header logo image


Page 29«..1020..28293031..40..»

Archive for the ‘Death by Stem Cells’ Category

MS Treatment That ‘Resets’ Immune System May Halt Disease Progression for Estimated 5 Years – Drug Discovery & Development

Friday, February 24th, 2017

A type of treatment for multiple sclerosis that 'resets' the immune system may stop progression of the disease in nearly half of patients.

In a new study, led by Imperial College London, the treatment prevented symptoms of severe disease from worsening for five years, in 46 per cent of patients.

However, as the treatment involves aggressive chemotherapy, the researchers stress the procedure carries significant risk.

Multiple sclerosis (MS) affects around 100,000 people in the UK, and 2.3 million worldwide. The condition is caused by the immune system malfunctioning and mistakenly attacking nerves in the brain and spinal cord. This leads to a range of symptoms including fatigue, problems with arm and leg movement, vision and balance. There is no cure but certain medications can help slow progression of the disease.

The treatment in the current study, called autologous hematopoietic stem cell transplantation (AHSCT), was given to patients with advanced forms of the disease that had failed to respond to other medications.

The study, published in the journalJAMA Neurology, suggested some patients even saw a small improvement in their symptoms following the treatment. The one-off treatment aims to prevent the immune system from attacking the nerve cells. All immune system cells are made from stem cells in the bone marrow. In the treatment, a patient is given a drug that encourages stem cells to move from the bone marrow into the blood stream, and these cells are then removed from the body.

The patient then receives high-dose chemotherapy that kills any remaining immune cells. The patient's stem cells are then transfused back into their body to re-grow their immune system. Previous studies have suggested this 'resets' the immune system, and stops it from attacking the nerve cells.

However, because the treatment involves aggressive chemotherapy that inactivates the immune system for a short period of time, some patients died from infections. Out of the 281 patients who received the treatment in the study, eight died in the 100 days following the treatment. Older patients, and those with the most severe forms of the disease, were found to have a higher risk of death.

Dr Paolo Muraro, lead author of the study from the Department of Medicine at Imperial, explained that the risks must be weighed-up against the benefits: "We previously knew this treatment reboots or resets the immune system - and that it carried risks - but we didn't know how long the benefits lasted.

"In this study, which is the largest long-term follow-up study of this procedure, we've shown we can 'freeze' a patient's disease - and stop it from becoming worse, for up to five years.

However, we must take into account that the treatment carries a small risk of death, and this is a disease that is not immediately life-threatening."

Most patients with multiple sclerosis have a type of the disease that has flare-ups, known as relapses, followed by an improvement in symptoms. This is called relapsing-remitting MS.

Dr Muraro explained the number of years this treatment prevented symptoms from worsening is far greater than would be expected in untreated patients with severe forms of relapsing MS.

The study found that in patients with relapsing MS, nearly three in four (73 per cent) experienced no worsening of their symptoms five years after the treatment. Younger patients with less severe forms of the disease were more likely respond to the therapy.

However, the majority of the patients in the study had a progressive form of MS. This is a more severe form of the disease, and for which there are currently no treatments. Among these patients, one in three experienced no worsening of symptoms five years after treatment.

Some patients saw a small improvement in their symptoms, though this improvement was larger in patients with relapsing MS, compared to patients with the progressive form.

Disability in MS is assessed on a scale known as the Expanded Disability Status Scale (EDSS). In this scale, zero represents no disability, seven is wheelchair-bound, while ten is death from MS. At the beginning of the study, patients had an average EDSS score of 6.5.

Patients with relapsing MS had an average improvement in their EDSS score of 0.76, one year after the treatment. Patients with progressive MS had only a marginal improvement of 0.14.

Dr Muraro added these findings suggest larger trials of this procedure are now needed.

"These findings are very promising - but crucially we didn't have a placebo group in this study, of patients who didn't receive the treatment. We urgently need more effective treatments for this devastating condition, and so a large randomised controlled trial of this treatment should be the next step."

Dr Sorrel Bickley, Head of Biomedical Research at the MS Society, added: "This study is one of the largest to date looking at AHSCT as a treatment for MS and the findings offer some encouraging insights. It shows that AHSCT can slow or stop progression for many years, and the treatment is most effective in people with MS who have 'active inflammation' in their brain and spinal cord.

"There are more than 100,000 people with MS in the UK, it's a challenging and unpredictable condition to live with and that's why the MS Society is funding research like this to further our knowledge and find treatments for everyone.

"If anyone with MS is considering AHSCT they should speak to their neurologist as a referral is needed to access this treatment via a trial or on the NHS."

View post:
MS Treatment That 'Resets' Immune System May Halt Disease Progression for Estimated 5 Years - Drug Discovery & Development

Read More...

Girl, eight, with rare brain disorder in pioneering UCL stem cell research – Evening Standard

Thursday, February 23rd, 2017

A girl of eight whose rare brain disorder is likely to lead to her death when she is in her teens is taking part in pioneering stem cell research in a bid to save others with same condition.

Lily Harrisss skin cells will first be turned into stem cells and then into brain cells by researchers at University College London as they seek treatments or a cure.

About 100 to 200 cases of BPAN beta-propeller protein-associated neurodegeneration are known worldwide, although this is believed to be an underestimate.

Children often suffer delayed development, sleep problems, epilepsy and lack of speech and their symptoms can be mistaken for other conditions.

Lily, from Luton, was diagnosed when she was five. She has very limited communication skills and uses a wheelchair. She wakes four or five times a night and needs drugs to control seizures.

However, she loves swimming and her father Simon said she has recently began singing on car journeys.

Shes laughed and giggled her way through everything, and shes been through a lot, he said.

Shes a beautiful little girl who can be quite naughty sometimes. Were giving her the best time we can while shes here. We have a beautiful little girl and its just so cruel.

Young people with BPAN develop abnormal muscle tone, symptoms of Parkinsons disease and dementia.

Mr Harriss and his wife Samantha, who work for an airline, know that as Lilys condition progresses she may have difficulty swallowing and require pain management.

Mr Harriss said: Lily can point to things she wants, she uses a little sign language and she can say a few words, like mummy, daddy, hello and goodbye.

Medical research like this for children is just absolutely vital.

We know we wont get a cure for Lily but, as parents, we need to be bigger than that. Other children might benefit through Lily. We are so proud of her.

The UCL study is being funded by 230,000 from childrens charity Action Medical Research and the British Paediatric Neurology Association. Lead researcher Dr Apostolos Papandreou hopes his research will lead to trials of treatments.

He said: The parents Ive met understandably feel devastated at the prospect of their children having a progressive disorder. However, theyre really keen to explore new avenues and participate in research projects.

See the original post here:
Girl, eight, with rare brain disorder in pioneering UCL stem cell research - Evening Standard

Read More...

Hear This: Scientists Regrow Sound-Sensing Cells – Yahoo News

Thursday, February 23rd, 2017

Scientists have coaxed sound-sensing cells in the ear, called "hair cells," to grow from stem cells. This technique, if perfected with human cells, could help halt or reverse the most common form of hearing loss, according to a new study.

These delicate hair cells can be damaged by excessive noise, ear infections, certain medicines or the natural process of aging. Human hair cells do not naturally regenerate; so as they die, hearing declines.

More than 20 million Americans have significant hearing loss resulting from the death or injury of these sensory hair cells, accounting for about 90 percent of hearing loss in the United States, according to the Centers for Disease Control and Prevention.

In the new study, scientists at Harvard University and the Massachusetts Institute of Technology reported that they isolated stem cells from a mouse ear, discovered how to get them to multiply in a laboratory setting, and then converted them into hair cells. Their previous efforts, in 2013, produced only 200 hair cells. With a new technique, however, the research team has increased this number to 11,500 hair cells that were grown from one mouse ear. [Inside Life Science: Once Upon a Stem Cell]

Their paper describing the stem cell advance appears today (Feb. 21) in the journal Cell Reports.

Jeffrey Corwin, an expert on hair-cell regeneration and a professor of neuroscience at the University of Virginia School of Medicine, who was not part of this new research, called it "a very impressive studyby a dream team of scientists" and "a big advance" in the pursuit of regenerating these sensory hearing cells in humans.

Hair cells grow in bundles in the inner ear, and are so named because they look like hairs. Many hair cells within the ear are involved in balance, not hearing. But in the cochlea, the hearing organ deep in the ear canal, there are two kinds of specialized hair cells: outer hair cells, which amplify pitch and enable humans to discern subtle differences in sound; and inner hair cells, which convert sound into electrical signals sent to the brain. Humans have two cochleae (one in each ear), and each has only about 16,000 hair cells.

In fish, birds, lizards and amphibians, cochlear hair cells that die can be regenerated in as fast as a few days. However, in mammals, for the most part, the cells cannot regenerate except for mice and other small mammals when they are newly born. But since so many species can naturally regenerate hair cells from a stem cell precursor, including some newborn mammals, many researchers have been motivated to find a way to rekindle hair-cell regeneration in adult mammals and, of course, in humans, Corwin said.

The new research was done by a team led by Albert Edge, director of the Tillotson Cell Biology Unit at the Massachusetts Eye and Ear Infirmary and professor of otolaryngology at Harvard Medical School in Boston.

In 2012, Edge's group discovered stem cells in the ear called Lgr5+ cells. These cells are also found in the gut, where they actively regenerate the entire lining of human intestines every eight days. The research team soon found a way to coax the Lgr5+ cells to differentiate into hair cells, instead of intestinal cells. But the process was slow, and the yield was low.

Now, the researchers have increased the yield dramatically by inserting a new step. After removing Lgr5+ cells from mice, the researchers first get them to divide in a special growth medium. This step produced a two-thousandfold increase in Lgr5+ cells, Edge told Live Science. Then, the researchers moved these stem cells into a different kind of growth culture and added certain chemicals to turn the Lgr5+ cells into hair cells. [7 Ways the Mind and Body Change With Age]

These laboratory-grown hair cells appear to have many of the characteristics of actual inner and outer hair cells, although they might not be fully functional, Edge said. The most immediate use for this new technique will be to create a large set of the cells to test drugs and to identify compounds that can heal damaged hair cells or regrow them and restore hearing, Edge said.

Scientists have had difficulty testing drugs on large batches of actual hair cells because there are so few in mammalian ears and they are deep in the cochlea, hard to extract, Edge said.

The researchers have reason to believe the technique to regenerate fully functional hair cells in humans could someday work. As reported in their paper, the team tested the technique on a sample of healthy ear tissue from a 40-year-old patient who underwent a labyrinthectomy (removal of parts of the inner ear) to access a brain tumor. The adult human stem cells isolated from this tissue also multiplied and differentiated into hair cells, although not as robustly as the mouse cells did.

But as Corwin noted about Edge's research, "You can see in their paper that they are perfecting their technique as they go along."

Follow Christopher Wanjek @wanjekfor daily tweets on health and science with a humorous edge. Wanjek is the author of "Food at Work" and "Bad Medicine." His column, Bad Medicine, appears regularly on Live Science.

Here is the original post:
Hear This: Scientists Regrow Sound-Sensing Cells - Yahoo News

Read More...

Six-year-old boy’s stem cell campaign ‘potentially saves 14 lives’ – BBC News

Wednesday, February 22nd, 2017

BBC News
Six-year-old boy's stem cell campaign 'potentially saves 14 lives'
BBC News
Fourteen people have been given potentially life-saving stem cell donations thanks to a campaign launched to help a young boy with leukaemia. A match was found for Joel Picker-Spence, but it was too late and he died shortly before his seventh birthday ...

Go here to read the rest:
Six-year-old boy's stem cell campaign 'potentially saves 14 lives' - BBC News

Read More...

Scientists Unlock Ability to Generate New Sensory Hair Cells – Laboratory Equipment

Wednesday, February 22nd, 2017

Hearing loss affects 360 million people worldwide according to the World Health Organization. Inner ear sensory cells, called hair cells, are responsible for detecting sound and helping to signal it to the brain. Loud sounds and toxic drugs can lead to death of the hair cells, which do not regenerate, and is the root cause for widespread hearing loss. Until now, it was not possible to promote the generation of sufficient quantities of new hair cells.

In a new paper in Cell Reports, scientists from Brigham and Womens Hospital, Massachusetts Institute of Technology, and Massachusetts Eye & Ear describe a technique to grow large quantities of inner ear progenitor cells that convert into hair cells. The same techniques show the ability to regenerate hair cells in the cochlea.

Humans are born with only 15,000 sensory hair cells in each cochlea, which are susceptible to damage from exposure to loud noises and medications, which can lead to cell death and hearing loss over time.

Amazingly, birds and amphibians are capable of regenerating hair cells throughout their life, suggesting that the biology exists and should be possible for humans. Intrigued, we decided to explore whether these hair cells could be regenerated, says Jeff Karp, co-corresponding author and biomedical engineer at BWH.

"We took cochlear supporting cells expressing Lgr5, a marker recently found in stem cells of several organs, and treated them with a drug cocktail that stimulated critical pathways, says Xiaolei Yin, co-lead author on the paper and instructor of medicine at BWH. The team achieved a >2000-fold increase in Lgr5 progenitor cells and found that these progenitors could generate new hair cells in high yield. The team also demonstrated that this approach could work with cells from mouse, non-human primate, and human tissue.

Importantly, the drug cocktail generates new sensory hair cells in intact cochlear tissue, which shows promise for a therapy to treat patients with hearing loss, says Karp. This expansion of large populations of Lgr5-expressing cells and their differentiation to hair cells provides a powerful tool for investigating the regenerative biology of hearing, and these drugs should be relevant for clinical application.

To advance this work to patients, Frequency Therapeutics, is developing a novel small molecule approach to treat chronic hearing loss and expects to be in the clinic within the next 18 months.

Read the original here:
Scientists Unlock Ability to Generate New Sensory Hair Cells - Laboratory Equipment

Read More...

Resetting the immune system ‘stops MS in it’s tracks for at least five years’ – The Sun

Tuesday, February 21st, 2017

The condition is caused by the immune system malfunctioning and mistakenly attacking nerves in the brain and spinal cord

A GROUNDBREAKING treatment that resets the immune system could stop the spread of mutliple sclerosis in nearly half of patients, expertssay.

The risky treatment involves wiping the bodies immune system with cancer treatment and rebooting it with a stem cell transplant, but not all patients will be suitable.

Alamy

A stem cell transplant followed by aggressive chemotherapy could reset the immune system and manage the symptoms of MSThe treatment prevents symptoms of the disease worsening for five years in 46 per cent of patients, a study from Imperial College London found.

Multiple sclerosis affects around 100,000 people in the UK, and 2.3 million worldwide.

The condition is caused by the immune system malfunctioning and mistakenly attacking nerves in the brain and spinal cord.

This leads to a range of symptoms including fatigue, problems with arm and leg movement, vision and balance.

There is no cure but certain medications can help slow progression of the disease.

But a stem cell transplant, followed by aggressive chemotherapy, could change that.

Participants in the studyhad advanced forms of the disease and had not responded to any other treatment.

They were given aautologous hematopoietic stem cell transplantation (AHSCT) A process in which removes healthy stem cells from the body to allow medics to kill the remaining ones.

It aims to stop the immune system from attacking the bodys nerve cells.

The results, published in the journal JAMA Neurology, suggested some patients saw an improvement in their symptoms.

http://www.alamy.com

In the treatment, a patient is given a drug that encourages stem cells to move from the bone marrow into the blood stream, and these cells are then removed from the body.

The patient then receives high-dose chemotherapy that kills any remaining immune cells.

The stem cells are then transfused back into their body to re-grow their immune system.

Previous studies have suggested this resets the immune system, and stops it from attacking the nerve cells.

But medics warn that because thetreatment involves aggressive chemotherapy that inactivates the immune system for a short period of time, some patients died from infections.

Out of the 281 patients who received the treatment in the study, eight died in the 100 days following the treatment.

Older patients, and those with the most severe forms of the disease, were found to have a higher risk of death.

MSis a neurological condition that affects your nerves.

Its caused when your immune system isnt working properly and the coating around your nerves, called myelin, is damaged.

The protective coating helps ensure messages travel smoothly from your nerves to your brain, but when it is damaged the messages become disrupted meaning they can slow down, become distorted or not make it at all.

Once diagnosed, MS stays with you for life, but treatments and specialists can help you to manage the condition and its symptoms.

The cause is not know and there isnt yet a cure, but research is progressing fast.

Symptoms:

Treatment: According to the MS Society, more than 100,000 people in the UK have MS and symptoms usually start in your 20s and 30s, affecting more women than men.

While there is no known cure for MS, there are several ways to treats its symptoms including medication, diet, exercise and physiotherapy.

The best course of action depends on what symptoms the sufferer has.

Dr Paolo Muraro, lead author of the study, said: We previously knew this treatment reboots or resets the immune system and that it carried risks but we didnt know how long the benefits lasted.

In this study, which is the largest long-term follow-up study of this procedure, weve shown we can freeze a patients disease and stop it from becoming worse, for up to five years.

However, we must take into account that the treatment carries a small risk of death, and this is a disease that is not immediately life-threatening.

Most patients with multiple sclerosis have a type of the disease that has flare-ups, known as relapses, followed by an improvement in symptoms.

Dr Muraro said the number of years this treatment prevented symptoms from worsening wasfar greater than would be expected in untreated patients with severe forms of relapsing MS.

Dr Muraro added: These findings are very promising but crucially we didnt have a placebo group in this study, of patients who didnt receive the treatment.

We urgently need more effective treatments for this devastating condition, and so a large randomised controlled trial of this treatment should be the next step.

Dr Sorrel Bickley, head of biomedical research at the MS Society, said: This study is one of the largest to date looking at AHSCT as a treatment for MS and the findings offer some encouraging insights.

It shows that AHSCT can slow or stop progression for many years, and the treatment is most effective in people with MS who have active inflammation in their brain and spinal cord.

There are more than 100,000 people with MS in the UK, its a challenging and unpredictable condition to live with and thats why the MS Society is funding research like this to further our knowledge and find treatments for everyone.

If anyone with MS is considering AHSCT they should speak to their neurologist as a referral is needed to access this treatment via a trial or on the NHS.

We pay for your stories! Do you have a story for The Sun Online news team? Email us attips@the-sun.co.ukor call 0207 782 4368

See the original post:
Resetting the immune system 'stops MS in it's tracks for at least five years' - The Sun

Read More...

Hear This: Scientists Regrow Sound-Sensing Cells – Live Science

Tuesday, February 21st, 2017

Scientists have coaxed sound-sensing cells in the ear, called "hair cells," to grow from stem cells. This technique, if perfected with human cells, could help halt or reverse the most common form of hearing loss, according to a new study.

These delicate hair cells can be damaged by excessive noise, ear infections, certain medicines or the natural process of aging. Human hair cells do not naturally regenerate; so as they die, hearing declines.

More than 20 million Americans have significant hearing loss resulting from the death or injury of these sensory hair cells, accounting for about 90 percent of hearing loss in the United States, according to the Centers for Disease Control and Prevention.

