header logo image


Page 82«..1020..79808182

Archive for the ‘Arthritis’ Category

Skin cells turned into neural precusors, bypassing stem-cell stage

Tuesday, January 31st, 2012

ScienceDaily (Jan. 30, 2012) — Mouse skin cells can be converted directly into cells that become the three main parts of the nervous system, according to researchers at the Stanford University School of Medicine. The finding is an extension of a previous study by the same group showing that mouse and human skin cells can be directly converted into functional neurons.

The multiple successes of the direct conversion method could refute the idea that pluripotency (a term that describes the ability of stem cells to become nearly any cell in the body) is necessary for a cell to transform from one cell type to another. Together, the results raise the possibility that embryonic stem cell research and another technique called "induced pluripotency" could be supplanted by a more direct way of generating specific types of cells for therapy or research.

This new study, published online Jan. 30 in the Proceedings of the National Academy of Sciences, is a substantial advance over the previous paper in that it transforms the skin cells into neural precursor cells, as opposed to neurons. While neural precursor cells can differentiate into neurons, they can also become the two other main cell types in the nervous system: astrocytes and oligodendrocytes. In addition to their greater versatility, the newly derived neural precursor cells offer another advantage over neurons because they can be cultivated to large numbers in the laboratory -- a feature critical for their long-term usefulness in transplantation or drug screening.

In the study, the switch from skin to neural precursor cells occurred with high efficiency over a period of about three weeks after the addition of just three transcription factors. (In the previous study, a different combination of three transcription factors was used to generate mature neurons.) The finding implies that it may one day be possible to generate a variety of neural-system cells for transplantation that would perfectly match a human patient.

"We are thrilled about the prospects for potential medical use of these cells," said Marius Wernig, MD, assistant professor of pathology and a member of Stanford's Institute for Stem Cell Biology and Regenerative Medicine. "We've shown the cells can integrate into a mouse brain and produce a missing protein important for the conduction of electrical signal by the neurons. This is important because the mouse model we used mimics that of a human genetic brain disease. However, more work needs to be done to generate similar cells from human skin cells and assess their safety and efficacy."

Wernig is the senior author of the research. Graduate student Ernesto Lujan is the first author.

While much research has been devoted to harnessing the pluripotency of embryonic stem cells, taking those cells from an embryo and then implanting them in a patient could prove difficult because they would not match genetically. An alternative technique involves a concept called induced pluripotency, first described in 2006. In this approach, transcription factors are added to specialized cells like those found in skin to first drive them back along the developmental timeline to an undifferentiated stem-cell-like state. These "iPS cells" are then grown under a variety of conditions to induce them to re-specialize into many different cell types.

Scientists had thought that it was necessary for a cell to first enter an induced pluripotent state or for researchers to start with an embryonic stem cell, which is pluripotent by nature, before it could go on to become a new cell type. However, research from Wernig's laboratory in early 2010 showed that it was possible to directly convert one "adult" cell type to another with the application of specialized transcription factors, a process known as transdifferentiation.

Wernig and his colleagues first converted skin cells from an adult mouse to functional neurons (which they termed induced neuronal, or iN, cells), and then replicated the feat with human cells. In 2011 they showed that they could also directly convert liver cells into iN cells.

"Dr. Wernig's demonstration that fibroblasts can be converted into functional nerve cells opens the door to consider new ways to regenerate damaged neurons using cells surrounding the area of injury," said pediatric cardiologist Deepak Srivastava, MD, who was not involved in these studies. "It also suggests that we may be able to transdifferentiate cells into other cell types." Srivastava is the director of cardiovascular research at the Gladstone Institutes at the University of California-San Francisco. In 2010, Srivastava transdifferentiated mouse heart fibroblasts into beating heart muscle cells.

"Direct conversion has a number of advantages," said Lujan. "It occurs with relatively high efficiency and it generates a fairly homogenous population of cells. In contrast, cells derived from iPS cells must be carefully screened to eliminate any remaining pluripotent cells or cells that can differentiate into different lineages." Pluripotent cells can cause cancers when transplanted into animals or humans.

The lab's previous success converting skin cells into neurons spurred Wernig and Lujan to see if they could also generate the more-versatile neural precursor cells, or NPCs. To do so, they infected embryonic mouse skin cells -- a commonly used laboratory cell line -- with a virus encoding 11 transcription factors known to be expressed at high levels in NPCs. A little more than three weeks later, they saw that about 10 percent of the cells had begun to look and act like NPCs.

Repeated experiments allowed them to winnow the original panel of 11 transcription factors to just three: Brn2, Sox2 and FoxG1. (In contrast, the conversion of skin cells directly to functional neurons requires the transcription factors Brn2, Ascl1 and Myt1l.) Skin cells expressing these three transcription factors became neural precursor cells that were able to differentiate into not just neurons and astrocytes, but also oligodendrocytes, which make the myelin that insulates nerve fibers and allows them to transmit signals. The scientists dubbed the newly converted population "induced neural precursor cells," or iNPCs.

In addition to confirming that the astrocytes, neurons and oligodendrocytes were expressing the appropriate genes and that they resembled their naturally derived peers in both shape and function when grown in the laboratory, the researchers wanted to know how the iNPCs would react when transplanted into an animal. They injected them into the brains of newborn laboratory mice bred to lack the ability to myelinate neurons. After 10 weeks, Lujan found that the cells had differentiated into oligodendroytes and had begun to coat the animals' neurons with myelin.

"Not only do these cells appear functional in the laboratory, they also seem to be able to integrate appropriately in an in vivo animal model," said Lujan.

The scientists are now working to replicate the work with skin cells from adult mice and humans, but Lujan emphasized that much more research is needed before any human transplantation experiments could be conducted. In the meantime, however, the ability to quickly and efficiently generate neural precursor cells that can be grown in the laboratory to mass quantities and maintained over time will be valuable in disease and drug-targeting studies.

"In addition to direct therapeutic application, these cells may be very useful to study human diseases in a laboratory dish or even following transplantation into a developing rodent brain," said Wernig.

In addition to Wernig and Lujan, other Stanford researchers involved in the study include postdoctoral scholars Soham Chanda, PhD, and Henrik Ahlenius, PhD; and professor of molecular and cellular physiology Thomas Sudhof, MD.

The research was supported by the California Institute for Regenerative Medicine, the New York Stem Cell Foundation, the Ellison Medical Foundation, the Stinehart-Reed Foundation and the National Institutes of Health.

Recommend this story on Facebook, Twitter,
and Google +1:

Other bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by Stanford University Medical Center. The original article was written by Krista Conger.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:

E. Lujan, S. Chanda, H. Ahlenius, T. C. Sudhof, M. Wernig. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1121003109

Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.

More here:
Skin cells turned into neural precusors, bypassing stem-cell stage

Read More...

HIV/AIDS: Advancing Stem Cell Therapies: 2011 CIRM Grantee Meeting – Video

Sunday, January 15th, 2012

09-11-2011 13:11 Paula Cannon speaks at the 2011CIRM Grantee Meeting about a stem cell-based therapy for HIV/AIDS. Cannon is a co-principle investigator on a disease team that has the goal of engineering a person's own bone marrow to make the cells resistant to HIV

See the rest here:
HIV/AIDS: Advancing Stem Cell Therapies: 2011 CIRM Grantee Meeting - Video

Read More...

Platelet Rich Plasma for hair loss with or without Hair Transplant – Video

Wednesday, November 23rd, 2011

Dr Michael Markou, DO is interviewed by the news about utilizing platelet rich plasma containing stem cells for hair restoration in clearwater florida. 1877414HAIR http://www.markoumedical.com

The rest is here:
Platelet Rich Plasma for hair loss with or without Hair Transplant - Video

Read More...

Stem cell treatment by Adiva Health Care India after Spinal Cord Injury – Video

Wednesday, November 23rd, 2011

Shareef Danish, Country- Bahrain, My name is Shareef Danish, 29 years old. I had a car accident in 2009, April. I broke my Spinal cord and I lost my sensation and movement in the legs.

Read the rest here:
Stem cell treatment by Adiva Health Care India after Spinal Cord Injury - Video

Read More...

Treating Adult Artritis with Stem Cells Shows Incredible Promise

Tuesday, June 29th, 2010

Arthritis Patient Successfully Treated With Fat Stem Cells Tells His Story

SAN DIEGO, CA--(Marketwire - June 28, 2010) - Medistem Inc. (PINKSHEETS: MEDS). Medistem collaborator Dr. Jorge Paz Rodriquez was invited to give a talk at Del Mar College in Texas by arthritis patient Dusty Durrill. The patient described a profound recovery after treatment with stem cells from his own fat tissue. Mr Durrill underwent a procedure in which a small amount of fat tissue was extracted by liposuction, stem cells where purified, and subsequently injected intravenously.

This procedure has been used successfully to treat thousands of animals suffering from arthritis in the United States (www.vet-stem.com). Use of patient's own stem cells is currently being performed in the United States (www.regenexx.com). Recently Dr. Paz published a paper describing scientific mechanisms of this treatment in collaboration with scientists from the University of California San Diego, University of Western Ontario, and Medistem Inc (Ichim et al. Autologous stromal vascular fraction cells: A tool for facilitating tolerance in rheumatic disease. Cell Immunol. 2010 Apr 8).

"I had treatment for my arthritis, I was not wheelchair bound but I was getting there... after stem cell treatment my arthritis symptoms disappeared," stated Mr. Durrill.

More than 200 people attended the lecture including the general public, patients and medical doctors. The lecture was focused on US and European clinical trials supporting the use of adult stem cells in conditions ranging from multiple sclerosis, to heart failure, to diabetes. A video of part of the lecture is available at http://www.kiiitv.com/younews/97165699.html.

Dr. Paz commented, "Mr. Durrill suffered from arthritis for more than ten years with severe pain in both knees and hips. He had difficulty standing and limited mobility. After stem cell therapy he started showing significant reduction in pain. Now about a month after therapy he is pain free and can move around easily."

Drs. Robert Harman, CEO of Vet-Stem and Thomas Ichim, CEO of Medistem, recently released a video discussing their publication on fat stem cell therapy for arthritis. The video is available at http://www.youtube.com/watch?v=3QQrwtp-KQQ.

About Medistem Inc.

Medistem Inc. is a biotechnology company developing technologies related to adult stem cell extraction, manipulation, and use for treating inflammatory and degenerative diseases. The company's lead product, the endometrial regenerative cell (ERC), is a "universal donor" stem cell being developed for critical limb ischemia. A publication describing the support for use of ERC for this condition may be found at http://www.translational-medicine.com/content/pdf/1479-5876-6-45.pdf

Cautionary Statement

This press release does not constitute an offer to sell or a solicitation of an offer to buy any of our securities. This press release may contain certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking information. Factors which may cause actual results to differ from our forward-looking statements are discussed in our Form 10-K for the year ended December 31, 2007 as filed with the Securities and Exchange Commission.

Read More...

Page 82«..1020..79808182


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick