Nanomedicine, branch of medicine that seeks to apply nanotechnologythat is, the manipulation and manufacture of materials and devices that are smaller than 1 nanometre [0.0000001 cm] in sizeto the prevention of disease and to imaging, diagnosis, monitoring, treatment, repair, and regeneration of biological systems.
Although nanomedicine remains in its early stages, a number of nanomedical applications have been developed. Research thus far has focused on the development of biosensors to aid in diagnostics and vehicles to administer vaccines, medications, and genetic therapy, including the development of nanocapsules to aid in cancer treatment.
An offshoot of nanotechnology, nanomedicine is an emerging field and had garnered interest as a site for global research and development, which gives the field academic and commercial legitimacy. Funding for nanomedicine research comes both from public and private sources, and the leading investors are the United States, the United Kingdom, Germany, and Japan. In terms of the volume of nanomedicine research, these countries are joined by China, France, India, Brazil, Russia, and India.
Working at the molecular-size scale, nanomedicine is animated with promises of the seamless integration of biology and technology, the eradication of disease through personalized medicine, targeted drug delivery, regenerative medicine, as well as nanomachinery that can substitute portions of cells. Although many of these visions may not come to fruition, some nanomedicine applications have become reality, with the potential to radically transform the practice of medicine, as well as current understandings of the health, disease, and biologyissues that are of vital importance for contemporary societies. The fields global market share totalled some $78 billion dollars in 2012, driven by technological advancements. By the end of the decade, the market is expected to grow to nearly $200 billion.
Nanomedicine derives much of its rhetorical, technological, and scientific strength from the scale on which it operates (1 to 100 nanometers), the size of molecules and biochemical functions. The term nanomedicine emerged in 1999, the year when American scientist Robert A. Freitas Jr. published Nanomedicine: Basic Capabilities, the first of two volumes he dedicated to the subject.
Extending American scientist K. Eric Drexlers vision of molecular assemblers with respect to nanotechnology, nanomedicine was depicted as facilitating the creation of nanobot devices (nanoscale-sized automatons) that would navigate the human body searching for and clearing disease. Although much of this compelling imagery still remains unrealized, it underscores the underlying vision of doctors being able to search and destroy diseased cells, or of nanomachines that substitute biological parts, which still drives portrayals of the field. Such illustrations remain integral to the field, being used by scientists, funding agencies, and the media alike.
Attesting to the fields actuality are numerous dedicated scientific and industry-oriented conferences, peer-reviewed scientific journals, professional societies, and a growing number of companies. However, nanomedicines identity, scope, and goals are a matter of controversy. In 2006, for instance, the prestigious journal Nature Materials discussed the ongoing struggle of policy makers to understand if nanomedicine is a rhetorical issue or a solution to a real problem. This ambivalence is reflected in the numerous definitions of nanomedicine that can be found in scientific literature, that range from complicated drugs to the above mentioned nanobots. Despite the lack of a shared definition, there is a general agreement that nanomedicine entails the application of nanotechnology in medicine and that it will profoundly impact medical practice.
A further topic of debate is nanomedicines genealogy, in particular its connections to molecular medicine and nanotechnology. The case of nanotechnology is exemplary: on one hand, its potentialin terms of science but also in regard to funding and recognitionis often mobilized by nanomedicine proponents; on the other, there is an attempt to distance nanomedicine from nanotechnology, for fear of being damaged by the perceived hype that surrounds it. The push is then for nanomedicine to emerge not as a subdiscipline of nanotechnology but as a parallel field.
Although nanomedicine research and development is actively pursued in numerous countries, the United States, the EU (particularly Germany), and Japan have made significant contributions from the fields outset. This is reflected both in the number of articles published and in that of patents filed, both of which have grown exponentially since 2004. By 2012, however, nanomedicine research in China grew with respect to publications in the field, and the country ranked second only to the United States in the number of research articles published.
In 2004, two U.S. funding agenciesthe National Institutes of Health and the National Cancer Instituteidentified nanomedicine as a priority research area allocating $144 million and $80 million, respectively, to its study. In the EU meanwhile, public granting institutions did not formally recognize nanomedicine as a field, providing instead funding for research that falls under the headers of nanotechnology and health. Such lack of coordination had been the target of critiques by the European Science Foundation (ESF), warning that it would result in lost medical benefits. In spite of this, the EU ranked first in number of nanomedicine articles published and in 2007 the Seventh Framework Programme (FP7) allocated 250 million to nanomedicine research. Such work has also been heavily funded by the private sector. A study led by the European Science and Technology Observatory found that over 200 European companies were researching and developing nanomedicine applications, many of which were coordinating their efforts.
Much of nanomedicine research is application oriented, emphasizing methods to transfer it from the laboratory to the bedside. In 2005 the ESF pointed to four main subfields in nanomedicine research: analytical tools and nanoimaging, nanomaterials and nanodevices, novel therapeutics and drug delivery systems, and clinical, regulatory, and toxicological issues. Research in analytical tools and nanoimaging seeks to develop noninvasive, reliable, cheap, and highly sensitive tools for in vivo diagnosis and visualization. The ultimate goal is to create fully functional mobile sensors that can be remotely controlled to conduct in vivo, real-time analysis. Research on nanomaterials and nanodevices aims to improve the biocompatibility and mechanical properties of biomaterials used in medicine, so as to create safer implants, substitute damaged cell parts, or stimulate cell growth for tissue engineering and regeneration, to name a few. Work in novel therapeutics and drug delivery systems strives to develop and design nanoparticles and nanostructures that are noninvasive and can target specific diseases, as well as cross biological barriers. Allied with very precise means for diagnosis, these drug delivery systems would enable equally precise site-specific therapeutics and fewer side effects. The area of drug delivery accounts for a large portion of nanomedicines scientific publications.
Finally, the subfield of clinical, regulatory, and toxicological issues lumps together research that examines the field as a whole. Questions of safety and toxicology are prevalent, an issue that is all the more important given that nanomedicine entails introducing newly engineered nanoscale particles, materials, and devices into the human body. Regulatory issues revolve around the management of this newness, with some defending the need for new regulation, and others the ability of systems to deal with it. This subfield should also include other research by social scientists and humanists, namely on the ethics of nanomedicine.
Combined, these subfields build a case for preventive medicine and personalized medicine. Building upon genomics, personalized medicine envisions the possibility of individually tailored diagnostics and therapeutics. Preventive medicine takes this notion further, conjuring the possibility of treating a disease before it manifests itself. If realized, such shifts would have radical impacts on understandings of health, embodiment, and personhood. Questions remain concerning the cost and accessibility of nanomedicine and also about the consequences of diagnostics based on risk propensity or that lack a cure.
More:
Nanomedicine | medicine | Britannica.com
- 001 Carla wants to know [Last Updated On: October 21st, 2010] [Originally Added On: October 21st, 2010]
- 002 Carla wants to know [Last Updated On: November 7th, 2010] [Originally Added On: November 7th, 2010]
- 003 I believe in Renewable Energy, and here's why [Last Updated On: May 8th, 2011] [Originally Added On: May 8th, 2011]
- 004 I believe in Renewable Energy, and here's why [Last Updated On: May 8th, 2011] [Originally Added On: May 8th, 2011]
- 005 U.S. and Canadian Scientists Form a Global Alliance for Nano-Bio-Electronics in Order to Rapidly Find Solutions for ... [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 006 Regenerative Medicine Biotech Company, Eqalix, Names Scientific Advisory Board [Last Updated On: October 9th, 2012] [Originally Added On: October 9th, 2012]
- 007 Home [clinam.org] [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 008 Nanomedicine [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 009 Nanotechnology in Medicine - Nanomedicine [Last Updated On: May 20th, 2015] [Originally Added On: May 20th, 2015]
- 010 IGERT Nanomedicine at Northeastern University [Last Updated On: May 20th, 2015] [Originally Added On: May 20th, 2015]
- 011 Nanomedicine - Wikipedia, the free encyclopedia [Last Updated On: May 20th, 2015] [Originally Added On: May 20th, 2015]
- 012 Nano Medicine [Last Updated On: May 25th, 2015] [Originally Added On: May 25th, 2015]
- 013 Nanomedicine, bionanotechnology | NanomedicineCenter.com [Last Updated On: June 1st, 2015] [Originally Added On: June 1st, 2015]
- 014 Nano Medicine - Treatments for Antibiotic Resistant Bacteria [Last Updated On: June 5th, 2015] [Originally Added On: June 5th, 2015]
- 015 Wiley Interdisciplinary Reviews: Nanomedicine and ... [Last Updated On: July 4th, 2015] [Originally Added On: July 4th, 2015]
- 016 IBMs nanomedicine initiative - IBM Research: Overview [Last Updated On: July 4th, 2015] [Originally Added On: July 4th, 2015]
- 017 Center for Drug Delivery and Nanomedicine (CDDN) [Last Updated On: August 15th, 2015] [Originally Added On: August 15th, 2015]
- 018 Nanobiotechnology - Wikipedia, the free encyclopedia [Last Updated On: August 27th, 2015] [Originally Added On: August 27th, 2015]
- 019 Nanorobots in Medicine - Nanomedicine [Last Updated On: September 16th, 2015] [Originally Added On: September 16th, 2015]
- 020 NMI Table of Contents Page - Nanomedicine [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 021 Nanomedicine Fact Sheet - Genome.gov | National Human ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 022 Nanomedicine Conferences| Nanotechnology conferences| 2016 ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 023 NIH National Human Genome Research Institute [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 024 Nanomedicine Fact Sheet - Genome.gov [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 025 Laboratory of Nanomedicine and Biomaterials [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 026 CLINAM - The Conference at a Glance [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 027 Nanomedicine Fact Sheet [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 028 ARTICLE IN PRESS - Nanomedicine [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 029 Nano & Me - Nano Products - Nano in Medicine [Last Updated On: August 7th, 2016] [Originally Added On: August 7th, 2016]
- 030 Nanotechnology and Medicine / Nanotechnology Medical ... [Last Updated On: August 31st, 2016] [Originally Added On: August 31st, 2016]
- 031 Nanomedicine Fact Sheet - National Human Genome Research ... [Last Updated On: October 5th, 2016] [Originally Added On: October 5th, 2016]
- 032 Nanomedicine - Wikipedia [Last Updated On: October 20th, 2016] [Originally Added On: October 20th, 2016]
- 033 Nanobiotechnology - Wikipedia [Last Updated On: November 19th, 2016] [Originally Added On: November 19th, 2016]
- 034 Exploiting acidic tumor microenvironment for the development of novel cancer nano-theranostics - Medical Xpress [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- 035 Nano-sized drug carriers could be the future for patients with lung disease - Phys.Org [Last Updated On: July 4th, 2017] [Originally Added On: July 4th, 2017]
- 036 Metallic nanomolecules could help treat fatal lung disease in the future, notes research - EPM Magazine [Last Updated On: July 5th, 2017] [Originally Added On: July 5th, 2017]
- 037 Global Nano Chemotherapy Market & Clinical Trials Outlook 2022 - PR Newswire (press release) [Last Updated On: July 5th, 2017] [Originally Added On: July 5th, 2017]
- 038 Nanomedicine: Nanotechnology, Biology and Medicine - Official Site [Last Updated On: July 5th, 2017] [Originally Added On: July 5th, 2017]
- 039 Nanoparticle delivery tech targets rare lung disease - In-PharmaTechnologist.com [Last Updated On: July 6th, 2017] [Originally Added On: July 6th, 2017]
- 040 Healthcare Nanotechnology (Nanomedicine) Market Expected to Generate Huge Profits by 2015 2021: Persistence ... - MilTech [Last Updated On: July 6th, 2017] [Originally Added On: July 6th, 2017]
- 041 State can cure skewed disease research - BusinessLIVE - Business Day (registration) [Last Updated On: July 12th, 2017] [Originally Added On: July 12th, 2017]
- 042 Converging on cancer at the nanoscale | MIT News - The MIT Tech [Last Updated On: July 12th, 2017] [Originally Added On: July 12th, 2017]
- 043 Koch Institute's Marble Center for Cancer Nanomedicine Brings Together Renowned Faculty to Combat Cancer - AZoNano [Last Updated On: July 12th, 2017] [Originally Added On: July 12th, 2017]
- 044 Application of Nanomaterials in the Field of Medicine - Medical News Bulletin [Last Updated On: August 1st, 2017] [Originally Added On: August 1st, 2017]
- 045 International Conference and Exhibition on Nanomedicine and Nanotechnology - Technology Networks [Last Updated On: August 1st, 2017] [Originally Added On: August 1st, 2017]
- 046 Cancer survivor becomes a cancer fighter at a Philly start-up - Philly.com [Last Updated On: August 1st, 2017] [Originally Added On: August 1st, 2017]
- 047 'Nanomedicine': Potentially revolutionary class of drugs are made-in ... - CTV News [Last Updated On: August 5th, 2017] [Originally Added On: August 5th, 2017]
- 048 UCalgary researcher signs deal to develop nanomedicines for ... - UCalgary News [Last Updated On: August 5th, 2017] [Originally Added On: August 5th, 2017]
- 049 Targeting tumours: IBBME researchers investigate biological barriers to nanomedicine delivery - U of T Engineering News [Last Updated On: August 8th, 2017] [Originally Added On: August 8th, 2017]
- 050 Medication for the unborn baby - Medical Xpress [Last Updated On: August 8th, 2017] [Originally Added On: August 8th, 2017]
- 051 siRNA Treatment for Brain Cancer Stops Tumor Growth in Mouse Model - Technology Networks [Last Updated On: August 11th, 2017] [Originally Added On: August 11th, 2017]
- 052 Lungs in Space - Texas Medical Center (press release) [Last Updated On: August 22nd, 2017] [Originally Added On: August 22nd, 2017]
- 053 New report shares details about Europe's nanomedicine market - WhaTech [Last Updated On: August 28th, 2017] [Originally Added On: August 28th, 2017]
- 054 Expert Radiologist and Clinician Scientist, Michelle S. Bradbury, MD, PhD, is to be Recognized as a 2017 Top Doctor ... - PR NewsChannel (press... [Last Updated On: August 29th, 2017] [Originally Added On: August 29th, 2017]
- 055 Impact of Existing and Emerging Europe Nanomedicine Market ... - MilTech [Last Updated On: August 29th, 2017] [Originally Added On: August 29th, 2017]
- 056 Innovation in cancer treatment multimodality therapy - eHealth Magazine | Elets [Last Updated On: August 30th, 2017] [Originally Added On: August 30th, 2017]
- 057 Nanomedicine Market Growth Opportunities for Distributers 2017 - Equity Insider (press release) [Last Updated On: August 30th, 2017] [Originally Added On: August 30th, 2017]
- 058 Deadly Venom Can Be Turned Into Disease Treatments | WLRN - WLRN [Last Updated On: August 30th, 2017] [Originally Added On: August 30th, 2017]
- 059 Global Nanomedicine Industry 2017 Market Growth, Trends and Demands Research Report - MENAFN.COM [Last Updated On: September 6th, 2017] [Originally Added On: September 6th, 2017]
- 060 Nanomedicine - Overview [Last Updated On: September 6th, 2017] [Originally Added On: September 6th, 2017]
- 061 Nanomedicine Research Journal [Last Updated On: September 7th, 2017] [Originally Added On: September 7th, 2017]
- 062 Nanomedicine and Drug Delivery [Last Updated On: June 20th, 2018] [Originally Added On: June 20th, 2018]
- 063 The Future Of Nano Medicine [Last Updated On: June 22nd, 2018] [Originally Added On: June 22nd, 2018]
- 064 The Promise of Nanomedicine - Laboratory Equipment [Last Updated On: July 22nd, 2018] [Originally Added On: July 22nd, 2018]
- 065 What is Nanomedicine? : Center for Nanomedicine [Last Updated On: August 24th, 2018] [Originally Added On: August 24th, 2018]
- 066 Nanomedicine Conferences | Nanotechnology Events ... [Last Updated On: September 7th, 2018] [Originally Added On: September 7th, 2018]
- 067 IEEE-NANOMED 2016 The 10th IEEE International Conference ... [Last Updated On: November 17th, 2018] [Originally Added On: November 17th, 2018]
- 068 What is Nanomedicine? The future of medicine. [Last Updated On: November 21st, 2018] [Originally Added On: November 21st, 2018]
- 069 Nanomedicine Conferences | Nanotechnology Conferences ... [Last Updated On: March 8th, 2019] [Originally Added On: March 8th, 2019]
- 070 Regenerative Nanomedicine Lab - yimlab.com [Last Updated On: March 27th, 2019] [Originally Added On: March 27th, 2019]
- 071 Nanobiotix a nanomedicine company [Last Updated On: April 4th, 2019] [Originally Added On: April 4th, 2019]
- 072 Nano Medicine: Meaning, Advantages and Disadvantages [Last Updated On: April 5th, 2019] [Originally Added On: April 5th, 2019]
- 073 Nanomedicine | Ardena [Last Updated On: April 14th, 2019] [Originally Added On: April 14th, 2019]
- 074 Journal of Nanomedicine and Biotherapeutic Discovery- Open ... [Last Updated On: April 30th, 2019] [Originally Added On: April 30th, 2019]
- 075 10th International Nanomedicine Conference 24-26 June ... [Last Updated On: May 11th, 2019] [Originally Added On: May 11th, 2019]
- 076 Journal of Nanomedicine and Nanotechnology- Open Access ... [Last Updated On: May 19th, 2019] [Originally Added On: May 19th, 2019]
- 077 Nanomedicine Conferences 2019 | Nanotechnology Meetings ... [Last Updated On: September 14th, 2019] [Originally Added On: September 14th, 2019]
- 078 Fact Sheets about Genomics | NHGRI - genome.gov [Last Updated On: October 9th, 2019] [Originally Added On: October 9th, 2019]
- 079 Start-up of the week: charging your car can be done in minutes - Innovation Origins [Last Updated On: October 20th, 2019] [Originally Added On: October 20th, 2019]
- 080 Healthcare Nanotechnology Market 2019 Will Generate New Growth Opportunities In The Upcoming Year | - Global Market Release [Last Updated On: October 20th, 2019] [Originally Added On: October 20th, 2019]