In the new study, scientists at Harvard University and the Massachusetts Institute of Technology reported that they isolated stem cells from a mouse ear, discovered how to get them to multiply in a laboratory setting, and then converted them into hair cells. Their previous efforts, in 2013, produced only 200 hair cells. With a new technique, however, the research team has increased this number to 11,500 hair cells that were grown from one mouse ear. [Inside Life Science: Once Upon a Stem Cell]

Their paper describing the stem cell advance appears today (Feb. 21) in the journal Cell Reports.

Jeffrey Corwin, an expert on hair-cell regeneration and a professor of neuroscience at the University of Virginia School of Medicine, who was not part of this new research, called it "a very impressive studyby a dream team of scientists" and "a big advance" in the pursuit of regenerating these sensory hearing cells in humans.

Hair cells grow in bundles in the inner ear, and are so named because they look like hairs. Many hair cells within the ear are involved in balance, not hearing. But in the cochlea, the hearing organ deep in the ear canal, there are two kinds of specialized hair cells: outer hair cells, which amplify pitch and enable humans to discern subtle differences in sound; and inner hair cells, which convert sound into electrical signals sent to the brain. Humans have two cochleae (one in each ear), and each has only about 16,000 hair cells.

In fish, birds, lizards and amphibians, cochlear hair cells that die can be regenerated in as fast as a few days. However, in mammals, for the most part, the cells cannot regenerate except for mice and other small mammals when they are newly born. But since so many species can naturally regenerate hair cells from a stem cell precursor, including some newborn mammals, many researchers have been motivated to find a way to rekindle hair-cell regeneration in adult mammals and, of course, in humans, Corwin said.

The new research was done by a team led by Albert Edge, director of the Tillotson Cell Biology Unit at the Massachusetts Eye and Ear Infirmary and professor of otolaryngology at Harvard Medical School in Boston.

In 2012, Edge's group discovered stem cells in the ear called Lgr5+ cells. These cells are also found in the gut, where they actively regenerate the entire lining of human intestines every eight days. The research team soon found a way to coax the Lgr5+ cells to differentiate into hair cells, instead of intestinal cells. But the process was slow, and the yield was low.

Now, the researchers have increased the yield dramatically by inserting a new step. After removing Lgr5+ cells from mice, the researchers first get them to divide in a special growth medium. This step produced a two-thousandfold increase in Lgr5+ cells, Edge told Live Science. Then, the researchers moved these stem cells into a different kind of growth culture and added certain chemicals to turn the Lgr5+ cells into hair cells. [7 Ways the Mind and Body Change With Age]

These laboratory-grown hair cells appear to have many of the characteristics of actual inner and outer hair cells, although they might not be fully functional, Edge said. The most immediate use for this new technique will be to create a large set of the cells to test drugs and to identify compounds that can heal damaged hair cells or regrow them and restore hearing, Edge said.

Scientists have had difficulty testing drugs on large batches of actual hair cells because there are so few in mammalian ears and they are deep in the cochlea, hard to extract, Edge said.

The researchers have reason to believe the technique to regenerate fully functional hair cells in humans could someday work. As reported in their paper, the team tested the technique on a sample of healthy ear tissue from a 40-year-old patient who underwent a labyrinthectomy (removal of parts of the inner ear) to access a brain tumor. The adult human stem cells isolated from this tissue also multiplied and differentiated into hair cells, although not as robustly as the mouse cells did.

But as Corwin noted about Edge's research, "You can see in their paper that they are perfecting their technique as they go along."

Follow Christopher Wanjek @wanjekfor daily tweets on health and science with a humorous edge. Wanjek is the author of "Food at Work" and "Bad Medicine." His column, Bad Medicine, appears regularly on Live Science.

Go here to read the rest:
Hear This: Scientists Regrow Sound-Sensing Cells - Live Science

Read More...

Early-stage study validates Cellect Bio’s method of stem cell selection; shares ahead 19% – Seeking Alpha

Tuesday, February 21st, 2017

Thinly traded nano cap Cellect Biotechnology Ltd. (APOP +19.4%) jumps on more than a 4x surge in volume in response to its announcement of positive results from a Phase 1 study aimed at validating its proprietary method of stem cell selection called ApoGraft. The process allows for the natural enrichment of stem cells that can be used in cell therapies or transplantation with significantly less risk of rejection.

The study was conducted on blood stem cells donated by 104 healthy subjects. Each sample represented a 5% graft. ApoGraft, used for only a few hours, produced a significant increase in the death of mature immune cells without compromising the quality and quantity of stem cells.

The Companys technology is expected to provide pharma companies, medical research centers and hospitals with the tools to rapidly isolate stem cells for in quantity and quality that will allow stems cell-related treatments and procedures. Cellects technology is applicable to a wide variety of stem cells related treatments in regenerative medicine and that current clinical trials are aimed at the cancer treatment of bone marrow transplantations.

The rest is here:
Early-stage study validates Cellect Bio's method of stem cell selection; shares ahead 19% - Seeking Alpha

Read More...

Doctor convicted of botched surgery gets life sentence – USA TODAY

Tuesday, February 21st, 2017

USA Today Network Tanya Eiserer, WFAA-TV, Dallas-Fort Worth Published 12:52 a.m. ET Feb. 21, 2017 | Updated 9 hours ago

Dr. Christopher Duntsch was once an up-and-coming neurosurgeon. After a series of botched surgeries that left two patients dead and others paralyzed, he is now headed to spend the rest of his life behind bars. USA TODAY NETWORK

Christopher Duntsch(Photo: WFAA-TV)

DALLAS Life in prison.

Those were the words that Christopher Duntsch never wanted to hear.And the words that his patients and their families desperately wanted to hear.

The one-time neurosurgeon was sentenced by the 12-member jury to spend the remainder of his life behind bars Monday afternoon.

This was a voice for Kellie, said Don Martin, whose wife bled to death after one of those botched surgeries in 2012.

Travel ban concerns some in Iowa, which relies on foreign-born doctors

His daughter, Caitlin Martin-Linduff, was relieved and tearful to know Duntsch will never hurt anyone again.

Im just so grateful from the bottom of my heart, she said. This will not bring my mother back, but it is some sense of justice for the all the families, for all of the victims.

Duntsch, 44, is the first surgeon known to be sentenced to prison for a botched surgery. He was convicted of injury to an elderly person in the 2012 surgery on Mary Efurd that put her in a wheelchair.

Duntsch was once an up and coming neurosurgeon. He did not make his mark, just not the one that he expected.

This defendant single-handedly ruined their lives, and he gave each of them a life of pain, prosecutor Michelle Shughart told jurors in closing statements.

For weeks, jurors heard the accounts of patients who had been maimed or paralyzed in bungled surgeries. Kellie Martin and Floella Brown died. Jurors also heard from doctors, nurses and other medical professionals who testified theywere shocked by what they saw Duntsch do during and after those surgeries.

So why didnt he stop? Shughart said. Because of greed. Because he owed people a lot of money. He wanted to live the high life and a neurosurgeon makes big bucks. Why didnt he stop? Because he had no conscience. He doesnt care what he has left in his wake.

Jurors heard from Duntschs father, mother, brother and a family friend who sought to appeal to the sympathies of the jury.

Duntsch grew up in a middle-class family. His mom was a teacher. His dad is a physical therapist. He was the eldest of four.

They described him as the bright, precocious little boy who had taken care of a sick bird and loved dogs. They showed photos of him as a baby, as a toddler, and as a boy getting a soccer ball for Christmas. They talked about how he doted on his two little boys.

His father, Don Duntsch, spoke with pride about how his son had once been one of the top authorities on stem cells and had done ground-breaking cancer research.

He said his son called him upset after several of the botched surgeries. He said he had no doubt that his son cared about his patients.

In the end, he blamed pride for his sons downfall.

I think what happened is that as things began to fall apart, the only thing he knew was to try harder, Don Duntsch said.

His younger brother, Nathan, said he had spoken to Duntschs friend and former employee, Jerry Summers, who was left a quadriplegic after one of the botched surgeries. He said that Summers had broken down in to uncontrolled crying and said, I know your brother would never do this to me on purpose.

His father says Christopher Duntsch is a humbled man.

Hes been devastated, Don Duntsch said. He has nothing. Hes lost everything.

Melinda Lehmann, his defense attorney, said Duntsch was a scapegoat for a medical establishment that just kept hiring him and putting him in operating rooms.

Is it right for him go to away, to be thrown away when all of them profited? she said of the hospitals that hired him. They all have blood on their hands.

The jury came back with their verdict in about an hour.

For Mary Efurd, it was sweet justice for the man who ruined her life.

This is what I wanted, she said. This what Ive waited for four and half years.

Follow Tanya Eiserer on Twitter: @tanyaeiserer

Read or Share this story: http://usat.ly/2m2Rofr

Excerpt from:
Doctor convicted of botched surgery gets life sentence - USA TODAY

Read More...

Multiple sclerosis: Stem cell transplantation may halt disease progression – Medical News Today

Monday, February 20th, 2017

New research provides further evidence of autologous hematopoietic stem cell transplantation as an effective treatment for multiple sclerosis, after finding the procedure halted disease progression for 5 years in almost half of patients.

Lead study author Dr. Paolo Muraro, of the Department of Medicine at Imperial College London in the United Kingdom, and colleagues recently reported their findings in JAMA Neurology.

The results come just a fortnight after another study revealed the success of a similar treatment in a small group of patients with relapsing-remitting multiple sclerosis (RRMS).

However, Dr. Muraro and team warn that further trials are needed to determine the efficacy and safety of autologous hematopoietic stem cell transplantation (AHSCT), after a small number of patients died within 100 days of treatment.

In AHSCT, a patient's own stem cells are harvested. The patient is then subject to high-dose chemotherapy to eliminate any diseased cells.

Next, the harvested stem cells are returned to the patient's bloodstream, with the aim of restarting normal blood cell production. In simple terms, AHSCT "resets" the immune system.

"We previously knew this treatment reboots or resets the immune system - and that it carried risks - but we didn't know how long the benefits lasted," notes Dr. Muraro.

For their study, the researchers assessed data from 25 treatment centers across 13 countries, identifying 281 patients with multiple sclerosis (MS) who underwent AHSCT between 1995-2006. Of these patients, 78 percent had a progressive form of MS.

Using the Expanded Disability Status Scale (EDSS), the team evaluated patients' progression-free survival at 5 years after treatment and any improvements in MS symptoms.

An EDSS score of zero represents no disability, seven represents the use of a wheelchair, while 10 represents death from MS. At the beginning of the study, patients had an average EDSS score of 6.5.

Overall, the researchers found that 46 percent of patients experienced no disease progression in the 5 years after treatment.

Patients with RRMS - characterized by inflammatory attacks, or "flare-ups," followed by periods of remission - had the best outcomes, with 73 percent experiencing no worsening of symptoms in the 5 years after AHSCT.

Additionally, patients experienced small improvements in MS symptoms after AHSCT. Patients with progressive MS saw their EDSS score rise by 0.14 a year after treatment, while patients with RRMS experienced a 0.76 increase in their EDSS score.

Patients with a younger age, few immunotherapies prior to AHSCT, and a lower EDSS score at study baseline also showed better outcomes with AHSCT.

While these findings show promise for the use of AHSCT for patients with MS, the team notes that there were eight deaths in the 100 days after AHSCT, which were thought to have been treatment related.

AHSCT involves aggressive chemotherapy, which can severely weaken the immune system and increase susceptibility to infection.

"In this study, which is the largest long-term follow-up study of this procedure, we've shown we can 'freeze' a patient's disease - and stop it from becoming worse, for up to 5 years.

However, we must take into account that the treatment carries a small risk of death, and this is a disease that is not immediately life-threatening."

Dr. Paolo Muraro

Dr. Muraro notes that, importantly, this study did not include a group of MS patients who did not receive treatment, further highlighting the need for more studies assessing the safety and efficacy of AHSCT.

"We urgently need more effective treatments for this devastating condition, and so a large randomized controlled trial of this treatment should be the next step," he adds.

Read about a study that links vitamin D level at birth to the risk of MS.

Original post:
Multiple sclerosis: Stem cell transplantation may halt disease progression - Medical News Today

Read More...

Doctor convicted of botched surgery gets life sentence – 11alive.com

Monday, February 20th, 2017

Tanya Eiserer, WFAA 8:40 PM. EST February 20, 2017

Dr. Christopher Duntsch (Photo: WFAA)

DALLAS -- Life in prison.

Those were the words that Christopher Duntsch never wanted to hear. And the words that his patients and their families desperately wanted to hear.

The one-time neurosurgeon was sentenced by the 12-member jury to spend the remainder of his life behind bars Monday afternoon.

This was a voice for Kellie, said Don Martin, whose wife bled to death after one of those botched surgeries in 2012.

His daughter, Caitlin Martin-Linduff, was relieved and tearful to know Duntsch will never hurt anyone again.

PREVIOUS |Testimony begins in trial of doctor accused of 'carnage'

Im just so grateful from the bottom of my heart, she said. This will not bring my mother back, but it is some sense of justice for the all the families, for all of the victims.

Duntsch, 44, is the first surgeon known to be sentenced to prison for a botched surgery. He was convicted of injury to an elderly person in the 2012 surgery on Mary Efurd that put her in a wheelchair.

Duntsch was once an upcoming neurosurgeon. He did not make his mark, just not the one that he expected.

PREVIOUS | Testimony in doctor's trial continues: 'He performed worse than any neurosurgeon'

This defendant single-handedly ruined their lives, and he gave each of them a life of pain, prosecutor Michelle Shughart told jurors in closing statements.

For weeks, jurors heard the accounts of patients who had been maimed or paralyzed in horrifically bungled surgeries. Kellie Martin and Floella Brown died. They also heard from doctors, nurses and other medical professionals who were shocked by what they saw Duntsch do during and after those surgeries.

So why didnt he stop? Shughart said. Because of greed. Because he owed people a lot of money. He wanted to live the high life and a neurosurgeon makes big bucks. Why didnt he stop? Because he had no conscious. He doesnt care what he has left in his wake.

Jurors heard from Duntschs dad, mother, brother and a family friend who sought to appeal to the sympathies of the jury.

Duntsch grew up in a middle-class family. His mom was a teacher. His dad is a physical therapist. He was the eldest of four.

They described him as the bright, precocious little boy who had taken care of a sick bird and loved dogs. They showed photos of him as a baby, as a toddler, and as a boy getting a soccer ball for Christmas. They talked about how he doted on his two little boys.

His father, Don Duntsch, spoke with pride about how his son had once been one of the top authorities on stem cells and had done ground-breaking cancer research.

He said his son called him upset after several of the botched surgeries. He has no doubt that his son cared about his patients.

In the end, he blamed pride for his sons downfall.

I think what happened is that as things began to fall apart, the only thing he knew was to try harder, Don Duntsch said.

His younger brother, Nathan, said he had spoken to Duntschs friend and former employee, Jerry Summers, who was left a quadriplegic after one of those botched surgeries. He said that Summers had broken down in to uncontrolled crying and said, I know your brother would never do this to me on purpose.

His father says hes a humbled man.

Hes been devastated, Don Duntsch said. He has nothing. Hes lost everything.

Melinda Lehmann, his defense attorney, said Duntsch was a scapegoat for a medical establishment that just kept hiring him and putting him in operating rooms.

Is it right for him go to away, to be thrown away when all of the profited? she said of the hospitals that hired him. They all have blood on their hands.

The jury came back with their verdict in about an hour.

For Mary Efurd, it was sweet justice for the man who ruined her life.

This is what I wanted, she said. This what Ive waited for four and half years.

Victim statements reveal more gruesome details of botched surgeries

Dallas doctor in botched surgeries found guilty of injury to an elderly person

( 2017 WFAA)

WXIA

Testimony in doctor's trial continues: 'He performed worse than any neurosurgeon'

WXIA

Testimony begins in trial of doctor accused of 'carnage'

See original here:
Doctor convicted of botched surgery gets life sentence - 11alive.com

Read More...

More lessons from Dolly the sheepis a clone really born at age zero? – Phys.Org

Monday, February 20th, 2017

February 20, 2017 by Jos Cibelli, The Conversation More Dollies, cloned from the same cell line. Credit: Kevin Sinclair, University of Nottingham, CC BY-ND

In 1997 Dolly the sheep was introduced to the world by biologists Keith Campbell, Ian Wilmut and colleagues. Not just any lamb, Dolly was a clone. Rather than being made from a sperm and an egg, she originated from a mammary gland cell of another, no-longer-living, six-year-old Fynn Dorset ewe.

With her birth, a scientific and societal revolution was also born.

Some prominent scientists raised doubts; it was too good to be true. But more animals were cloned: first the laboratory mouse, then cows, goats, pigs, horses, even dogs, ferrets and camels. By early 2000, the issue was settled: Dolly was real and cloning adults was possible.

The implications of cloning animals in our society were self-evident from the start. Our advancing ability to reprogram adult, already specialized cells and start them over as something new may one day be the key to creating cells and organs that match the immune system of each individual patient in need of replacements.

But what somehow got lost was the fact that a clone was born at day zero created from the cell of another animal that was six years old. Researchers have spent the past 20 years trying to untangle the mysteries of how clones age. How old, biologically, are these animals born from other adult animals' cells?

Decades of cloning research

Dolly became an international celebrity, but she was not the first vertebrate to be cloned from a cell taken from the body of another animal. In 1962, developmental biologist John Gurdon cloned the first adult animal by taking a cell from the intestine of one frog and injecting it into an egg of another. Gurdon's work did not go unnoticed he went on to share the 2012 Nobel Prize in Physiology or Medicine. But it was Dolly who had captured our imagination. Was it because she was a warm-blooded animal, a mammal, much closer to human? If you could do it in a sheep, you could do it on us!

Dolly, along with Gurdon's frogs from 35 years earlier and all the other experiments in between, redirected our scientific studies. It was amazing to see a differentiated cell an adult cell specialized to do its particular job transform into an embryonic one that could go on to give rise to all the other cells of a normal body. We researchers wondered if we could go further: Could we in the lab make an adult cell once again undifferentiated, without needing to make a cloned embryo?

A decade after Dolly was announced, stem cell researcher Shynia Yamanaka's team did just that. He went on to be the Nobel corecipient with Gurdon for showing that mature cells could be reprogrammed to become pluripotent: able to develop into any specialized adult cell.

Now we have the possibility of making individualized replacement cells potentially any kind to replace tissue damaged due to injury, genetic disorders and degeneration. Not only cells; we may soon be able to have our own organs grown in a nonhuman host, ready to be transplanted when needed.

If Dolly was responsible for unleashing the events that culminate with new methods of making fully compatible cells and organs, then her legacy would be to improve the health of practically all human beings on this planet. And yet, I am convinced that there are even better things to come.

Dolly's secrets still unfolding

In the winter of 2013, I found myself driving on the wrong side of the road through the Nottingham countryside. In contrast to the luscious landscape, I was in a state gloom; I was on my way to see Keith Campbell's family after his sudden death a few weeks earlier. Keith was a smart, fun, loving friend who, along with Ian Wilmut and colleagues at the Roslin Institute, had brought us Dolly 15 years earlier. We had met at a conference in the early 1990s, when we were both budding scientists playing around with cloning, Keith with sheep, me with cows. An extrovert by nature, he quickly dazzled me with his wit, self-deprecating humor and nonstop chat, all delivered in a thick West Midlands accent. Our friendship that began then continued until his death.

When I knocked at the door of his quaint farmhouse, my plan was to stay just a few minutes, pay my respects to his wife and leave. Five hours and several Guinnesses later, I left feeling grateful. Keith could do that to you, but this time it wasn't him, it was his latest work speaking for him. That's because his wife very generously told me the project Keith was working on at the time of his death. I couldn't hide my excitement: Could it be possible that after 20 years, the most striking aspect of Dolly's legacy was not yet revealed?

See, when Dolly was cloned, she was created using a cell from a six-year-old sheep. And she died at age six and a half, a premature death for a breed that lives an average of nine years or more. People assumed that an offspring cloned from an adult was starting at an age disadvantage; rather than truly being a "newborn," it seemed like a clone's internal age would be more advanced that the length of its own life would suggest. Thus the notion that clones' biological age and their chronological one were out of sync, and that "cloned animals will die young."

Some of us were convinced that if the cloning procedure was done properly, the biological clock should be reset a newborn clone would truly start at zero. We worked very hard to prove our point. We were not convinced by a single DNA analysis done in Dolly showing slightly shorter telomeres the repetitive DNA sequences at the end of chromosomes that "count" how many times a cell divides. We presented strong scientific evidence showing that cloned cows had all the same molecular signs of aging as a nonclone, predicting a normal lifespan. Others showed the same in cloned mice. But we couldn't ignore reports from colleagues interpreting biological signs in cloned animals that they attributed to incomplete resetting of the biological clock. So the jury was out.

Aging studies are very hard to do because there are only two data points that really count: date of birth and date of death. If you want to know the lifespan of an individual you have to wait until its natural death. Little did I know, that is what Keith was doing back in 2012.

That Saturday afternoon I spent in Keith's house in Nottingham, I saw a photo of the animals in Keith's latest study: several cloned Dollies, all much older than Dolly at the time she had died, and they looked terrific. I was in awe.

The data were confidential, so I had to remain silent until late last year when the work was posthumously published. Keith's coauthors humbly said: "For those clones that survive beyond the perinatal period [] the emerging consensus, supported by the current data, is that they are healthy and seem to age normally."

These findings became even more relevant when last December researchers at the Scripps Research Institute found that induced pluripotent stem cells reprogrammed using the "Yamanaka factors" retain the aging epigenetic signature of the donor individual. In other words, using these four genes to attempt to reprogram the cells does not seem to reset the biological clock.

The new Dollies are now telling us that if we take a cell from an animal of any age, and we introduce its nucleus into a nonfertilized mature egg, we can have an individual born with its lifespan fully restored. They confirmed that all signs of biological and chronological age matched between cloned and noncloned sheep.

There seems to be a natural built-in mechanism in the eggs that can rejuvenate a cell. We don't know what it is yet, but it is there. Our group as well as others are hard at work, and as soon as someone finds it, the most astonishing legacy of Dolly will be realized.

Explore further: How much do you know about Dolly the Sheep?

This article was originally published on The Conversation. Read the original article.

This week marked the 20th anniversary of the birth of arguably the most famous sheep that ever chewed grass. Dolly was created at The Roslin Institute, Scotland, which receives long-term strategic funding from BBSRC.

It's now 20 years since the birth of Dolly the sheep, the first mammal to be cloned. This groundbreaking scientific achievement was accompanied by warnings that Dolly might age prematurely because she had been cloned from ...

(AP)Keith Campbell, a prominent biologist who worked on cloning Dolly the sheep, has died at 58, the University of Nottingham said Thursday.

Three weeks after the scientific world marked the 20th anniversary of the birth of Dolly the sheep new research, published by The University of Nottingham, in the academic journal Nature Communications has shown that four ...

There's a three- or four-way dispute among British scientists about who deserves the credit for Dolly, the first cloned sheep.

A petition has called on Britain's Queen Elizabeth II to take away the knighthood she bestowed on Ian Wilmut for his cloning of the sheep Dolly.

The winter habits of Britain's basking sharks have been revealed for the first time.

What looks like a caterpillar chewing on a leaf or a beetle consuming fruit is likely a three-way battle that benefits most, if not all of the players involved, according to a Penn State entomologist.

By tagging individual bumblebees with microchips, biologists have gained insights into the daily life of a colony of bumblebees (Bombus impatiens) in unprecedented detail. The team found that while most bees are generalists ...

Climate change from political and ecological standpoints is a constant in the media and with good reason, said a Texas A&M AgriLife Research scientist, but proof of its impact is sometimes found in unlikely places.

At what point on the journey along the branches of the evolutionary tree does a population become its own, unique species? And is a species still distinct, if it mates with a different, but closely related species? Evolutionary ...

New research involving Monash University biologists has debunked the view thatmalesjust pass on genetic materialand not much else to their offspring. Instead, it found a father's diet can affect their son's ability ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Continued here:
More lessons from Dolly the sheepis a clone really born at age zero? - Phys.Org

Read More...

More lessons from Dolly the sheep: Is a clone really born at age zero? – San Francisco Chronicle

Saturday, February 18th, 2017

(THE CONVERSATION) In 1997 Dolly the sheep was introduced to the world by biologists Keith Campbell, Ian Wilmut and colleagues. Not just any lamb, Dolly was a clone. Rather than being made from a sperm and an egg, she originated from a mammary gland cell of another, no-longer-living, six-year-old Fynn Dorset ewe.

With her birth, a scientific and societal revolution was also born.

Some prominent scientists raised doubts; it was too good to be true. But more animals were cloned: first the laboratory mouse, then cows, goats, pigs, horses, even dogs, ferrets and camels. By early 2000, the issue was settled: Dolly was real and cloning adults was possible.

The implications of cloning animals in our society were self-evident from the start. Our advancing ability to reprogram adult, already specialized cells and start them over as something new may one day be the key to creating cells and organs that match the immune system of each individual patient in need of replacements.

But what somehow got lost was the fact that a clone was born at day zero created from the cell of another animal that was six years old. Researchers have spent the past 20 years trying to untangle the mysteries of how clones age. How old, biologically, are these animals born from other adult animals cells?

Dolly became an international celebrity, but she was not the first vertebrate to be cloned from a cell taken from the body of another animal. In 1962, developmental biologist John Gurdoncloned the first adult animal by taking a cell from the intestine of one frog and injecting it into an egg of another. Gurdons work did not go unnoticed he went on to share the 2012 Nobel Prize in Physiology or Medicine. But it was Dolly who had captured our imagination. Was it because she was a warm-blooded animal, a mammal, much closer to human? If you could do it in a sheep, you could do it on us!

Dolly, along with Gurdons frogs from 35 years earlier and all the other experiments in between, redirected our scientific studies. It was amazing to see a differentiated cell an adult cell specialized to do its particular job transform into an embryonic one that could go on to give rise to all the other cells of a normal body. We researchers wondered if we could go further: Could we in the lab make an adult cell once again undifferentiated, without needing to make a cloned embryo?

A decade after Dolly was announced, stem cell researcher Shynia Yamanakas team did just that. He went on to be the Nobel corecipient with Gurdon for showing that mature cells could be reprogrammed to become pluripotent: able to develop into any specialized adult cell.

Now we have the possibility of making individualized replacement cells potentially any kind to replace tissue damaged due to injury, genetic disorders and degeneration. Not only cells; we may soon be able to have our own organs grown in a nonhuman host, ready to be transplanted when needed.

If Dolly was responsible for unleashing the events that culminate with new methods of making fully compatible cells and organs, then her legacy would be to improve the health of practically all human beings on this planet. And yet, I am convinced that there are even better things to come.

In the winter of 2013, I found myself driving on the wrong side of the road through the Nottingham countryside. In contrast to the luscious landscape, I was in a state gloom; I was on my way to see Keith Campbells family after his sudden death a few weeks earlier. Keith was a smart, fun, loving friend who, along with Ian Wilmut and colleagues at the Roslin Institute, had brought us Dolly 15 years earlier. We had met at a conference in the early 1990s, when we were both budding scientists playing around with cloning, Keith with sheep, me with cows. An extrovert by nature, he quickly dazzled me with his wit, self-deprecating humor and nonstop chat, all delivered in a thick West Midlands accent. Our friendship that began then continued until his death.

When I knocked at the door of his quaint farmhouse, my plan was to stay just a few minutes, pay my respects to his wife and leave. Five hours and several Guinnesses later, I left feeling grateful. Keith could do that to you, but this time it wasnt him, it was his latest work speaking for him. Thats because his wife very generously told me the project Keith was working on at the time of his death. I couldnt hide my excitement: Could it be possible that after 20 years, the most striking aspect of Dollys legacy was not yet revealed?

See, when Dolly was cloned, she was created using a cell from a six-year-old sheep. And she died at age six and a half, a premature death for a breed that lives an average of nine years or more. People assumed that an offspring cloned from an adult was starting at an age disadvantage; rather than truly being a newborn, it seemed like a clones internal age would be more advanced that the length of its own life would suggest. Thus the notion that clones biological age and their chronological one were out of sync, and that cloned animals will die young.

Some of us were convinced that if the cloning procedure was done properly, the biological clock should be reset a newborn clone would truly start at zero. We worked very hard to prove our point. We were not convinced by a single DNA analysis done in Dolly showing slightly shorter telomeres the repetitive DNA sequences at the end of chromosomes that count how many times a cell divides. We presented strong scientific evidence showing that cloned cows had all the same molecular signs of aging as a nonclone, predicting a normal lifespan. Others showed the same in cloned mice. But we couldnt ignore reports from colleagues interpreting biological signs in cloned animals that they attributed to incomplete resetting of the biological clock. So the jury was out.

Aging studies are very hard to do because there are only two data points that really count: date of birth and date of death. If you want to know the lifespan of an individual you have to wait until its natural death. Little did I know, that is what Keith was doing back in 2012.

That Saturday afternoon I spent in Keiths house in Nottingham, I saw a photo of the animals in Keiths latest study: several cloned Dollies, all much older than Dolly at the time she had died, and they looked terrific. I was in awe.

The data were confidential, so I had to remain silent until late last year when the work was posthumously published. Keiths coauthors humbly said: For those clones that survive beyond the perinatal period [] the emerging consensus, supported by the current data, is that they are healthy and seem to age normally.

These findings became even more relevant when last December researchers at the Scripps Research Institute found that induced pluripotent stem cells reprogrammed using the Yamanaka factors retain the aging epigenetic signature of the donor individual. In other words, using these four genes to attempt to reprogram the cells does not seem to reset the biological clock.

The new Dollies are now telling us that if we take a cell from an animal of any age, and we introduce its nucleus into a nonfertilized mature egg, we can have an individual born with its lifespan fully restored. They confirmed that all signs of biological and chronological age matched between cloned and noncloned sheep.

There seems to be a natural built-in mechanism in the eggs that can rejuvenate a cell. We dont know what it is yet, but it is there. Our group as well as others are hard at work, and as soon as someone finds it, the most astonishing legacy of Dolly will be realized.

This article was originally published on The Conversation. Read the original article here: http://theconversation.com/more-lessons-from-dolly-the-sheep-is-a-clone-really-born-at-age-zero-73031.

Visit link:
More lessons from Dolly the sheep: Is a clone really born at age zero? - San Francisco Chronicle

Read More...

Cellular quality control process could be Huntington’s disease drug target – Science Daily

Tuesday, February 14th, 2017

Science Daily
Cellular quality control process could be Huntington's disease drug target
Science Daily
Misfolded proteings in cells of people with Huntington's disease cause the death of neurons in brain and muscle cells in the body. Scientists have known that in people with Huntington's, chaperone proteins -- whose job it is to fold ... Thiele and ...

and more »

Read more:
Cellular quality control process could be Huntington's disease drug target - Science Daily

Read More...

Cancer Stem Cells | GreenMedInfo | Disease | Natural Medicine

Monday, February 13th, 2017

Increasingly, science is validating the therapeutic value of spices to prevent and treat disease, including for conditions as serious as lethal brain cancer.

When chemo fails, or worse, feeds the cancer, the immense healing power of food may be the only hope left.

A new study published in the Journal of the National Cancer Institute has found that more frequent mammography results in dramatically increased rates of false positives and unnecessary biopsies.

What do we really know about ovarian cancer risk and the 'gene mutations' considered largely responsible for increasing it? The answer is quite surprising and opens up the possibility for a radical change in how we diagnosis and treat the most lethal gynecological cancer in existence.

This highly pungent Japanese condiment contains compounds that strike to the very core of pancreatic cancer malignancy.

Costing over $150 per milligram, this deadly and ineffective chemotherapy drug costs 4,000x its weight in gold. Why was it approved by the FDA and when will natural alternatives that actually work be made available to the public?

A new turmeric study published in Cancer Letters is paving the way for a revolution in the way that we both understand and treat cancer.

A new study finds vitamin D -- the 'sunlight vitamin' -- strikes to the very heart of breast cancer malignancy.

Newly published research from the journal cancer indicates that conventional radiation-based cancer treatments may actually be driving the cancer into greater malignancy. Irradiated breast cancer cells were found to be 30 times more capable of forming new tumors than nonirradiated breast cancer cells.

A new study confirms radiotherapy drives malignancy and invasiveness within cancer, as well as the power of natural substances as benign and accessible as blueberries to suppress the cancer stem cells at the root of the problem.

About one hundred times less toxic than chemotherapy, turmeric extract (curcumin) was found more effective at killing colorectal cancer stem cells from patients than a popular combination of conventional drugs.

Cancer treatment with chemotherapy yields disappointing results for most cancer cell types. Perhaps we should be exploring alternative cancer treatments, such as one proposed by Nicholas Gonzalez, MD, known as the trophoblast theory of cancer.

A new scientific review identifies 25 of the top foods and herbs which kill the cancer stem cells at the root cause of cancer malignancy.

The ancient Indian spice turmeric strikes again! A new study finds it is capable of selectively and safely killing cancer stem cells in a way that chemo and radiation can not.

Many of the most commonly used forms of chemotherapy target the fast-replicating cells, tricking them into incorporating deadly chemicals within their DNA, like fluoride or platinum, or by otherwise blocking some key cog in the machinery of DNA replication or translation.

Unbeknownst to most, a Copernican revolution has already taken place in cancer theory. Today, the weight of evidence indicates that plants and not chemicals are the solution for reversing the global cancer epidemic.

Cannabis contains a compound that may kill brain cancers that chemotherapy and radiation can't touch, so why isn't it being used today?

A new study reveals ginger contains a pungent compound that is up to 10,000 times more effective than conventional chemotherapy in targeting the root cause of cancers.

Conventional cancer treatments aren't working for women with breast cancer. Women are falling into a cancer industry machine only to be spit out at the other end, permanently damaged and still with no reasonable assurance of long-term survival.

From the perspective of conventional cancer treatment a diagnosis of multi-drug resistant cancer is equivalent to a death sentence. By the time such a diagnosis occurs, the patients body has been devastated by chemotherapy and radiation, and an even more aggressive cancer has emerged to take the place of the original one.

Millions die every year from cancer. Millions more from heart disease. A solid body of research indicates that consuming pomegranate may be the ideal way to protect yourself against the top two killers in the postmodern age.

Read more:
Cancer Stem Cells | GreenMedInfo | Disease | Natural Medicine

Read More...

Cellular quality control process could be Huntington’s disease drug target – Medical Xpress

Monday, February 13th, 2017

February 13, 2017 Misfolded proteings in cells of people with Huntington's disease cause the death of neurons in brain and muscle cells in the body. Scientists have known that in people with Huntington's, chaperone proteins -- whose job it is to fold misfolded proteins 0 are at low levels, but it wasn't clear why. Credit: Alisa Weigandt for Duke Health

The loss of motor function and mental acuity associated with Huntington's disease might be treatable by restoring a cellular quality control process, which Duke Health researchers have identified as a key factor in the degenerative illness.

Huntington's disease is an inherited condition that results in the gradual erosion of nerve cells, leading to impairments and death. It affects about one in 10,000 people in the United States and has no cure.

Like other neuro-degenerative diseases such as Alzheimer's and Parkinson's, Huntington's disease is caused when certain protein molecules fail to fold into the proper structural shape required for them to function properly. These misfolded proteins build up and become toxic to the nerve cells that control movement and thought.

In a study published online Feb. 13 in the journal Nature Communications, Duke Health researchers looked at what causes the failure of the cellular process that usually fixes or discards these misfolded proteins.

"Normally when proteins misfold, the cells have a mechanism to cope," said senior author Dennis Thiele, Ph.D., George Barth Geller Professor in the Department of Pharmacology and Cancer Biology. "These quality control mechanisms can prod the proteins back into their normal three-dimensional shape, or if the damage is too extensive, target them for removal in the cellular garbage disposal. In Huntington's disease, that's not happening."

Thiele and colleagues conducted experiments using yeast genetics, biochemistry, chemical biology screening, mouse models and stem cells from patients with Huntington's disease. They found a biochemical explanation for how the quality control process breaks down in Huntington's disease.

They focused on specialized proteins called chaperoneshelpmates that coax the misfolded proteins into their correct conformations. Chaperone proteins are abnormally scarce in people with Huntington's disease, but the cause of that scarcity was not known until now.

The Duke-led team found that the master control for chaperone production, called HSF1, was being destroyed in Huntington's disease due to the presence of abnormally high levels of a chemical modifier called CK2. As a result, neurons die due to their inability to produce sufficient levels of the beneficial chaperones.

"We demonstrated that we could restore the abundance of the protein chaperones by chemically inhibiting CK2 in a cell model of Huntington's disease, or genetically lowering CK2 kinase levels in a Huntington's disease mouse model," Thiele said. "In both cases, we dramatically increased the number of healthy neurons and we prevented the muscle wasting that is commonly observed in Huntington's disease."

With more functioning neurons, he said, the hallmarks of Huntington's disease diminish. Thiele said there are potential investigational drugs that could delay or prevent the cellular processes that cause the neurodegeneration of Huntington's disease, and could also be tested in Alzheimer's and Parkinson's, along with other similar diseases.

But he said more pre-clinical studies are needed to explore those chemicals and to further illuminate the cellular events involved.

"We have identified a potential new target for a drug intervention in Huntington's disease," Thiele said, "but there are a lot of basic questions that still need to be answered."

Explore further: Potential therapeutic target for Huntington's disease

Scientists at the University of British Columbia have genetically engineered a mouse that does not become addicted to cocaine, adding to the evidence that habitual drug use is more a matter of genetics and biochemistry than ...

The discovery of a new mechanism that controls the way nerve cells in the brain communicate with each other to regulate our learning and long-term memory could have major benefits to understanding how the brain works and ...

A specific gene that helps form memories from traumatic events can be manipulatedand in doing so may actually help prevent post-traumatic stress disorder (PTSD), according to a new study led NYU Langone Medical Center ...

Here's a study tip for students cramming for upcoming exams: focusing on larger amounts of information for shorter bits of time we are talking milliseconds can be more effective than mulling over smaller amounts of ...

Researchers from Macquarie University's MQ Health are the first in the world to use a refined UV laser ablation technique to study the cellular behavior of MND in living zebrafish. New findings, published in the Journal of ...

Proteins are the building blocks of all cells. They are made from messenger RNA (mRNA) molecules, which are copied from DNA in the nuclei of cells. All cells, including brain cells regulate the amount and kind of proteins ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

See original here:
Cellular quality control process could be Huntington's disease drug target - Medical Xpress

Read More...

OCASCR scientists make progress in TSET-funded adult stem cell research – NewsOK.com

Saturday, February 11th, 2017

OCASCR scientist Lin Liu at work. Photo provided.

Working together, scientists from Oklahoma State University, the University of Oklahoma Health Sciences Center and the Oklahoma Medical Research Foundation are advancing adult stem cell research to treat some of todays most devastating diseases.

Under the umbrella of the Oklahoma Center for Adult Stem Cell Research (OCASCR), created with funding from the Oklahoma Tobacco Settlement Endowment Trust, these scientists have amassed groundbreaking findings in one of the fastest growing areas of medical research.

We have made exciting progress, said OCASCR scientist Lin Liu, director of the Oklahoma Center for Respiratory and Infectious Diseases and director of the Interdisciplinary Program in Regenerative Medicine at Oklahoma State University.

We can convert adult stem cells into lung cells using our engineering process in petri dishes, which offers the possibility to repair damaged lung tissues in lung diseases, said Liu, whose research primarily focuses on lung and respiratory biology and diseases.

Using our engineered cells, we can also reverse some pathological features. These studies give us hope for an eventual application of these cells in humans.

Adult stem cells in the body are capable of renewing themselves and becoming various types of cells.

Until recently, stem cell treatments were largely restricted to blood diseases. However, new studies suggest many other types of adult stem cells can be used for medical treatment, and the Oklahoma Center for Adult Stem Cell Research was created to promote this branch of research.

OCASCR scientist Lin Liu and his team discussing their work. Photo provided.

Liu said the discipline provides hope for many ailments.

What most fascinated me in stem cell research is the hope that we may be able to use stem cells from our own body; for example, bone marrow or fat tissues to cure lung diseases, Liu said.

It is impossible to know exactly which diseases will respond to treatments.However, results of early experiments suggest many diseases should benefit from this type of research, including lung, heart, Alzheimers and Parkinsons diseases, as well as cancer, diabetes and spinal cord injuries. The field is often referred to as regenerative medicine, because of the potential to create good cells in place of bad ones.

While the application of stem cells can be broad, Liu hopes that his TSET-funded work will help develop treatments for diseases caused by tobacco use.

The goal of my research team is to find cures for lung diseases, Liu said. One such disease is chronic obstructive pulmonary disease (COPD).

COPD is the third leading cause of death in the country and cigarette smoking is the leading cause of COPD.

Cigarette smoking is also a risk factor for another fatal lung disease, idiopathic pulmonary fibrosis (IPF), which has a mean life expectancy of 3 to 5 years after diagnosis, he added.

There is no cure for COPD or IPF. The current treatments of COPD and IPF only reduce symptoms or slow the disease progression.

Using OCASCR/TSET funding, my team is researching the possibility to engineer adult stem cells using small RNA molecules existing in the body to cure COPD, IPF and other lung diseases such as pneumonia caused by flu, Liu said.

This is vital research, considering that more than11 million peoplehave been diagnosed with COPD, but millions more may have the disease without even knowing it, according to the American Lung Association.

Despite declining smoking rates and increased smokefree environments, tobacco use continues to cause widespread health challenges and scientists will continue working to develop treatments to deal with the consequences of smoking.

We need to educate the public more regarding the harms of cigarette smoking, Liu said. My research may offer future medicines for lung diseases caused by cigarette smoking.

Under the umbrella of the Oklahoma Center for Adult Stem Cell Research (OCASCR), created with funding from the Oklahoma Tobacco Settlement Endowment Trust, these scientists have amassed groundbreaking findings in one of the fastest growing areas of medical research. Photo provided.

Liu has been conducting research in the field of lung biology and diseases for more than two decades.

However, his interests in adult stem cell therapy began in 2010 when OCASCR was established through a grant with TSET, which provided funding to Oklahoma researchers for stem cell research.

I probably would have never gotten my feet into stem cell research without OCASCR funding support, he said. OCASCR funding also facilitated the establishment of the Interdisciplinary Program in Regenerative Medicine at OSU.

These days, Liu finds himself fully immersed in the exciting world of adult stem cell research and collaborating with some of Oklahomas best scientific minds.

Dr. Liu and his colleagues are really thriving. It was clear seven years ago that regenerative medicine was a hot topic and we already had excellent scientists in the Oklahoma, said Dr. Paul Kincade, founding scientific director of OCASCR. All they needed was some resources to re-direct and support their efforts. OSU investigators are using instruments and research grants supplied by OCASCR to compete with groups worldwide. TSET can point to their achievements with pride.

The Oklahoma Center for Adult Stem Cell Research represents collaboration between scientists all across the state, aiming to promote studies by Oklahoma scientists who are working with stem cells present in adult tissues.

The center opened in 2010 and has enhanced adult stem cell research by providing grant funding for researchers, encouraging recruitment of scientists and providing education to the people of Oklahoma.

We are fortunate that the collaboration at the Oklahoma Center for Adult Stem Cell Research is yielding such positive results, said John Woods, TSET executive director. This research is leading to ground breaking discoveries and attracting new researchers to the field. TSET is proud to fund that investments for Oklahomans.

Funding research is a major focus for TSET and it comes with benefits reaching beyond the lab. For every $1 TSET has invested at OCASCR, scientists have been able to attract an additional $4 for research at Oklahoma institutions, TSET officials said.

TSET also supports medical research conducted by the Stephenson Cancer Center and the Oklahoma Tobacco Research Center.

For more information, visit http://www.ocascr.org.

See original here:
OCASCR scientists make progress in TSET-funded adult stem cell research - NewsOK.com

Read More...

OCASCR scientists make progress in TSET-funded adult stem cell … – NewsOK.com

Saturday, February 11th, 2017

OCASCR scientist Lin Liu at work. Photo provided.

Working together, scientists from Oklahoma State University, the University of Oklahoma Health Sciences Center and the Oklahoma Medical Research Foundation are advancing adult stem cell research to treat some of todays most devastating diseases.

Under the umbrella of the Oklahoma Center for Adult Stem Cell Research (OCASCR), created with funding from the Oklahoma Tobacco Settlement Endowment Trust, these scientists have amassed groundbreaking findings in one of the fastest growing areas of medical research.

We have made exciting progress, said OCASCR scientist Lin Liu, director of the Oklahoma Center for Respiratory and Infectious Diseases and director of the Interdisciplinary Program in Regenerative Medicine at Oklahoma State University.

We can convert adult stem cells into lung cells using our engineering process in petri dishes, which offers the possibility to repair damaged lung tissues in lung diseases, said Liu, whose research primarily focuses on lung and respiratory biology and diseases.

Using our engineered cells, we can also reverse some pathological features. These studies give us hope for an eventual application of these cells in humans.

Adult stem cells in the body are capable of renewing themselves and becoming various types of cells.

Until recently, stem cell treatments were largely restricted to blood diseases. However, new studies suggest many other types of adult stem cells can be used for medical treatment, and the Oklahoma Center for Adult Stem Cell Research was created to promote this branch of research.

OCASCR scientist Lin Liu and his team discussing their work. Photo provided.

Liu said the discipline provides hope for many ailments.

What most fascinated me in stem cell research is the hope that we may be able to use stem cells from our own body; for example, bone marrow or fat tissues to cure lung diseases, Liu said.

It is impossible to know exactly which diseases will respond to treatments.However, results of early experiments suggest many diseases should benefit from this type of research, including lung, heart, Alzheimers and Parkinsons diseases, as well as cancer, diabetes and spinal cord injuries. The field is often referred to as regenerative medicine, because of the potential to create good cells in place of bad ones.

While the application of stem cells can be broad, Liu hopes that his TSET-funded work will help develop treatments for diseases caused by tobacco use.

The goal of my research team is to find cures for lung diseases, Liu said. One such disease is chronic obstructive pulmonary disease (COPD).

COPD is the third leading cause of death in the country and cigarette smoking is the leading cause of COPD.

Cigarette smoking is also a risk factor for another fatal lung disease, idiopathic pulmonary fibrosis (IPF), which has a mean life expectancy of 3 to 5 years after diagnosis, he added.

There is no cure for COPD or IPF. The current treatments of COPD and IPF only reduce symptoms or slow the disease progression.

Using OCASCR/TSET funding, my team is researching the possibility to engineer adult stem cells using small RNA molecules existing in the body to cure COPD, IPF and other lung diseases such as pneumonia caused by flu, Liu said.

This is vital research, considering that more than11 million peoplehave been diagnosed with COPD, but millions more may have the disease without even knowing it, according to the American Lung Association.

Despite declining smoking rates and increased smokefree environments, tobacco use continues to cause widespread health challenges and scientists will continue working to develop treatments to deal with the consequences of smoking.

We need to educate the public more regarding the harms of cigarette smoking, Liu said. My research may offer future medicines for lung diseases caused by cigarette smoking.

Under the umbrella of the Oklahoma Center for Adult Stem Cell Research (OCASCR), created with funding from the Oklahoma Tobacco Settlement Endowment Trust, these scientists have amassed groundbreaking findings in one of the fastest growing areas of medical research. Photo provided.

Liu has been conducting research in the field of lung biology and diseases for more than two decades.

However, his interests in adult stem cell therapy began in 2010 when OCASCR was established through a grant with TSET, which provided funding to Oklahoma researchers for stem cell research.

I probably would have never gotten my feet into stem cell research without OCASCR funding support, he said. OCASCR funding also facilitated the establishment of the Interdisciplinary Program in Regenerative Medicine at OSU.

These days, Liu finds himself fully immersed in the exciting world of adult stem cell research and collaborating with some of Oklahomas best scientific minds.

Dr. Liu and his colleagues are really thriving. It was clear seven years ago that regenerative medicine was a hot topic and we already had excellent scientists in the Oklahoma, said Dr. Paul Kincade, founding scientific director of OCASCR. All they needed was some resources to re-direct and support their efforts. OSU investigators are using instruments and research grants supplied by OCASCR to compete with groups worldwide. TSET can point to their achievements with pride.

The Oklahoma Center for Adult Stem Cell Research represents collaboration between scientists all across the state, aiming to promote studies by Oklahoma scientists who are working with stem cells present in adult tissues.

The center opened in 2010 and has enhanced adult stem cell research by providing grant funding for researchers, encouraging recruitment of scientists and providing education to the people of Oklahoma.

We are fortunate that the collaboration at the Oklahoma Center for Adult Stem Cell Research is yielding such positive results, said John Woods, TSET executive director. This research is leading to ground breaking discoveries and attracting new researchers to the field. TSET is proud to fund that investments for Oklahomans.

Funding research is a major focus for TSET and it comes with benefits reaching beyond the lab. For every $1 TSET has invested at OCASCR, scientists have been able to attract an additional $4 for research at Oklahoma institutions, TSET officials said.

TSET also supports medical research conducted by the Stephenson Cancer Center and the Oklahoma Tobacco Research Center.

For more information, visit http://www.ocascr.org.

Go here to read the rest:
OCASCR scientists make progress in TSET-funded adult stem cell ... - NewsOK.com

Read More...

Anti-cell death agent a potential treatment for vision loss associated with MS – Science Daily

Friday, February 10th, 2017

Science Daily
Anti-cell death agent a potential treatment for vision loss associated with MS
Science Daily
A new therapeutic agent tested in a mouse model of multiple sclerosis (MS) produced anti-inflammatory activity and prevented loss of cells in the optic nerve, according to a new study by researchers in the Perelman School of Medicine at the University ...

and more »

See more here:
Anti-cell death agent a potential treatment for vision loss associated with MS - Science Daily

Read More...

Mars’s frozen pole, Sweden’s climate plan and a stem-cell trial in Japan – Nature.com

Wednesday, February 8th, 2017

Research | Policy | Politics | People | Events | Funding | Awards | Trend watch | Coming up

Stem-cell trial Japan is resuming pioneering clinical research using induced pluripotent stem (iPS) cells. A team led by Masayo Takahashi at the RIKEN Center for Developmental Biology in Kobe will make suspensions of iPS cells derived from retinal cells, and transplant them into people with age-related macular degeneration, an eye condition that can cause blindness. Takahashi started a similar study in 2014 the first to use iPS cells in humans but the cells prepared for the second patient were found to have genetic abnormalities and no other participants were recruited. On 1February, Japans health ministry approved a new five-patient study. This time the team will use banked iPS cells created from anonymous, healthy donor cells rather than from the participants themselves.

Martian polar ice cap sculpted by wind A seasonal layer of carbon dioxide frost coats Marss northern polar ice cap in this image, which was released on 2February by the European Space Agency (ESA). Each winter, carbon dioxide precipitates out of the cold atmosphere and onto the ice cap. The image is a composite of pictures taken between 2004 and 2010 by ESAs Mars Express spacecraft. The distinctive spiral troughs were probably carved by wind. Radar investigation by Mars Express and NASAs Mars Reconnaissance Orbiter revealed that the ice cap consists of many layers of ice and dust extending to a depth of about 2 kilometres.

ESA/DLR/FU Berlin; NASA MGS MOLA Science Team

GM wheat trial A UK research laboratory has been granted permission to begin field trials of a wheat plant that has been genetically modified (GM) to improve photosynthesis. Scientists at Rothamsted Research in Harpenden have already shown that wheat plants modified with a gene from stiff brome grass (Brachypodium distachyon) are more efficient at photosynthesis in greenhouses than conventional wheat, and they now hope to see improved yields from plants grown outside in more realistic conditions. In 2012, GM trials at Rothamsted attracted small but high-profile protests. The labs researchers have been among the leading advocates of such trials in Europe.

Swedish stimulus The Swedish government unveiled plans on 2February to make the country carbon neutral in less than two decades. A law expected to pass through parliament in March would set a binding target of reducing domestic greenhouse-gas emissions from industry and transport by 85% by 2045, relative to 1990 levels. Remaining emissions would be offset by natural carbon capture through forestation and by investment abroad. On announcing the move, Swedens environment minister, Isabella Lvin, said that her country wants to set an example at a time when climate action in the United States is threatening to lose momentum.

Romanian protests Angry Romanian scientists have called on their new government to reverse its order for national science-advisory bodies to immediately stop their work, pending reorganization. The government made the order on 31January, when it also issued a decree giving amnesty to some officials accused of corruption; this was later withdrawn after mass protests. An open letter signed by nearly 600academics and their supporters says that the councils, which are non-political, should be immune to government change. Signatories fear that the proposed reorganization may allow amnesty for politicians who have committed scientific misconduct.

UK science czar The UK governments chief scientific adviser has been appointed to possibly the biggest science job in the country. The government announced on 2February that Mark Walport will take the helm of a new body called UK Research and Innovation (UKRI), which is expected to oversee a pot of more than 6billion (US$7.5billion) in government science spending when it comes into being in 2018. Walports appointment is significant because there are fears that UKRI could reduce the freedom of the nine individual bodies that currently allocate much government science funding.

Researcher on trial An Iranian researcher in disaster medicine, who is accused of collaboration with a hostile government, has been threatened with the death sentence by a judge on Irans revolutionary court, according to close contacts of the scientist. Ahmadreza Djalali, who had been affiliated with research institutes in Italy, Sweden and Belgium, was arrested inApril 2016 during an academic visit to Iran. According to sources close to Djalali, he has been kept in solitary confinement for three months in a Tehran prison and was forced to sign a confession. Djalalis trial is scheduled to start later this month.

Ice station The British Antarctic Survey (BAS) announced on 2February that it had completed moving its HalleyVI research station 23kilometres across the floating ice platform on which it rests. The 13-week operation, which used tractors to tow the stations 8 modules (pictured), was prompted by fears about a growing crack in the Brunt ice shelf. Staff were evacuated last month for the coming Antarctic winter after another unpredictable crack in the ice was discovered. The base, which is designed to be relocated periodically, is ready for re-occupation in November, the BAS said.

British Antarctic Survey

Borehole record The Iceland Deep Drilling Project completed the deepest-ever geothermal well on 25January. After 168days of drilling, the well bottomed out at 4,659metres, just shy of its 5-kilometre goal. But temperatures and pressures were so high at the bottom of the well that fluids were observed behaving in a supercritical fashionas neither liquid nor gasan observation that was one of the projects goals. The well, on Icelands volcanic Reykjanes peninsula, is being used to explore the source of geothermal systems and to see whether supercritical fluids can be tapped as an energy resource.

Indias budget Health research, biotechnology and space science are the main beneficiaries of robust budget increases announced by the Indian government on 1February. Overall, science spending in 2017 by eight ministries (excluding nuclear and defence research) will increase by 11%well above the projected 5% inflation rateto 360billionrupees (US$5.3billion). Health research, including the fight against diseases such as leprosy and measles, will get 31% more government funding. Biotechnology will get an extra 22%, and Indias aspirations in space, including plans to land a rover on the Moon in 2018, will benefit from a 21% budget increase for space science.

Dual tribute The CRISPR gene-editing system, which has transformed biological research and biomedicine, drew yet more major prizes last week. On 31January, the Madrid-based BBVA Foundation announced that its 400,000 (US$427,000) Frontiers of Knowledge Award in Biomedicine would be shared by Francisco Mojica, Emmanuelle Charpentier and Jennifer Doudna. Mojica discovered the CRISPR repeating DNA sequences that some bacteria use to fight viral infections. Charpentier and Doudna developed the universal CRISPR editing toolfor which they have also won the 50-million (US$445,000) Japan Prize, announced on 2February. They share it with cryptographer Adi Shamir.

Women, non-Asian ethnic minorities and disabled people are under-represented in science and engineering in the United States, according to the National Center for Science and Engineering Statistics (NCSES). Women receive about half of all science and engineering degrees but hold less than 30% of jobs in these areas. White men, who in 2015 comprised only 31% of the US population, held nearly half of these jobs. Although female and minority representation has risen, disparities remain.

Source: NCSES

1115 February Biophysicists gather in New Orleans, Louisiana, for the Biophysical Societys 61st annual meeting. go.nature.com/2jtfz17

1216 February At an international meeting in Queenstown, New Zealand, scientists discuss the latest research in advanced materials and nanotechnology. confer.co.nz/amn8

15 February Indias Polar Satellite Launch Vehicle launches a high-resolution Earth-observation satellite from the Satish Dhawan Space Center in Sriharikota. go.nature.com/2jteerk

See the article here:
Mars's frozen pole, Sweden's climate plan and a stem-cell trial in Japan - Nature.com

Read More...

Page 29«..1020..28293031..40..»


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick