header logo image


Page 28«..1020..26272829

Archive for February, 2021

Novel Bone Marrow ‘Ingredient’ To Help Arthritic Horses The Horse – TheHorse.com

Wednesday, February 3rd, 2021

Regenerative therapies such as stem cells and platelet-rich plasma already play an important role in managing osteoarthritis (OA). Nonetheless, veterinarians have found that response to even these therapies is less than ideal in many cases, prompting researchers to continuously seek novel therapies for this all-too-common musculoskeletal disorder. One of the newest to be unveiled is called bone marrow mononuclear cell (BMNC) therapy. One researcher who presented at the 2020 American Association of Equine Practitioners Convention, held virtually, reported that the equine industry is in critical need for therapies that resolve joint inflammation but preserve tissue healing, and BMNC appears a promising candidate.

Much more than stem cells classically sought for cartilage healing, bone marrow is rich in macrophage progenitor cells, explained James B. Everett, DVM, MS, previously of the Virginia-Maryland College of Veterinary Medicine, who now works at the Equine Surgical Center at ThorSport Farm,in Murfreesboro, Tennessee. Macrophages are a type of white blood cell that play a role in tissue repair and cartilage integrity, and produce the anti-inflammatory mediators, including interleukin-10 (IL-10).

Everett said macrophages in the synovial (joint) membrane are essential for joint health, clearing aggressors, secreting key molecules required for optimal joint function, and forming a shield that protects tissues undergoing repair, similar to a wound scab. However, when the amount of tissue damage overwhelms these housekeeping functions, macrophages stimulate inflammation as a means of recruiting more cells, especially more macrophages, to cope with increased demands for repair.

If this response is efficiently accomplished, macrophages then produce, among other things, high concentrations of IL-10 and resolve the inflammatory process, returning the joint to a healthy state, he said.

Everett emphasized that not all inflammation is bad. This acute inflammation is essential to establish a resolving response, and anti-inflammatory therapies can negatively interfere.

As presented by Everetts colleague Bruno Menarim, DVM, PhD, in a separate session, studies show that BMNCs promote the endogenous resolution of experimentally induced inflammation. To see if these promising features translated to naturally occurring inflammation in live horses, Everetts research team studied 19 horses, dividing them into three treatment groups:

The selected horses were diagnosed with OA in a single joint, and the team injected those joints once with the saline, triamcinolone, or BMNCs. The BMNCs were autologous, meaning veterinarians collected them from each patients own bone marrow aspirate. They processed the aspirate in-house, and the isolated mononuclear cells, composed predominantly of macrophages, were ready to inject into the affected joint within three hours of aspiration.

We found that while objectively assessed lameness (via Lameness Locator) decreased in all three groups, it was only significant in the BMNC-treated horses, said Everett. Further, the treatment was well-tolerated with no adverse events appreciated in this study.

He said that using BMNCs can help reduce the need for chronic use of non-steroidal anti-inflammatory drugs and corticosteroids, which produces potentially harmful consequences. Further, BMNCs preserve the production of molecules such as interleukins and cytokines that are essential for restoring joint homeostasis. Corticosteroids often inhibit these molecules.

The researchers noted that these results support a larger clinical trial using BMNCs in clinical cases of equine OA.

Read more:
Novel Bone Marrow 'Ingredient' To Help Arthritic Horses The Horse - TheHorse.com

Read More...

Arthritis: Symptoms, causes and risk factors of this joint ailment – PINKVILLA

Wednesday, February 3rd, 2021

Arthritis is a condition that causes swelling in the joints. It generally occurs in older adults and has different treatments as per the type of it. So, here are the causes, symptoms and risk factors of this joint ailment.

Arthritis is the swelling of one or more of your joints. Severe joint pain is associated with this condition that becomes worse as we age. Osteoarthritis and rheumatoid arthritis are the two most common types of this condition. The first one causes cartilage to break down and the second one is a disease where the immune system attacks the joints. Treatments of arthritis depend on its type and the main goal of the treatments is to reduce the symptoms.

Symptoms and causes of arthritis

Symptoms of arthritis:

Pain.

Stiffness.

Swelling.

Redness.

Causes of arthritis

Osteoarthritis is caused by the damage in the joints cartilage and it affects the entire joints. It also causes changes in the bones and damages tissues. This disease also causes inflammation in the joint lining.

Rheumatoid arthritis is caused when the immune system attacks the lining of the joint capsule. This lining then becomes swollen and inflamed.

Risk factors of arthritis

A person who is already havinga family history of this condition.

Older adults are more prone to having this disease.

Women are at a greater risk of having rheumatoid arthritis and men are prone to have gout, another type of arthritis.

Any previous injury in the joint may cause this issue.

Obesity is also responsible for this condition as your joints have to take a lot of stress of your body weight.

Some early signs of arthritis:

These subtle signs can tell you if you are about to get diagnosed with this condition:

Fatigue.

Morning stiffness.

Joint pain and stiffness.

Minor joint swelling.

Fever.

Numbness and tingling.

Eye discharge.

Dry mouth.

Difficulty in sleeping.

Loss of appetite.

Weight loss.

Note

Arthritis may make it tough for you to do your daily tasks. So, whenever you see these symptoms persistently, consult your doctor right away.

Also Read:Colon Cancer: THESE are the symptoms, causes and risk factors of this chronic disease

x Your comment has been submitted to the moderation queue

Read the rest here:
Arthritis: Symptoms, causes and risk factors of this joint ailment - PINKVILLA

Read More...

SetPoint Gives a Jolt to RA Pivotal Trial with New Financing – Medical Device and Diagnostics Industry

Wednesday, February 3rd, 2021

SetPoint Medicals march toward getting its bioelectronic platform across the finish line obtained a huge boost this week through a financing.

The Valencia, CA-based company announced it had raised $64 million in a preferred stock financing to help in the development of its bioelectronic platform to treat rheumatoid arthritis (RA).

This financing was led by New Enterprise Associates (NEA) and included returning investors Action Potential Venture Capital, Boston Scientific, Topspin Fund, Morgenthaler, Euclidean Capital, and an undisclosed strategic investor.

New investors including ShangBay Capital, Richard King Mellon Foundation, Ascendum Capital, Asahi Kasei, Catalio Capital Management, BPC Fund, Midas Capital, Revelation Partners, Aethan Capital, Citta Capital, and SVE Capital also participated in this round. William Dai, Founding Managing Partner at ShangBay Capital, has joined SetPoint Medicals Board of Directors in conjunction with this financing. The financing included the conversion of approximately $21M in outstanding convertible debt.

This financing sets us up to start the pivotal trial, which will begin [soon], Murthy Simhambhatla, PhD, president and CEO of Setpoint, told MD+DI. The data from this pivotal trial, which will be from 250 patients at 40 sites, will be used to support a PMA submission.

Simhambhatla added, the pivotal trial is important in generating high-quality data. It is a double-blind sham-controlled trial. Its in patients that have failed one or more biologic drugs or are intolerant of them. Its a second-line therapy. Its not for patients that have failed methotrexate, but patients that have been exposed to at least one biologic drug and have had an inadequate response.

The company is forecasting three years before it can file a PMA submission.

SetPoints device, which is about the size of a coffee bean, won breakthrough device designation in October of 2020. The foundation of the technology is based on impacting the Inflammatory Reflex, a mechanism discovered by SetPoint co-founder Kevin Tracy, said David Chernoff, MD, SetPoints CMO.

The Inflammatory Reflex regulates the immune system by way of the central nervous system. By activatingthe Inflammatory Reflex with targeted electrical pulses to the vagus nerve, the body produces a systemic anti-inflammatory response.

SetPoint isnt stopping with RA and will explore using the platform to treat other disease states.

The same feedback loop that can potentially help patients with rheumatoid arthritis can potentially help patients with Inflammatory Bowel Disease, he said. Weve run a clinical trial in Crohns Disease where we saw reductions in disease activity that are comparable to best-in-class approved drugs.

Simhambhatla added, the immediate priority is to get Rheumatoid Arthritis across the finish line. Once we do that, well turn our attention to Crohns Disease, potentially ulcerative colitis, potentially Multiple sclerosis.

Read more from the original source:
SetPoint Gives a Jolt to RA Pivotal Trial with New Financing - Medical Device and Diagnostics Industry

Read More...

Celltrion Healthcare receives Health Canada marketing authorization for world’s first subcutaneous formulation of infliximab, Remsima SC, for the…

Wednesday, February 3rd, 2021

TORONTO, Feb. 1, 2021 /CNW Telbec/ - Celltrion Healthcare Canada Limited announced today that Health Canada has granted a notice of compliance (NOC) for Remsima SC (CT-P13 SC) in Canada for the treatment of adult patients with rheumatoid arthritis (RA).

Rheumatoid arthritis is the most common chronic inflammatory joint disease and approximately 374,000 Canadians over the age of 16 live with rheumatoid arthritis.1

Remsima SC is approved in Canada for use in combination with methotrexate for the reduction in signs and symptoms, inhibition of the progression of structural damage and improvement in physical function in adult patients with moderately to severely active rheumatoid arthritis. Remsima SC should be usedas maintenance therapy after the completion of an induction period with intravenous infliximab.2The Health Canada NOC issued for Remsima SC is based on clinical evidence that showed the clinical response to Remsima subcutaneous (SC) formulation was comparable to CT-P13 IV up to 1 year. It was also shown that switching people with RA from the IV formulation to RemsimaTM SC at Week 30 was comparable to maintaining RemsimaTM SC up to Week 54 (up to Week 64 for safety profile).2,3

"Remsima SC has been shown to have a similar efficacy and safety profile to CT-P13 IV. Remsima SC may also enhance treatment options for the use of infliximab by providing high consistency in drug level and exposure," said Professor Edward Keystone, Professor of Medicine, University of Toronto, Toronto, Canada. "The approval of Remsima SC in Canada provides patients the opportunity to administer the treatment at home, giving physicians and patients more control over their treatment."

With the availability of the subcutaneous formulation of infliximab, patients could now be treated with a more personalized and convenient treatment option. Remsima SC can be injected by patients themselves, which has the potential to save time since it will not require in-clinic administered IV treatment.

As part of Celltrion's strategy to expand its global presence and build a direct sales network, Celltrion Healthcare has established an entity in Canada to manage sales and marketing activities for Remsima SC.

"We are delighted to bring the first subcutaneous form of infliximab to patients, payers and clinicians in Canada. We are proud that RemsimaSC will be the first product to enter the Canadian market under our new direct sales marketing strategy. We plan to strengthen our presence in Canada and support the company's growth,"said Jovan Antunovic, Senior Vice President and Commercial Director at Celltrion Healthcare Canada.

Celltrion has applied for patent protection, until 2038, for Remsima SC in approximately 100 countries throughout North America, Europe and Asia.

Notes to Editors:

About CT-P13 (biosimilar infliximab)4-6

CT-P13 is developed and manufactured by Celltrion, Inc. and was the world's first monoclonal antibody biosimilar approved by the European Commission (EC). It is indicated for the treatment of eight autoimmune diseases including RA and IBD. It was approved by the EC under the trade name Remsima in September 2013 and launched in major EU countries in early 2015. The U.S. Food and Drug Administration approved CT-P13 in April 2016 under the trade name Inflectra. CT-P13 is approved in more than 94 countries (as of January 2021) including the US, Canada, Japan and throughout Europe.

CT-P13 IV is usually given as 3 mg per kg/body weight in RA and as 5 mg per kg/body weight for the other indications. Infliximab IV is given as an infusion over two hours. All patients are monitored for any reactions during the infusion and for at least one to two hours afterwards. Celltrion has also developed a subcutaneous (SC) formulation of infliximab that has three administration options: via a pre-filled pen (auto-injector), pre-filled syringe or pre-filled syringe with needle safeguard. The SC formulation has the potential to enhance treatment options for the use of infliximab biosimilar by providing high consistency in drug exposure and a convenient method of administration.

CT-P13 SC has received EU marketing authorization for the treatment of people with RA and IBD in November 2019 and July 2020, respectively. In the United States, Remsima SC will be reviewed through the new drug pathway by the U.S. Food and Drug Administration (FDA) with the outcome expected by 2022.

About Celltrion Healthcare

Celltrion Healthcare is committed to delivering innovative and affordable medications to promote patients' access to advanced therapies. Its products are manufactured at state-of-the-art mammalian cell culture facilities, designed and built to comply with the U.S. FDA cGMP and the EU GMP guidelines. Celltrion Healthcare endeavours to offer high-quality cost-effective solutions through an extensive global network that spans more than 110 different countries. For more information, please visit: https://www.celltrionhealthcare.com/en-us

References

1.

Government of Canada. Available at:https://www.canada.ca/en/public-health/services/publications/diseases-conditions/rheumatoid-arthritis.html.

2.

Remsima SC Product Monograph. Celltrion Healthcare Canada Limited, January 28, 2021.

3.

Westhovens R et al. Efficacy, pharmacokinetics and safety of subcutaneous versus intravenous CT-P13 in rheumatoid arthritis: a randomized phase I/III trial. Rheumatology (Oxford) 2020 Nov 23;keaa580: doi: 10.1093/rheumatology/keaa580.

4.

European Medicines Agency Summary of Product Characteristics (SmPC). CT-P13. Available at http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002576/WC500150871.pdf. Last accessed January 2021.

5.

Yoo DH, Jaworski J, Matyska-Piekarska E et al. A novel formulation of CT-P13 (infliximab biosimilar) for subcutaneous administration: One-year results from part one of a Phase I/III randomised controlled trial in patients with rheumatoid arthritis. Poster (FRI0128). Presented at EULAR 2019.

6.

Westhovens R, Wiland P, Zawadzki M et al. A novel formulation of CT-P13 (infliximab biosimilar) for subcutaneous administration: 30-week results from part two of a Phase I/III randomised controlled trial in patients with rheumatoid arthritis. Poster (SAT0170). Presented at EULAR 2019.

SOURCE Celltrion Healthcare

For further information: Media Relations Contact: [emailprotected], [emailprotected]

Read the original here:
Celltrion Healthcare receives Health Canada marketing authorization for world's first subcutaneous formulation of infliximab, Remsima SC, for the...

Read More...

Safety debate reignited over Pfizer’s arthritis treatment Xeljanz – Korea Biomedical Review

Wednesday, February 3rd, 2021

Pfizers Xeljanz, an oral JAK (Janus kinase) inhibitor rheumatoid arthritis treatment, has failed to catch up with the TNFi (tumor necrosis factor inhibitor) during a post-marketing study, reigniting the debate over its safety.

The post-marketing safety study, dubbed ORAL Surveillance, compared the safety of taking 5mg and 10mg of Xeljanz twice daily with TNFi in about 4,300 patients with rheumatoid arthritis aged 50 years or older with at least one cardiovascular risk factor.

The company set a co-primary endpoint of the study as the non-inferiority of Xeljanz compared to TNFi regarding major adverse cardiovascular events (MACE) and malignancies, excluding non-melanoma skin cancer. The results showed that the company failed to meet the prespecified non-inferiority criteria for the co-primary endpoints.

Analyzing 4,362 subjects, the number of patients with significant cardiovascular events was 135 (98 in the Xeljanz group and 37 in the TNFi group), and that of patients with malignant tumors was 164 (122 in the Xeljanz group and 42 in the TNFi group).

As Xeljanz failed to provide evidence that it was not inferior to TNFi in both cardiovascular and cancer risk, local industry officials expressed concerns that the U.S. Food and Drug Administration may put further restrictions on the drug or pressure the company to withdraw the drug from the market.

In 2019, the FDA had slapped a boxed warning on Xeljanz 10 mg's product label, cautioning against a higher risk of pulmonary embolism, a blood clot in the lungs that can be fatal. The European Medicines Agency also followed a few months later with a warning that patients with a high risk of blood clots should take caution with any dose of Xeljanz.

"Full study results, beyond the co-primary endpoints, including, but not limited to, secondary endpoints such as pulmonary embolism and mortality as well as efficacy data, are not yet available," Pfizer said. "We are working with the FDA and other regulatory agencies to review the full results and analyses as they become available."

Pfizer's study has also raised safety issues for other JAK inhibitors -- Lily's Olumiant and Abbvie's Rinvoq.

All JAK inhibitors publish boxed warnings regarding the occurrence of this blood clot on their product labels.

Here is the original post:
Safety debate reignited over Pfizer's arthritis treatment Xeljanz - Korea Biomedical Review

Read More...

McGill researchers receive grants from Arthritis Society – McGill Reporter – McGill Reporter

Wednesday, February 3rd, 2021

Both Dr. Lisbet Haglund and Shawn Robbins have earned operating grants worth approximately $300,000 over three years

Dr. Lisbet Haglund and Shawn Robbins have both been awarded strategic operating grants from the Arthritis Society. These grants provide funding for projects that have great potential for improving the diagnosis, prevention and treatment of arthritis.

Both researchers are working on projects related to osteoarthritis. Dr. Haglund, Associate Professor of Surgery, Faculty of Medicine and Health Sciences, is studying therapies that may lead to the first disease-modifying drugs for osteoarthritis of the spine. Robbins, Associate Professor, School of Physical and Occupational Therapy, is conducting a randomized clinical trial aimed at identifying the most effective knee implants for patients with osteoarthritis.

These researchers and these projects hold great promise for the future of arthritis diagnosis, care and prevention, says Dr. SinBevan, Chief Science Officer at the Arthritis Society. We look forward to how this important work will help us solve the unanswered challenges of arthritis.

In 2019-20, the Arthritis Society committed over $4.5million to arthritis research and the development of researchers and clinicians.

Dr. Haglunds project, Senolytic drugs to treat back pain from spine OA, received $300,000 in funding over three years.

World-wide, low back pain due to osteoarthritis (OA) of the spine is the single largest cause of years lived with disability. Current treatments like physiotherapy or medication may reduce pain and slow degeneration of the intervertebral discs in the spine but do not stop the progression of the disease. Senolytic therapy destroys senescent (or arrested) cells that cause inflammation in old tissues, leading to rejuvenation and slower progression of many age-related conditions. Dr. Lisbet Haglund will study two promising senolytic therapies, a natural compound, o-Vanillin, and an approved drug, RG-7112. This study may lead to the first disease modifying drugs for low back pain resulting from OA of the spine.

Robbins project is titledThe effectiveness of medial pivot knee arthroplasty implants at improving gait and clinical outcomes in patients with knee osteoarthritis: A randomized controlled trial. It received $298,723 over three years.

Over 67,000 knee replacements are performed annually in Canada for knee arthritis and 20 per cent of patients remain unsatisfied after surgery. New implants have been designed, called medial pivot implants, which claim to more closely mimic normal knee movements. There has been limited testing of these implants, so their effectiveness and safety are not clear. Dr. Shawn Robbins will compare knee movement before and after surgery for walking and stair climbing, pain, and physical function between patients who had medial pivot or traditional knee replacement implants. A better understanding of the most effective knee implants will help to maximize patient outcomes, minimize negative side effects, and decrease demands on the healthcare system.

See the Arthritis Societys competition results page.

More here:
McGill researchers receive grants from Arthritis Society - McGill Reporter - McGill Reporter

Read More...

Assessing the Safety and Efficacy of Filgotinib in Combination With Methotrexate or as Monotherapy in RA – Rheumatology Advisor

Wednesday, February 3rd, 2021

In patients with active rheumatoid arthritis (RA) with limited or no prior methotrexate (MTX) exposure, a combination of filgotinib and MTX significantly improves signs and symptoms and physical function; however, filgotinib monotherapy is not superior to MTX monotherapy in achieving a 20% improvement in American College of Rheumatology criteria (ACR20), according to study results published in Annals of the Rheumatic Diseases.

Previous studies have reported that treatment with small-molecule Janus kinase (JAK) inhibitors, including baricitinib, upadacitinib, and tofacitinib, can significantly improve clinical signs and symptoms of RA and radiographic progression in patients with no prior MTX exposure. However, the safety profile and risk for adverse events should be considered.

The objective of the current study was to determine the efficacy and safety of JAK-1 inhibitor filgotinib in patients with active RA with limited or no prior MTX exposure.

The 52-week, multicenter, double-blind, phase 3 study (FINCH 3; ClinicalTrials.gov Identifier: NCT02886728) included 1252 patients with RA (mean age, 53 years, 77% women) who were randomly assigned to receive 2:1:1:2 filgotinib 200 mg with MTX (n=416), filgotinib 100 mg with MTX (n=207), filgotinib 200 mg monotherapy (n=210), or MTX monotherapy (n=416), respectively.

The primary study outcome was percentage of patients achieving ACR20 at week 24.

At week 24, compared with 71% of patients who received MTX only, 81% who received filgotinib 200 mg with MTX and 80% who received filgotinib 100 mg with MTX achieved an ACR20 response (P <.001 and P =.017, respectively). A total of 78% of patients who received filgotinib 200 mg monotherapy achieved an ACR20 response, which was not significantly different from those who received MTX monotherapy (71%; P =.058).

Researchers noted a significant improvement in Health Assessment Questionnaire Disability Index (HAQ-DI) at week 24; the least-squares mean of the treatment difference in change in HAQ-DI from baseline vs MTX was -0.20 (95% CI, -0.27 to -0.12; P <.001) and -0.13 (95% CI, -0.23 to -0.03; P =.008) for filgotinib 200 mg with MTX and filgotinib 100 mg with MTX, respectively.

The percentage of patients who achieved 28-joint Disease Activity Score with C-reactive protein less than 2.6 was significantly higher for patients who received filgotinib 200 mg with MTX (54%) and filgotinib 100 mg with MTX (43%), compared with patients who received MTX monotherapy (29%; P <.001 for both) at week 24.

Overall, both filgotinib doses were well tolerated with an acceptable safety profile. Adverse event rates through week 52 were comparable between all treatments.

The study had several limitations, including the inability to adjust for MTX dose due to the study design, lack of a placebo group, and low progression rate of structural damage that compromised the ability to demonstrate a benefit between the filgotinib arms compared to MTX.

Filgotinib in combination with MTX could be considered as a treatment option for patients with moderately or severely active [RA] who have limited or no previous exposure to MTX, the researchers concluded.

Disclosure: This clinical trial was supported by Gilead Sciences. Please see the original reference for a full list of authors disclosures.

Westhovens R, Rigby WFC, van der Heijde D, et al. Filgotinib in combination with methotrexate or as monotherapy versus methotrexate monotherapy in patients with active rheumatoid arthritis and limited or no prior exposure to methotrexate: the phase 3, randomised controlled FINCH 3 trial. Ann Rheum Dis. Published online January 15, 2021. doi:10.1136/annrheumdis-2020-219213

Follow this link:
Assessing the Safety and Efficacy of Filgotinib in Combination With Methotrexate or as Monotherapy in RA - Rheumatology Advisor

Read More...

Breast Cancer Gene Mutations Found in 30% of All Women – Medscape

Monday, February 1st, 2021

New findings of breast cancer gene mutations in women who have no family history of the disease offer a new way of estimating risk and may change the way in which these women are advised on risk management.

The findings come from two large studies, both published on January 20 in The New England Journal of Medicine.

The two articles are "extraordinary" for broadening and validating the genomic panel to help screen women at risk for breast cancer in the future, commented Eric Topol, MD, professor of molecular medicine, Scripps Research, La Jolla, California, and Medscape editor-in-chief.

"Traditionally, genetic testing of inherited breast cancer genes has focused on women at high risk who have a strong family history of breast cancer or those who were diagnosed at an early age, such as under 45 years," commented the lead investigator of one of studies, Fergus Couch, PhD, pathologist at the Mayo Clinic, Rochester, Minnesota.

"[Although] the risk of developing breast cancer is generally lower for women without a family history of the disease...when we looked at all women, we found that 30% of breast cancer mutations occurred in women who are not high-risk," he said.

In both studies, mutations or variants in eight genes BRCA1, BRCA2, PALB2, BARD1, RAD51C, RAD51D, ATM, and CHEK2 were found to be significantly associated with breast cancer risk.

However, the distribution of mutations among women with breast cancer differed from the distribution among unaffected women, notes Steven Narod, MD, from the Women's College Research Institute, Toronto, Ontario, Canada, in an accompanying editorial.

"What this means to clinicians, now that we are expanding the use of gene-panel testing to include unaffected women with a moderate risk of breast cancer in the family history, is that our time will increasingly be spent counseling women with CHEK2 and ATM mutations," he writes. Currently these two are "clumped in with 'other genes'.... [M]ost of the pretest discussion is currently focused on the implications of finding a BRCA1 or BRCA2 mutation."

The new findings may lead to new risk management strategies, he suggests. "Most breast cancers that occur in women with a mutation in ATM or CHEK2 are estrogen receptor positive, so these women may be candidates for anti-estrogen therapies such as tamoxifen, raloxifene, or aromatase inhibitors," he writes.

Narod observes that for now, the management of most women with either mutation will consist of screening alone, starting with MRI at age 40 years.

The medical community is not ready yet to expand genetic screening to the general population, cautions Walton Taylor, MD, past president of the American Society of Breast Surgeons (ASBrS).

The ASBrS currently recommends that all patients with breast cancer as well as those at high risk for breast cancer be offered genetic testing. "All women at risk should be tested, and all patients with pathogenic variants need to be managed appropriately it saves lives," Taylor emphasized.

However, "unaffected people with no family history do not need genetic testing at this time," he told Medscape Medical News.

As to what physicians might do to better manage patients with mutations that predispose to breast cancer, Taylor said, "It's surprisingly easy."

Every genetic testing company provides genetic counselors to guide patients through next steps, Taylor pointed out, and most cancer patients have nurse navigators who make sure patients get tested and followed appropriately.

Members of the ASBrS follow the National Comprehensive Cancer Network guidelines when they identify carriers of a pathogenic variant. Taylor says these are very useful guidelines for virtually all mutations identified thus far.

"This research is not necessarily new, but it is confirmatory for what we are doing, and that helps us make sure we are going down the right pathway," Taylor said. "It confirms that what we think is right is right and that matters," he reaffirmed.

The study led by Mayo's Couch was carried out by the Cancer Risk Estimates Related to Susceptibility (CARRIERS) consortium. It involved analyzing data from 17 epidemiology studies that focused on women in the general population who develop breast cancer. For the studies, which were conducted in the United States, pathogenic variants in 28 cancer-predisposition genes were sequenced from 32,247 women with breast cancer (case patients) and 32,544 unaffected women (control persons).

In the overall CARRIERS analysis, the prevalence of pathogenic variants in 12 clinically actionable genes was 5.03% among case patients and 1.63% among control persons. The prevalence was similar in non-Hispanic White women, non-Hispanic Black women, and Hispanic case patients, as well as control persons, they add. The prevalence of pathogenic variants among Asian American case patients was lower, at only 1.64%, they note.

Among patients who had breast cancer, the most common pathogenic variants included BRCA2, which occurred in 1.29% of case patients, followed by CHEK2, at a prevalence of 1.08%, and BRCA1, at a prevalence of 0.85%.

Mutations in BRCA1 increased the risk for breast cancer more than 7.5-fold; mutations in BRCA2 increased that risk more than fivefold, the investigators state.

Mutations in PALB2 increased the risk of breast cancer approximately fourfold, they add.

Prevalence rates for both BRCA1 and BRCA2 among breast cancer patients declined rapidly after the age of 40. The decline in other variants, including ATM, CHEK2, and PALB2, was limited with increasing age.

Indeed, mutations in all five of these genes were associated with a lifetime absolute risk for breast cancer greater than 20% by the age of 85 among non-Hispanic Whites.

Pathogenic variants in BRCA1 or BRCA2 yielded a lifetime risk for breast cancer of approximately 50%. Mutations in PALB2 yielded a lifetime breast cancer risk of approximately 32%.

The risk of having a mutation in specific genes varied depending on the type of breast cancer. For example, mutations in BARD1, RAD51C, and RAD51d increased the risk for estrogen receptor (ER)negative breast cancer as well as triple-negative breast cancer, the authors note, whereas mutations in ATM, CDH1, and CHEK2 increased the risk for ER-positive breast cancer.

"These refined estimates of the prevalences of pathogenic variants among women with breast cancer in the overall population, as opposed to selected high-risk patients, may inform ongoing discussions regarding testing in patients with breast cancer," the BCAC authors observe.

"The risks of breast cancer associated with pathogenic variants in the genes evaluated in the population-based CARRIERS analysis also provide important information for risk assessment and counselling of women with breast cancer who do not meet high-risk selection criteria," they suggest.

The second study was conducted by the Breast Cancer Association Consortium (BCAC) under lead author Leila Dorling, PhD, University of Cambridge, United Kingdom. This group sequenced 34 susceptibility genes from 60,466 women with breast cancer and 53,461 unaffected control persons.

"Protein-truncating variants in 5 genes (ATM, BRCA1, BRCA2, CHEK2 and PALB2) were associated with a significant risk of breast cancer overall (P < .0001)," the BCAC members report. "For these genes, odds ratios ranged from 2.10 to 10.57," they add.

The association between overall breast cancer risk and mutations in seven other genes was more modest, conferring approximately twice the risk for breast cancer overall, although that risk was threefold higher for the TP53 mutation.

For the 12 genes the consortium singled out as being associated with either a significant or a more modest risk for breast cancer, the effect size did not vary significantly between European and Asian women, the authors note. Again, the risk forER-positive breast cancer was over two times greater for those who had either the ATM or the CHEK2 mutation. Having mutations in BARD1, BRCA1, BRCA1, PALB2, RAD51C, and RAD51D conferred a higher risk for ER-negative disease than for ER-positive disease.

There was also an association between rare missense variants in six genes CHEK2, ATM, TP53, BRCA1, CDH1, and RECQL and overall breast cancer risk, with the clearest evidence being for CHEK2.

"The absolute risk estimates place protein-truncating variants in BRCA1, BRCA2, and PALB2 in the high-risk category and place protein-truncating variants in ATM, BARD1, CHEK2, RAD51CC, and RAD51D in the moderate-risk category," Dorling and colleagues reaffirm.

"These results may guide screening as well as prevention with risk-reducing surgery or medication, in accordance with national guidelines," the authors suggest.

The CARRIERS study was supported by the National Institutes of Health. The study by Dorling and colleagues was supported by the European Union Horizon 2020 research and innovation programs, among others. Narod has disclosed no relevant financial relationships.

New Eng J Med. Published online January 20, 2021. Couch et al, Abstract; BCAC study, Full text; Editorial

For more from Medscape Oncology, join us on Twitter and Facebook.

Follow this link:
Breast Cancer Gene Mutations Found in 30% of All Women - Medscape

Read More...

Mysterious untreatable fevers once devastated whole families. This doctor discovered what caused them – CNN

Monday, February 1st, 2021

They couldn't explain why those afflicted, often in the same family, had recurring fevers, abdominal pain, troublesome rashes and muscle aches. Known as familial Mediterranean fever, the disease often went undiagnosed for years, and it was sometimes fatal.

A similar, but unrelated, mystery fever was initially thought to affect families with Scottish and Irish heritage.

"The pain I felt back then, it moved around. One week the pain was in my leg, and the next week my arm would hurt instead," said Victoria Marklund, 47, a Swedish woman who suffered from TRAPS, or tumor necrosis factor receptor-associated periodic syndrome, a disease first identified in a family of Irish and Scottish descent living in the UK city of Nottingham in 1982.

Her father and grandfather died prematurely from kidney complications, which were likely a consequence of the undiagnosed disorder.

Marklund has now received an effective treatment and lives symptom-free -- largely thanks to the work of one US physician and health researcher, Dr. Dan Kastner, a distinguished investigator at the National Institutes of Health who serves as scientific director of the National Human Genome Research Institute.

"What Dr. Kastner has accomplished is absolutely groundbreaking. The concept of autoinflammatory disorders didn't exist before he identified the cause behind a number of them," said Olle Kmpe, a professor of clinical endocrinology at Karolinska Institutet in Stockholm who is a member of The Royal Swedish Academy of Sciences and chair of the Prize Committee. The academy also selects Nobel laureates.

"His discoveries have taught us a great deal about the immune system and its functions, contributing to effective treatments that reduce the symptoms of disease from which patients previously suffered enormously," Kmpe added.

Breakthrough

Kastner first came across familial Mediterranean fever in a patient with recurring arthritis and high fevers he treated as a rheumatology fellow just months into his first job at the NIH in Bethesda, Maryland, in 1985. That chance diagnosis set him on a 12-year journey to find the gene -- or genes -- responsible for the disease.

"It was known that familial Mediterranean fever was a genetic disease. It was known that it was recessively inherited, but no one knew what the gene was, or even the chromosome," he said.

He traveled to Israel, where he took blood samples from 50 families with familial Mediterranean fever.

It took Kastner seven years to locate the mutation to chromosome 16. It took another five years -- in 1997 -- for Kastner and his team to find the mutated gene itself -- one misprint in a genetic code comprised of 3 billion letters.

After this breakthrough, he stayed at NIH, where he studied undiagnosed patients with similar symptoms. He identified 16 autoinflammatory genetic disorders and found effective treatments for at least 12 of them, establishing a whole new field of medicine.

Now that the full human genome has been mapped, the process of detecting the genetic root of such disorders is quicker, and greater numbers of patients with these rare, unexplained diseases are being helped as a result of Kastner's work.

All-nighters

There are few images in science more iconic than the DNA double helix structure, discovered in 1953 by James Watson and Francis Crick, two years after Kastner was born. As a seventh grader, he once created a version of the twisted ladder shape using jelly beans and pipe cleaners for a science fair.

His work to identify the gene that caused familial Mediterranean fever had its own element of competition. In the summer of 1997, to beat a rival team led by French researchers, Kastner took a last-minute flight from Bethesda, Maryland, where the NIH is based, to Boston to submit his manuscript detailing the gene mutation that caused familial Mediterranean fever by hand to the journal Cell on a Friday afternoon.

These were the days before papers could be submitted with the click of a mouse. He hoped to publish his work first. Ultimately, the two teams published their papers simultaneously in different journals -- both fortunately arriving at the same finding.

"I love that type of thing," he said. "We still have races to the finish, and there's nothing like a good week of all-nighters."

Kastner had discovered that the gene involved in familial Mediterranean fever produces a protein called pyrin. Normally this helps to activate our innate immune system -- our first line of defense to fight bacteria and viruses.

In this case, however, pyrin made the innate immune system become overactive, resulting in fever, pain and joint inflammation. He went on to study patients with similar and more devastating symptoms -- identifying TRAPS and many more rare diseases.

Transforming lives

What has motivated Kastner for five decades is how his work decoding the genetics of inflammation can inform new treatments and ultimately transform patients' lives.

"There's nothing more gratifying in life and nothing more satisfying scientifically," he said. He plans to step down from his role as scientific director at the NIH in the next few months and then focus his efforts on his clinic, where he has over 3,000 patients enrolled and "find yet more disease genes, understand how they work, and develop new treatments."

"Of course, one can never know how long that will last, but I love doing it, and will continue as long as I can."

In more recent work beginning in 2014, Kastner identified and pioneered treatment for a severely debilitating genetic disorder known as DADA2, short for deficiency of the enzyme ADA2 (adenosine deaminase 2), which can cause recurring fevers and strokes starting in childhood. His research has radically improved the life of the daughter of Dr. Chip Chambers.

"She's now at college and the improvement in her quality of life has been dramatic."

Similarly, TRAPS survivor Marklund suffered for years before her diagnosis at the age of 38. Her nephews, who both have TRAPS but have been given medicine from an early age, don't feel the effects of the disease at all, she told The Royal Swedish Academy Of Sciences.

"I doubted many times that anyone would ever figure out what I was suffering from. So now it feels fantastic, to be told what it was, to understand the cause of the disease and that there is medicine that helps."

Read the original:
Mysterious untreatable fevers once devastated whole families. This doctor discovered what caused them - CNN

Read More...

CCMB team identifies variants of genes that metabolise drugs – BusinessLine

Monday, February 1st, 2021

As India emerges a destination of global choice for clinical trials of various drugs, a study on variants of the gene important for drug metabolism seeks to explore how drugs function across diverse populations.

Dr K Thangaraj and his team from CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, recently published their study of diversity of cytochrome-P450-2C9 (CYP2C9) gene in Pharmacogenomics and Personalized Medicine.

Healthcare is now moving towards personalised medicine. Our studies on the genetic diversity of India will play an important role in this transition, says Dr Rakesh Mishra, Director, CCMB.

The study is important as it seeks to analyse doctor-prescribed dose of drugs based on the gender, age and body mass index (BMI) of patients. However, there are hypersensitive response like rashes, vomiting and nausea.

Individuals in a population have variations in their genes needed for metabolism of a wide range of drugs. Any changes in the sequence of gene may affect the production of protein in human liver. This can cause slower metabolism of a drug and slower or reduced rate of excretion. Many of these drugs have a narrow therapeutic index they are tolerated by human bodies in very specific amounts, according to scientists.

When these drugs are retained in the body for longer, that can lead to toxicity. So, it is important to decide the right dosage for each individual depending on the sequence of their CYP2C9 gene.

Dr Thangarajs team studied the diversity of this gene among 1,488 Indians across 36 population groups, representing different linguistic groups, castes and tribes, among other parameters. They also looked into genes of 1,087 individuals from other countries of South Asia. We found eight new variants of the CYP2C9 gene, making a total of 11 known variants of the gene in South Asia, says Dr Nizamuddin, who is the first author in the study.

They find no correlation between any of these variants with the linguistic and geographical population groups. However, a few Indian populations have more than 20 per cent people with a deleterious variant of the gene. Those with this variant are at a disadvantage in their ability to metabolise drugs. The eight new variants found in this study are also predicted to have similar effect on drug metabolism.

It is important to know the variations in the CYP2C9 gene to help medical practitioners decide the right dosage of medicine for each patient. The knowledge of this variation will also be important for conducting more meaningful clinical trials. This study also suggests that it might not be the best thing to conduct a common clinical trial for the entire world. We need population-specific trials, says Dr Thangaraj, the corresponding author of this paper and presently Director of the Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad.

See more here:
CCMB team identifies variants of genes that metabolise drugs - BusinessLine

Read More...

NeuBase Therapeutics Announces Acquisition of Gene Modulating Technology from Vera Therapeutics – GlobeNewswire

Monday, February 1st, 2021

Acquisition includes intellectual property for peptide nucleic acid genetic medicine portfolio that has demonstrated in vivo activity in several disease indications

Consolidates new peptide nucleic acid technology into NeuBases PATrOL platform

Extends the ability of NeuBases existing technology to directly modulate the human genome with high precision to resolve rare and common diseases, including cancers

PITTSBURGH, Jan. 28, 2021 (GLOBE NEWSWIRE) -- NeuBase Therapeutics, Inc. (Nasdaq: NBSE) ("NeuBase" or the "Company"), a biotechnology company accelerating the genetic revolution using a new class of synthetic medicines to drug the genome, today announced execution of a binding agreement to acquire infrastructure, programs and intellectual property for several peptide-nucleic acid (PNA) scaffolds from Vera Therapeutics, formerly known as TruCode Gene Repair, Inc. The technology has demonstrated the ability to resolve disease in genetic models of several human indications. The acquisition bolsters NeuBases capabilities and reinforces the Companys position as a leader in the field of genetic medicine.

"With this acquisition, we enhance our PATrOL platform, furthering our unique ability to directly engage and correct malfunctioning genes with exquisite precision to address the root causes of a wide variety of human diseases, said Dietrich A. Stephan, Ph.D., Chief Executive Officer of NeuBase. These assets extend and refine our PATrOL platforms capabilities and accelerates, through our Company, to bring the rapidly growing genetic medicines industry toward a single high-impact focal point. We are committed to advancing our pipeline and candidates to the clinic and to exploiting the full potential of PNA technology to continue creating value for our shareholders and importantly, for patients."

Curt Bradshaw, Ph.D., Chief Scientific Officer of NeuBase, added, "By consolidating additional validated technology into our PATrOL platform, we believe NeuBase is positioned to radically transform the landscape of medicine. In vivo activity in a variety of disease indications has been demonstrated with the new scaffolds that we have acquired, and further expands the validated components of our platform to achieve resolution of causality in living systems with target indications such as recently presented in myotonic dystrophy, type 1. In addition to our intellectual property, we believe our in-house expertise in peptide nucleic acids is second to none.

The transaction is expected to close in the first calendar quarter of 2021. Financial terms were not disclosed.

About NeuBase Therapeutics, Inc.NeuBase is leading the genetic revolution using a new class of synthetic medicines. NeuBase's designer PATrOL therapies are centered around its proprietary drug scaffold to address genetic diseases at the source by combining the highly targeted approach of traditional genetic therapies with the broad organ distribution capabilities of small molecules. With an initial focus on debilitating neurological, neuromuscular and oncologic disorders, NeuBase is committed to redefining medicine for the millions of patients with both common and rare conditions. The companys current portfolio of high value programs includes myotonic dystrophy, type 1 and Huntingtons disease. To learn more, visit http://www.neubasetherapeutics.com.

Use of Forward-Looking StatementsThis press release contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act. These forward-looking statements are distinguished by use of words such as "will," "would," "anticipate," "expect," "believe," "designed," "plan," or "intend," the negative of these terms, and similar references to future periods and include, among other statements, those related to the anticipated benefits of the acquisition of assets from Vera Therapeutics and the expected closing date of the transaction. These views involve risks and uncertainties that are difficult to predict and, accordingly, our actual results may differ materially from the results discussed in our forward-looking statements. Our forward-looking statements contained herein speak only as of the date of this press release. Factors or events that we cannot predict, including those risk factors contained in our filings with the U.S. Securities and Exchange Commission, may cause our actual results to differ from those expressed in forward-looking statements. The Company may not actually achieve the plans, carry out the intentions or meet the expectations or projections disclosed in the forward-looking statements, and you should not place undue reliance on these forward-looking statements. Because such statements deal with future events and are based on the Company's current expectations, they are subject to various risks and uncertainties, and actual results, performance or achievements of the Company could differ materially from those described in or implied by the statements in this press release, including: the risk that the Company does not achieve the anticipated benefits from the acquisition of assets from Vera Therapeutics; risks that the conditions to closing the transaction are not met and the transaction does not close; the Company's plans to develop and commercialize its product candidates; the timing of initiation of the Company's planned clinical trials; the timing of the availability of data from the Company's clinical trials; the timing of any planned investigational new drug application or new drug application; the Company's plans to research, develop and commercialize its current and future product candidates; the clinical utility, potential benefits and market acceptance of the Company's product candidates; the Company's commercialization, marketing and manufacturing capabilities and strategy; global health conditions, including the impact of COVID-19; the Company's ability to protect its intellectual property position; and the requirement for additional capital to continue to advance these product candidates, which may not be available on favorable terms or at all, as well as those risk factors contained in our filings with the U.S. Securities and Exchange Commission. Except as otherwise required by law, the Company disclaims any intention or obligation to update or revise any forward-looking statements, which speak only as of the date hereof, whether as a result of new information, future events or circumstances or otherwise.

NeuBase Investor Contact:Dan FerryManaging DirectorLifeSci Advisors, LLCdaniel@lifesciadvisors.com OP: (617) 430-7576

NeuBase Media Contact:Cait Williamson, Ph.D.LifeSci Communicationscait@lifescicomms.com OP: (646) 751-4366

Read the original:
NeuBase Therapeutics Announces Acquisition of Gene Modulating Technology from Vera Therapeutics - GlobeNewswire

Read More...

Copy number variations linked to autism have diverse but overlapping effects – Spectrum

Monday, February 1st, 2021

Mapping outcomes: Some genetic mutations can lead to a wide variety of traits, including those associated with autism.

People with mutations in distant chromosomal regions often share a range of autism traits, even if they do not meet the diagnostic threshold for autism, according to a new study.

Mutations called copy number variations (CNVs) involve duplications or deletions of large stretches of DNA. Having a CNV in the 16p11.2 or 22q11.2 chromosomal region increases a persons likelihood of being diagnosed with autism, but previous studies have found significant variability in the traits associated with mutations in either location.

The new work shows that deletions or duplications in 16p11.2 or 22q11.2 track with distinct profiles of cognitive abilities and autism traits, and that each type of variant is linked to a different probability of being diagnosed with autism.

These profiles overlap, which suggests that the different CNVs have similar impacts on developmental pathways involved with autism, says lead investigator Marianne van den Bree, professor of psychological medicine at Cardiff University in the United Kingdom. The findings also support the idea that other factors such as the environment or other genes shape a persons autism traits.

Van den Bree and her colleagues across eight institutions pooled data from 547 people with a deletion or duplication in 16p11.2 or 22q11.2. They compared the data with similar information from the Autism Genome Project, looking at 2,027 autistic people who do not have these CNVs.

Pulling these datasets together provided an in-depth look at patterns of outcomes. The four groups of people with CNVs a deletion or duplication in either chromosomal region differ the most in motor function, van den Bree and her colleagues found. And people with 22q11.2 deletions are less likely to have an autism diagnosis than those with any of the other CNVs, but they still have a higher autism prevalence than the general population.

People with a duplication in 22q11.2 or 16p11.2 tend to have more severe autism traits than people with deletions, the researchers found. And people with a 16p11.2 duplication or 22q11.2 deletion have greater cognitive impairment than those with one of the other two variants do.

Despite these differences between groups, people within each group show even greater variability, the team found, which suggests that other factors contribute to a persons traits. The work appeared in January in the American Journal of Psychiatry.

These four CNVs have not previously been compared in this way, but the study feels more confirmatory than it feels like its carving out something new, says Elliott Sherr, professor of neurology at University of California, San Francisco, who was not involved in the new work.

Many people, however, including some clinicians, are unaware that these genetic conditions are often linked to autism, says study investigator Samuel Chawner, research fellow in psychology at Cardiff University. He says he hopes that the profiles he and his colleagues identified will inform how genetic conditions are treated. For instance, 54 percent of people carrying one of the CNVs who do not have an autism diagnosis still have significant autism-like difficulties.

Whats missing from the new work is an examination of what else besides the CNVs contributes to the diversity of traits seen in people with these mutations, such as environment and other genes, says David Ledbetter, chief clinical officer at Dascena, a personalized medicine company. Ledbetter was not involved in the study.

For example, people with a 22q11.2 deletion have an increased likelihood of having schizophrenia, but information from the rest of their genome can help to accurately forecast outcomes, according to a study published in November. This same technique could be used to predict traits in people with the other CNVs, Ledbetter says.

A persons environment including their ability to access medical support and early education may also play a role in this variability, Chawner says. Van den Bree, Chawner and their colleagues at the Genes to Mental Health consortium plan to study how these factors in particular contribute to traits in people with CNVs.

Read the original:
Copy number variations linked to autism have diverse but overlapping effects - Spectrum

Read More...

SMART Study Finds 22q11.2 Microdeletion Prevalence Much Higher than Expected – PRNewswire

Monday, February 1st, 2021

SAN CARLOS, Calif., Feb. 1, 2021 /PRNewswire/ --Natera, Inc. (NASDAQ: NTRA), a pioneer and global leader in cfDNA testing, presented key results from its SMART study at the SMFM 41st Annual Pregnancy Meeting.1 The SMART study sets a new standard as the largest prospective NIPT study to date(N = 20,927 enrolled from 21 medical centers), and the only large-scale study to collect genetic outcomes in most of the subjects. The study includes the validation of a new artificial intelligence-based algorithm for Panoramacalled Panorama AI, which utilizes information from over 2 million cfDNA tests performed by Natera.

Key results related to the 22q11.2 microdeletion:

"This is the first prospective NIPT study in which genetic outcomes were confirmed in the vast majority of the patients enrolled, and provides a wealth of data about the real-world performance of NIPT across a diverse group of global centers and patients," said Mary Norton, MD, Professor, UCSF, and one of the Principal Investigators of SMART. "The findings related to high prevalence of 22q11.2 deletion syndrome, the limited ability of ultrasound to detect all cases prenatally, and the performance of NIPT in detection of these cases with high accuracy provide exciting data to inform discussions around testing for a broader set of conditions beyond common aneuploidies."

"The diagnostic odyssey related to 22q11.2 deletion syndrome is well documented, with median time to diagnosis of almost 5 years.6And in the meantime, a window of opportunity might be lost to intervene and impact outcomes. Delivery of a child with 22q11.2 deletion syndrome should be at a tertiary facility well-equipped to deal with short-term complications that are associated with the disorder.7 Depending on the issue at hand (e.g., cardiac, endocrine), appropriate interventions are warranted. For example, timely administration of neonatal calcium has been shown to correlate with preventing the intellectual decline commonly seen in affected children,"8,9 said Pe'er Dar, MD, Albert Einstein College of Medicine, Bronx NY, and one of the Principal Investigators of SMART. "With the ability to detect more accurately in combination with a low false positive rate, I believe that the findings of the SMART study provide professional societies with sufficient evidence to consider including screening for 22q11.2 deletions in routine prenatal genetic screening."

In 2020, Natera performed over 400,000 tests for the 22q11.2 microdeletion. Natera has established a CPT code and favorable pricing for microdeletion testing. Based on high prevalence and excellent performance in the study, Natera looks forward to engaging professional societies for routine testing of pregnancies for the 22q11.2 microdeletion, and will then pursue broader insurance coverage.

About Panorama

Panoramareveals a baby's risk for severe genetic disorders as early as nine weeks into pregnancy. The test uses a unique single-nucleotide polymorphism (SNP)-based technology to analyze fetal/placental DNA obtained through a blood draw from the mother. It is the only commercially available test that differentiates between maternal and fetal DNA to assess the risk of aneuploidies. The test also screens twin pregnancies for zygosity and fetal sex of each baby, and identifies risk for more genetic conditions in twin pregnancies than any other NIPT. Panorama is one of several genetic screening tests from Natera designed to help families on the path to parenthood. Natera has published 23 papers, studying over 1.3 million patients, since the launch of Panorama the largest body of evidence in the space today. Panorama has been developed and its performance characteristics determined by Natera, the CLIA-certified laboratory performing the test. The test has not been cleared or approved by the US Food and Drug Administration (FDA). CAP accredited, ISO 13485 certified, and CLIA certified.

About Natera

Naterais a pioneer and global leader in cell-free DNA testing from a simple blood draw. The mission of the company is to change the management of disease worldwide with a focus on women's health, oncology, and organ health. Natera operates ISO 13485-certified and CAP-accredited laboratories certified under the Clinical Laboratory Improvement Amendments (CLIA) in San Carlos, California and Austin, Texas. It offers proprietary genetic testing services to inform obstetricians, transplant physicians, oncologists, and cancer researchers, including biopharmaceutical companies, and genetic laboratories through its cloud-based software platform. For more information, visitnatera.com. Follow Natera onLinkedIn.

Forward-Looking Statements

All statements other than statements of historical facts contained in this press release are forward-looking statements and are not a representation that Natera's plans, estimates, or expectations will be achieved. These forward-looking statements represent Natera's expectations as of the date of this press release, and Natera disclaims any obligation to update the forward-looking statements. These forward-looking statements are subject to known and unknown risks and uncertainties that may cause actual results to differ materially, including with respect to our efforts to develop and commercialize new product offerings, our ability to successfully increase demand for and grow revenues for our product offerings, whether the results of clinical or other studies will support the use of our product offerings, our expectations of the reliability, accuracy and performance of our tests, or of the benefits of our tests and product offerings to patients, providers and payers. Additional risks and uncertainties are discussed in greater detail in "Risk Factors" in Natera's recent filings on Forms 10-K and 10-Q and in other filings Natera makes with the SEC from time to time. These documents are available atwww.natera.com/investorsandwww.sec.gov.

Contacts

Investor Relations: Mike Brophy, CFO, Natera, Inc., 510-826-2350

Media: Paul Greenland, VP of Corporate Marketing, Natera, Inc., [emailprotected]

References

SOURCE Natera, Inc.

Transforming Management of Genetic Disease

More:
SMART Study Finds 22q11.2 Microdeletion Prevalence Much Higher than Expected - PRNewswire

Read More...

Genomes, Maps, And How They Affect You – IFLScience

Monday, February 1st, 2021

What is a genome

A genome is a collective term for all the genetic material within an organism. In essence,the genome decides exactly what that organism will look and act like at birth one huge, expansive instruction manual that tellscells their duties. Every living thing has a genome, from bacteria to plants to humans, and they are all different in size with various combinations of genes inside.

The human genome packs in 30,000 genes, but this is just 1% of the total genetic material contained within. Quite frankly, its a mess in there much of the genetic material is duplicated DNA that (supposedly) does very little, and the vast majority of DNA simply doesnt code for anything(these sections are calledintrons). That isnt to say it does nothing. In fact,recent studieshave shown us that non-coding DNA is essential to controlling whether our genes get switched on or not. However, most of the time its the actual genes that are the important bit.

Studying the genome of humans and other organisms is vitalfor a number of reasons.Firstly, it helps us characterize each one before genomics, scientists simply grouped animals and plants by what they looked like, but research into their genes now allows for accuratecharacterization oforganismsinto specificgeneraand species.

In humans, genomic research has allowed researchers to understand the underlying causes of many complex diseases and find possible targets for treatment.Currently, the best tool to do thisisgenome-wide association studies (GWAS).

The idea behind GWAS is relatively intuitive simply take a group of people with the disease you wish to study, and compare their genomesfor common genetic variants that could predict the presence of that disease.These studies have illuminated a huge number of variants linked with higher disease prevalence while also helping researchers to understand the role each gene playsin the human body.Although powerful, GWAS studies are purely a starting point. Following a large-scale GWAS, researchers must thenanalyzeany variants that are highlighted in great depth, and many times such research will provide nothing of clinical relevance. However, itsstill our best way of identifying risk variants in genetic disease.

So,we know the genome is packed to the brim with genes that code for proteins, separated by large strings ofnon-coding DNA. However, when cells replicateearly in development they usually go throughchromosomal recombination, in which chromosomes trade regions of their genetic code between each other. This spreads genes to many different positions (called loci)throughout the genome. If we can make a map of these genes, we candiscover their function, how they are inherited, or target them with therapies.

Therefore, we want to create a genome map.There are two types of maps used in genomics: genetic maps and physical maps.

Physical mapsare relatively straightforward, in which genomic loci are mapped based on the physical distance between them, measured in base pairs.The most common way to create a physical map of a human genome is byfirst breaking the DNA sequence into many fragments, before using a variety of different techniques to identify how those pieces fit back together. By understanding which pieces overlapand reconstructing the shattered genome, scientists can gain a decently accurate map of where each gene lies.

Genetic mapsare slightly different,using specific marker regions within the DNA that are used as trackers. These mapsrequiresamples (usually saliva) from family members,which are then compared toidentifyhow much recombination has occurred that includes markers of interest. The principle is thatif two genes are close together on thechromosome, thenthey are more likely to travel together through the genome as it recombines. By using this data,scientists can get a rough idea of where specific genes lie on chromosomes. However, it is not as accurate as physical mapping andrelies heavilyon a decentpopulation size andthe number of genetic markers used.

A genome browser is any available database that allows a user to access and compare genomes in an intuitive way. When you map or sequence a genome, the data is prettymessy.Genomes are usually stored in huge files, calledFASTAfiles, that contain extensive strings of letters that would look foreign to most users. Genome browsers take this data and make it accessibleto scientists around the globe.

Many genome browsers are available online, containing bacterial, model organism, and human reference genomes.

Genomelinkis one of the latest examples of public access and analysis of genomes. The industry took off in recentyears, with the rapid rise of sites that provide ancestry and medical information based on genomic sequencing, includingAncestryand23andMe.These sites work by comparing genetic markers associated with different populations should you share specific regions of DNA that correspond with African populations, for example, you may have some relation to African ancestors. Each site uses its own markers, so information may vary between tests, and some have disputed the true accuracy of these tests, although advances in genomics have significantly improved them in recent years.

Genomelinkgoes further than most sites, claiming to provide information on a huge variety of genetic traits that a user may have. These include metabolism, sports performance, and even personality traits such as loneliness. Each trait isdrawn from genome correlation studies, with each taking a specific trait and comparing the genomes of each carrier of that trait.

However, although bothGenomelinkand other sites use up-to-date reference genomes and are usually relatively accurate, they should never be substituted for medical information. If you believe you carry a pathogenic genevariant, you should seek advice from a genomic counselor.

Originally posted here:
Genomes, Maps, And How They Affect You - IFLScience

Read More...

Are Phages Overlooked Mediators of Health and Disease? – The Scientist

Monday, February 1st, 2021

When microbiologist Breck Duerkop started his postdoc in 2009, he figured hed be focusing on bacteria. After all, hed joined the lab of microbiome researcher Lora Hooper at the University of Texas Southwestern Medical Center in Dallas to study host-pathogen interactions in the mammalian gut and was particularly interested in what causes some strains of normally harmless commensal bacteria, such as Enterococcusfaecalis, to become dangerous, gut-dominating pathogens. Hed decided to explore the issue by giving germ-free mice a multidrug-resistant strain of E. faecalis that sometimes causes life-threatening infections in hospital patients, and analyzing how these bacteria express their genes in the mouse intestine.

Not long into the project, Duerkop noticed something else going on: some of the genes being expressed in E. faecalis werent from the regular bacterial genome. Rather, they were from bacteriophages, bacteria-infecting viruses that, if they dont immediately hijack and kill the cells they infect, can sometimes incorporate their genetic material into the bacterial chromosome. These stowaway viruses, known as prophages while theyre in the bacterial chromosome, may lie dormant for multiple bacterial generations, until certain environmental or other factors trigger their reactivation, at which point they begin replicating and behaving like infectious agents once again. (See illustration below.) Duerkops data showed that the chromosome of the E. faecalis strain he was using contained seven of these prophages and that the bacteria were churning out virus particles with custom combinations of these prophage sequences during colonization of the mouse gut.

The presence of viruses in Duerkops E. faecalis strain wasnt all that surprising. Natural predators of bacteria, bacteriophages are the most abundant biological entities on the planet, and in many fields, researchers take their presence for granted. Nobody really was thinking about phages in the context of bacterial communities in animal hosts, Duerkop says. It would [have been] very easy to just look at it and say, Oh, there are some phage genes here. . . . Moving on. But he was curious about why E. faecalis would be copying and releasing them, rather than leaving the prophages asleep in its chromosome, while it was trying to establish itself in the mouse intestine.

Predation is just one type of phage-bacteria interaction taking place within the mammalian microbiome; many phages are capable of inserting their genomes into the bacterial chromosome.

Encouraged by Hooper, he put his original project on hold in order to dig deeper. To his surprise, he discovered that the E. faecalis strain, known as V583, seemed to be using its phages to gain a competitive advantage over related strains. Experiments with multiple E. faecalis strains in cell culture and in mice showed that the phage particles produced by the bacteria didnt harm other V583 cells, but infected and killed competing strains. Duerkop and his colleagues realized that, far from being background actors in the bacterial community, the phages are important for colonization behavior for this opportunistic pathogen.

The idea that a phage could play such a significant role in the development of the gut bacterial community was relatively novel when the team published its results in 2012. Since then, its been pretty well established that phages can shape the assembly of microbial communities in the intestine, and that can influence the outcome on the hosteither beneficially or detrimentally, says Duerkop, who now runs his own lab at the University of Colorado School of Medicine in Aurora. Theres evidence that phages help bacteria share genetic material with one another, too, and may even interact directly with the mammalian immune system, an idea that Duerkop says would have had you laughed out of a room of immunologists just a few years ago.

Around the time that Duerkop was working on E. faecalis in Dallas, University of Oxford postdoc Pauline Scanlan was studying Pseudomonas fluorescens, a bacterial species that is abundant in the natural environment and is generally harmless to humans, although its in the same genus as the important human pathogen Pseudomonas aeruginosa. Bacteria in this genus sometimes evolve whats known as a mucoid phenotypethat is, cells secrete large amounts of a compound called alginate, forming a protective goo around themselves. In P. aeruginosa, this goo can help the bacteria evade the mammalian immune system and antibiotics, and when it crops up, its not good news for the patient, Scanlan says. She was curious about what causes a non-mucoid bacterial population to evolve into a mucoid one and had found previous research suggesting that the presence of bacteriophages could play a role. Other studies documented high densities of phages in mucus samples from the lungs of some cystic fibrosis patients with P. aeruginosa infections.

Working in the lab of evolutionary biologist Angus Buckling (now at the University of Exeter), Scanlan grew a strain of P. fluorescenswith a phage called Phi2 that specifically infects and destroys this bacterium. Cells with the gummy mucoid coating, the researchers noted, were more resistant to phage infection than regular cells were. Whats more, over generations, bacterial populations were more likely to evolve the mucoid phenotypes in the presence of Phi2 than they were in its absence, indicating that the phenotype may arise in Pseudomonas as an adaptive response to phage attack. Scanlan, now at University College Cork (UCC) in Ireland, notes that more work is needed to extend the findings to a clinical setting, but the results hint that phages could in some cases be responsible for driving bacteria to adopt more virulent phenotypes.

Such a role for viruses in driving bacterial evolution fits well with phages reputation as the ultimate predators, says Colin Hill, a molecular microbiologist also at UCC who got his introduction to phages studying bacteria used in making fermented foods such as cheese. Hill notes an estimate commonly cited in the context of marine biologya field that explored phage-bacteria interactions long before human biology didthat phages kill up to 50 percent of the bacteria in any environment every 48 hours. The thing that any bacterium has on its mind most, if bacteria had minds, would be phage, Hill says, because its the thing most likely to kill them.

Several in vivo animal studies lend support to the idea that predatory phages help shape bacterial evolution and community composition in the mammalian microbiome. In 2019, for example, researchers at Harvard Medical School reported that phages not only directly affect the bacteria they infect in the mouse gut, but also influence the rest of the microbiome community via cascading effects on the chemical and biological composition of the gut. Observational studies hint at similar processes at work in the human gut. A few years ago, researchers at Washington University Medical School in St. Louis observed patterns of phage and bacterial population dynamics that resembledpredator-prey cycles in the guts of children younger than two years old: low bacterial densities at birth were followed by decreases in phages, after which the bacteria would rebound, and then the phages would follow suit. The team concluded that these cycles were likely a natural part of healthy microbiome development.

Although researchers are only just beginning to appreciate the importance of phages in microbiome dynamics, theyve already begun to explore links to human disease. Authors of one 2015 study reported that Crohns disease and ulcerative colitis patients showed elevated levels of certain phages, particularly within the viral order Caudovirales. They proposed that an altered virome could contribute to pathogenesis through predator-prey interactions between phages and their bacterial hosts. Other studies have explored possible phage-driven changes in the bacterial community in human diseases such as diabetes and certain cancers that are known to be associated with a disrupted microbiome. But the observational nature of human microbiome studies prevents conclusions about what drives whatchanges in virome composition could themselves be the result of disruptions to the bacterial community, for example.

Currently, researchers are exploring the possibility of using predatory phages as weapons against pathogenic bacteria, particularly those that present a serious threat to public health due to the evolution of resistance to multiple antibiotics. Its the principle that the enemy of my enemy is my friend, says Yale University virologist and evolutionary biologist Paul Turner. If we have a pathogen that is in your microbiome, can we go in and remove that bacterial pathogen by introducing a predatory phage, something that is cued to only destroy [that pathogen]? Although the strategy was first proposed more than a century ago, we and others are trying to update it, he adds. (See My Enemys Enemy below.)

Phages can interact with bacteria in two main ways. In the first, phages infect a bacterial cell and hijack that cells protein-making machinery to replicate themselves, after which the newly made virus particles lyse the bacterium and go on to infect more cells. In the second process, known as lysogeny, the viral genome is incorporated into the bacterial chromosome, becoming whats known as a prophage, and lies dormantpotentially for many generationsuntil certain biotic or abiotic factors in the bacterium or the environment induce it to excise itself from the chromosome and resume the cycle of viral replication, lysis, and infection of new cells.

Predation is just one type of phage-bacteria interaction taking place within the mammalian microbiome. Many phages are capable of inserting their genomes into the bacterial chromosome, a trick beyond the bounds of traditional predator-prey relationships in other kingdoms of life that adds complexity to the relationship between phages and bacteria, and consequently, to phages potential influences on human health.

This role for phages has long been of interest to Imperial College Londons Jos Penads. Over the last 15 years or so, he and colleagues have described various ways in which many phages help bacteria swap genetic material among cells. He likens phages to cars that bacteria use to transport cargo around and says that, in his opinion, it almost makes sense to view phages as an extension of bacteria rather than as independent entities. This is part of the bacterium, he says. Without phages, bacteria cannot really evolve. They are absolutely required.

With lateral [transduction] you can move huge parts of the bacterial chromosome.

Jos Penads, Imperial College London

In the simplest case, the genetic material being transported consists of viral genes in the genomes of so-called temperate phages, which spend at least part of their lifecycle stashed away in bacterial chromosomes as prophages. These phages are coming to be appreciated by microbiologists as an important driver of bacterial evolution in the human microbiome, notes Hill. The lack of practical and accurate virus detection methods makes it difficult to precisely characterize a lot of the phages resident in mammalian guts, but microbiologists estimate that up to 50 percent are temperate phages, and, more importantly for human health, that many of them may carry genes relevant to bacterial virulence. Researchers have long known, for example, that many toxins produced by bacteriaincluding Shiga toxin, made by some pathogenic E. coli strains, and cholera toxin, secreted by the cholera-causing bacterium Vibrio choleraeare in fact encoded by viral genes contained in the bacterial chromosome, and that infection by temperate phages that carry these genes may be able to turn a harmless bacterial population into one thats pathogenic.

Evidence from other studies points to phages as capable of transporting not just their own genomes, but bits of bacterial DNA as well. In the best-studied examples of this phenomenon, known as bacterial transduction, tiny chunks of the bacterial genome get packed up into viral particles instead of or alongside the phage genome, and are shuttled to other bacterial cells. In 2018, however, Penads and colleagues presented results showing that very large pieces of bacterial DNA can also be exchanged this way, in a process the team named lateral transduction. Not only does the discovery have implications for how researchers understand viral replication in infected cells, it shines light on a novel way for bacteria to share their genes. With lateral [transduction] you can move huge parts of the bacterial chromosome, says Penads. The team first observed the phenomenon in the important human pathogen Staphylococcus aureus, and is now looking for it in other taxa, he adds. Right now, for us, its important to show that its a general mechanism, with many bugs involved.

Although the research is still in the nascent stages, this mechanism could help explain findings from University of Barcelona microbiologist Maite Muniesa and others who have been studying whether phages transport antibiotic resistance genes between bacterial cells, and whether they can act as reservoirs for these genes in the natural environment. Early studies on this issue had proposed that, like many toxin genes, antibiotic resistance genes might be encoded in viral sequences and thus transported to bacteria with the rest of the viral genome. But the idea wasnt without controversya 2016 analysis of more than 1,100 phage genomes from various environments concluded that phage genomes only rarely include antibiotic resistance genes. That studys authors argued that prior reports of these genes in phage genomes were likely due to contamination, or to the difficulty of distinguishing viral sequences from bacterial ones.

Nevertheless, Muniesas team has published multiple reports of antibiotic resistance sequences in phage particles, including in samples of meat products from a Barcelonan fresh-food retailer, and more recently in seawater samplesnot only from the Mediterranean coastline but even off the coast of Antarctica, far from human populations that use antibiotics. We were pretty surprised that we found these particles in this area with low human influence, Muniesa says. Although her team hasnt determined whether the antibiotic resistance sequences are of phage or bacterial origin, she suspects they might be bacterial genes that ended up in phage particles during lateral transduction or some process like it. Bacteria are using these phage particles in a natural way to move [genes] between their brothers and sisters, lets say, she says. Its happening everywhere.

Duerkop cautions that its not yet clear how often phage-mediated transfer of antibiotic resistance genes occurs or how significant it is in the epidemiology of drug-resistant infections in people. Its not to say that antibiotic resistance cant be mediated through phage, he says. I just dont think its a major driver of antibiotic resistance.

Whatever its natural role, temperate phages ability to insert themselves into bacterial genomes could have applications in new antibacterial therapies. Viruses that insert pathogenicity-reducing genes or disrupt the normal expression of the bacterial chromosome could be used to hobble dangerous bacteria, for examplean approach that proved successful last year in mouse experiments with Bordetella bronchiseptica, a bacterium that often causes respiratory diseases in livestock. Using a phage from the order Siphoviridae, researchers found that infected B. bronchiseptica cells were substantially less virulent in mice than control cells were, likely because the viral genome had inserted itself in the middle of a gene that the bacterium needs to infect its host. Whats more, injecting mice with the phage before exposing them to B. bronchiseptica seemed to completely protect them from infection by the microbe, hinting at the possibility of using temperate phages as vaccines against some bacteria.

Bacteria-infecting viruses, or bacteriophages, may influence microbial communities in the mammalian gut in various ways, some of which are illustrated here. Through predation, phages can influence the abundance of specific bacterial taxa, with indirect effects on the rest of the community, and can drive the evolution of specific bacterial phenotypes. Phages can also incorporate their genomes into bacterial chromosomes, where the viral sequences lie dormant as prophages until reactivated. Researchers have found that phages interact directly with mammalian cells in the gut, too. These cross-kingdom interactions could affect the health of their eukaryotic hosts.

Despite growing interest in phages role in shuttling material among bacteria, some of the biggest recent developments in research on phages in the human gut have turned out not to involve bacteria at all. One of the key pieces of this particular puzzle was fitted by University of Utah microbiologist June Round and her colleagues, who as part of a phage therapy study a few years ago fed several types of Caudovirales phages to mice that were genetically predisposed to certain types of cancer and had been infected with a strain of E. coli known to increase that risk. The premise was pretty simplistic, recalls Round. It was just to identify a cocktail of phage that would target bacteria that we know drive chronic colorectal cancer.

The team was surprised to see that the phages, despite being viewed by most researchers as exclusively bacteria-attacking entities, prompted a substantial response from the mices immune systemsmammalian defenses that should, according to conventional wisdom, be indifferent to the war between bacteria and phages in the gut. Intrigued, the researchers tried adding their phage cocktail to mice that had had their gut bacteria completely wiped out with antibiotics. Still, they saw an immune response. It was then, Round says, that we realized that [the phages] were likely interacting with the immune system.

Exploring further, the team found that the phages were activating both innate and adaptive immune responses in mice. In rodents with colitis, the phages exacerbated inflammation. Turning their attention to people, the researchers isolated phages from ulcerative colitis patients with active disease, as well as from patients with disease in remission and from healthy controls, and showed that only viruses collected from patients with active disease stimulated immune cells in vitro. And when the team studied patients who received fecal microbiota transplantationan experimental treatment for ulcerative colitis that involves giving beneficial gut bacteria to a patient to try to alleviate inflammation and improve symptomsthe researchers found that a lower abundance of Caudovirales in a recipients intestine at the time of transplant correlated with treatment success.

Some of the biggest recent developments in research on phages in the human gut have turned out not to involve bacteria at all.

By the time the team published its results in 2019, a couple of other groups had also documented evidence of direct interactions between phages and host immune systems. Meanwhile, Duerkop, Hooper, and colleagues reported that mice with colitis tended to have specific bacteriophage communities, rich in Caudovirales, that developed in parallel with the disease. Many of the types of phage they identified in the intestines of those diseased mice also turned up in high abundance in samples taken from the guts of people with inflammatory bowel disease, the researchers noted in their paper, supporting a possible role for phages in the development of disease.

Round says that researchers are still unsure about exactly why these trans-kingdom interactions are happeningparticularly when it comes to host adaptive immune responses, which tend to be specific to a particular pathogen. She speculates that mammalian hosts might derive a benefit from destroying certain phages if those phages are carrying genes that could aid a bacterium with the potential to cause disease. Exactly how immune cells would detect what genes a phage is carrying isnt yet clear.

Meanwhile, hints of collaboration between eukaryotic cells and phages have cropped up in the work of several other labs. One recent study of a phage therapy against P. aeruginosa found that phages and immune cells seem to act in synergy to clear infections in mice. Other work has indicated that phages bind to glycoproteins presented by cells along the mucosal surfaces of the mammalian gut and may provide a protective barrier against bacterial pathogensa relationship that some microbiologists have argued represents an example of phage-animal symbiosis. Duerkop adds that theres evidence emerging to support the idea that phages in the mammalian intestine not only can be engulfed by certain eukaryotic cells, but also might slip out of the gut and into the bloodstream to make their way to other parts of the body, with as yet undiscovered consequences.

Whether these mechanisms can be exploited for therapeutic purposes remains to be seen, but Round notes that they do raise the possibility of unintended effects in some circumstances if researchers try to use phages to influence human health via the gut microbiome. At least in the type of chronic inflammatory diseases she and her team have been studying, we might just be making it worse by using phages to target disease-causing bacteria, she says, adding that all research groups studying such approaches should take into account potential knock-on effects. Considering phages multiple interactions, with both bacteria and animal cells, she says, its a lot more complex than what wed appreciated.

Bacteriophages ability to selectively target and kill specific bacterial strains has long been recognized as a possible basis for antimicrobial therapies. Proposed by researchers in Europe as early as 1919, phage therapy went on to be widely promoted in Germany, the USSR, and elsewhere before being overtaken worldwide by the soaring popularity of antibiotics in the 1940s. But the strategy has come back into fashion among many microbiologists, thanks to the growing public health problem of antibiotic resistance in bacterial pathogens and to the rapidly improving scientific understanding of phage-bacteria interactions.

Some of the latest approaches aim not only to target specific bacteria with phages, but also to avoid (or exploit) the seemingly inevitable evolution of phage resistance in those bacteria. One way researchers try to do this is by taking advantage of an evolutionary trade-off: bacterial strains that evolve adaptations to one therapy will often suffer reduced fitness when confronted with a second therapy, perhaps one that targets the same or similar pathways in a different way.

Yale University virologist and evolutionary biologist Paul Turner, for example, has studied how phages in the Myoviridae (a family in the order Caudovirales) can promote antibiotic sensitivity in the important human pathogen Pseudomonas aeruginosa. Turner and colleagues showed a few years ago that one such phage binds to a protein called OprM in the bacterial cell membrane, and that bacterial populations under attack from these phages will often evolve reduced production of OprM proteins as a way of avoiding infection. However, OprM also happens to be important for pumping antibiotics out of the cell, such that abnormal OprM levels can reduce bacterias abilityto survive antibiotic treatment in vitro.

A handful of groups have published case studies using this kind of approach, known as phage steering, in humans. A couple years ago, for example, Turner and colleagues reported that a post-surgery patients chronicP. aeruginosa infection cleared up after treatment with the OprM-binding phage and the antibiotic ceftazidime. Researchers at the University of California, San Diego, in partnership with California-based biotech AmpliPhi Biosciences (now Armata Pharmaceuticals), reportedsimilar successin a cystic fibrosis patient with a P. aeruginosa infection who was treated with a mixture of phages and with antibiotics. A Phase 1/2 trial for that therapy was greenlighted by the US Food and Drug Administration last October.

The complexity of the relationship between phages and bacteria, not to mention recently discovered interactions between phages and eukaryotic cells, has many researchers tempering optimism about phage therapy with caution. There might be off-target effects to this that we hadnt really thought about, says University of Colorado School of Medicine microbiologist Breck Duerkop. That said, thanks to research in the last few years, the black veil on phage therapy is, I believe, being lifted, he adds, which Im really excited about because I think they have a ton of potential to be used in biomedicine.

Read the original here:
Are Phages Overlooked Mediators of Health and Disease? - The Scientist

Read More...

When Your Chance for a Covid Shot Comes, Dont Worry About the Numbers – Kaiser Health News

Monday, February 1st, 2021

Arthur Allen and Liz Szabo, Kaiser Health NewsUse Our Content

It can be republished for free.

When getting vaccinated against covid-19, theres no sense being picky. You should take the first authorized vaccine thats offered, experts say.

The newest covid vaccine on the horizon, from Johnson & Johnson, is probably a little less effective at preventing sickness than the two shots already being administered around the United States, from Pfizer-BioNTech and Moderna. On Friday, Johnson & Johnson announced that, in a 45,000-person trial, its vaccine was about 66% effective at preventing moderate to severe covid illness. No one who received the vaccine was hospitalized with or died of the disease, according to the company, which said it expected to seek Food and Drug Administration authorization as early as this week. If the agency authorizes use of the vaccine, millions of doses could be shipped out of J&Js warehouses beginning in late February.

The J&J vaccine is similar to the shots from Moderna and Pfizer-BioNTech but uses a different strategy for transporting genetic code into human cells to stimulate immunity to the disease. The Moderna and Pfizer-BioNTech vaccines were found in trials last fall to be 94% effective against confirmed covid. They also prevented nearly all severe cases.

But the difference in those efficacy numbers may be deceptive. The vaccines were tested in different locations and at different phases of the pandemic. And J&J gave subjects in its trial only one dose of the vaccine, while Moderna and Pfizer have two-dose schedules, separated by 28 and 21 days, respectively. The bottom line, however, is that all three do a good job at preventing serious covid.

Its a bit like, do you want a Lamborghini or a Chevy to get to work? said Dr. Gregory Poland, director of the Mayo Clinics Vaccine Research Group. Ultimately, I just need to get to work. If a Chevy is available, sign me up.

So while expert panels may debate in the future about which vaccine is best for whom, from a personal and public health perspective, the best advice for now is to get whatever you can as soon as you can get it, because the sooner we all get vaccinated the better off we all are, said Dr. Norman Hearst, a family doctor and epidemiologist at the University of California-San Francisco.

Here are five reasons experts say you should take the J&J shot assuming the FDA authorizes it if its the one thats offered to you first:

1. All three vaccines protect against hospitalization and death.

Of the 10 cases of severe disease in the Pfizer trial, nine received a placebo, or fake vaccine, and none of the 30 severe cases in the Moderna trial occurred in people who got the true vaccine. Johnson & Johnson did not release specific numbers but said none of the vaccinated patients were hospitalized or died. The real goal is to keep people out of the hospital and the ICU and the morgue, said Dr. Paul Offit, director of the Vaccine Education Center at Childrens Hospital of Philadelphia. This vaccine will do that well.

2. The efficacy levels could be a case of apples and oranges.

The data that Moderna and Pfizer-BioNTech presented to the FDA for their vaccines came from large clinical trials that took place over the summer and early fall in the United States. At the time, none of the new variants of covid some of which may be better at evading the immune responses produced by vaccines were circulating here. In contrast, the J&J trial began in September and was put into the arms of people in South America, South Africa and the United States.

Newly widespread variants in Brazil and South Africa appear somewhat better at evading the vaccines defenses, and its possible a new variant in California where many J&J volunteers were enrolled may also have that trait. The J&J vaccine was 72% effective against moderate to severe covid in the U.S. part of the trial, compared with 57% in South Africa, where a more contagious mutant virus is the dominant strain. Another vaccine, made by the Maryland company Novavax, had 90% efficacy in a large British trial, but only about 50% in South Africa. The Moderna and Pfizer-BioNTech vaccines might not have gotten the same sparkling results had they been tested more recently or in South Africa.

This vaccine was tested in the pandemic here and now, said Dr. Dan Barouch, a Harvard Medical School professor whose lab at the Center for Virology and Vaccine Research at Beth Israel Deaconess Medical Center in Boston developed the J&J vaccine. The pandemic is a much more complex pandemic than it was several months ago.

Some of that difference in performance also could be attributable to different patient populations or disease conditions, and not just the mutant virus. A large percentage of South Africans carry the human immunodeficiency virus, or HIV. Chinese vaccines have performed wildly differently in countries where they were tested in recent months.

We dont know which vaccines are the Lamborghinis, Poland said, because these arent true head-to-head comparisons.

3. Speed is of the essence.

To stop the spread of covid, the mutation of the virus that causes it and the continued pummeling of the economy, we all need to be vaccinated as quickly as possible. The inadequate supply of vaccines has been felt acutely.

Dr. Virginia Banks 103-year-old mother is one of the few living Americans who were around for the countrys last great pandemic the 1918 influenza yet shes been unable to get a covid vaccination, said Banks, a physician with Northeast Ohio Infectious Disease Associates in Youngstown.

Patients cant be picky about which vaccine they accept, Banks said. People need to get vaccinated with the vaccines out today so we can get closer to herd immunity to slow the spread of the virus.

Banks has worked hard to promote covid vaccines to skeptical minority communities, frequently appearing on local TV news and making at least two presentations by Zoom each week. Blacks to date have been vaccinated against covid at much lower rates than whites.

Theres a downside to waiting, said Dr. William Schaffner, a professor of preventive medicine and health policy at Vanderbilt University Medical Center. Delaying vaccination carries serious risks, given that more than 3,800 Americans have been dying every day of covid.

4. The J&J vaccine appears to have some real advantages.

First, it seems to cause fewer serious side effects like the fever and malaise suffered by some Pfizer-BioNTech and Moderna vaccine recipients. High fever and dehydration are particular concerns in fragile elderly people who have one foot on the banana peel, said Dr. Kathryn Edwards, scientific director of the Vanderbilt Vaccine Research Program. The J&J vaccine may be a better vaccine for the infirm.

Many people may also prefer the J&J shot because its one and done, Schaffner said. Easier for administrators too: just one appointment to schedule.

5. The J&J vaccine is much easier to ship, store and administer.

While the Johnson & Johnson vaccine can be stored in regular refrigerators, the Pfizer-BioNTech vaccine must be kept long-term in ultra-cold freezers at temperatures between minus 112 degrees and minus 76 degrees Fahrenheit, according to the Centers for Disease Control and Prevention.

Both the Moderna and Pfizer-BioNTech vaccines must be used or discarded within six hours after the vial is opened. Vials of the J&J vaccine can be stored in a refrigerator and restored for later use if doses remain. Right now we have mass immunization clinics that are open but have no vaccine, said Offit. Here you have a single-dose regime with easy storage and handling.

A persons address not their personal preference may determine which vaccine they receive, said E. John Wherry, director of the Institute for Immunology at the University of Pennsylvanias Perelman School of Medicine. He pointed out that the Johnson & Johnson vaccine is a simpler choice for rural areas.

A vaccine doesnt have to be 95% effective to be an incredible leap forward, said Wherry. When we get to the point where we have choices about which vaccine to give, it will be a luxury to have to struggle with that question.

This story was produced by KHN, which publishes California Healthline, an editorially independent service of the California Health Care Foundation.

Kaiser Health News (KHN) is a national health policy news service. It is an editorially independent program of the Henry J. Kaiser Family Foundation which is not affiliated with Kaiser Permanente.

This story can be republished for free (details).

Read the original here:
When Your Chance for a Covid Shot Comes, Dont Worry About the Numbers - Kaiser Health News

Read More...

Global CRISPR Gene Editing Market: Focus on Products, Applications, End Users, Country Data (16 Countries), and Competitive Landscape – Analysis and…

Monday, February 1st, 2021

New York, Feb. 01, 2021 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Global CRISPR Gene Editing Market: Focus on Products, Applications, End Users, Country Data (16 Countries), and Competitive Landscape - Analysis and Forecast, 2020-2030" - https://www.reportlinker.com/p06018975/?utm_source=GNW Application Agricultural, Biomedical (Gene Therapy, Drug Discovery, And Diagnostics), Industrial, and Other Applications [Genetically Modified Foods (GM Foods), Biofuel, And Animal (Livestock) Breeding] End-User - Academic Institutes and Research Centers, Biotechnology Companies, Contract Research Organizations (CROs), and Pharmaceutical and Biopharmaceutical Companies

Regional Segmentation

North America U.S., Canada Europe Germany, France, Italy, U.K., Spain, Switzerland, and Rest-of-Europe Asia-Pacific China, Japan, India, South Korea, Singapore, Australia, and Rest-of-Asia-Pacific (RoAPAC) Latin America Brazil, Mexico, and Rest-of-the-Latin America Rest-of-the-World

Growth Drivers

Prevalence of Genetic Disorders and Use of Genome Editing Government and Private Funding Technology Advancement in CRISPR Gene Editing

Market Restraints

CRISPR Gene Editing: Off Target Effects and Delivery Ethical Concerns and Implications with Respect to Human Genome Editing

Market Opportunities

Expanding Gene and Cell Therapy Area CRISPR Gene Editing Scope in Agriculture

Key Companies ProfiledAbcam, Inc., Applied StemCell, Inc., Agilent Technologies, Inc., Cellecta, Inc., CRISPR Therapeutics AG, Thermo Fisher Scientific, Inc., GeneCopoeia, Inc., GeneScript Biotech Corporation, Horizon Discovery Group PLC, Integrated DNA Technologies, Inc., Merck KGaA, New England Biolabs, Inc., Origene Technologies, Inc., Rockland Immunochemicals, Inc., Synthego Corporation, System Biosciences LLC, ToolGen, Inc., Takara Bio

Key Questions Answered in this Report: What is CRISPR gene editing? What is the timeline for the development of CRISPR technology? How did the CRISPR gene editing market evolve, and what is its scope in the future? What are the major market drivers, restraints, and opportunities in the global CRISPR gene editing market? What are the key developmental strategies that are being implemented by the key players to sustain this market? What is the patent landscape of this market? What will be the impact of patent expiry on this market? What is the impact of COVID-19 on this market? What are the guidelines implemented by different government bodies to regulate the approval of CRISPR products/therapies? How is CRISPR gene editing being utilized for the development of therapeutics? How will the investments by public and private companies and government organizations affect the global CRISPR gene editing market? What was the market size of the leading segments and sub-segments of the global CRISPR gene editing market in 2019? How will the industry evolve during the forecast period 2020-2030? What will be the growth rate of the CRISPR gene editing market during the forecast period? How will each of the segments of the global CRISPR gene editing market grow during the forecast period, and what will be the revenue generated by each of the segments by the end of 2030? Which product segment and application segment are expected to register the highest CAGR for the global CRISPR gene editing market? What are the major benefits of the implementation of CRISPR gene editing in different field of applications including biomedical research, agricultural research, industrial research, gene therapy, drug discovery, and diagnostics? What is the market size of the CRISPR gene editing market in different countries of the world? Which geographical region is expected to contribute to the highest sales of CRISPR gene editing market? What are the reimbursement scenario and regulatory structure for the CRISPR gene editing market in different regions? What are the key strategies incorporated by the players of global CRISPR gene editing market to sustain the competition and retain their supremacy?

Market OverviewThe development of genome engineering with potential applications proved to reflect a remarkable impact on the future of the healthcare and life science industry.The high efficiency of the CRISPR-Cas9 system has been demonstrated in various studies for genome editing, which resulted in significant investments within the field of genome engineering.

However, there are several limitations, which need consideration before clinical applications.Further, many researchers are working on the limitations of CRISPR gene editing technology for better results.

The potential of CRISPR gene editing to alter the human genome and modify the disease conditions is incredible but exists with ethical and social concerns. The global CRISPR gene editing market was valued at $846.2 million in 2019 and is expected to reach $10,825.1 million by 2030, registering a CAGR of 26.86% during the forecast.

The growth is attributed to the increasing demand in the food industry for better products with improved quality and nutrient enrichment and the pharmaceutical industry for targeted treatment for various diseases. Further, the continued significant investments by healthcare companies to meet the industry demand and growing prominence for the gene therapy procedures with less turnaround time are the prominent factors propelling the growth of the global CRISPR gene editing market.

Research organizations, pharmaceutical and biotechnology industries, and institutes are looking for more efficient genome editing technologies to increase the specificity and cost-effectiveness, also to reduce turnaround time and human errors.Further, the evolution of genome editing technologies has enabled wide range of applications in various fields, such as industrial biotech and agricultural research.

These advanced methods are simple, super-efficient, cost-effective, provide multiplexing, and high throughput capabilities. The increase in the geriatric population and increasing number of cancer cases, and genetic disorders across the globe are expected to translate into significantly higher demand for CRISPR gene editing market.

Furthermore, the companies are investing huge amounts in the research and development of CRISPR gene editing products, and gene therapies. The clinical trial landscape of various genetic and chronic diseases has been on the rise in recent years, and this will fuel the CRISPR gene editing market in the future.

Within the research report, the market is segmented based on product type, application, end-user, and region. Each of these segments covers the snapshot of the market over the projected years, the inclination of the market revenue, underlying patterns, and trends by using analytics on the primary and secondary data obtained.

Competitive LandscapeThe exponential rise in the application of precision medicine on a global level has created a buzz among companies to invest in the development of novel CRISPR gene editing. Due to the diverse product portfolio and intense market penetration, Merck KGaA, and Thermo Fisher Scientific Inc. have been the pioneers in this field and have been the major competitors in this market. The other major contributors of the market include companies such as Integrated DNA Technologies (IDT), Genscript Biotech Corporation, Takara Bio Inc, Agilent Technologies, Inc., and New England Biolabs, Inc.

Based on region, North America holds the largest share of CRISPR gene editing market due to substantial investments made by biotechnology and pharmaceutical companies, improved healthcare infrastructure, rise in per capita income, early availability of approved therapies, and availability of state-of-the-art research laboratories and institutions in the region. Apart from this, Asia-Pacific region is anticipated to grow at the fastest CAGR during the forecast period.

Countries Covered North America U.S. Canada Europe Germany Italy France Spain U.K. Switzerland Rest-of-Europe Asia-Pacific China India Australia South Korea Singapore Japan Rest-of-Asia-Pacific Latin America Brazil Mexico Rest-of-Latin America Rest-of-the-WordRead the full report: https://www.reportlinker.com/p06018975/?utm_source=GNW

About ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Read the rest here:
Global CRISPR Gene Editing Market: Focus on Products, Applications, End Users, Country Data (16 Countries), and Competitive Landscape - Analysis and...

Read More...

The First Targeted Therapy For Lung Cancer Patients With The KRAS Gene MutationExtraordinary Results With Sotorasib – SurvivorNet

Monday, February 1st, 2021

First Targeted Therapy For Lung Cancer With KRAS

For the first time, there may be an effective treatment option for people with lung cancer that contains a genetic mutation called KRAS. The results of a groundbreaking using a drug calledSotorasib have just been published in the highly-respected New England Journal of Medicine.

Dr. Roy Herbst, Chief of Medical Oncology at Yale tells SurvivorNet We are excited we have a drug that could work in these patients. The fact that tumors respond to this therapy is a big deal.

Lung cancer remains the leading cause of cancer death in the united states. The most common form of lung cancer, non-small cell lung cancer (NSCLC), has recently seen major advancements with new treatments such as immunotherapy and targeted therapies extending the lives of thousands of patients. However, despite these recent advancements little has been available to help patients who have lung cancer with a KRAS mutation. This mutation is found in approximately 10-12% of patients with NSCLC and any drug that can improve the outlook for these patients would be a game-changer for lung cancer.

Now we finally have targeted therapy options for these patients.

In patients who have advanced stage or metastatic NSCLC most patients will have their tumor tested for genetic abnormalities or biomarkers to help their doctors select what treatments are best. Some common biomarkers such as EGFR and PDL1 have medications that doctors can use to target the lung cancer and improve a patients survival and quality of life. Despite this, one biomarker that has never had a treatment is KRAS. KRAS is a mutation that occurs in some patients with NSCLC and is generally associated with poor outcomes. One reason this mutation is considered a bad risk factor is that unlike other mutations such as EGFR there has never been a drug approved to treat this type of lung cancer.

Fortunately, for patients, this may be changing soon. A new drug called Sotorasib that specifically targets the KRAS mutation recently showed positive results in the early phase CODEBREAK 100 study. Based on the results from the early phase study Sotorasib was granted Break Through Therapy Designation and the drug has been accepted into the Real-Time Oncology Pilot Review Program by the U.S. Food and Drug Administration (FDA). When discussing the trial, Dr. Velcheti, Director of the Thoracic Medical Oncology Program at NYU Langone says The CODEBREAK 100 trial represents the clinical validation of significant research efforts spanning decades. Now we finally have targeted therapy options for these patients.

Overall I am impressed with this drug. It is hard for the public to understand just how far drug development has come.

So what does this mean for patients? This means that the new drug targeting KRAS may soon be available for patients whose tumors harbor this mutation and who have not responded to other treatments.

Lung specialists from across the country were eager to speak with SurvivorNet regarding the exciting news. Dr. Brendon Stiles, Associate Professor of Cardiothoracic Surgery at Weill Cornell Medical Center tells SurvivorNet Overall I am impressed with this drug. It is hard for the public to understand just how far drug development has come. The KRAS mutation has long been considered undruggable, meaning if you have this mutation, there was not a medicine designed specifically to treat this type of cancer. The chance of responding to the new therapy is around 40%. Although, researches would prefer to see this percent be higher the results of the study give hope that future therapies may have even better outcomes. Dr. Herbst is also optimistic about the future of drugs targeting KRAS and thinks the results of this study opens up a whole new world for lung cancer. If you or a loved one have NSCLC with a KRAS mutation ask your doctor about what treatment options are best for you.

Learn more about SurvivorNet's rigorous medical review process.

Dr. Roy Herbst, Chief of Medical Oncology at Yale tells SurvivorNet We are excited we have a drug that could work in these patients. The fact that tumors respond to this therapy is a big deal.

Now we finally have targeted therapy options for these patients.

In patients who have advanced stage or metastatic NSCLC most patients will have their tumor tested for genetic abnormalities or biomarkers to help their doctors select what treatments are best. Some common biomarkers such as EGFR and PDL1 have medications that doctors can use to target the lung cancer and improve a patients survival and quality of life. Despite this, one biomarker that has never had a treatment is KRAS. KRAS is a mutation that occurs in some patients with NSCLC and is generally associated with poor outcomes. One reason this mutation is considered a bad risk factor is that unlike other mutations such as EGFR there has never been a drug approved to treat this type of lung cancer.

Fortunately, for patients, this may be changing soon. A new drug called Sotorasib that specifically targets the KRAS mutation recently showed positive results in the early phase CODEBREAK 100 study. Based on the results from the early phase study Sotorasib was granted Break Through Therapy Designation and the drug has been accepted into the Real-Time Oncology Pilot Review Program by the U.S. Food and Drug Administration (FDA). When discussing the trial, Dr. Velcheti, Director of the Thoracic Medical Oncology Program at NYU Langone says The CODEBREAK 100 trial represents the clinical validation of significant research efforts spanning decades. Now we finally have targeted therapy options for these patients.

Overall I am impressed with this drug. It is hard for the public to understand just how far drug development has come.

So what does this mean for patients? This means that the new drug targeting KRAS may soon be available for patients whose tumors harbor this mutation and who have not responded to other treatments.

Lung specialists from across the country were eager to speak with SurvivorNet regarding the exciting news. Dr. Brendon Stiles, Associate Professor of Cardiothoracic Surgery at Weill Cornell Medical Center tells SurvivorNet Overall I am impressed with this drug. It is hard for the public to understand just how far drug development has come. The KRAS mutation has long been considered undruggable, meaning if you have this mutation, there was not a medicine designed specifically to treat this type of cancer. The chance of responding to the new therapy is around 40%. Although, researches would prefer to see this percent be higher the results of the study give hope that future therapies may have even better outcomes. Dr. Herbst is also optimistic about the future of drugs targeting KRAS and thinks the results of this study opens up a whole new world for lung cancer. If you or a loved one have NSCLC with a KRAS mutation ask your doctor about what treatment options are best for you.

Learn more about SurvivorNet's rigorous medical review process.

Here is the original post:
The First Targeted Therapy For Lung Cancer Patients With The KRAS Gene MutationExtraordinary Results With Sotorasib - SurvivorNet

Read More...

Do Short People Live Longer? What We Know – Healthline

Monday, February 1st, 2021

You may assume that being tall means, in some part, having good health. In addition to genetics and heredity, adult height is determined largely by nutritional intake during infancy and childhood. The better the nutrition, the healthier and taller youre likely to be.

But multiple studies have thrown this assumption into question. Being tall may have its perks. But, based on some studies, long life may not be one of them.

While much more evidence is needed, research indicates a possible link between height and specific diseases, as well as longevity potential.

Keep in mind, though, that short and tall are relative terms, and more research, and evidence, is needed to confirm these findings. Lifestyle habits also play a strong role in longevity potential.

Well highlight the research on this topic and break it down for you.

There are several studies indicating a correlation between height and mortality risk.

A longitudinal study of men who had served in the Italian military found that those under 161.1 cm (approx. 53) lived longer than those over 161.1 cm. This study looked at the death rates of men born between 1866 and 1915 in the same Italian village.

Researchers found that at 70 years old, the taller men were expected to live approximately 2 years less than those who were shorter.

During the years when study participants were born, the average height for men in the village was around 52. By current standards, this is relatively short.

Its also important to note that the researchers did not correlate variables, such as weight and BMI (body mass index), for this study.

A 2017 study on height and lifespan in former professional basketball players found that larger body size yielded reduced longevity. This study analyzed the height and life span of 3,901 living and deceased basketball players who played between 1946-2010.

The players had an average height of 197.78 cm. (approx. 65 tall). In this study, the tallest players in the top 5 percent for height died younger than the shortest players in the bottom 5 percent. Those born between 1941-1950 were an exception to these findings.

Researchers were quick to note that variables such as genotype variations, socioeconomic factors, medical care, weight, education, nutrition, exercise, and smoking were all factors that also play a role in determining longevity.

The FOX03 genotype and its relationship to height and longevity was analyzed in an observational study of 8,003 American men of Japanese descent.

The FOX03 gene is consistently linked to longevity in human and animal studies. It is also linked to body size, and may be one reason why shorter people may have longer lifespans.

In this study, men who were 52 or shorter were more likely to have a protective form of the FOX03 gene, and lived the longest. Those over 54 had shorter lifespans.

Shorter men were also shown to have less incidence of cancer, and lower fasting insulin levels. FOX03 is a key regulatory gene in the insulin/IGF-1 signaling pathway.

It is not completely understood why, or even if, shorter people are destined to live longer. Much more research is needed.

Currently, there are multiple theories:

Health complications which may be correlated with height include cancer and other conditions. Heres what the science says.

A 2016 study of American men and women found a connection between height and cancer risk, as well as death from all causes. Researchers analyzed death certificate data for 14,440 men and 16,390 women aged 25 and up.

According to researchers, an additional inch increase in height generated a 2.2 percent higher risk of death from all causes for men, and a 2.5 percent higher risk of death from all causes for women.

An additional inch increase in height generated a 7.1 percent higher risk of death from cancer for men, and a 5.7 percent higher risk of death from cancer for women.

The researchers controlled for education level and birthdays. They concluded that their findings indicated a positive increase in accessibility to excellent medical care, for conditions other than cancer, in the participants.

Cancer risk and height was analyzed in a 2013 study of 144,701 postmenopausal women. Being tall was positively associated with getting all types of cancer, including cancers of the thyroid, breast, colon, and ovaries.

Height was found to have a modest, but statistically significant, impact upon acquisition of cancer.

The researchers analyzed data from women who did not have a prior history of cancer. They also attempted to adjust for weight and body mass index.

Many variables may have had an impact on study findings, in addition to height. For example, rates of smoking and alcohol intake were shown to increase with increasing height.

Education level, ethnicity, income level, plus use of oral contraceptives and hormone therapy, may all have had an impact. Rates of cancer screenings were found to play no role in study findings.

Recurrences of VTE were found to occur more often in taller women than in those of shorter stature in multiple studies. In this instance, simply having longer legs and longer veins where a thrombus might occur may be the reason.

Age, obesity, and long-term hospitalizations are other potential risk factors for this condition.

Many factors impact upon longevity, and height may be one of them. However, this doesnt mean that taller people are destined to live short lives, or that short people are destined to live long ones.

Lifestyle choices can also greatly impact disease acquisition and longevity. To be healthier and potentially increase your lifespan, you can:

Multiple studies have found a correlation between height and longevity. Short people have been found to resist certain diseases such as cancer, and to live longer lives.

But these studies, while compelling, are far from conclusive. The best thing you can do if youre concerned about longevity is to make lifestyle choices that have a positive effect on your lifespan regardless of how tall you are.

Original post:
Do Short People Live Longer? What We Know - Healthline

Read More...

Hereford Thrives In Uncertain Year – Drovers Magazine

Monday, February 1st, 2021

Despite the challenges of 2020, the American Hereford Association reports breed growth. In a year that was anything but predictable, Hereford breeders and the American Hereford Association (AHA) continued to add value to Hereford genetics. Year-end reports shared during the Associations recent annual meeting show their efforts paid off.

As the commercial industry has looked to add crossbreeding back into the programs to increase fertility, longevity, disposition all the things that are known in Hereford cattle its created a great opportunity for us, says Jack Ward, AHA executive vice president.

Ward reports the Association experienced increases in registrations and memberships this fiscal year, while sale averages climbed. The real excitement within our breed and within our membership is in its growth, Ward says.Its seen growth because the breeders have been committed to genetic improvement and providing the tools necessary to make the changes to produce the type of product that their customers need and then, ultimately, the consumer. Its all encompassing.

A drive for genetic improvement includes a focus on the female. The Association incorporated genomic information into its suite of maternal traits, and female genotypes accounted for almost 60% of the 25,000 genotypes submitted to the organization during the fiscal year.

I really think that speaks highly to our breeders commitment to really get the most of the females that theyre keeping, says Shane Bedwell, AHA chief operating officer and director of breed improvement. Youll find about a 20% to 25%, up to a 30%, increase in those maternal traits in the last three years.

The Association also reports tremendous strides in other economically relevant traits, including carcass. Weve made incredible improvements in postweaning growth and end product merit, Bedwell adds. Thats evident in the amount of cattle that are now grading well in the Hereford breed.

Benefits in conversion and cost of gain have more producers utilizing the Associations commercial programs like Hereford Advantage to add value to Hereford and Hereford-influenced calves.Meanwhile, Certified Hereford Beef celebrated its 25th anniversary and another successful year.

No matter where you drive in the U.S., you find Hereford cattle. Theyre adaptable, they work hard. Theyre efficient, Bedwell notes. We need efficient cattle in these times and in our production system, and Hereford genetics thrive. Ward adds, Producers want it all and, with Herefords, you can Come Home to Hereford, use good Hereford genetics and take advantage of those opportunities.

Learn more about additional AHA opportunities or news from AHAs 2020 Annual Meeting at Hereford.org. Youll find a series of highlights, including the presentation of more than $150,000 in scholarships, as well as breed honorees and other Hereford news. Virtual educational sessions covering topics from genomics to marketing are also available.

Merck Animal Health, Neogen Corporation, National Cattlemens Beef Association and National Corn Growers Association were among major sponsors of the AHA Annual Membership Meeting and Conference.

Visit link:
Hereford Thrives In Uncertain Year - Drovers Magazine

Read More...

Page 28«..1020..26272829


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick