGD was excreted from the body in 14 days. This rapid, high-degree excretion could promote clinical translation of Ag2S@Fe2C-DSPE-PEG-iRGD. Hence, this study presents a new therapeutic strategy by the cooperation between catalysis of smart nanozyme system and tumor vascular normalization for intensive combination therapy of breast cancer, which would accelerate exploitation and clinical translation of nanomedicine.

Ag2S@Fe2C NPs were synthesized by a facile seed-mediated growth method. First, Ag2S QDs were synthesized following our previously reported method. In the typical synthesis, Ag2S QDs (10 mg liter1 in hexane, 1 ml), 1-octadecene (ODE) (62.5 mmol), NH4Br (0.1 mmol), and Oleamine (OAm) (1 mmol) were mixed under a gentle N2 flow for 30 min in a four-necked flask. Then, the solution was heated to 120C and kept for 30 min to remove the organic impurities. Fe(CO)5 (5 mmol) was injected into the reaction system when the temperature reached 180C and kept for 10 min, and the system was raised up to 300C for another 30 min. After the system cooled down to room temperature, 27 ml of acetone was added to the system. After centrifugation, the product was washed by ethanol and hexane.

Ag2S@Fe2C-DSPE-PEG was formulated using W/O emulsion method. Typically, DSPE-PEG-NH2 (250.0 mg, 0.05 mmol) was dissolved in 12 ml of deionized water. Subsequently, Ag2S@Fe2C NPs (10 mg ml1 in dichloromethane, 3 ml) was added to the system. Then, the mixed system was kept for 10 min by using ultrasound. The organic solvent in the obtained W/O emulsion was evaporated using a rotary evaporator at 25C for 2 hours. Ag2S@Fe2C-DSPE-PEG was obtained after centrifugation at 10,000g for 10 min. This synthesized Ag2S@Fe2C-DSPE-PEG was dispersed in PBS buffer (pH 7.4) for further use. Ag2S@Fe2C-DSPE-PEG-iRGD was synthesized by using the same method as Ag2S@Fe2C-DSPE-PEG; the only difference was the addition of DSPE-PEG-iRGD.

The cell LIVE/DEAD assays were also studied to investigate photothermal therapy in vitro. The 4T1 cells grown to 80% confluence in glass bottom 24-well plate were incubated with Ag2S@Fe2C-DSPE-PEG for 4 hours, respectively. After washing the free NPs with Dulbeccos Phosphate-Buffered Saline (DPBS), fresh culture medium was added. Laser (808 nm, 0.3 W cm2) was used to irradiate the adherent cell solution. After the Dulbeccos modified Eagle medium was removed, the cells were washed with PBS three times. Calcein-AM (100 l) and PI solution (100 l) were incubated with 4T1 cells for 15 min. Living cells were stained with calcein-AM (green fluorescence), and dead cells were stained with PI (red fluorescence) solution. The cells were then visualized using an inverted microscope (Olympus IX71) with a 10 under laser excitation at 475 and 542 nm.

Mice bearing 200-mm3 4T1 breast cancer were randomly divided into nine groups: (i) Ag2S@Fe2C-DSPE-PEG-iRGD, laser irradiation, and bevacizumab; (ii) Ag2S@Fe2C-DSPE-PEG-iRGD and laser irradiation; (iii) Ag2S@Fe2C-DSPE-PEG, laser irradiation, and bevacizumab; (iv) Ag2S@Fe2C-DSPE-PEG-iRGD and laser irradiation; (v) Ag2S@Fe2C-DSPE-PEG-iRGD; (vi) Ag2S@Fe2C-DSPE-PEG; (vii) bevacizumab; (viii) laser irradiation only; and (ix) control (only saline). Nine mice were contained in each group. After 200 ml of saline or NPs (20 mg kg1) were intravenously injected into nude mice bearing the 4T1 breast cancer for 24 hours, mice were exposed to 808-nm laser (0.3 W cm2) for 5 min and tail veininjected with bevacizumab. The changes of body weight and tumor volume during 30 days of treatment period were recorded.

Immunohistochemical was stained using anti-CD31 antibody, according to the corresponding protocols. Mice from each group were euthanized; then, major organs and tumor were recovered, followed by fixing with 10% neutral-buffered formalin after 18-day treatment. The organs were embedded in paraffin and sectioned at 5 mm. H&E or Prussian blue staining was performed for histological examination. The slides were observed under an optical microscope.

All data are expressed as means SD. Statistical differences were determined by two-tailed Students t test; *P < 0.05, **P < 0.01, and ***P < 0.001.

All experiments involving animals were performed in accordance with the guidelines of the Institutional Animal Care and Use Committee of Peking University, Beijing, China.

Acknowledgments: Funding: This work was supported by the Natural Science Foundation of Beijing Municipality (L72008), the National Natural Science Foundation of China (51672010, 81421004, 51631001, 51590882, and 51602285), the National Key R&D Program of China (2017YFA0206301 and 2016YFA0200102), the Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences (NSKF201607), and China Postdoctoral Science Fund (2019M660315). Author contributions: Z.W. and Y.H. conceived and designed the experiments. Z.W., Z.L., Z.S., S.L., S.Z., S.W., Q.R., and F.S. performed the experiments. Z.W. and Y.H. analyzed the results. Z.W., Z.A., B.W., and Y.H. wrote and revised the manuscript. Z.W. and Y.H. supervised the entire project. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Read more:
Visualization nanozyme based on tumor microenvironment unlocking for intensive combination therapy of breast cancer - Science Advances

Read More...

Nanomedicine Market 2019 Global Outlook, Research, Trends and Forecast to 2025 – The Haitian-Caribbean News Network

Friday, December 4th, 2020

Nanomedicine Market Forecast 2020-2026

The Global Nanomedicine Market research report provides and in-depth analysis on industry- and economy-wide database for business management that could potentially offer development and profitability for players in this market. This is a latest report, covering the current COVID-19 impact on the market. The pandemic of Coronavirus (COVID-19) has affected every aspect of life globally. This has brought along several changes in market conditions. The rapidly changing market scenario and initial and future assessment of the impact is covered in the report. It offers critical information pertaining to the current and future growth of the market. It focuses on technologies, volume, and materials in, and in-depth analysis of the market. The study has a section dedicated for profiling key companies in the market along with the market shares they hold.

The report consists of trends that are anticipated to impact the growth of the Nanomedicine Market during the forecast period between 2020 and 2026. Evaluation of these trends is included in the report, along with their product innovations.

Get a PDF Copy of the Sample Report for free @ https://www.upmarketresearch.com/home/requested_sample/11972

The Report Covers the Following Companies:CombimatrixAblynxAbraxis BioscienceCelgeneMallinckrodtArrowhead ResearchGE HealthcareMerckPfizerNanosphereEpeius BiotechnologiesCytimmune SciencesNanospectra Biosciences

By Types:Quantum dotsNanoparticlesNanoshellsNanotubesNanodevices

By Applications:Segmentation encompasses oncologyInfectious diseasesCardiologyOrthopedicsOthers

Furthermore, the report includes growth rate of the global market, consumption tables, facts, figures, and statistics of key segments.

By Regions:

Grab Your Report at an Impressive Discount! Please click here @ https://www.upmarketresearch.com/home/request_for_discount/11972

Years Considered to Estimate the Market Size:History Year: 2015-2019Base Year: 2019Estimated Year: 2020Forecast Year: 2020-2026

Important Facts about Nanomedicine Market Report:

What Our Report Offers:

Make an Inquiry of This Report @ https://www.upmarketresearch.com/home/enquiry_before_buying/11972

About UpMarketResearch:Up Market Research (https://www.upmarketresearch.com) is a leading distributor of market research report with more than 800+ global clients. As a market research company, we take pride in equipping our clients with insights and data that holds the power to truly make a difference to their business. Our mission is singular and well-defined we want to help our clients envisage their business environment so that they are able to make informed, strategic and therefore successful decisions for themselves.

Contact Info UpMarketResearchName Alex MathewsEmail [emailprotected]Organization UpMarketResearchAddress 500 East E Street, Ontario, CA 91764, United States.

Read this article:
Nanomedicine Market 2019 Global Outlook, Research, Trends and Forecast to 2025 - The Haitian-Caribbean News Network

Read More...

Israeli Scientists Kill Cancer With Revolutionary DNA-Altering Treatment (with VIDEO) – The Media Line

Friday, December 4th, 2020

Tel Aviv University researchers use tiny molecular scissors to target aggressive metastatic cancer cells

Israeli scientists have developed a cutting-edge nanotechnology system that can destroy cancerous cells in mice.

The Tel Aviv University team of researchers pioneered a treatment method that is so precise, it is almost as if tiny molecular scissors were being used to kill the cancer.

We developed a delivery system for these molecular scissors that can specifically reach tumor cells while leaving normal cells intact, Dr. Daniel Rosenblum, a postdoctoral fellow from the Laboratory of Precision NanoMedicine at the Shmunis School of Biomedicine and Cancer Research at Tel Aviv University, told The Media Line.

By cutting their DNA in specific genes that are responsible for cell division or cell survival, we basically neutralize them and they die from the treatment, he said. The system we developed is based on the Cas9 CRISPR protein in a [messenger] RNA format.

The process, known as CRISPR genome editing, allows researchers to alter DNA sequences. Specifically, scientists at the university created what is known as CRISPR-LNPs, a lipid nanoparticle delivery system that carries a genetic messenger (known as messenger RNA), along with a navigation system that can recognize cancerous cells.

The findings of the peer-reviewed research were published last month in the Science Advances journal.

This is the first study in the world to prove that the CRISPR genome editing system can be used to treat cancer in a living animal effectively,said Prof. Dan Peer, vice president for Research and Development at Tel Aviv University and head of TAUs Laboratory of Precision NanoMedicine.

The idea there is to take the cells from the patients, edit them in a plate outside the body and then inject them back into the patient, he told The Media Line. We believe that this could be expanded to much more than just the two models that we have tried.

So far, researchers at Tel Aviv University have tested the technology on mice and have observed no adverse reactions. This stands in contrast to chemotherapy, which kills both cancerous and healthy cells.

The CRISPR-LNPs were tested on glioblastoma tumors, an extremely aggressive type of brain cancer that has a five-year survival rate of only 3%. In addition, the researchers tested the system on metastatic ovarian cancer, a major cause of death among women and the most lethal cancer in the female reproductive system.

Wake up to the Trusted Mideast News source Mideast Daily News Email

For the glioblastoma tumors, the treatment was found to double the average life expectancy of mice and improve their overall survival rate by about 30%. For ovarian cancer, the overall survival rate rose by a whopping 80%.

When we started we thought this was a science-fiction approach but basically it works, at least in the animal models that we have tried

We envision that we can simply inject [the treatment] into the body and because of the GPS they can find their way to the tumor, Anna Gutkin, a doctoral student in the laboratory, told The Media Line. We encountered several hurdles in the development of this technology but its exciting to work on this. It really opens new avenues for us to develop novel therapies.

Aside from its potentially revolutionary impact on future cancer treatments, the technology also opens the door for treating rare genetic diseases and viral diseases such as AIDS, according to the researchers. A similar technology based on messenger RNA currently is being used by Pfizer (BioNTech) and Moderna for their COVID-19 vaccines.

Our system is a bit more sophisticated both from the materials they are created from [and] we also gave it a GPS system, which is pretty unique, Rosenblum noted.

In the future, Peer and his team hope to test the groundbreaking technology on larger animal models. Human trials are expected to begin in about two years.

Because of the coronavirus crisis we have witnessed how fast new approaches could be translated into the clinic, Peer said.

When we started we thought this was a science-fiction approach but basically it works, at least in the animal models that we have tried, he concluded.

Read the original here:
Israeli Scientists Kill Cancer With Revolutionary DNA-Altering Treatment (with VIDEO) - The Media Line

Read More...

Nanomedicine Market 2020 by Industry Growth And Competitive Landscape Trends, Segmentation SRI International (US), Aditech Ltd. (UK), Anviz Global,…

Friday, December 4th, 2020

Introduction:

This exclusive research report on global Nanomedicine market initiated by Orbis Pharma Reports is an demonstrative replica of diverse market relevant factors dominant across historical and current timelines. The report is anticipated to aid market players willing to upscale their business models and ROI. The report carries out a deep analytical study to identify and understand the potential of core factors that stimulate high end growth. In this report, expert research analysts at Orbis Pharma Reports categorically focus on the pre and post pandemic market conditions to equip readers with ample cues on market progression based on which frontline vendors and other contributing players can successfully design and deploy accurate business decisions and apt growth strategies to secure a healthy footing amidst stringent market competition, fast transitioning regulatory framework and vendor preferences.

Get sample copy of Nanomedicine Market report @ https://www.orbispharmareports.com/sample-request/81199

Major Company Profiles operating in the Nanomedicine Market:

CIC biomaGUNESwedNanoTechBiotechrabbitChemConnectionLTFNAffilogicIstec CNREndomagneticsCarlina technologiesVicomtechVITO NVGrupo PraxisCIBER-BBNGIMACTecnaliaBraccoCristal TherapeuticsTeknikerFraunhofer ICT-IMMBergmannstrostMaterials Research CentreContiproDTIIMDEA

Scope:

The report also includes specific details on core developments such as pricing strategies and manufacturer investments towards selecting growth appropriate business decisions, understanding core methodologies, market size, dimensions as well as share, and market CAGR inputs and investments that collectively illuminate growth favorable route in global Nanomedicine market.Based on market research endeavors and gauging into past growth milestones, seasoned in-house researchers at Orbis Pharma Reports are suggesting an impressive comeback of global Nanomedicine market, significantly offsetting the implications of the global pandemic and its aftermath.

Browse the complete report @ https://www.orbispharmareports.com/global-nanomedicine-market-report-2019-competitive-landscape-trends-and-opportunities/

Nanomedicine Market Product Type:

Type 1Type 2Type 3

Nanomedicine Market Application:

Application 1Application 2Application 3

Segmentation by Type and ApplicationThe end-use application segment is thoroughly influenced by fast transitioning end-user inclination and preferences. Product and application-based segments clearly focus on the array of novel changes and new investments made by market forerunners towards improving product qualities to align with end-use needs. Additionally, this report by Orbis Pharma Reports also includes a dedicated section on various categorization of the market based on product type and diversification. Each of the product and service offerings are maneuvered to undergo rapid transitions to improve growth scope and investment returns in the coming years.

Report Offerings in a Gist:

1.The report by Orbis Pharma Reports outlines crucial attributes of the global Nanomedicine market with detailed understanding of major innovations and events, also highlighting growth plot chalked by leading players2.A decisive overview of macro and micro economic factors have also been highlighted in the report to understand major influences and drivers3.An in-depth impression of crucial technological milestones and a value-based and volume-based output of the same have also been pinned in the report.4.Rife predictions on segment performance and opportunity analysis have also been minutely addressed in the report to decipher growth process and futuristic possibilities.

For Any Query on the Nanomedicine Market: https://www.orbispharmareports.com/enquiry-before-buying/81199

About Us :

At Orbispharma we curate the most relevant news stories, features, analysis and research reports on the important challenges undertaken by the pharmaceutical and related sectors. Our editorial philosophy is to bring you sharp, focused and informed perspective of industries, the end users and application of all upcoming trends into the pharma sector. Orbispharma believes in conversations that can bring a change in one of the most crucial economic sectors in the world. With these conversations we wish our customers to make sound business decisions with right business intelligence.

Contact Us :

Read more from the original source:
Nanomedicine Market 2020 by Industry Growth And Competitive Landscape Trends, Segmentation SRI International (US), Aditech Ltd. (UK), Anviz Global,...

Read More...

And Now, a Moment for Culture(d Meat) – The Spoon

Friday, December 4th, 2020

If youre doing it right, your Thanksgiving leftovers should be gone by now (so many turkey+stuffing+gravy sandwiches!).

Evidently, preparing for Thanksgiving in the middle of a year-long pandemic was a logistical nightmare for BIG TURKEY (Butterball, Perdue, Foster Farms, etc.), thanks to labor shortages and reduced family gatherings.

This got me wondering how long it will be before we see lab-grown, cultured turkey on the tables. Sure, cultured meat still has to overcome issues around scale, affordability and widespread governmental approval. And there are some who doubt whether cultured meat will ever become a thing at all.

But as an industry sector, cultured meats march towards our dinner table continues to make gains. Just this week, Eat Just announced today that it received the worlds first regulatory approval to sell cultured chicken in Singapore. And thats just the latest development capping off what has been a robust year in the cell cultured meat space that has also featured:

And that doesnt even include the Ouroboros Steak art project that designed a kit for creating cell-based human meat. (Relax, its not real.) (We hope.)

While 2020 has been a pretty garbage year for the most part, that just hasnt been the case for cell-based meats. As you can see from the assortment of stories, lot of companies are working on the problem from a lot of different angles, and all of them are making progress.

Now, we wont be serving lab-grown turkey next year (or, presumably the year after that), but watching all these startups innovate on food tech that could help make food production more abundant and equitable is something to be thankful for.

Tetras Tiny Dishwasher (Finally) Headed to Market

Heatworks Tetra countertop dishwasher is an example of a product that I totally dont need and yet totally want.

We first covered the Tetra back at CES 2018, where we were enthralled by the diminutive dishwasher that could clean a few settings of dishes with only a half gallon of water in ten minutes. Fun!

Well, things have been quiet on the Tetra front since that CES and we were wondering if the device would ever actually make it to market. Turns out, the company was trying to solve the complex issue around soap dispensing in its machine.

This week, Heatworks announced that it has partnered with BASF to make that complicated mechanism and bring the Tetra to market. According to the press announcement, the improved Tetra will be designed to deliver custom solutions and dosing, dependent on the selected wash cycle, ensuring each cleaning cycle is optimized. Tetras cartridges will last for multiple loads and consumers will be able to sign up for a subscription, so that cartridges are shipped to them automatically.

That last part about a proprietary soap cartridge is a bit of a bummer. Were not a big fan of Keurig-style solutions that lock you into a particular ecosystem. But we are happy to see that the Tetra is still alive and expected to be available in the back half of 2021.

More Headlines

Exclusive: Blendid and Jamba Co-Brand New Smoothie Robot The robot is now open for business at a Walmart in Dixon, California. This is the first co-branded robot from Blendid and its second to open up at a Walmart.

Zuul Teams Up With Thrillist to Launch Rotating Ghost Kitchen A series of 10 different NYC restaurants will each hold a two-week residency offering exclusive delivery-only meal offerings made out of Zuuls ghost kitchen facility in Manhattans SoHo neighborhood.

The Spoons Plant-Based Egg Round-Up Plant-based eggs are poised to become the next big thing in the plant-based space, and it can be hard to keep up with all of the companies involved in this industry. Weve pulled together some of the emerging and bigger players in this space.

3D Meat Printing Startup SavorEat Goes Public The Israeli startup has had an initial public offering (IPO) on Tel Aviv Stock Exchange (TASE), raising NIS 42.6 million ($13 million) in funding.

HungryPanda Raises $70M to Provide Food Delivery to Overseas Chinese Customers The London, U.K.-based company will use the new funds to continue its global expansion, delivering authentic Chinese restaurant food and groceries to Chinese people living abroad.

Related

See the article here:
And Now, a Moment for Culture(d Meat) - The Spoon

Read More...

How to live longer: Calorie restriction may reset your biological body clock – Express

Friday, December 4th, 2020

A calorie restricted diet generally consists of eating a very low-calorie but nutritionally balanced diet that meets 100 percent of vitamin, mineral, protein and essential fat needs, according to Harvard Health.

The link between calorie restriction and longevity has been established across many species.

In a study published in Nature Communications, researchers found that monkeys who ate a 30 percent calorie restricted diet lived longer than those on a regular diet.

Six of the 20 monkeys on a calorie restricted diet have lived beyond 40 years.

READ MORE:How to live longer: Diet shown to burn fat, improve heart health and to boost longevity

However, Duke researchers mounted this hurdle by looking at measures of biological age.

In a study published earlier this year in The Journals of Gerontology: Series A, researchers divided volunteers into two groups a calorie restriction group and a regular diet group.

The calorie restriction group aimed to cut their caloric intake by 25 percent although by the end of the two-year study they had only achieved a 12 percent reduction.

After each one-year period, the biological age of people in the calorie restriction group increased by 0.11 years, compared with 0.71 years for people who stuck with their usual diets.

Researchers calculated biological age using chronological age and biomarkers for things such as cardiovascular and immune system function, total cholesterol, and haemoglobin levels.

However, researchers only followed people for two years - whether these benefits continue after this point, and at what level, is unknown.

It is unclear exactly why calorie restriction increases the lifespan of many species.

The somewhat limited evidence that does exist suggests it involves resetting the bodys biological clock.

This clock is more usefully understood as a set of genes that change activity in order to sync with the cycle of day and night.

In a recent study published in the journal Cell, researchers found that the biological clock activated different genes in liver cells of older mice, compared with younger ones. As a result, cells in older mice processed energy inefficiently.

However, when researchers cut the calorie intake for older mice by 30 percent for six months, the energy processing in the cells resembled that of young mice.

A second research group, in another study published in Cell, saw a similar reboot of the biologic clock of stem cells in older mice fed a calorie-restricted diet.

Continued here:
How to live longer: Calorie restriction may reset your biological body clock - Express

Read More...

Have diabetes? Health care group provides tips on how to manage the disease – KSAT San Antonio

Friday, December 4th, 2020

The holidays can be a particularly difficult time, especially for seniors with diabetes.

Dr. Martin Nejat, a family medicine doctor at Conviva Care Centers, has provided some insight on why its so important to stay healthy during the pandemic.

What exactly is diabetes?

Our body breaks down the food we eat into sugar or energy, stated Conviva Care Centers. The pancreas makes insulin to help push the sugar into your cells. When you have diabetes, your body either cant make enough of the insulin, or is not able to use it as well as it should.

Diabetes is a very serious condition its a complex medical problem that is very prevalent in the San Antonio area, according to Nejat.

There are four types of diabetes. In the San Antonio area, when we talk about diabetes, we are usually referring to Type 2 diabetes, Nejat said. Its a disease of basically obesity. The sugars are high because the body simultaneously has decreased insulin production and insulin resistance and both of these conditions are caused by obesity.

Is all sugar created equal?

Absolutely not. One way to monitor this is by using the glycemic index, said a representative for Conviva Care Centers.

Nejat said any organ in the body can be affected by high sugar.

Right now we are in a pandemic, and one of the ways that makes you more likely to have serious complications of COVID is poorly controlled diabetes, Nejat said.

How should I read a nutrition label to assess if this food is OK for me to eat?

You want to pay close attention to the carbohydrates, which are broken down into sugar, specifically, the added sugar.

Another rule of thumb is to do most of your grocery shopping around the perimeter of the grocery store, picking up fresh fruit and produce, meats, etc., and stay away from the packaged goods, known as processed foods.

How do I lower my blood sugar?

Take medication, have a balanced diet, drink plenty of water and exercise frequently.

If you are looking for a new health care group, Conviva Care Centers has eight locations in San Antonio -- and each location has activity centers that are free and open to anyone ages 55 and older for primary care. To learn more, click here.

Visit link:
Have diabetes? Health care group provides tips on how to manage the disease - KSAT San Antonio

Read More...

Noninvasive, Low Cost CGM for Type 2 Diabetes Coming in US and EU – Medscape

Friday, December 4th, 2020

A novel lower-cost noninvasive continuous glucose monitor (CGM) combined with a digital education/guidance program is set to launch in the United States and Europe this month for use in type 2 diabetes.

With the goal of improving management, or even reversing the condition, Neumara's SugarBEAT device is thought to be the world's first noninvasive CGM.

Its cost is anticipated to be far lower than traditional CGM, and it's aimed at a different patient population: those with type 2 diabetes or prediabetes who may or may not be performing fingerstick glucose monitoring, but if they are, they still aren't using the information to guide management.

"This isn't about handing out devices and letting patients get on about it on their own accord. This is really about supporting those individuals," Faz Chowdhury, MD, Nemaura's chief executive officer, told Medscape Medical News in an interview.

He pointed to studies showing improvements in glycemic control in patients with type 2 diabetes who were instructed to perform fingerstick blood glucose testing seven times a day for 3-4 days a month and given advice about how to respond to the data.

"This is well-established. We're saying we can make that process a lot more scalable and affordable and convenient for the patient...The behavior change side is digitized," Chowdhury said. "We want to provide a program to help people reverse their diabetes or at least stabilize it as much as possible."

Asked to comment, Nicholas Argento, MD, diabetes technology director at Maryland Endocrine and Diabetes, Columbia, told Medscape Medical News: "It's interesting. They're taking a very different approach. I think there's a lot of validity to what they're looking at because we have great CGMs right now, but because of the price point it's not accessible to a lot of people."

"I think they're onto something that could prove to be useful to a larger group of patients," he added.

Instead of inserting a catheter under the skin with a needle, as do current CGMs, the device comprises a small rechargeable transmitter and adhesive patch with a sensor that sits on the top of the skin, typically the upper arm. Glucose molecules are drawn out of the interstitial fluid just below the skin and into a chamber where the transmitter measures the glucose level and transmits the data every 5 minutes via Bluetooth to a smartphone app.

Despite this noninvasive approach, the device appears to be about as accurate as traditional CGMs, with comparable mean absolute relative difference (MARD) from a gold standard glucose measure of about 11%-12% with once-daily calibration versus 10%-11% for the Abbott FreeStyle Libre.

Unlike traditional CGMs, SugarBEAT is meant to be worn for only 14 hours at a timeduring the day and for 2-4 days per month rather than every day.

It's not aimed at patients with type 1 diabetes or those with type 2 diabetes who are at high risk for hypoglycemia. It requires once-daily fingerstick calibration and is not indicated to replace fingersticks for treatment decisions.

SugarBEAT received a CE Mark in Europe as a Class IIb medical device in May 2019. That version provides real-time glucose values visible to the wearer. In the United States the company submitted a premarketing approval application for the device to the Food and Drug Administration (FDA) in July 2020, which awaits a decision.

However, FDA is allowing it to enter the US market as a "wellness" device that won't deliver real-time values for now but instead will generate retroactive reports available to the physician and the patient.

And last month, UK-based Neumara launched the BEATdiabetes site, which allows users to sign in and link to the device once it becomes available.

The site provides "scientifically validated, personalized coaching" based on a program developed at the Joslin Diabetes Clinic, and will ultimately include monitoring of other cardiovascular risk factors with digital connectivity to a variety of wearables.

"Fingerstick monitoring for type 2 diabetes is only so useful," Argento told Medscape Medical News.

"It's difficult to get people to monitor in a meaningful way." If patients perform them only in the morning or at other sporadic times of the day, he said, "Then you get a one-dimensional picture...and they don't know what to do with the information anyway, so they stop doing it."

In contrast, with SugarBEAT and BEATDiabetes, "I think it does address a need that fingerstick monitoring doesn't."

Argento did express a few caveats about the device, however. For one, it still requires one fingerstick a day for calibration. "If people don't like needles, that might be a disincentive."

Also, despite the apparently comparable MARD to that of conventional CGMs, that measure can still "hide" values that may be consistently either above or below target range.

"MARD is like A1c in that it's useful but limited...It doesn't tell you about variability or systemic bias."

Argento also said that he'd like to see data on the lag time between the interstitial fluid and blood glucose measures with this noninvasive method as compared to that of a subcutaneous catheter.

However, he acknowledged that these potentials for error would be less important for patients with type 2 diabetes who aren't generally taking medications that increase their risk for hypoglycemia.

In all, he said, "Stay tuned. I think this is part of a movement going away from point-in-time to looking at trends and wearables and data to enrich decision-makingThere are still some unanswered questions I have but I think they're onto a concept that's useful for a broader population."

Chowdhury is an employee of Neumara. Argento consults for Senseonics and Dexcom, and is also a speaker for Dexcom.

For more diabetes and endocrinology news, follow us on Twitter and Facebook.

Read the original post:
Noninvasive, Low Cost CGM for Type 2 Diabetes Coming in US and EU - Medscape

Read More...

Ask A Doc: Everything You Need To Know About Diabetes – CBS Baltimore

Friday, December 4th, 2020

November was National Diabetes Month. WJZs Nicole Baker spoke with LifeBridge Health Dr. Asha Thomas about what diabetes is and how to prevent getting at least one form of it.

Thomas, who is the Division Head of Endocrinology & Metabolism and Vice Chair of the Department of Medicine at Sinai Hospital, answered questions about diabetes prevention and treatment.

You can watch the full interview above. Heres some of the Q&A:

Nicole Baker: So we know that you work in Endocrinology and Metabolism at Sinai, which means you really know how diabetes works, but for people who may not specifically know about diabetes explain in simple terms, what it is.

Dr. Asha Thomas: Absolutely, in terms of diabetes, a word we hear a lot, I think automatically when we hear the word, we think of sugar and blood sugar and all of this. But in general, diabetes is a disorder where there is a mismatch between how our body handles carbohydrates and sugars. And how insulin works in our bodies, and you know there are different types of diabetes which we can talk about, but in essence, that is really the issue. Its just our bodys inability to kind of manage and handle our sugars or carbohydrates.

NB: What are some of the habits lifestyle changes folks can make if they are prediabetic or is it too late at that point?

Dr. Thomas: That is the population, honestly that for myself, Im most excited to try to capture because there are certain things that are actually pretty low tech and not very expensive that are very, very effective. So primarily diet, exercise and weight, either at least even maintenance or weight loss. So if we capture folks in that range, were really able to prevent diabetes.

The other thing to talk about that I think is very important is whos at risk for this. So its a whole host of people these are people who have a strong family history of diabetes. Folks, particularly women, whove had gestational diabetes or diabetes during a pregnancy. They have a higher risk of developing diabetes later on. Different ethnic groups have a higher risk of diabetes including African American, Hispanic, Asian Americans, Native Americans. Then obviously young people, children who are overweight during their youth and teen years as another high risk group, so if we can target that and really work with them early big benefits later on.

NB: What is the difference between Type 1 Diabetes and Type 2 Diabetes? People may not know how they differ.

Dr. Thomas: Thats actually a distinction thats becoming more and more complicated. But generally Type 1 Diabetes is a disorder. That is an autoimmune problem, where our bodys pancreas is really getting sort of damaged from an autoimmune process, such that we just dont make enough insulin. Traditionally, we think of it as younger people who get it, that they may develop it, you know when theyre young sort of between 4 and 6. And then theres another sort of peak like in the early teen years where they present and many times they present, theyre not feeling well and they need insulin from the beginning.

Type 2 Diabetes is more traditional, what we think of like a more of an adult who presents with diabetes with an abnormal blood test. It can be because they had issues with weight loss, fatigue, blurred vision, going to the bathroom a lot to urinate and feeling really thirsty. Generally those are folks that are diagnosed and they can be managed either with pills or with insulin, depending on how far along. Sometimes its not that easy to tell between the two and there are different genetic components of each one as well.

Visit link:
Ask A Doc: Everything You Need To Know About Diabetes - CBS Baltimore

Read More...

The Link Between Diabetes and Severe COVID-19 – Healthline

Friday, December 4th, 2020

A growing body of research suggests that people with diabetes are more likely than others to develop severe COVID-19. Those with difficulty managing their diabetes may be at particularly high risk.

In a study published earlier this month, researchers from Kings College London in the United Kingdom evaluated patients with diabetes who had been admitted to the hospital for COVID-19.

They found that patients who had a complication known as diabetic retinopathy were more likely than other patients with diabetes to develop severe breathing problems from COVID-19.

Patients with diabetic retinopathy were five times more likely than other patients with diabetes to be intubated and put on a ventilator to help them breathe.

This is the first time that retinopathy has been linked to severe COVID-19 in people with diabetes, lead author of the study, Dr. Antonella Corcillo, said in a press release.

Retinopathy is a marker of damage to the blood vessels, and our results suggest that such preexisting damage to blood vessels may result in a more severe COVID-19 infection requiring intensive care treatment, she added.

Diabetic retinopathy is a type of eye disease that develops when small blood vessels in the eye are damaged. Its one of many potential complications of type 1 and type 2 diabetes.

Diabetic retinopathy itself may not cause more severe COVID-19. Rather, its possible that the underlying blood vessel damage that causes retinopathy also contributes to an increased risk of complications from COVID-19.

Over time, high blood sugar levels in people with diabetes can damage blood vessels in not only the eye but also other parts of the body.

Preexisting blood vessel damage may put people with COVID-19 at heightened risk of complications from the infection.

Dr. Mangala Narasimhan, SVP, director of critical care services at Northwell Health in New Hyde Park, New York, told Healthline that developing diabetic retinopathy may indicate that diabetes is affecting a persons overall health.

We know people with more comorbidities do worse with COVID, so this study would be consistent with that overall theme, Narasimhan said.

The Centers for Disease Control and Prevention (CDC) warns that people with type 2 diabetes are at heightened risk of severe illness from COVID-19. Those with type 1 or gestational diabetes might also be at increased risk.

To protect their health, its important for people with diabetes to manage their blood sugar levels and other risk factors including blood pressure, blood cholesterol, and weight.

This can help reduce the chances of developing complications from diabetes, including blood vessel damage. It may also lower their risk of developing severe COVID-19 if they contract the novel coronavirus.

Gaining control of [unmanaged] diabetes can be a daunting task, but its important for patients to remember that even small efforts can result in significant improvement and therefore a reduction in risk of complications from COVID-19, Dr. Minisha Sood, an endocrinologist at Lenox Hill Hospital in New York City, told Healthline.

To maintain healthy blood sugar levels, blood pressure, cholesterol, and weight, practicing healthy habits is key. Its also important for people with diabetes to schedule regular health checkups and follow their doctors recommendations for blood sugar testing, said Narasimhan.

Regular physician follow up, ophthalmology follow up, and control of diet and exercise, along with social distancing and mask wearing, are the best steps you can take to prevent severe COVID infection, Narasimhan advises.

The more you manage your diabetes, the better you will do with COVID, she added.

Read more from the original source:
The Link Between Diabetes and Severe COVID-19 - Healthline

Read More...

Covid-19’s terrible toll on diabetes patients. What can be done? – MedCity News

Friday, December 4th, 2020

The impact Covid-19 has had on people with chronic conditions has been dramatic. Among those younger than 65 who died from the virus, 20% had diabetes, according to data from the U.S. Centers for Disease Control and Prevention, based on data collected through November 14.

The virus poses myriad challenges for people struggling with Type 2 diabetes, which requires constant, long-term management. But the stress caused by Covid-19s impact on the economy, and indirectly by the CDC guidance to reduce risk of contracting Covid-19 by social distancing, can also cause depression, which many people with chronic conditions struggle with as it is.

More than 200 healthcare professionals from 47 countries have ranked diabetes as the condition that will be most impacted by the reduction in healthcare resources due to Covid-19, according to a new report from Omada Health: 5 reasons why Covid-19 makes digital diabetes treatment critical.

The public health crisis drives home the need for diabetes management programs with an effectiveness that can help vulnerable people weather this trying time.

The rapid scaling up of telehealth options by hospitals to reduce the number of people coming to the hospital has been a significant development that could be a great source of comfort long after the virus is no longer a public health crisis. And yet, gaps remain in telehealth services.

Covid-19 has made the need for personalized care even more important. Its critical that people with diabetes have access to support that fits their lifestyle, and is accessible when they need it most, according to the Omada Health report.

Omada for Diabetes program participants achieved meaningful outcomes four months after beginning the program, even prior to the inclusion of continuous glucose monitoring (CGM), according to a new study conducted between November 2019 and July 2020. Four months after beginning the program, participants decreased total cholesterol by 39 points on average for people with high cholesterol.

All study participants also reduced average Hemoglobin A1c by 0.8 percent, including a 1.4 percent average reduction for individuals with starting values at or above 9 percent.

To learn more about the impact of Covid-19 on people with diabetes and the Omada for Diabetes program, Fill in the form below to download 5 reasons why Covid-19 makes digital diabetes treatment critical.

Photo: NicoElNino, Getty Images

Excerpt from:
Covid-19's terrible toll on diabetes patients. What can be done? - MedCity News

Read More...

Prevent type 2 diabetes with 5 tips from Blue Cross and Blue Shield of Alabama – Bham Now

Friday, December 4th, 2020

Author Irene Richardson - November 30, 2020November 30, 2020Exercise is an important step in preventing type 2 diabetes. Photo via Blue Cross and Blue Shield of Alabama (photo taken in 2019)

As we close out National Diabetes Awareness month, its important to remind ourselves of the risks attached to diabetes. By changing a few habits, you can prevent type 2 diabetes and manage it. We caught up with Blue Cross and Blue Shield of Alabamas senior medical director, Dr. Anne Schmidt, to learn what resources are available.

One of the things that always stands out to me is when you look at national statistics from the CDC, they state if we changed diet and activity level along with peoples use of tobacco we could prevent 80% of type 2 diabetes.

You read that right80%. A 2019 report from the CDC states that from the over 34 million Americans who have diabetes, approximately 90-95% of them have type 2 diabetes. Lets look at how we can lower this statistic.

Diabetes isnt just about blood sugar. It affects kidney health and can cause higher rates of kidney failure and dialysis. Diabetes also affects blood sugar and how your body metabolizes fat. There are all kinds of different impacts of diabetes beyond just blood sugar. So, thats why its really important we help patients manage that.

Most people look at any lifestyle change as a daunting task. Even getting up 10 minutes earlier than your normal routine can prove difficult.

Its true that redirecting daily habits isnt always as easy as it appears on the surface. But, in order to prevent type 2 diabetes, these modifications wont require a complete overhaul of your life.

Incorporate changes into your daily life. We know if you lose 5-7% of your body weight and get 150 minutes of physical activity a week, it can make significant improvements.

This might look like finding ways to add in an extra green vegetable at lunch and dinnertime as you begin to develop new healthier habits.

In terms of exercise, its the same deal. You hear it over and over for a reasonuse the stairs, park a little further away, walk around the block on your lunch break.

When it comes to 20 minutes of exercise a day versus kidney disease, Ill side with the former. We even rounded up 19 trails in Birmingham you can enjoy while also staying socially distanced.

A common myth Dr. Schmidt says people tend to believe is that if diabetes runs in your family, youre doomed. Too often, people give up trying to prevent type 2 diabetes with the notion that their fate is already crystal clear.

Even if you already have type 1 or type 2 diabetes, its not unrealistic to manage it and live a comfortable life.

Its possible to manage diabetes. Some people who have relatives with diabetes might have a fatalistic attitude of, I might as well give up because Im going to end up like my aunt or dad or grandfather.'

While you cant prevent type 1 diabetes, BCBSAL has great resources like lifestyle management programs for living with type 1 diagnosis that well talk about later. Type 2 diabetes, on the other hand, is avoidable. Prevention practices should take place as early as possible.

We are seeing Type 2 diabetes in elementary school-aged children now. Its never too young to start thinking about preventing the diagnosis.

Its really about exercise, in addition to your diet. Exercise changes the way your body processes the sugar that you eat.

Whether youre hoping to prevent diabetes or looking to navigate your condition, BCBSAL has many valuable resources for its members including myBlueWellness. This program provides important information about making better choices when it comes to managing habits and becoming compliant with a treatment plan.

BCBSAL offers chronic condition coaching programs. Type 2 diabetes is one of the diagnoses most prevalent in our state. We use clinical guidelines and offer educational materials and self-management support strategies for members.

If you have type 1 or type 2 diabetes, BCBSAL ensures youre on the best track to managing it.

If you manage your diabetes well, you can live a long and healthy life. BCBSAL can definitely help through diabetes prevention programs and chronic condition coaching. We also have lifestyle management programs.

Its also imperative you maintain routine doctors visits. If youre not comfortable heading into the doc right now, take advantage of BCBSALs telehealth services.

Related

Visit link:
Prevent type 2 diabetes with 5 tips from Blue Cross and Blue Shield of Alabama - Bham Now

Read More...

Diabetic Retinopathy May Predict Greater Risk of COVID-19 Severity – Medscape

Friday, December 4th, 2020

Editor's note: Find the latest COVID-19 news and guidance in Medscape's Coronavirus Resource Center.

Risk of intubation for COVID-19 in very sick hospitalized patients was increased over fivefold in those with diabetic retinopathy compared to those without, in a small single-center study from the UK.

Importantly, the risk of intubation was independent of conventional risk factors for poor COVID-19 outcomes.

"People with pre-existing diabetes-related vascular damage, such as retinopathy, might be predisposed to a more severe form of COVID-19 requiring ventilation in the intensive therapy unit," said lead investigator Janaka Karalliedde, MBBS, PhD.

Karalliedde and his colleagues note that this is "the first description of diabetic retinopathy as a potential risk factor for poor COVID-19 outcomes."

"For this reason, looking for the presence or history of retinopathy or other vascular complications of diabetes may help health care professionals identify patients at high risk of severe COVID-19," added Karalliedde, of Guy's and St Thomas' NHS Foundation Trust, London, UK.

The study was published online in Diabetes Research and Clinical Practice.

The prevalence of diabetic retinopathy is thought to be around 55% in people with type 1 diabetes and 30% in people with type 2 diabetes, on average.

Karalliedde is part of a research group at King's College London that has been focused on how vascular disease may predispose to more severe COVID-19.

"COVID-19 affects the blood vessels all over the body," he said, so they wondered whetherhaving pre-existing retinopathy "would predispose to a severe manifestation of COVID-19."

The observational study included 187 patients with diabetes (179 patients with type 2 diabetes and eight patients with type 1 diabetes)hospitalized with COVID-19 at Guy's and St Thomas' NHS Foundation Trust between March 12 to April 7 (the peak of the first wave of the pandemic in the UK).

"It was an ethnically diverse population who were very sick and provides a clinical observation of real life," Karalliedde said.

Nearly half of patients were African Caribbean (44%), 39% were White, and 17% were of other ethnicities, including 8% who were Asian. The mean age of the cohort was 68 years (range, 22-97 years), and 60% were men.

Diabetic retinopathy was reported in 67 (36%) patients, of whom 80% had background retinopathy and 20% had more advanced retinopathy.

They then looked at whether the presence of retinopathy was associated with a more severe manifestation of COVID-19 as defined by the need for tracheal intubation.

Of the 187 patients, 26% were intubated and 45% of these patients had diabetic retinopathy.

The analysis showed those with diabetic retinopathy had an over fivefold increased risk for intubation (OR, 5.81; 95% CI, 1.37 - 24.66).

IOf the entire cohort, 32% of patients died, although no association was observed between retinopathy and mortality.

"A greater number of diabetes patients with COVID-19 ended up on the intensive therapy unit. Upon multivariate analysis, we found retinopathy was independently associated with ending up on the intensive therapy unit," stressed Karalliedde.

However, they note that "Due to the cross-sectional design of our study, we cannot prove causality [between retinopathy and intubation]."

"Further studies are required to understand the mechanisms that explain the associations between retinopathy and other indices of microangiopathy with severe COVID-19."

Diabetes Res Clin Pract. Published online November 2, 2020. Full text

For more diabetes and endocrinology news, follow us on Twitter and Facebook.

Read more:
Diabetic Retinopathy May Predict Greater Risk of COVID-19 Severity - Medscape

Read More...

People With Type 2 Diabetes Have a Greater Risk of Cardiovascular Disease Even With Risk Factors Optimally Controlled – Pharmacy Times

Friday, December 4th, 2020

Following authorization allowing pharmacists to administer childhood vaccines, some pediatricians have expressed concerns that this deprives children of medical care or could lead to missed vaccines.

The researchers launched the Perinatal Experiences and COVID-19 Effects Study to better understand the mental health and well-being of pregnant and postpartum individuals within the United States during the COVID-19 pandemic.

Despite the COVID-19 pandemic, several promising drugs are expected to hit the market in late 2020 and early 2021.

Beta-blockers could be used as a potential treatment for COVID-19, according to a study by Italian and Australian researchers.

Patients with relapsed/refractory leukemia and lymphomas generally have a grim prognosis, which has paved the way for immunotherapy treatments.

Researchers find no clear therapeutic benefit of intravenous immunoglobulin for the prevention of postnatal relapses of multiple sclerosis.

Further, the findings suggest that cancer survivors are also likely to be at an increased risk of severe coronavirus disease 2019 (COVID-19) outcomes, given that both influenza and COVID-19 are both epidemic respiratory viruses.

Four case studies demonstrate common OTC treatments for cough.

Compared with patients with focal epilepsy, those with genialized epilepsy have a higher risk of obstructive sleep apnea.

FDA grants fast track designation to irinotecan liposome injection (Onivyde; MM-398) as second-line monotherapy for patients with small cell lung cancer whose disease progressed following a platinum-based chemotherapy regimen.

Warning letters requested that companies immediately stop selling these unapproved products and said consumers concerned about COVID-19 should talk to their health care provider.

View original post here:
People With Type 2 Diabetes Have a Greater Risk of Cardiovascular Disease Even With Risk Factors Optimally Controlled - Pharmacy Times

Read More...

UTEP Awarded $1.2 Million by NIH to Advance Research on Diabetes-Related Cardiac Complications – Newswise

Friday, December 4th, 2020

Newswise EL PASO, Texas November is National Diabetes Month, a time when the nation comes together to shed light on one of the leading causes of death and disability among U.S. citizens. The University of Texas at El Paso (UTEP) is joining the fight against the disease through innovative research made possible through a recent $1.2 million grant by the National Institutes of Health (NIH) to advance understanding of a critical diabetic heart condition.

The project will use 3D bioprinting to better understand how type 2 diabetes progresses inside the human body. The research team will re-create cardiac tissue, made up of human cardiac cells from both diabetic and healthy donors, to form a heart model closely resembling actual heart tissue found inside the human body with an electrical rhythm that can contract, relax and function as a human heart would.

Binata Joddar, Ph.D., associate professor of biomedical engineering in the metallurgy, materials and biomedical engineering department at UTEP, is leading the cutting-edge research.

We are going to compare how the progression of diabetes is affecting the functions of healthy and diabetic cells and tissue, Joddar said. We are going to study the effect of diabetes progression and how it affects the normal electrical rhythm of the heart when diabetes is advancing in these cells and how it impacts the individual behavior of the cells.

Joddars research will focus on cardiomyopathy, a heart condition often experienced by patients with type 2 diabetes, where the heart wall remodels itself and can become either thinner or thicker and affect the hearts ability to pump blood and properly oxygenate the body. This condition often leads to catastrophic outcomes for patients such as heart failure and death.

Cardiomyopathy is a huge problem for type 2 diabetes patients, Joddar said. There is a lack of targeted treatment for this condition. It can only be diagnosed by clinicians, and once diagnosed, there is only symptom management available with no real cure.

Once Joddar and her team of student researchers successfully creates the cardiac tissue model, they also will be able to use it for cardiac toxicity screening to see how certain common drugs approved by the U.S. Food and Drug Administration impact the heart.

Patients with diabetes, cancer and other diseases typically take a lot of drugs to treat their symptoms, but often a little of the dose gets mixed in the bloodstream and circulates through the heart muscle and is toxic to cardiac tissue. The cardiac model we create can be used to screen the toxicity of certain common drugs, Joddar said.

The project will expose UTEP students to bioengineering research and provide hands-on experience to empower the next generation of scientists and engineers to advance diabetes research and awareness.

Dr. Joddars research is both innovative and impactful, said Patricia Nava, Ph.D., dean of UTEPs College of Engineering. We are proud to have the facilities and capacity for her to carry out her comparative studies of diabetic and healthy cardiac tissue and changes invoked by medication, as this is sure to shed light not only on basic research, but also clinical treatment of patients. This innovative research is important to the community and global population of diabetes patients and will be a prime opportunity for UTEP engineering students to contribute to impactful, life-changing research.

The University of Texas at El Paso is one of the largest and most successful Hispanic-serving institutions in the country, with a student body that is 83% Hispanic. It enrolls nearly 25,000 students in 166 bachelors, masters and doctoral programs in 10 colleges and schools. With more than $100 million in total annual research expenditures, UTEP is ranked in the top 5% of research institutions nationally and fifth in Texas for federal research expenditures at public universities.

See original here:
UTEP Awarded $1.2 Million by NIH to Advance Research on Diabetes-Related Cardiac Complications - Newswise

Read More...

Diabetes: Regional Diabetes Center offers education classes so clients can learn to live with the disease – User-generated content

Friday, December 4th, 2020

Last of 3 parts

By Maridith YahlNKyTribune reporter

Embedded within St. Elizabeth Physicians in Covington, The Regional Diabetes Center (RDC) offers the only diabetes education classes in Northern Kentucky.

The RDC sees anyone having a physicians referral, says Kate Moser, MSN, RN, CDCES, Diabetes Education Quality Coordinator. American Diabetes Association (ADA) Education-Certified Diabetes Program, the RDC provides diabetic and endocrinology care.

Kate Moser

There are so many decisions, every single day, that someone with diabetes has to make and it can be really overwhelming, says Moser.

The center works with patients who have type 1 or type 2 diabetes, and diabetes during pregnancy, which is somewhat different than gestational diabetes, she says.

It is hard for newly diagnosed patients to know where to start or the types of changes needed.

We like to be their first touchpoint, getting them educated, giving them the tools, they need, says Moser. Individual appointments or group classes are available.

We run the gamut from someone who has pre-diabetes or is newly diagnosed with type 2, through someone looking for the most advanced technology, Moser says.

Comprehensive diabetes classes are taught in groups by a Registered Nurse (RN) and Registered Dietitian (RDN). Healthy eating, medication, healthy coping, exercise, healthy problem solving are some topics discussed.

Registered Dietitians offer Medical Nutrition Therapy (MNT). In a one-on-one meeting, the RDN works with the client on what the client wants to focus on.

Meal planning, thats the number one question we get asked is, what can I eat? but it is wildly important, Moser says.

The RDC is creating a program for those diagnosed with prediabetes. It will be a series of workshops in which clients can pick and choose the topics from which they will benefit the most. Realizing most insurances do not cover this education, Moser plans to make it low-cost.

Receiving their five-year recertification in January from the ADA, the RDC, Moser says, has someone to talk to about anything. There is an exercise physiologist on the staff, four registered dietitians, six registered nurses, of which eight are Certified Diabetes Care Education Specialists (CDCES). The CDCES certification requires an exam and the RN must have taught about living with diabetes over 1000 hours.

Anyone that you meet within our team is going to be very seasoned and have experience with all different types of people, from all different places in life, with different kinds of concerns and needs, Moser says.

Plan your meals carefully.

We want people to know they can reach out anytime they have a change in their circumstance. We really want to be there to support people in the community, to give them information and resources, and make sure that they know what to say to their provider, financial issues, or emotional distress issues, depression, and chronic disease. Those things are certainly linked to diabetes and we want to make sure that they know it is okay to reach out.

They get a lot of phone calls from those who are uninsured and want to know their options. Moser keeps up on local resources.

I always encourage them to check with their insurance provider because a lot of them do cover dietitian services for prediabetes, Moser says. Im always saying, I cant imagine its not going to change soon just because the medical costs are two to three times more.

But Moser knows cost can be a huge barrier for education, so she can direct them to other resources, like the Northern Kentucky Diabetes Coalition, for support groups and resources.

The Kentucky Diabetes Coalition has a resource finder on their website. Search by county to find diabetes classes and support groups near you.

Being able to build a good, trusting relationship with her clients is one thing Moser loves about her job. Being able to coordinate all those pieces and really meet somebody where we are spending the time talking to them about all of the daily decisions and things that impact their life is really nice, Moser says. It stems from just the basic desire to help people, but theres just something about supporting someone with what can be such a ravaging chronic disease.

Things have changed so much in this field. Thankfully, were just getting better and better but, I think that just maintaining that relationship with your education team can be really important, Moser says.

Link:
Diabetes: Regional Diabetes Center offers education classes so clients can learn to live with the disease - User-generated content

Read More...

Navigating the challenge of covering breakthrough therapies at MedCity INVEST Precision Medicine – MedCity News

Friday, December 4th, 2020

Our virtualMedCity INVEST Precision Medicine conference, December 9-11, will highlight aspects of precision medicine from the biopharma companies developing cell and gene therapies to diagnostics and the data sharing initiatives to support precision and personalized medicine.

One vexing part of any conversation on precision medicine and breakthrough therapies that have been developed and are continuing to work their way through clinical trials for cancer to rare disease is how to address the practical challenge of their high price tags. Although there are several models to cover the cost of these therapies such as Cignas Embarc Benefit Protection program,what happens when someone changes insurers when they change their job? What is fair for patients and whats fair for companies? When do these conversations even start?

The panel, Reimbursement Models for Cell and Gene Therapies, will highlight some of the pros and cons of different models that are coming to market. Panelists include Laura Okpala, Director, Reimbursement Policy, Gilead Sciences, and Mark Trusheim, Strategic Director, NEWDIGS initiative at the MIT Center for Biomedical Innovation.

Heres a preview of some of the sessions. Click here to see the agenda.

Interoperability Progress Report

How far have we progressed with sharing patient medical records? Patient data is key in unlocking riddles of medical science but interoperability is necessary to facilitate this. What companies are making an impact on a regional and national scale? What milestones are on the horizon? What obstacles continue to vex further advancement? How can we make medical records more accessible to patients?

Moderator: Elise Reuter, Senior Reporter, MedCity NewsSpeakers:Kevin Chaney, Senior Program Manager, Office of the National Coordinator for Health ITIda Sim, M.D., Ph.D., Professor of Medicine, University of California, San FranciscoNiko Skievaski, Co-Founder and President, Redox

What It Takes To Build A Successful, Regional BioInnovation HubPhiladelphia is one of many cities seeking to support the continued growth of cell and gene therapy and connected health industries. What do cities need to do to address education, training and other needs to support these sectors? This session will be held as part ofVenture Cafe Philadelphia.

(sponsored by IBX)

Lisa Dalton, Chief People Officer,Spark TherapeuticsAudrey Greenberg, Executive Managing Director,The Discovery LabsTiffany Wilson, President & CEO,University City Science Center

Moderator:Michelle Histand, Director of Innovation, Independence Blue Cross

Register nowand be part of the conversation at INVEST Precision Medicine.

More here:
Navigating the challenge of covering breakthrough therapies at MedCity INVEST Precision Medicine - MedCity News

Read More...

Page 28«..1020..27282930..40..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick