header logo image

Blood stem cells: the pioneers of stem cell research …

August 4th, 2016 9:36 am

About blood stem cells

Blood stem cells are also known as haematopoietic stem cells. Like other stem cells, they can self-renew, or copy themselves. They also produce the different types of specialized cells found in the blood: both red blood cells and the many kinds of white blood cells needed by the bodys immune system.

The tree of blood: Blood stem cells are at the origin of all blood cell types. Once a blood stem cell divides, its daughter cells take various differentiation routes to produce different types of specialized blood cells.

Specialized blood cells do not live very long, so the body needs to replace them continuously. Blood stem cells do this job. They are found in the bone marrow of long bones such as the femurs (thigh bones), and in the hips or pelvis, the vertebrae (backbones) and the rib cage. They can also be obtained from the umbilical cord blood and the placenta at birth.

Blood stem cells need to make just the right number of each type of blood cell to keep the body healthy. This is a carefully controlled process. When it goes wrong, the result may be a blood disease such as leukaemia or anaemia.

Blood stem cells are already widely used to treat such diseases. A survey in 2008 showed that more than 26,000 patients are treated with blood stem cells in Europe each year. These blood stem cells come from three different sources bone marrow, the bloodstream of an adult or umbilical cord blood.

Scientists are still learning about how blood stem cells develop in the embryo, how they are controlled in the adult body and what goes wrong in certain blood diseases. But they are also using todays understanding of blood stem cells to investigate new ways to treat patients. A bone marrow transplant is only possible if a compatible donor is available. The patient and donor must be very carefully matched to avoid immune rejection of the transplant. Even when a suitable donor can be found, there is still a small risk of rejection. Umbilical cord blood does not need to be matched quite so precisely to the patient, but there are not enough stem cells in an umbilical cord to treat an adult. So we need to find alternatives.

Researchers are investigating ways to produce large numbers of blood stem cells in the laboratory. They are also developing methods for growing specialized blood cells from blood stem cells, for example to produce red blood cells for blood transfusions.

Red blood cells frompluripotent stem cells Red blood cells carry oxygen around the body. Patients who lose a lot of blood need to have it replaced straight away by a blood transfusion. There are not enough blood donors to meet patient needs, so researchers are looking for an alternative solution. Sincepluripotent stem cells have the potential to make any cell type of the body, they could potentially provide an unlimited supply of red blood cells. It is already possible to make small numbers of red blood cells frompluripotent stem cells in the lab. Now the real challenge is to develop techniques for producing the large numbers of red blood cells that are needed for transfusion.

Growing blood stem cells in the lab Red blood cells, like other mature blood cells, are short-lived and specialized for a particular job. To cure disease in the long-term, doctors need to transplant something that can keep producing new blood cells throughout the patients life: blood stem cells. Scientists are searching for ways to grow a limitless supply of blood stem cells. One possibility might be to collect stem cells from the bone marrow then grow and multiply them in the lab. Researchers are also trying to make blood stem cells from embryonic stem cells or induced pluripotent stem (iPS) cells. iPS cells could be made from a patients own skin and then used to produce blood stem cells. This would overcome the problem of immune rejection.

Stem cells for blood - making red blood cells from embryonic stem cells EuroStemCell FAQ page on umbilical cord blood banking The European Group for Blood and Marrow Transplantation UK National Health Service information on bone marrow transplantations Original scientific paper by Till and Mcculloch identifying blood stem cells for the first time

This factsheet was created by Christle Gonneau and reviewed by Lesley Forrester and Cristina Pina.

Lead image of blood cells by Anne Weston/Wellcome Images. Blood stem cell photograph reproduced with permission from Taoudi et al. (2005) "Progressive divergence of definitive haematopoietic stem cells from the endothelial compartment does not depend on contact with the foetal liver", Development 132: 4179- 4191. 'Tree of blood' diagram by Christele Gonneau, with blood cell drawings courtesy of Jonas Larsson, Lund Univeristy, Sweden. All other images courtesy of Joanne Mountford at the University of Glasgow.

View original post here:
Blood stem cells: the pioneers of stem cell research ...

Related Post

Comments are closed.


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick