Genetics of aging is generally concerned with life extension associated with genetic alterations, rather than with accelerated aging diseases leading to reduction in lifespan.
The first mutation found to increase longevity in an animal was the age-1 gene in Caenorhabditis elegans. Michael Klass discovered that lifespan of C.elegans could be altered by mutations, but Klass believed that the effect was due to reduced food consumption (calorie restriction).[1] Thomas Johnson later showed that life extension of up to 65% was due to the mutation itself rather than due to calorie restriction,[2] and he named the gene age-1 in the expectation that other genes that control aging would be found. The age-1 gene encodes the catalytic subunit of class-I phosphatidylinositol 3-kinase(PI3K).
A decade after Johnson's discovery daf-2, one of the two genes that are essential for dauer larva formation,[3] was shown by Cynthia Kenyon to double C.elegans lifespan.[4] Kenyon showed that the daf-2 mutants, which would form dauers above 25C (298K; 77F) would bypass the dauer state below 20C (293K; 68F) with a doubling of lifespan.[4] Prior to Kenyon's study it was commonly believed that lifespan could only be increased at the cost of a loss of reproductive capacity, but Kenyon's nematodes maintained youthful reproductive capacity as well as extended youth in general. Subsequent genetic modification (PI3K-null mutation) to C.elegans was shown to extend maximum life span tenfold.[5][6]
Genetic modifications in other species have not achieved as great a lifespan extension as have been seen for C.elegans. Drosophila melanogaster lifespan has been doubled.[7] Genetic mutations in mice can increase maximum lifespan to 1.5times normal, and up to 1.7times normal when combined with calorie restriction.[8]
In yeast, NAD+-dependent histone deacetylase Sir2 is required for genomic silencing at three loci: the yeast mating loci, the telomeres and the ribosomal DNA (rDNA). In some species of yeast, replicative aging may be partially caused by homologous recombination between rDNA repeats; excision of rDNA repeats results in the formation of extrachromosomal rDNA circles (ERCs). These ERCs replicate and preferentially segregate to the mother cell during cell division, and are believed to result in cellular senescence by titrating away (competing for) essential nuclear factors. ERCs have not been observed in other species (nor even all strains of the same yeast species) of yeast (which also display replicative senescence), and ERCs are not believed to contribute to aging in higher organisms such as humans (they have not been shown to accumulate in mammals in a similar manner to yeast). Extrachromosomal circular DNA (eccDNA) has been found in worms, flies, and humans. The origin and role of eccDNA in aging, if any, is unknown.
Despite the lack of a connection between circular DNA and aging in higher organisms, extra copies of Sir2 are capable of extending the lifespan of both worms and flies (though, in flies, this finding has not been replicated by other investigators, and the activator of Sir2 resveratrol does not reproducibly increase lifespan in either species.[9]) Whether the Sir2 homologues in higher organisms have any role in lifespan is unclear, but the human SIRT1 protein has been demonstrated to deacetylate p53, Ku70, and the forkhead family of transcription factors. SIRT1 can also regulate acetylates such as CBP/p300, and has been shown to deacetylate specific histone residues.
RAS1 and RAS2 also affect aging in yeast and have a human homologue. RAS2 overexpression has been shown to extend lifespan in yeast.
Other genes regulate aging in yeast by increasing the resistance to oxidative stress. Superoxide dismutase, a protein that protects against the effects of mitochondrial free radicals, can extend yeast lifespan in stationary phase when overexpressed.
In higher organisms, aging is likely to be regulated in part through the insulin/IGF-1 pathway. Mutations that affect insulin-like signaling in worms, flies, and the growth hormone/IGF1 axis in mice are associated with extended lifespan. In yeast, Sir2 activity is regulated by the nicotinamidase PNC1. PNC1 is transcriptionally upregulated under stressful conditions such as caloric restriction, heat shock, and osmotic shock. By converting nicotinamide to niacin, nicotinamide is removed, inhibiting the activity of Sir2. A nicotinamidase found in humans, known as PBEF, may serve a similar function, and a secreted form of PBEF known as visfatin may help to regulate serum insulin levels. It is not known, however, whether these mechanisms also exist in humans, since there are obvious differences in biology between humans and model organisms.
Sir2 activity has been shown to increase under calorie restriction. Due to the lack of available glucose in the cells, more NAD+ is available and can activate Sir2. Resveratrol, a stilbenoid found in the skin of red grapes, was reported to extend the lifespan of yeast, worms, and flies (the lifespan extension in flies and worms have proved to be irreproducible by independent investigators[9]). It has been shown to activate Sir2 and therefore mimics the effects of calorie restriction, if one accepts that caloric restriction is indeed dependent on Sir2.
According to the GenAge database of aging-related genes, there are over 1800 genes altering lifespan in model organisms: 838 in the soil roundworm (Caenorhabditis elegans), 883 in the bakers' yeast (Saccharomyces cerevisiae), 170 in the fruit fly (Drosophila melanogaster) and 126 in the mouse (Mus musculus).[10]
The following is a list of genes connected to longevity through research [10] on model organisms:
Ned Sharpless and collaborators demonstrated the first in vivo link between p16-expression and lifespan.[11] They found reduced p16 expression in some tissues of mice with mutations that extend lifespan, as well as in mice that had their lifespan extended by food restriction. Jan van Deursen and Darren Baker in collaboration with Andre Terzic at the Mayo Clinic in Rochester, Minn., provided the first in vivo evidence for a causal link between cellular senescence and aging by preventing the accumulation of senescent cells in BubR1 progeroid mice.[12] In the absence of senescent cells, the mices tissues showed a major improvement in the usual burden of age-related disorders. They did not develop cataracts, avoided the usual wasting of muscle with age. They retained the fat layers in the skin that usually thin out with age and, in people, cause wrinkling. A second study led by Jan van Deursen in collaboration with a team of collaborators at the Mayo Clinic and Groningen University, provided the first direct in vivo evidence that cellular senescence causes signs of aging by eliminating senescent cells from progeroid mice by introducing a drug-inducible suicide gene and then treating the mice with the drug to kill senescent cells selectively, as opposed to decreasing whole body p16.[13] Another Mayo study led by James Kirkland in collaboration with Scripps and other groups demonstrated that senolytics, drugs that target senescent cells, enhance cardiac function and improve vascular reactivity in old mice, alleviate gait disturbance caused by radiation in mice, and delay frailty, neurological dysfunction, and osteoporosis in progeroid mice. Discovery of senolytic drugs was based on a hypothesis-driven approach: the investigators leveraged the observation that senescent cells are resistant to apoptosis to discover that pro-survival pathways are up-regulated in these cells. They demonstrated that these survival pathways are the "Achilles heel" of senescent cells using RNA interference approaches, including Bcl-2-, AKT-, p21-, and tyrosine kinase-related pathways. They then used drugs known to target the identified pathways and showed these drugs kill senescent cells by apoptosis in culture and decrease senescent cell burden in multiple tissues in vivo. Importantly, these drugs had long term effects after a single dose, consistent with removal of senescent cells, rather than a temporary effect requiring continued presence of the drugs. This was the first study to show that clearing senescent cells enhances function in chronologically aged mice.[14]
See the original post:
Genetics of aging - Wikipedia
- 001 Salk News Clip - Long Lived Fruit Flies (KPBS) - Video [Last Updated On: February 7th, 2012] [Originally Added On: February 7th, 2012]
- 002 Seen At 11: Could The Next Generation Live To Be 150? [Last Updated On: February 17th, 2012] [Originally Added On: February 17th, 2012]
- 003 Combating Aging's Ravages - Advances in Minnesota and France - Video [Last Updated On: February 21st, 2012] [Originally Added On: February 21st, 2012]
- 004 Immortal worms defy aging [Last Updated On: February 28th, 2012] [Originally Added On: February 28th, 2012]
- 005 Immortal worms defy ageing [Last Updated On: February 28th, 2012] [Originally Added On: February 28th, 2012]
- 006 The 27th Colloque Médecine et Recherche of the Fondation Ipsen in the Alzheimer Disease series: “Proteopathic Seeds ... [Last Updated On: February 29th, 2012] [Originally Added On: February 29th, 2012]
- 007 Biostem U.S., Corporation Continues Building Its Scientific and Medical Board of Advisors With Appointment of Leading ... [Last Updated On: March 19th, 2012] [Originally Added On: March 19th, 2012]
- 008 Biostem U.S., Corporation Adds Jeanne Ann Lumadue, MD, PhD, MBA to Its Scientific and Medical Board of Advisors [Last Updated On: May 23rd, 2012] [Originally Added On: May 23rd, 2012]
- 009 Longevity Science: Unraveling the Secrets of Human ... [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 010 LongevityMap: Genetic association studies of longevity [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 011 Genetics and Aging - The Genetic Theory of Aging [Last Updated On: May 21st, 2015] [Originally Added On: May 21st, 2015]
- 012 To Measure Longevity, Common Sense Trumps Genetic Test [Last Updated On: May 22nd, 2015] [Originally Added On: May 22nd, 2015]
- 013 Scientists seek genetic clues to longevity from 115-year ... [Last Updated On: May 22nd, 2015] [Originally Added On: May 22nd, 2015]
- 014 Telomeres and Aging - Understanding Cellular Aging [Last Updated On: May 29th, 2015] [Originally Added On: May 29th, 2015]
- 015 Longevity genetics study retracted from Science | WIRED [Last Updated On: June 1st, 2015] [Originally Added On: June 1st, 2015]
- 016 Genetics of Human Longevity - Longevity Science [Last Updated On: June 1st, 2015] [Originally Added On: June 1st, 2015]
- 017 Longevity genes - Supercentenarian [Last Updated On: June 8th, 2015] [Originally Added On: June 8th, 2015]
- 018 Overview | Institute for Aging Research | Albert Einstein ... [Last Updated On: July 6th, 2015] [Originally Added On: July 6th, 2015]
- 019 Genetic Improvement of Dairy Cow Longevity - eXtension [Last Updated On: July 6th, 2015] [Originally Added On: July 6th, 2015]
- 020 Genetic determinants of exceptional human longevity ... [Last Updated On: July 6th, 2015] [Originally Added On: July 6th, 2015]
- 021 Secrets of Aging, Long Life, longevity Genes [Last Updated On: July 11th, 2015] [Originally Added On: July 11th, 2015]
- 022 Fine-Tuning Your Longevity Genes | Life Code [Last Updated On: July 20th, 2015] [Originally Added On: July 20th, 2015]
- 023 LonGenity and Longevity Genes Project [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- 024 Biology of Aging | National Institute on Aging [Last Updated On: August 2nd, 2015] [Originally Added On: August 2nd, 2015]
- 025 Genetics, lifestyle and longevity: Lessons from centenarians [Last Updated On: September 25th, 2015] [Originally Added On: September 25th, 2015]
- 026 Resveratrol By RevGenetics Resveratrol Benefits, Anti ... [Last Updated On: September 28th, 2015] [Originally Added On: September 28th, 2015]
- 027 Genetics Articles - Bodybuilding.com [Last Updated On: October 20th, 2015] [Originally Added On: October 20th, 2015]
- 028 Genetic Anti-Aging and Health: Creating REAL Results by ... [Last Updated On: October 24th, 2015] [Originally Added On: October 24th, 2015]
- 029 5 Ways to Prevent a First Heart Attack - Verywell [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 030 Genes Linked to the Effect of Stress and Mood on Longevity ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 031 SPH - Boston University School of Public Health [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 032 Power 9 - Blue Zones [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 033 Human longevity: Genetics or Lifestyle? It takes two to ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 034 Is Longevity Entirely Hereditary? - BEN BEST [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 035 Veritas Genetics - Committed to disease prevention, early ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 036 GENETICS: Is aging in our genes? - nia.nih.gov [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 037 Aging, genetics and longevity drugs - biopsychiatry.com [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 038 Longevity, how to live longer with diet, food, and dietary ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 039 Genetics of Longevity in Model Organisms: Debates and ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 040 The Okinawa Centenarian Study : Evidence based gerontology [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 041 Can Humans Live Forever? Longevity Research Suggests ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 042 Genetics of longevity and aging. [Last Updated On: August 13th, 2016] [Originally Added On: August 13th, 2016]
- 043 Genetic Secrets Of Longevity Discovered | IFLScience [Last Updated On: August 13th, 2016] [Originally Added On: August 13th, 2016]
- 044 Longevity Genes Project | Institute for Aging Research ... [Last Updated On: August 15th, 2016] [Originally Added On: August 15th, 2016]
- 045 Ageing - Wikipedia, the free encyclopedia [Last Updated On: September 6th, 2016] [Originally Added On: September 6th, 2016]
- 046 Supercourse: Epidemiology, the Internet, and Global Health [Last Updated On: September 8th, 2016] [Originally Added On: September 8th, 2016]
- 047 Population Reference Bureau (PRB) [Last Updated On: November 17th, 2016] [Originally Added On: November 17th, 2016]
- 048 normande genetics: sustainable genetics that breed quality [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- 049 Medical genetics of Jews - Wikipedia [Last Updated On: December 1st, 2016] [Originally Added On: December 1st, 2016]
- 050 Ashkenazi Jews - Wikipedia [Last Updated On: December 7th, 2016] [Originally Added On: December 7th, 2016]
- 051 Ageing - Wikipedia [Last Updated On: December 7th, 2016] [Originally Added On: December 7th, 2016]
- 052 Drosophila melanogaster - Wikipedia [Last Updated On: December 25th, 2016] [Originally Added On: December 25th, 2016]
- 053 Lamarckism - Wikipedia [Last Updated On: January 5th, 2017] [Originally Added On: January 5th, 2017]
- 054 68-Year Study: Childhood Intelligence and Longevity Related - Newsmax [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- 055 There's No Known Limit To How Long Humans Can Live | Time.com - TIME [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- 056 Could a High IQ Mean a Longer Life? - Sioux City Journal [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- 057 Researchers Find Genetic Mutation That Encourages Longevity In Men - Yeshiva World News [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- 058 Haifa U Researchers Find Genetic Mutation that Encourages Longevity in Men - The Jewish Press - JewishPress.com [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- 059 11 Basic Guidelines for General Health and Longevity ... [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- 060 This Study Could Help Extend the Human Lifespan - Futurism [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- 061 Sharks could hold genetic secret to long life: Study - The Hindu [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- 062 Longevity Genes Predict Whether You'll Live Past 100 [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- 063 Study probes Greenland sharks' secret to long life - NATIONAL - The ... - The Hindu [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- 064 Swiss-led research team identifies new life-expectancy markers - The Hans India [Last Updated On: July 30th, 2017] [Originally Added On: July 30th, 2017]
- 065 16 Genetic Markers Linked to Lifespan | Worldhealth.net Anti-Aging ... - Anti Aging News [Last Updated On: July 30th, 2017] [Originally Added On: July 30th, 2017]
- 066 Mutation explains why some men live to 100 - ISRAEL21c [Last Updated On: July 30th, 2017] [Originally Added On: July 30th, 2017]
- 067 How to live old - The Sherbrooke Times [Last Updated On: July 30th, 2017] [Originally Added On: July 30th, 2017]
- 068 The 16 genetic markers that can cut a life story short - Medical Xpress - Medical Xpress [Last Updated On: July 30th, 2017] [Originally Added On: July 30th, 2017]
- 069 Health Shorts: Stem cell 'cures,' Sugar spike, Longevity - Sarasota Herald-Tribune [Last Updated On: July 30th, 2017] [Originally Added On: July 30th, 2017]
- 070 23 People That Lived to 100 Spill Their Secrets of Longevity [Last Updated On: July 30th, 2017] [Originally Added On: July 30th, 2017]
- 071 An extra dose of this longevity hormone helped make mice smarter - Popular Science [Last Updated On: August 8th, 2017] [Originally Added On: August 8th, 2017]
- 072 EDITORIAL: 99%, My Life Sucks, Dogfighting, and Brady's Brain - GoLocalProv [Last Updated On: August 8th, 2017] [Originally Added On: August 8th, 2017]
- 073 Genetic strategies to reduce gilt feed and development costs - National Hog Farmer [Last Updated On: August 14th, 2017] [Originally Added On: August 14th, 2017]
- 074 Kahn Longevity Center [Last Updated On: August 19th, 2017] [Originally Added On: August 19th, 2017]
- 075 Media's Anti-Aging Agenda without the Benefit of Scientific Evidence, Fact or Common Sense - Anti Aging News [Last Updated On: August 19th, 2017] [Originally Added On: August 19th, 2017]
- 076 Genetic mutation explains why some men live to 100 - Jewish Journal [Last Updated On: August 25th, 2017] [Originally Added On: August 25th, 2017]
- 077 This 23-year-old just closed her second fund which is focused on ... - TechCrunch [Last Updated On: August 25th, 2017] [Originally Added On: August 25th, 2017]
- 078 Do Low Calorie Diets Help You Live Longer? - Healthline [Last Updated On: August 30th, 2017] [Originally Added On: August 30th, 2017]
- 079 The 5 Aging Startups Backed by Longevity Fund - Nanalyze [Last Updated On: August 30th, 2017] [Originally Added On: August 30th, 2017]
- 080 The Genetic Theory of Aging - Concepts and Evidence [Last Updated On: August 30th, 2017] [Originally Added On: August 30th, 2017]