header logo image


Page 10«..9101112..20..»

Archive for the ‘Fat Stem Cells’ Category

Where Do Stem Cells Come From? | Basics Of Stem Cell …

Thursday, January 31st, 2019

Where do stem cells come from? Learn the basics of master cells to better understand their therapeutic potential.

In this article:

Where do stem cells come from? You have probably heard of thewonders of stem cell therapy. Not only do stem cells make research for future scientific breakthroughs possible, but they also provide the basis for many medical treatments today. So, where exactly are they from, and how are they different from regular cells? The answer depends on the types of stem cells in question.

There are two main types of stem cells adult and embryonic:

Beyond the two broader categories, there are sub-categories. Each has its own characteristics. For researchers, the different types of stem cells serve specific purposes.

Many tissues throughout the adult human body contain stem cells. Scientists previously believed adult stem cells to be inferior to human embryonic stem cells for therapeutic purposes. Theydid not believe adult stem cells to be as versatile as embryonic stem cells (ESCs), because they are not capable of becoming all 200 cell types within the human body.

While this theoryhas notbeen entirely disproved, encouraging evidence suggests that adult stem cells can develop into a variety of new types of cells. They can also affect repair through other mechanisms.

In August 2017, the number of stem cell publications registered in PubMed, a government database, surpassed 300,000. Stem cells are also being explored in over 4,600 cell therapy clinical trials worldwide. Some of the earliest forms of adult stem cell use include bone marrow and umbilical cord blood transplantation.

It should be noted that while the term adult stem cell is used for this type of cell, it is not descriptive of age, because adult stem cells can come from children. The term simply helps to differentiate stem cells derived from living humans as opposed to embryonic stem cells.

Embryonic stem cells are controversial because they are made from embryos that are created but not used by fertility clinics.

Because adult stem cells are somewhat limited in the cell types they can become, scientists developed a way to genetically reprogram cells into what is called an inducedpluripotent stem cell or iPS cell. In creating inducedpluripotent stem cells, researchers hope to blend the usefulness of adult stem cells with the promise of embryonic stem cells.

Both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are known as pluripotent stem cells.

Pluripotent stem cells are a type of cell that has the capacity to divide indefinitely and create any cell found within the three germ layers of an organism: ectoderm (cells forming the skin and nervous system), endoderm (cells forming pancreas, liver, endocrine gland, and gastrointestinal and respiratory tracts), and mesoderm (cells forming connective tissues, and other related tissues, muscles, bones, most of the circulatory system, and cartilage).

Embryonic stem cells can grow into a much wider range of cell types, but they also carry the risk of immune system rejection in patients. In contrast, adult stem cells are more plentiful, easier to harvest, and less controversial.

Embryonic stem cells come from embryos harvested shortly after fertilization (within 4-5 days). These cells are made when the blastocysts inner cell mass is transferred into a culture medium, allowing them to develop.

At 5-6 days post-fertilization, the cells within the embryo start to specialize. At this time, they no longer are able to become all of the cell types within the human body. They are no longer pluripotent.

Because they are pluripotent, embryonic stem cells can be used to generate healthy cells for disease patients. For example, they can be grown into heart cells known as cardiomyocytes. These cells may have the potential to be injected into an ailing patients heart.

Harvesting stem cells from embryos is controversial, so there are guidelines created by the National Institutes of Health (NIH) that allow the public to understand what practices are not allowed.

Scientists can harvest perinatal stem cells from a variety of tissues, but the most common sources include:

The umbilical cord attaches a mother to her fetus. It is removed after birth and is a valuable source of stem cells. The blood it contains is rich in hematopoietic stem cells (HSC). It also contains smaller quantities of another cell type known as mesenchymal stem cells (MSCs).

The placenta is a large organ that acts as a connector between the mother and the fetus. Both placental blood and tissue are also rich in stem cells.

Finally, there is amniotic fluid surrounding a baby while it is in utero. It can be harvested if a pregnant woman needs a specialized kind of test known as amniocentesis. Both amniotic fluid and tissue contain stem cells, too.

Adult stem cells are usually harvested in one of three ways:

The blood draw, known as peripheral blood stem cell donation, extracts the stem cells directly from a donors bloodstream. The bone marrow stem cells come from deep within a bone often a flat bone such as the hip. Tissue fat is extracted from a fatty area, such as the waist.

Embryonic donations are harvested from fertilized human eggs that are less than five days old. The embryos are not grown within a mothers or surrogates womb, but instead, are multiplied in a laboratory. The embryos selected for harvesting stem cell are created within invitro fertilization clinics but are not selected for implantation.

Amniotic stem cells can be harvested at the same time that doctors use a needle to withdraw amniotic fluid during a pregnant womans amniocentesis. The same fluid, after being tested to ensure the babys health, can also be used to extract stem cells.

As mentioned, there is another source for stem cells the umbilical cord. Blood cells from the umbilical cord can be harvested after a babys birth. Cells can also be extracted from the postpartumhuman placenta, which is typically discarded as medical waste following childbirth.

The umbilical cord and the placenta are non-invasive sources of perinatal stem cells.

People who donate stem cells through the peripheral blood stem cell donor procedure report it to be a relativelypainless procedure. Similar to giving blood, the procedure takes about four hours. At a clinic or hospital, an able medical practitioner draws the blood from the donors vein in one of his arms using a needle injection. The technician sends the drawn blood into a machine, which extracts the stem cells. The blood is then returned to the donors body via a needle injected into the other arm. Some patients experience cramping or dizziness, but overall, its considered a painless procedure.

If a blood stem cell donor has a problem with his or her veins, a catheter may be injected in the neck or chest. The donor receives local anesthesia when a catheter-involved donation occurs.

During a bone marrow stem cell donor procedure, the donor is put under heavy sedation in an operating room. The hip is often the site chosen to harvest the bone marrow. More of the desired red marrow is found in flat bones, such as those in the pelvic region. The procedure takes up to two hours, with several extractions made while the patient is sedated. Although the procedure is painless due to sedation, recovery can take a couple of weeks.

Bone marrow stem cell donation takes a toll on the donorbecause it involves the extraction of up to 10 percent of the donors marrow. During the recovery period, the donors body gradually replenishes the marrow. Until that happens, the donor may feel fatigued and sore.

Some clinics offer regenerative and cosmetic therapies using the patients own stem cells derived from the fat tissue located on the sides of the waistline. Considered a simple procedure, clinics do this for therapeutic reasons or as a donation for research.

Stem cells differ from the trillions of other cells in your body. In fact, stem cells make up only a small fraction of the total cells in your body. Some people have a higher percentage of stem cells than others. But, stem cells are special because they are the mothers from which specialized cells grew and developed within us. When these cells divide, they become daughters. Some daughter cells simply self-replicate, while others form new kinds of cells altogether. This is the main way stem cells differ from other body cells they are the only ones capable of generating new cells.

The ways in which stem cells can directly treat patients grow each year. Regenerative medicine now relies heavily on stem cell applications. This type of treatment replaces diseased cells with new, healthy ones generated through donor stem cells. The donor can be another person or the patient themselves.

Sometimes, stem cells also exert therapeutic effects by traveling through the bloodstream to sites that need repair or by impacting their micro-environment through signaling mechanisms.

Some types of adult stem cells, like mesenchymal stem cells (MSCs), are well-known for exerting anti-inflammatory and anti-scarring effects. MSCs can also positively impact the immune system.

Conditions and diseases which stem cell regeneration therapy may help include Alzheimers disease, Parkinsons disease, and multiple sclerosis (MS). Heart disease, certain types of cancer, and stroke victims may also benefit in the future. Stem cell transplant promises advances in treatment for diabetes, spinal cord injury, severe burns, and osteoarthritis.

Researchers also utilize stem cells to test new drugs. In this case, an unhealthy tissue replicates into a larger sample. This method enables researchers to test various therapies on a diseased sample, rather than on an ailing patient.

Stem cell research also allows scientists to study how both healthy and diseased tissue grows and mutates under various conditions. They do this by harvesting stem cells from the heart, bones, and other body areas and studying them under intensive laboratory conditions. In this way, they get a better understanding of the human body, whether healthy or sick.

With the following stem cell transplant benefits, its not surprising people would like to try the therapy as another treatment option.

Physicians harvest stem cell from either the patient or a donor. For an autologous transplant, there is no risk of transferring any disease from another person. For an allogeneic transplant, the donor is meticulously screened before the therapy to make sure they are compatible with the patient and have healthy sources of stem cells.

One common and serious problem of transplants is the risk of rejecting the transplanted organs, tissues, stem cells, and others. With autologous stem cell therapy, the risk is avoided primarily because it comes from the same person.

Because stem cell transplants are typically done through infusion or injection, the complex and complicated surgical procedure is avoided. Theres no risk of accidental cuts and scarring post-surgery.

Recovery time from surgeries and other types of treatments is usually time-consuming. With stem cell therapy, it could only take about 3 months or less to get the patient back to their normal state.

As the number of stem cell treatments dramatically grew over the years, its survival rate also increased. A study published in the Journal of Clinical Oncology showed there was a significant increase in survival rate over 12 years among participants of the study. The study analyzed results from over 38,000 stem cell transplants on patients with blood cancers and other health conditions.

One hundred days following transplant, the researchers observed an improvement in the survival rate of patients with myeloid leukemia. The significant improvements we saw across all patient and disease populations should offer patients hope and, among physicians, reinforce the role of blood stem cell transplants as a curative option for life-threatening blood cancers and other diseases.

With the information above, people now have a better understanding of the answer to the question Where do stem cells come from? Stem cells are a broad topic to comprehend, and its better to go back to its basics to learn its mechanisms. This way, a person can have a piece of detailed knowledge about these master cells from a scientific perspective.

If you found this blog valuable, subscribe to BioInformants stem cell industry updates.

As the first and only market research firm to specialize in the stem cell industry, BioInformant research is cited by The Wall Street Journal, Xconomy, AABB, and Vogue Magazine. Bringing you breaking news on an ongoing basis, we encourage you to join more than half a million loyal readers, including physicians, scientists, executives, and investors.

What do you understand aboutthe basics of stem cells? Share your thoughts in the comments section below.

Up Next:Top 5 TED Talks About Stem Cells

Where Do Stem Cells Come From? | Basics Of Stem Cell Therapy

Continue reading here:
Where Do Stem Cells Come From? | Basics Of Stem Cell ...

Read More...

Types of Stem Cells A Closer Look at Stem Cells

Thursday, January 31st, 2019

Tissue-specific stem cells

Tissue-specific stem cells (also referred to assomaticoradultstem cells) are more specialized than embryonic stem cells. Typically, these stem cells can generate different cell types for the specific tissue or organ in which they live.

For example, blood-forming (orhematopoietic) stem cells in the bone marrow can give rise to red blood cells, white blood cells and platelets. However, blood-forming stem cells dont generate liver or lung or brain cells, and stem cells in other tissues and organs dont generate red or white blood cells or platelets.

Some tissues and organs within your body contain small caches of tissue-specific stem cells whose job it is to replace cells from that tissue that are lost in normal day-to-day living or in injury, such as those in your skin, blood, and the lining of your gut.

Tissue-specific stem cells can be difficult to find in the human body, and they dont seem to self-renew in culture as easily as embryonic stem cells do. However, study of these cells has increased our general knowledge about normal development, what changes in aging, and what happens with injury and disease.

Here is the original post:
Types of Stem Cells A Closer Look at Stem Cells

Read More...

What are Adult Stem Cells? | Adult Stem Cell Treatment

Monday, January 28th, 2019

The primary role of adult stem cells in humans is to maintain and repair the tissue in which they are found. While we call them adult stem cells, they are more accurately called somatic (from the Greek word soma = body) because they come virtually any body tissue, not only in adults but children and babies as well.

Stem cells are very flexible cells, sometimes considered immature, that have not developed to a final specialized cell type (like skin, liver, heart, etc.) Since they have not yet specialized, stem cells can respond to different signals and needs in the body by becoming any of the various cell types needed, e.g., after an injury to repair an organ. In that sense they are a bit like a maintenance crew that keeps repairing and replacing damaged or worn out cells in the body.

A stem cell is essentially a blank cell, capable of becoming another more differentiated cell type in the body, such as a skin cell, a muscle cell, or a nerve cell. Microscopic in size, stem cells are big news in medical and science circles because they can be used to replace or even heal damaged tissues and cells in the body. They can serve as a built-in repair system for the human body, replenishing other cells as long as a person is still alive.

Adult stem cells are a natural solution. They naturally exist in our bodies, and they provide a natural repair mechanism for many tissues of our bodies. They belong in the microenvironment of an adult body, while embryonic stem cells belong in the microenvironment of the early embryo, not in an adult body, where they tend to cause tumors and immune system reactions.

Most importantly,adult stem cells have already been successfully used in human therapies for many years.As of this moment,no therapies in humans have ever been successfully carried out using embryonic stem cells.New therapies using adult type stem cells, on the other hand, are being developed all the time.

Stem Cells are being used today to help people suffering from dozens of diseases and conditions. This list reveals the wide range of applications that adult stem cells are having right now:

Cancers:

Auto-Immune Diseases

Cardiovascular

Ocular

Neural Degenerative Diseases and Injuries

Anemias and Other Blood Conditions

Wounds and Injuries

Other Metabolic Disorders

Liver Disease

The primary reason would be the ethics, since getting embryonic stem cells requires destruction of a young human embryo. The other, practical reasons are that people feel money spent on embryonic stem cell research could be better spent on other stem cell research.

The biggest misconception people have about stem cell research is that it is only embryonic that are useful. In fact, other stem cell types are proving to be much more useful. The best stem cells for patients are Adult Stem Cells; these are taken from the body (e.g., bone marrow, muscle, even fat tissue) or umbilical cord blood and can be used to treat dozens of diseases and conditions. Over 1 million people have already been treated with adult stem cells. (versus no proven success with embryonic stem cells.)https://lozierinstitute.org/fact-sheet-adult-stem-cell-research-transplants/Yet most people dont know about adult stem cells and their practical success.

Another type of stem cell that is proving very useful is induced pluripotent stem cells (iPS cells.) These can be made from any cell, such as skin, and from any person. They act like embryonic stem cells, but are made from ordinary cells and so dont require embryo destruction, making them an ethical source for that type of cell. They have already been used to create lab models of different diseases.

Visit link:
What are Adult Stem Cells? | Adult Stem Cell Treatment

Read More...

What is VetStem Regenerative Medicine? | Why Use Adipose …

Monday, January 21st, 2019

VetStem Technology: Summary

VetStem Regenerative Cell Therapy is based on a clinical technology licensed from Artecel Inc. Original patents are from the University of Pittsburgh and Duke University.

Adipose-derived regenerative cells are:

VetStem Regenerative Cell (VSRC) therapy delivers a functionally diverse cell population able to communicate with other cells in their local environment. Until recently, differentiation was thought to be the primary function of regenerative cells. However, the functions of regenerative cells are now known to be much more diverse and are implicated in a highly integrated and complex network. VSRC therapy should be viewed as a complex, yet balanced, approach to a therapeutic goal. Unlike traditional medicine, in which one drug targets one receptor, Regenerative Medicine, including VSRC therapy, can be applied in a wide variety of traumatic and developmental diseases. Regenerative cell functions include:

In general, in vitro studies demonstrate that MSCs limit inflammatory responses and promote anti-inflammatory pathways.

Multiple studies demonstrate that MSCs secrete bioactive levels of cytokines and growth factors that support angiogenesis, tissue remodeling, differentiation, and antiapoptotic events.25,28 MSCs secrete a number of angiogenesis-related cytokines such as:28

Adipose-derived MSC studies demonstrate a diverse plasticity, including differentiation into adipo-, osteo-, chondro-, myo-, cardiomyo-, endothelial, hepato-, neuro-, epithelial, and hematopoietic lineages, similar to that described for bone marrow derived MSCs.22 These data are supported by in vivo experiments and functional studies that demonstrated the regenerative capacity of adipose-derived MSCs to repair damaged or diseased tissue via transplant engraftment and differentiation.6,9,30

Homing (chemotaxis) is an event by which a cell migrates from one area of the body to a distant site where it may be needed for a given physiological event. Homing is an important function of MSCs and other progenitor cells and one mechanism by which intravenous or parenteral administration of MSCs permits an auto-transplanted therapeutic cell to effectively target a specific area of pathology.

Adipose-derived regenerative cells contain endothelial progenitor cells and MSCs that assist in angiogenesis and neovascularization by the secretion of cytokines, such as hepatic growth factor (HGF), vascular endothelial growth factor (VEGF), placental growth factor (PGF), transforming growth factor (TGF), fibroblast growth factor (FGF-2), and angiopoietin.25

Apoptosis is defined as a programmed cell death or cell suicide, an event that is genetically controlled.35 Under normal conditions, apoptosis determines the lifespan and coordinated removal of cells. Unlike during necrosis, apoptotic cells are typically intact during their removal (phagocytosis).

See original here:
What is VetStem Regenerative Medicine? | Why Use Adipose ...

Read More...

Bone marrow – Wikipedia

Saturday, November 10th, 2018

Bone marrow is a semi-solid tissue which may be found within the spongy or cancellous portions of bones.[2] In birds and mammals, bone marrow is the primary site of new blood cell production or hematopoiesis.[3] It is composed of hematopoietic cells, marrow adipose tissue, and supportive stromal cells. In adult humans, bone marrow is primarily located in the ribs, vertebrae, sternum, and bones of the pelvis.[4] On average, bone marrow constitutes 4% of the total body mass of humans; in an adult having 65 kilograms of mass (143 lb), bone marrow typically accounts for approximately 2.6 kilograms (5.7lb).[5]

Human marrow produces approximately 500 billion blood cells per day, which join the systemic circulation via permeable vasculature sinusoids within the medullary cavity.[6] All types of hematopoietic cells, including both myeloid and lymphoid lineages, are created in bone marrow; however, lymphoid cells must migrate to other lymphoid organs (e.g. thymus) in order to complete maturation.

Bone marrow transplants can be conducted to treat severe diseases of the bone marrow, including certain forms of cancer such as leukemia. Additionally, bone marrow stem cells have been successfully transformed into functional neural cells,[7] and can also potentially be used to treat illnesses such as inflammatory bowel disease.[8]

The composition of marrow is dynamic, as the mixture of cellular and non-cellular components (connective tissue) shifts with age and in response to systemic factors. In humans, marrow is colloquially characterized as "red" or "yellow" marrow (Latin: medulla ossium rubra, Latin: medulla ossium flava, respectively) depending on the prevalence of hematopoetic cells vs fat cells. While the precise mechanisms underlying marrow regulation are not understood,[6] compositional changes occur according to stereotypical patterns.[9] For example, a newborn baby's bones exclusively contain hematopoietically active "red" marrow, and there is a progressive conversion towards "yellow" marrow with age. In adults, red marrow is found mainly in the central skeleton, such as the pelvis, sternum, cranium, ribs, vertebrae and scapulae, and variably found in the proximal epiphyseal ends of long bones such as the femur and humerus. In circumstances of chronic hypoxia, the body can convert yellow marrow back to red marrow to increase blood cell production.[10]

At the cellular level, the main functional component of bone marrow includes the progenitor cells which are destined to mature into blood and lymphoid cells. Marrow contains hematopoietic stem cells which give rise to the three classes of blood cells that are found in circulation: white blood cells (leukocytes), red blood cells (erythrocytes), and platelets (thrombocytes).[11]

The stroma of the bone marrow includes all tissue not directly involved in the marrow's primary function of hematopoiesis.[6] Stromal cells may be indirectly involved in hematopoiesis, providing a microenvironment that influences the function and differentiation of hematopoeietic cells. For instance, they generate colony stimulating factors, which have a significant effect on hematopoiesis. Cell types that constitute the bone marrow stroma include:

The bone marrow stroma contains mesenchymal stem cells (MSCs),[11] also known as marrow stromal cells. These are multipotent stem cells that can differentiate into a variety of cell types. MSCs have been shown to differentiate, in vitro or in vivo, into osteoblasts, chondrocytes, myocytes, marrow adipocytes and beta-pancreatic islets cells.

The blood vessels of the bone marrow constitute a barrier, inhibiting immature blood cells from leaving the marrow. Only mature blood cells contain the membrane proteins, such as aquaporin and glycophorin, that are required to attach to and pass the blood vessel endothelium.[13] Hematopoietic stem cells may also cross the bone marrow barrier, and may thus be harvested from blood.

The red bone marrow is a key element of the lymphatic system, being one of the primary lymphoid organs that generate lymphocytes from immature hematopoietic progenitor cells.[14] The bone marrow and thymus constitute the primary lymphoid tissues involved in the production and early selection of lymphocytes. Furthermore, bone marrow performs a valve-like function to prevent the backflow of lymphatic fluid in the lymphatic system.

Biological compartmentalization is evident within the bone marrow, in that certain cell types tend to aggregate in specific areas. For instance, erythrocytes, macrophages, and their precursors tend to gather around blood vessels, while granulocytes gather at the borders of the bone marrow.[11]

Animal bone marrow has been used in cuisine worldwide for millennia, such as the famed Milanese Ossobuco.[citation needed]

The normal bone marrow architecture can be damaged or displaced by aplastic anemia, malignancies such as multiple myeloma, or infections such as tuberculosis, leading to a decrease in the production of blood cells and blood platelets. The bone marrow can also be affected by various forms of leukemia, which attacks its hematologic progenitor cells.[15] Furthermore, exposure to radiation or chemotherapy will kill many of the rapidly dividing cells of the bone marrow, and will therefore result in a depressed immune system. Many of the symptoms of radiation poisoning are due to damage sustained by the bone marrow cells.

To diagnose diseases involving the bone marrow, a bone marrow aspiration is sometimes performed. This typically involves using a hollow needle to acquire a sample of red bone marrow from the crest of the ilium under general or local anesthesia.[16]

Bone marrow derived stem cells have a wide array of application in regenerative medicine.[17]

Medical imaging may provide a limited amount of information regarding bone marrow. Plain film x-rays pass through soft tissues such as marrow and do not provide visualization, although any changes in the structure of the associated bone may be detected.[18] CT imaging has somewhat better capacity for assessing the marrow cavity of bones, although with low sensitivity and specificity. For example, normal fatty "yellow" marrow in adult long bones is of low density (-30 to -100 Hounsfield units), between subcutaneous fat and soft tissue. Tissue with increased cellular composition, such as normal "red" marrow or cancer cells within the medullary cavity will measure variably higher in density.[19]

MRI is more sensitive and specific for assessing bone bone composition. MRI enables assessment of the average molecular composition of soft tissues, and thus provides information regarding the relative fat content of marrow. In adult humans, "yellow" fatty marrow is the dominant tissue in bones, particularly in the (peripheral) appendicular skeleton. Because fat molecules have a high T1-relaxivity, T1-weighted imaging sequences show "yellow" fatty marrow as bright (hyperintense). Furthermore, normal fatty marrow loses signal on fat-saturation sequences, in a similar pattern to subcutaneous fat.

When "yellow" fatty marrow becomes replaced by tissue with more cellular composition, this change is apparent as decreased brightness on T1-weighted sequences. Both normal "red" marrow and pathologic marrow lesions (such as cancer) are darker than "yellow" marrow on T1-weight sequences, although can often be distinguished by comparison with the MR signal intensity of adjacent soft tissues. Normal "red" marrow is typically equivalent or brighter than skeletal muscle or intervertebral disc on T1-weighted sequences.[20][9]

Fatty marrow change, the inverse of red marrow hyperplasia, can occur with normal aging,[21] though it can also be seen with certain treatments such as radiation therapy. Diffuse marrow T1 hypointensity without contrast enhancement or cortical discontinuity suggests red marrow conversion or myelofibrosis. Falsely normal marrow on T1 can be seen with diffuse multiple myeloma or leukemic infiltration when the water to fat ratio is not sufficiently altered, as may be seen with lower grade tumors or earlier in the disease process.[22]

Bone marrow examination is the pathologic analysis of samples of bone marrow obtained via biopsy and bone marrow aspiration. Bone marrow examination is used in the diagnosis of a number of conditions, including leukemia, multiple myeloma, anemia, and pancytopenia. The bone marrow produces the cellular elements of the blood, including platelets, red blood cells and white blood cells. While much information can be gleaned by testing the blood itself (drawn from a vein by phlebotomy), it is sometimes necessary to examine the source of the blood cells in the bone marrow to obtain more information on hematopoiesis; this is the role of bone marrow aspiration and biopsy.

The ratio between myeloid series and erythroid cells is relevant to bone marrow function, and also to diseases of the bone marrow and peripheral blood, such as leukemia and anemia. The normal myeloid-to-erythroid ratio is around 3:1; this ratio may increase in myelogenous leukemias, decrease in polycythemias, and reverse in cases of thalassemia.[23]

In a bone marrow transplant, hematopoietic stem cells are removed from a person and infused into another person (allogenic) or into the same person at a later time (autologous). If the donor and recipient are compatible, these infused cells will then travel to the bone marrow and initiate blood cell production. Transplantation from one person to another is conducted for the treatment of severe bone marrow diseases, such as congenital defects, autoimmune diseases or malignancies. The patient's own marrow is first killed off with drugs or radiation, and then the new stem cells are introduced. Before radiation therapy or chemotherapy in cases of cancer, some of the patient's hematopoietic stem cells are sometimes harvested and later infused back when the therapy is finished to restore the immune system.[24]

Bone marrow stem cells can be induced to become neural cells to treat neurological illnesses,[7] and can also potentially be used for the treatment of other illnesses, such as inflammatory bowel disease.[8] In 2013, following a clinical trial, scientists proposed that bone marrow transplantation could be used to treat HIV in conjunction with antiretroviral drugs;[25][26] however, it was later found that HIV remained in the bodies of the test subjects.[27]

The stem cells are typically harvested directly from the red marrow in the iliac crest, often under general anesthesia. The procedure is minimally invasive and does not require stitches afterwards. Depending on the donor's health and reaction to the procedure, the actual harvesting can be an outpatient procedure, or can require 12 days of recovery in the hospital.[28]

Another option is to administer certain drugs that stimulate the release of stem cells from the bone marrow into circulating blood.[29] An intravenous catheter is inserted into the donor's arm, and the stem cells are then filtered out of the blood. This procedure is similar to that used in blood or platelet donation. In adults, bone marrow may also be taken from the sternum, while the tibia is often used when taking samples from infants.[16] In newborns, stem cells may be retrieved from the umbilical cord.[30]

The earliest fossilised evidence of bone marrow was discovered in 2014 in Eusthenopteron, a lobe-finned fish which lived during the Devonian period approximately 370 million years ago.[31] Scientists from Uppsala University and the European Synchrotron Radiation Facility used X-ray synchrotron microtomography to study the fossilised interior of the skeleton's humerus, finding organised tubular structures akin to modern vertebrate bone marrow.[31] Eusthenopteron is closely related to the early tetrapods, which ultimately evolved into the land-dwelling mammals and lizards of the present day.[31]

View post:
Bone marrow - Wikipedia

Read More...

Fat Stem Cell Therapy: The Impact of Aging, Disease, and …

Friday, November 9th, 2018

POSTED ON 5/2/2014 IN Healthy Lifestyles BY Christopher Centeno

Fat stem cell therapy continues to explode, with literally 20 new clinics popping up every week. I blogged awhile back that fat stem cells taken from overweight patients are not as potent as fat taken from thinner patients. Three new studies published this past few months add to that discussion. The focus of the recent investigations are how disease, aging, and weight impacts fat stem cells. The first study looked at fat stem cells from patients with cardiovascular disease. First the good news, when fat stem cells from older patients with heart disease were compared to those from older patients without heart disease, there wasn't a difference in the ability of the fat stem cells to make new blood vessels. Now the bad news, fat stem cells from older patients in both categories were less able to make new blood vessels when compared to fat stem cells from younger patients. The second study also looked at fat stem cells and aging. The "money shot" graph from that paper is above. Regrettably this study wasn't very sophisticated and made little effort to look at stem cell quality like the first. They also only looked at the nucleated cell count in the fat, which is a very rough metric of the stem cells in the fat (only a very small portion of the nucleated cells are stem cells). For more information on what these numbers mean, see my Doctor-Patient Guide to what stem cell numbers mean. What did they find? This rough metric of a fat stem cell count declined substantially after age 40. After that age, it dropped to a bit more than half of the value that they found in women under 40. Finally, a third interesting study looked at the lifespan of fat stem cells from normal weight, obese, and post bariatric surgery patients. Interestingly, the stem cells from obese patients had a shorter lifespan and were less healthy than either the stem cells from the normal weight or post weight loss surgery patients. Basically, being overweight hurt the DNA of the fat stem cells. The upshot? Fat stem cells are impacted by aging and being overweight. Being older and heavy is likely a double whammy for your cells. While some of these issues can be dealt with via dosing (administer more fat stem cells), the third study showed that cellular DNA damage was accumulating in the fat stem cells of patients who were overweight. Therefore solving the issue in some patients may not be as easy as just increasing the dose.

The rest is here:
Fat Stem Cell Therapy: The Impact of Aging, Disease, and ...

Read More...

Fat-Derived Stem Cells vs Bone Marrow – ThriveMD

Friday, October 5th, 2018

Stromal vascular fraction was dramatically better than bone marrow concentrate in its ability to differentiate into cartilage.Two other important features were also well documented. SVF created significantlymore colony forming units than BMC, another significant predictor of healingresponse. And perhaps most importantly, SVF was dramatically better than BMC inits ability to differentiate into cartilage.

Second, arecent study byHan Chao et alhas also demonstrated that fat derived stem cells also have a higher proliferation potential for neural tissue and are a better source for not only cartilage regeneration but also for nervous system regeneration.

Adipose fat tissue provides the largest volume of adult stem cells (1,000 to 2,000 times the number of cells per volume found in bone marrow). Bone marrow provides some stem cells but more importantly provides a large volume of growth factors to aid in the repair process. In addition to adult stem cells, fat tissue also contains numerous other regenerative cells that are important to the healing process. Stem cells derived from adipose fat tissue have been shown to be a much better source for the repair of cartilage degeneration and recent studies have demonstrated its superior ability to differentiate into cartilage.

The studies gavea very comprehensive look at comparing BMC and SVF in the abilityto repair cartilage damage in a same procedure protocol. Every significantmeasurement comparing bone marrow to adipose tissue for stem cell harvesting demonstrated that adipose providedbetter cell content and superior ability to differentiate into cartilage than bone marrow. Our extensive clinical experience withthe procedureforColorado patientsclearly indicates the same.

*Individual patient results may vary. Contact us today to find out if stem cell therapy may be able to help you.

See the original post here:
Fat-Derived Stem Cells vs Bone Marrow - ThriveMD

Read More...

Do You Know the 5 Types of Stem Cells? | BioInformant

Wednesday, September 26th, 2018

As you start to learn about stem cells, one of the most common questions tohave is, What types of stem cells exist?There is not an agreed-upon number of stem cell types, because one can classify stem cells either by differentiation potential(what they can turn into) or by origin (from where they are sourced).This post is dedicated to explaining the five types of stem cells, based on differentiation potential.

The five different types of stem cells discussed in this article are:

All stem cells that exist can be classified into one of five groups based on their differentiation potential. Each of these stem cell types is explored in greater detail below.

The Rise of Direct Cell Reprogramming | BioInformant https://t.co/q0vwT6CffR#allogeneic #totipotent #pluripotent #multipotent #autologous pic.twitter.com/ycoDP8mYa6

Todd C Bertsch (@todd_bertsch) February 19, 2018

These stem cells are the most powerful that exist.

They can differentiate into embryonic, as well as extra-embryonic tissues, such as chorion, yolk sac, amnion, and the allantois. In humans and other placental animals, these tissues form the placenta.

The most important characteristic of a totipotent cell is that it can generate a fully-functional, living organism.

The best-known example of a totipotent cell is a fertilized egg (formed when a sperm and egg unite to form a zygote).

It is at or around four days post-fertilization that these cells begin to specialize into pluripotent cells, which as described below, are flexible cell types but cannot produce an entire organism.

Theyre aliveeee!! Turned our human pluripotent stem cells into beating cardio!!! ::happy tears::Next up crispR KO fun #stemcellscientist #WomenInScience #futureBIOhacker pic.twitter.com/GVg4pb9Xri

Kristin Pagel (@DeeDeeTroit84) March 31, 2018

The next most powerful type of stem cell is the pluripotent stem cell.

The importance of this cell type is that it can self-renew and differentiate into any of the three germ layers, which are: ectoderm, endoderm, and mesoderm. These three germ layers further differentiate to form all tissues and organs within a human being.

There are several known types of pluripotent stem cells.

Among the natural pluripotent stem cells, embryonic stem cells are the best example.However, a type of human-made pluripotent stem cell also exists, which is the induced pluripotent stem cell (iPS cell).

iPS cells were first produced from mouse cells in 2006 and human cells in 2007, and are tissue-specific cells that can be reprogrammed to become functionally similar to embryonic stem cells.

Because of their powerful ability to differentiate in a wide diversity of tissues and their non-controversial nature, induced pluripotent stem cells are well-suited for use in cellular therapy and regenerative medicine.

Did you know that bone marrow contains multipotent stem cells that give rise to all the cells of the blood? pic.twitter.com/NcYJsdPJXi

caremotto (@caremotto) January 17, 2018

Multipotent stem cells are a middle-range type of stem cell, in that they can self-renew and differentiate into a specific range of cell types.

An excellent example of this cell type is the mesenchymal stem cell (MSC).

Mesenchymal stem cells can differentiate into osteoblasts (a type of bone cell), myocytes (muscle cells), adipocytes (fat cells), and chondrocytes (cartilage cells).

These cells types are fairly diverse in their characteristics, which is why mesenchymal stem cells are classified as multipotent stem cells.

The next type of stem cells, oligopotent cells, are similar to the prior category (multipotent stem cells), but they become further restricted in their capacity to differentiate.

While these cells can self-renew and differentiate, they can only do so to a limited extent. They can only do so into closely related cell types.

An excellent example of this cell type is the hematopoietic stem cell (HSC).

HSCs are cells derived from mesoderm that can differentiate into other blood cells. Specifically, HSCs are oligopotent stem cells that can differentiate into both myeloid and lymphoid cells.

Myeloid cells includebasophils, dendritic cells, eosinophils, erythrocytes, macrophages, megakaryocytes, monocytes, neutrophils, and platelets, while lymphoid cells include B cells, T cells, and natural kills cells.

Finally, we have the unipotent stem cells, which are the least potent and most limited type of stem cell.

An example of this stem cell type would be muscle stem cells.

While muscle stem cells can self-renew and differentiate, they can only do so into a single cell type. They are unidirectional in their differentiation capacity.

The purpose of these stem cellcategories is to assess thefunctional capacity of stem cells based on their differentiation potential.

Importantly, each category has different stem cell research applications, medical applications, and drug development applications.

Watch this video and learn about the 5 types of stem cells:

In your opinion, which of the following types of stem cells have the best potential to form any tissue type? Mention them in the comments section below.

To learn more, view:Stem Cell Fact Sheet Types of Stem Cells and their Use in Medicine

Do You Know The 5 Types Of Stem Cells?

Read more here:
Do You Know the 5 Types of Stem Cells? | BioInformant

Read More...

Stem Cells – MedicineNet

Tuesday, September 18th, 2018

Stem cell facts

What are stem cells?

Stem cells are cells that have the potential to develop into many different or specialized cell types. Stem cells can be thought of as primitive, "unspecialized" cells that are able to divide and become specialized cells of the body such as liver cells, muscle cells, blood cells, and other cells with specific functions. Stem cells are referred to as "undifferentiated" cells because they have not yet committed to a developmental path that will form a specific tissue or organ. The process of changing into a specific cell type is known as differentiation. In some areas of the body, stem cells divide regularly to renew and repair the existing tissue. The bone marrow and gastrointestinal tract are examples of areas in which stem cells function to renew and repair tissue.

The best and most readily understood example of a stem cell in humans is that of the fertilized egg, or zygote. A zygote is a single cell that is formed by the union of a sperm and ovum. The sperm and the ovum each carry half of the genetic material required to form a new individual. Once that single cell or zygote starts dividing, it is known as an embryo. One cell becomes two, two become four, four become eight, eight become sixteen, and so on, doubling rapidly until it ultimately grows into an entire sophisticated organism composed of many different kinds of specialized cells. That organism, a person, is an immensely complicated structure consisting of many, many, billions of cells with functions as diverse as those of your eyes, your heart, your immune system, the color of your skin, your brain, etc. All of the specialized cells that make up these body systems are descendants of the original zygote, a stem cell with the potential to ultimately develop into all kinds of body cells. The cells of a zygote are totipotent, meaning that they have the capacity to develop into any type of cell in the body.

The process by which stem cells commit to become differentiated, or specialized, cells is complex and involves the regulation of gene expression. Research is ongoing to further understand the molecular events and controls necessary for stem cells to become specialized cell types.

Stem Cells:One of the human body's master cells, with the ability to grow into any one of the body's more than 200 cell types.

All stem cells are unspecialized (undifferentiated) cells that are characteristically of the same family type (lineage). They retain the ability to divide throughout life and give rise to cells that can become highly specialized and take the place of cells that die or are lost.

Stem cells contribute to the body's ability to renew and repair its tissues. Unlike mature cells, which are permanently committed to their fate, stem cells can both renew themselves as well as create new cells of whatever tissue they belong to (and other tissues).

Why are stem cells important?

Stem cells represent an exciting area in medicine because of their potential to regenerate and repair damaged tissue. Some current therapies, such as bone marrow transplantation, already make use of stem cells and their potential for regeneration of damaged tissues. Other therapies that are under investigation involve transplanting stem cells into a damaged body part and directing them to grow and differentiate into healthy tissue.

Embryonic stem cells

During the early stages of embryonic development the cells remain relatively undifferentiated (immature) and appear to possess the ability to become, or differentiate, into almost any tissue within the body. For example, cells taken from one section of an embryo that might have become part of the eye can be transferred into another section of the embryo and could develop into blood, muscle, nerve, or liver cells.

Cells in the early embryonic stage are totipotent (see above) and can differentiate to become any type of body cell. After about seven days, the zygote forms a structure known as a blastocyst, which contains a mass of cells that eventually become the fetus, as well as trophoblastic tissue that eventually becomes the placenta. If cells are taken from the blastocyst at this stage, they are known as pluripotent, meaning that they have the capacity to become many different types of human cells. Cells at this stage are often referred to as blastocyst embryonic stem cells. When any type of embryonic stem cells is grown in culture in the laboratory, they can divide and grow indefinitely. These cells are then known as embryonic stem cell lines.

Fetal stem cells

The embryo is referred to as a fetus after the eighth week of development. The fetus contains stem cells that are pluripotent and eventually develop into the different body tissues in the fetus.

Adult stem cells

Adult stem cells are present in all humans in small numbers. The adult stem cell is one of the class of cells that we have been able to manipulate quite effectively in the bone marrow transplant arena over the past 30 years. These are stem cells that are largely tissue-specific in their location. Rather than typically giving rise to all of the cells of the body, these cells are capable of giving rise only to a few types of cells that develop into a specific tissue or organ. They are therefore known as multipotent stem cells. Adult stem cells are sometimes referred to as somatic stem cells.

The best characterized example of an adult stem cell is the blood stem cell (the hematopoietic stem cell). When we refer to a bone marrow transplant, a stem cell transplant, or a blood transplant, the cell being transplanted is the hematopoietic stem cell, or blood stem cell. This cell is a very rare cell that is found primarily within the bone marrow of the adult.

One of the exciting discoveries of the last years has been the overturning of a long-held scientific belief that an adult stem cell was a completely committed stem cell. It was previously believed that a hematopoietic, or blood-forming stem cell, could only create other blood cells and could never become another type of stem cell. There is now evidence that some of these apparently committed adult stem cells are able to change direction to become a stem cell in a different organ. For example, there are some models of bone marrow transplantation in rats with damaged livers in which the liver partially re-grows with cells that are derived from transplanted bone marrow. Similar studies can be done showing that many different cell types can be derived from each other. It appears that heart cells can be grown from bone marrow stem cells, that bone marrow cells can be grown from stem cells derived from muscle, and that brain stem cells can turn into many types of cells.

Peripheral blood stem cells

Most blood stem cells are present in the bone marrow, but a few are present in the bloodstream. This means that these so-called peripheral blood stem cells (PBSCs) can be isolated from a drawn blood sample. The blood stem cell is capable of giving rise to a very large number of very different cells that make up the blood and immune system, including red blood cells, platelets, granulocytes, and lymphocytes.

All of these very different cells with very different functions are derived from a common, ancestral, committed blood-forming (hematopoietic), stem cell.

Umbilical cord stem cells

Blood from the umbilical cord contains some stem cells that are genetically identical to the newborn. Like adult stem cells, these are multipotent stem cells that are able to differentiate into certain, but not all, cell types. For this reason, umbilical cord blood is often banked, or stored, for possible future use should the individual require stem cell therapy.

Induced pluripotent stem cells

Induced pluripotent stem cells (iPSCs) were first created from human cells in 2007. These are adult cells that have been genetically converted to an embryonic stem celllike state. In animal studies, iPSCs have been shown to possess characteristics of pluripotent stem cells. Human iPSCs can differentiate and become multiple different fetal cell types. iPSCs are valuable aids in the study of disease development and drug treatment, and they may have future uses in transplantation medicine. Further research is needed regarding the development and use of these cells.

Why is there controversy surrounding the use of stem cells?

Embryonic stem cells and embryonic stem cell lines have received much public attention concerning the ethics of their use or non-use. Clearly, there is hope that a large number of treatment advances could occur as a result of growing and differentiating these embryonic stem cells in the laboratory. It is equally clear that each embryonic stem cell line has been derived from a human embryo created through in-vitro fertilization (IVF) or through cloning technologies, with all the attendant ethical, religious, and philosophical problems, depending upon one's perspective.

What are some stem cell therapies that are currently available?

Routine use of stem cells in therapy has been limited to blood-forming stem cells (hematopoietic stem cells) derived from bone marrow, peripheral blood, or umbilical cord blood. Bone marrow transplantation is the most familiar form of stem cell therapy and the only instance of stem cell therapy in common use. It is used to treat cancers of the blood cells (leukemias) and other disorders of the blood and bone marrow.

In bone marrow transplantation, the patient's existing white blood cells and bone marrow are destroyed using chemotherapy and radiation therapy. Then, a sample of bone marrow (containing stem cells) from a healthy, immunologically matched donor is injected into the patient. The transplanted stem cells populate the recipient's bone marrow and begin producing new, healthy blood cells.

Umbilical cord blood stem cells and peripheral blood stem cells can also be used instead of bone marrow samples to repopulate the bone marrow in the process of bone marrow transplantation.

In 2009, the California-based company Geron received clearance from the U. S. Food and Drug Administration (FDA) to begin the first human clinical trial of cells derived from human embryonic stem cells in the treatment of patients with acute spinal cord injury.

What are experimental treatments using stem cells and possible future directions for stem cell therapy?

Stem cell therapy is an exciting and active field of biomedical research. Scientists and physicians are investigating the use of stem cells in therapies to treat a wide variety of diseases and injuries. For a stem cell therapy to be successful, a number of factors must be considered. The appropriate type of stem cell must be chosen, and the stem cells must be matched to the recipient so that they are not destroyed by the recipient's immune system. It is also critical to develop a system for effective delivery of the stem cells to the desired location in the body. Finally, devising methods to "switch on" and control the differentiation of stem cells and ensure that they develop into the desired tissue type is critical for the success of any stem cell therapy.

Researchers are currently examining the use of stem cells to regenerate damaged or diseased tissue in many conditions, including those listed below.

References

REFERENCE:

"Stem Cell Information." National Institutes of Health.

Read the original:
Stem Cells - MedicineNet

Read More...

Types of Adult Stem Cells – Stem Cell Institute

Monday, July 9th, 2018

Stem cells reside in adult bone marrow and fat, as well as other tissues and organs of the body including the umbilical cord. These cells have a natural ability to repair damaged tissue, however in people with degenerative diseases they are not released quickly enough to fully repair damaged tissue. In the case of fat stem cells they may not be released at all. The process of actively extracting, concentrating and administering these stem cells has been shown in clinical trials to have beneficial effects in degenerative conditions. Few patients have access to clinical trials. We offer patients and their doctors access to these therapies now. Stem cell treatments are not covered by insurance.

Adult stem cells can be extracted from most tissues in the body, including the bone marrow, fat, and peripheral blood. They can also be isolated from human umbilical cords and placental tissue. Once the cells have been harvested, they are sent to the lab where they are purified and assessed for quality before being reintroduced back in the patient. Common types of adult stem cells are mesenchymal and hematopoietic stem cells.

Umbilical cord mesenchymal stem cells reside in the *umbilical cords of newborn babies. HUCT-MSC stem cells, like all post-natal cells, are adult stem cells.

The Stem Cell Institute utilizes cord-derived mesenchymal stem cells that are separated from the umbilical cord tissue. For certain indications, these cells are expanded into greater numbers at Medistem laboratory in Panama under very strict, internationally recognized guidelines.

Among many other things, mesenchymal stem cells from the umbilical cord tissue are known to help reduce inflammation, modulate the immune system and secrete factors that may help various tissues throughout the body to regenerate.

The bodys immune system is unable to recognize HUCT mesenchymal stem cells as foreign and therefore they are not rejected. Weve treated hundreds of patients with umbilical cord stem cells and there has never been a single instance rejection (graft vs. host disease). HUCT MSCs also proliferate/differentiate more efficiently than older cells, such as those found in the bone marrow and therefore, they are considered to be more potent.

Through retrospective analysis of our cases, weve identified proteins and genes that allow us to screen several hundred umbilical cord donations to find the ones that we know are most effective. We only use these cells and we call them golden cells.

We go through a very high throughput screening process to find cells that we know have the best anti-inflammatory activity, the best immune modulating capacity, and the best ability to stimulate regeneration.

Human umbilical cord tissue-derived mesenchymal stem cells (MSCs) that were isolated and grown in our laboratory in Panama to create master cell banks are currently being used in the United States.

These cells serve as the starting material for cellular products used in MSC clinical trials for two Duchennes muscular dystrophy patients under US FDAs designation of Investigational New Drug (IND) for single patient compassionate use. (IND 16026 DMD Single Patient)

The bone marrow stem cell is the most studied of the stem cells, since it was first discovered to in the 1960s. Originally used in bone marrow transplant for leukemias and hematopoietic diseases, numerous studies have now expanded experimental use of these cells for conditions such as peripheral vascular disease, diabetes, heart failure, and other degenerative disorders.

At Stem Cell Institute, we use purified autologous (patients own) mesenchymal stem cells from bone marrow in our spinal cord injury protocol along with umbilical cord tissue mesenchymal stem cells.

Fat stem cells are essentially sequestered and are not available to the rest of the body for repair or immune modulation. Fat derived stem cells have been used for successful treatment of companion animals and horses with bone and joint injuries for the last 10 years with positive results.

Experimental studies suggest fat derived stem cells not only can develop into new tissues but also suppress pathological immune responses as seen in autoimmune diseases. In addition to orthopedic conditions, Stem Cell Institute pioneered treating patients with osteoarthritis, rheumatoid arthritis, multiple sclerosis, and other autoimmune diseases using fat derived stem cells. However, we no longer use a patients own stem cells from fat because weve found that mesenchymal stem cells from umbilical cord tissue are superior.

Dr. Riordan published the first scientific article on treating humans (3 multiple sclerosis patients) with adipose-derived stem cells. We have treated many patients with adipose-derived mesenchymal stem cells in Panama but we no longer do so because we have found that umbilical cord-derived MSCs modulate the immune system and control inflammation better. HUCT MSCs also proliferate much more efficiently.

Articles Authored by our Doctors and Scientists about Fat Derived Stem Cells:

*All donated cords are the by-products of normal, healthy births. Each cord is carefully screened for sterility and infectious diseases under International Blood Bank standards.

Visit link:
Types of Adult Stem Cells - Stem Cell Institute

Read More...

FAQs – chicagostemcellsinstitute.com

Thursday, July 5th, 2018

Our Technology

Chicago Stem Cell Treatment Center uses adipose derived stem cells for deployment & clinical research. Early stem cell research has traditionally been associated with the controversial use of embryonic stem cells. The new focus is on non-embryonic adult mesenchymal stem cells which are found in a persons own blood, bone marrow, and fat. Most stem cell treatment centers in the world are currently using stem cells derived from bone marrow.

A recent technological breakthrough enables us to now use adipose (fat) derived stem cells. Autologous stem cells from a persons own fat are easy to harvest safely under local anesthesia and are abundant in quantities up to 2500 times those seen in bone marrow.

Clinical success and favorable outcomes appear to be related directly to the quantity of stem cells deployed. Once these adipose derived stem cells are administered back in to the patient, they have the potential to repair human tissue by forming new cells of mesenchymal origin, such as cartilage, bone, ligaments, tendons, nerve, fat, muscle, blood vessels, and certain internal organs. Stem cells ability to form cartilage and bone makes them potentially highly effective in the treatment of degenerative orthopedic conditions. Their ability to form new blood vessels and smooth muscle makes them potentially very useful in the treatment of peyronies disease and impotence. Stem cells are used extensively in Europe and Asia to treat these conditions.

We have anecdotal and experimental evidence that stem cell therapy is effective in healing and regeneration. Stem cells seek out damaged tissues in order to repair the body naturally. The literature and internet is full of successful testimonials but we are still awaiting definitive studies demonstrating efficacy of stem cell therapy. Such data may take five or ten years to accumulate. In an effort to provide relief for patients suffering from certain degenerative diseases that have been resistant to common modalities of treatment, we are initiating pilot studies as experimental tests of treatment effectiveness with very high numbers of adipose derived stem cells obtained from fat. Adipose fat is an abundant and reliable source of stem cells.

Chicago Stem Cell Treatment Centers cell harvesting and isolation techniques are based on technology from Korea. This new technological breakthrough allows patients to safely receive their own autologous stem cells in extremely large quantities. Our treatments and research are patient funded and we have endeavored successfully to make it affordable. All of our sterile procedures are non-invasive and done under local anesthesia. Patients who are looking for non-surgical alternatives to their degenerative disorders can participate in our trials by filling out our treatment application to determine if they are candidates. Chicago Stem Cell Treatment Center is proud to be state of the art in the new field of Regenerative Medicine. RETURN TO TOP

We are currently in the process of setting up FDA approved protocols for stem cell banking in collaboration with a reputable cryo-technology company. This enables a person to receive autologous stem cells at any time in the future without having to undergo liposuction which may be inconvenient or contraindicated. Having your own stem cells available for medical immediate use is a valuable medical asset.

Provisions are nearly in place for this option and storage of your own stem cells obtained by liposuction at CSCTC or from fat obtained from cosmetic procedures performed elsewhere should be possible in the near future. RETURN TO TOP

Adult (NonEmbryonic) Mesenchymal Stem Cells are undifferentiated cells that have the ability to replace dying cells and regenerate damaged tissue. These special cells seek out areas of injury, disease and destruction where they are capable of regenerating healthy cells and enabling a persons natural healing processes to be accelerated. As we gain a deeper understanding of their medical function and apply this knowledge, we are realizing their enormous therapeutic potential to help the body heal itself. Adult stem cells have been used for a variety of medical treatments to repair and regenerate acute and chronicially damaged tissues in humans and animals. The use of stem cells is not FDA approved for the treatment of any specific disease in the United States at this time and their use is therefore investigational. Many reputable international centers have been using stem cell therapy to treat various chronic degenerative conditions as diverse as severe neurologic diseases, renal failure, erectile dysfunction, degenerative orthopedic problems, and even cardiac and pulmonary diseases to name a few. Adult stem cells appear to be particularly effective at repairing cartilage in degenerated joints. RETURN TO TOP

Regenerative Medicine is the process of creating living, functional tissues to repair or replace tissue or organ function lost due to damage, or congenital defects. This field holds the promise of regenerating damaged tissues and organs in the body by stimulating previously irreparable organs to heal themselves. (Wikipedia) RETURN TO TOP

Traditionally, we have used various medications and hormones to limit disease and help the body repair itself. For example, hormone replacement therapy has, in many cases, shown the ability to more optimally help the immune system and thus help us repair diseased or injured tissues. Genetic research is an evolving area where we will eventually learn and utilize more ways of specifically dealing with gene defects causing degenerative disease. Stem cell therapy is another rapidly evolving and exciting area that has already shown considerable promise in treating many degenerative conditions. RETURN TO TOP

A stem cell is basically any cell that can replicate and differentiate. This means the cell can not only multiply, it can turn into different types of tissues. There are different kinds of stem cells. Most people are familiar with or have heard the term embryonic stem cell. These are cells from the embryonic stage that have yet to differentiate as such, they can change into any body part at all. These are then called pluri-potential cells. Because they are taken from unborn or unwanted embryos, there has been considerable controversy surrounding their use. Also, while they have been used in some areas of medicine particularly, outside the United States they have also been associated with occasional tumor (teratoma) formations. There is work being conducted by several companies to isolate particular lines of embryonic stem cells for future use.

Another kind of stem cell is the adult stem cell. This is a stem cell that already resides in ones body within different tissues. In recent times, much work has been done isolating bone-marrow derived stem cells. These are also known as mesenchymal stem cells because they come from the mesodermal section of your body. They can differentiate into bone and cartilage, and probably all other mesodermal elements, such as fat, connective tissue, blood vessels, muscle and nerve tissue. Bone marrow stem cells can be extracted and because they are low in numbers, they are usually cultured in order to multiply their numbers for future use. As it turns out, fat is also loaded with mesenchymal stem cells. In fact, it has hundreds if not thousands of times more stem cells compared to bone marrow. Today, we actually have tools that allow us to separate the stem cells from fat. Because most people have adequate fat supplies and the numbers of stem cells are so great, there is no need to culture the cells over a period of days and they can be used right away. RETURN TO TOP

These adult stem cells are known as progenitor cells. This means they remain dormant (do nothing) unless they witness some level of tissue injury. Its the tissue injury that turns them on. So, when a person has a degenerative type problem, the stem cells tend to go to that area of need and stimulate the healing process. Were still not sure if they simply change into the type of injured tissue needed for repair or if they send out signals that induces the repair by some other mechanism. Suffice it to say that there are multiple animal models and a plethora of human evidence that indicates these are significant reparative cells. RETURN TO TOP

This will depend on the type of degenerative condition you have. A specialist will evaluate you and discuss whether youre a potential candidate for stem cell therapy. If after youve been recommended for treatment, had an opportunity to understand the potential risks and benefits, and decided on your own that you would like to explore this avenue of treatment, then you can be considered for treatment. Of course, even though its a minimally invasive procedure, you will still need to be medically cleared for the procedure. RETURN TO TOP

No. Only adult mesenchymal stem cells are used. These cells are capable of forming bone, cartilage, fat, muscle, ligaments, blood vessels, and certain organs. Embryonic stem cells are associated with ethical considerations and limitations. RETURN TO TOP

Patients suffer from many varieties of degenerative illnesses. There may be conditions associated with nearly all aspects of the body. Board certified specialists are ideal to evaluate, recommend and/or treat, and subsequently follow your progress. Together, through the CSCTC, we work to coordinate and provide therapy mainly with your own stem cells, but also through other avenues of regenerative medicine. This could include hormone replacement therapy or other appropriate recommendations.

For example, if you have a knee problem, you would see CSCTCs Board Certified orthopedic surgeon rather than a generic clinic director. Also, you might be recommended for evaluation for hormone replacement therapy or an exercise program should such be considered optimal. Nonetheless, we believe stem cell therapy to be the likely foundation for regenerative treatment.It should also be noted, that all treatments are currently in the investigational stage. While we recognize our patients are seeking improvement in their condition through stem cell therapy, each treatment is part of an ongoing investigation to establish optimal parameters for treatment, to evaluate for effectiveness and for any adverse effects. It is essential that patients understand they are participating in these investigational (research) analyses. Once sufficient information is appropriately documented and statistically significant, then data (validated by an Institutional Review Board) may be presented to the FDA for consideration of making an actual claim. RETURN TO TOP

Urology, cosmetic surgery, ear, nose, & throat, orthopedics, internal medicine and cardiology are represented. Plans are currently being made for a number of other specialties. Chicago Stem Cell Treatment Center is the first multispecialty stem cell center in the United States. RETURN TO TOP

Many have been told that they require surgery or other risky treatments for their ailments and are looking for non-invasive options. Some have heard about the compelling testimonials about stem cells in the literature and on various websites. Many have read about the results of stem cell treatments in animal models and in humans. CSCTC gives a choice to those informed patients who seek modern regenerative therapy but desire convenience, quality and affordability. CSCTC fills a need for those patients who have been told that they have to travel to different countries and pay as much as twenty to one hundred thousand dollars for stem cell treatments off shore. (See stem cell tourism). RETURN TO TOP

Stem cells are harvested and deployed during the same procedure. Our patients undergo a minimally-invasive liposuction type of harvesting procedure by a Board Certified cosmetic surgeon in our specialized treatment facility in Vernon Hills, IL. The harvesting procedure generally lasts a few minutes and can be done under local anesthesia. Cells are then processed and are ready for deployment within 90 minutes or less. RETURN TO TOP

Bone marrow sampling (a somewhat uncomfortable procedure) yields approximately 5,000 60,000 cells that are then cultured over several days to perhaps a few million cells prior to deployment (injection into the patient). Recent advances in stem cell science have made it possible to obtain high numbers of very excellent quality multi-potent (able to form numerous other tissues) cells from a persons own liposuction fat. CSCTC uses technology acquired from Asia to process this fat to yield approximately five hundred thousand to one million stem cells per cc of fat, and therefore, it is possible to obtain as many as 10 to 40 million cells from a single treatment. These adipose derived stem cells can form many different types of cells when deployed properly including bone, cartilage, tendon (connective tissue), muscle, blood vessels, nerve tissue and others. RETURN TO TOP

CSCTC patients have their fat (usually abdominal) harvested in our special sterile treatment facility under a local anesthetic. The fat removal procedure lasts approximately twenty minutes. Specially designed equipment is used to harvest the fat cells and less than 100cc of fat is required. Post operative discomfort is minimal and there is minimal restriction on activity. RETURN TO TOP

Stem cells are harvested under sterile conditions using a special closed system technology so that the cells never come into contact with the environment throughout the entire process from removal to deployment. Sterile technique and antibiotics are also used to prevent infection. RETURN TO TOP

No. Only a persons own adult autologous cells are used. These are harvested from each individual and deployed back into their own body. There is no risk of contamination or risk of introduction of mammalian DNA into the treatments. RETURN TO TOP

These facilities are obtaining stem cells from bone marrow or blood in relatively small quantities and they are then culturing (growing) the cells to create adequate quantities. Research seems to indicate that success of treatment is directly related to the quantity of cells injected. CSCTC uses adipose derived stem cells that are abundant naturally at approximately 2,500 times levels found in bone marrow (the most common source of mesenchymal stem cells). CSCTC uses technology that isolates adipose stem cells in vast numbers in a short time span so that prolonged culturing is unnecessary and cells can be deployed into a patient within 90 minutes of harvesting. RETURN TO TOP

CSCTC is doing pioneer research and treatment of many diseases. All investigational data is being collected so that results will be published in peer review literature and ultimately used to promote the advancement of cellular based regenerative medicine. FDA regulations mandate that no advertising medical claims be made and that even website testimonials are prohibited. RETURN TO TOP

No. Many are confused by this because they have heard of cancer patients receiving stem cell transplants. These patients had ablative bone marrow therapy and need stem cells to re-populate their blood and marrow. This is different from the stem cells we deploy to treat noncancerous human diseases at CSCTC. RETURN TO TOP

Adult mesenchymal stem cells are not known to cause cancer. Some patients have heard of stories of cancer caused by stem cells, but these are probably related to the use of embryonic cells (Not Adult Mesenchymal Cells). These embryonic tumors known as teratomas are rare but possible occurrences when embryonic cells are used. RETURN TO TOP

Stem cell therapy is thought to be safe and not affect dormant cancers. If someone has had cancer that was treated and responded sucessfully, there is know reason to withhold stem cell deployment. In most cases, stem cells should not be used in patients with known active cancer. RETURN TO TOP

We know of no documented cases personally or in the literature where serious harm has resulted. All of our patients will be entered into a database to follow and report any adverse reactions. This information is vital to the development of stem cell science. There have been a few reports of serious complications from overseas and these are being thoroughly evaluated by epidemiologists to ascertain the facts. The International Stem Cell Society registry has over 1,000 cases currently registered and only 2% of the treatments were associated with any complications, none of which were considered serious adverse events. RETURN TO TOP

None. Our aim is to make cell based medicine available to patients who are interested and to provide ongoing research data under approved Institutional Review Board (IRB) validated studies. We will follow our stem cell treatment patients over their lifetimes. This will enable us to accumulate significant data about the various degenerative diseases we treat. Instead of providing simply anecdotal or testimonial information, our goal is to categorize the various conditions and follow the patients progress through various objective (e.g. x-ray evidence or video displays) and subjective (e.g. patient and/or doctor surveys) criteria. We are aware of a lot of stories about marked improvement of a variety of conditions, but we make no claims about the intended treatment. At some point, once adequate amounts of data are accumulated, it might be appropriate to submit the information to the FDA at which point an actual claim may be substantiated and recognized by the Agency. Still, these are your own cells and not medicines for sale. They are only being used in your own body. Most likely, no claim needs to be made; rather a statistical analysis of our findings would suffice to suggest whether treatments are truly and significantly effective. We also hope to submit our patients data to an approved International Registry (See ICMS Stem Cell Registry) further fostering large collections of data to help identify both positive and negative trends. RETURN TO TOP

Our adipose derived stem cell harvesting and isolation technique yields extremely high numbers of stem cells. In reviewing outcomes data, treatment cell numbers appear to correlate with treatment success. Our cells are actually in a type of soup called Stromal Vascular Fraction SVF which is stem cells bathed in a rich mixture of natural growth factors (Not the same as human growth factor hormone which is only one type of growth factor). Some types of orthopedic and urologic diseases appear to respond better to stem cells that are super enriched with growth factors created by administering Platelet Rich Plasma to the patient. Autologous Platelet Rich Plasma is derived from a patients own blood drawn at the time of deployment. At CSCTC we do not add any foreign substances or medications to the stem cells. RETURN TO TOP

Depending on the type of treatment required, stem cells can be injected through veins, arteries, into spinal fluid, subcutaneously, or directly into joints or organs. All of these are considered minimally invasive methods of introducing the stem cells. Stem cells injected intravenously are known to seek out and find (see photo) areas of tissue damage and migrate to that location thus potentially providing regenerative healing. Intravenously injected stem cells have been shown to have the capability of crossing the blood-brain barrier to enter the central nervous system and they can be identified in the patients body many months after deployment. Note yellow arrow showing the stem cells concentrated in the patients hand where he had a Dupytrens contracture (Dupuytrens contracture is a hand deformity that causes the tissue beneath the surface of the hand to thicken and contract). RETURN TO TOP

Different conditions are treated in different ways and there are different degrees of success. If the goal is regeneration of joint cartilage, one may not see expected results until several months after treatment. Some patients may not experience significant improvement and others may see dramatic regeneration of damaged tissue or resolution of disease. Many of the disorders and problems that the physicians at CSCTC are treating represent pioneering work and there is a lack of data. FDA regulations prevent CSCTC from making any claims about expectations for success, however, if you are chosen for treatment, it will be explained that we believe stem cell therapy may be beneficial or in some cases that we are unsure and treatment would be considered investigational. RETURN TO TOP

Stem cell therapy relies on the bodys own regenerative healing to occur. The regenerative process may take time, particularly with orthopedic patients, who may not see results for several months. In some diseases, more immediate responses are possible. RETURN TO TOP

No. Only certain medical problems are currently being treated at CSCTC. Check our list or fill out a candidate application form on the website. All patients need to be medically stable enough to have the treatment in our facility. There may be some exceptional conditions that may eventually be treated in hospitalized patients, but that remains for the future. Some patients may be declined due to the severity of their problem. Other patients may not have conditions appropriate to treat or may not be covered by our specialists or our protocols. A waiting list or outside referral (if we know of someone else treating such a problem) might be applicable in such cases. RETURN TO TOP

Yes. Patients with uncontrolled cancer are excluded. If you have an active infection anywhere in your body you must be treated first. Severely ill patients may require special consideration. Also, anyone with a bleeding disorder or who takes blood thinning medications requires special evaluation before consideration for stem cells. RETURN TO TOP

The specialist seeing you at CSCTC will make a determination based on your history and exam, studies, and current research findings. Any complex cases may be reviewed by our ethics advisory committee. Occasionally, we may seek opinions from thought leaders around the world. RETURN TO TOP

No. Participation in any of our protocols is not mandatory and there are no incentives, financial or otherwise, to induce patients to enroll in our studies. However, CSCTC is dedicated to clinical research for the development of stem cell science. CSCTC is taking an active role in cutting edge clinical research in the new field of regenerative medicine. Research studies will be explained and privacy will be maintained. Formal future research studies will be regulated by an Institutional Review Board which is an authorized agency that promotes validity, transparency and protection of human study enrollees. RETURN TO TOP

At this time, we are not treating autism, spinal cord injuries, and some advanced diseases. See list of problems currently being studied at CSCTC. RETURN TO TOP

Patients who are considered to be candidates based on information provided in the candidate application form will be invited for a consultation with one of our panel physicians. A non-refundable fee of $150 is charged for this consultation which includes office evaluation (but may also include physicians evaluation of X-Rays, records, or telephonic consultations). CSCTC will apply this $250 towards the cost of the stem cell treatment procedure should the patient be selected. Unfortunately, insurance generally will not cover the actual cost of stem cell treatment in most cases since stem cell therapy is still considered experimental. The cost varies depending on the disease state being treated and which type of stem cell deployment is required. RETURN TO TOP

Because of recent innovations in technology, CSCTC is able to provide outpatient stem cell treatment at a fraction of the cost of that seen in many overseas clinics. The fee covers fat cell harvesting, cell preparation, and stem cell deployment which may include the use of advanced interventional radiology and fluoroscopy techniques. Financing is available through a credit vendor. RETURN TO TOP

Stem cells can be cryopreserved in the form of liposuction fat for prolonged periods of time. Currently, this service is outsourced to an outside provider known to have excellent quality control. Many patients have been inquiring about banking cells while they are still young since stem cell numbers drop naturally with each decade of life and some advocate obtaining and saving cells to be used later in life as needed. (see chart). RETURN TO TOP

Most patients, especially those with orthopedic conditions, require only one deployment. Certain types of degenerative conditions, particularly auto-immune disease, may respond best to a series of stem cell deployments. The number and necessity of any additional treatments would be decided on a case by case basis. Financial consideration is given in these instances. RETURN TO TOP

A good resource is the International Cellular Medicine Society (ICMS). Stem Cells 101

RETURN TO TOP

Read more from the original source:
FAQs - chicagostemcellsinstitute.com

Read More...

Macquarie Stem Cells Treatment – Sydney, Melbourne, Perth …

Tuesday, July 3rd, 2018

Started in New South Wales, Macquarie Stem Cells will expand all across Australia. We boast a team of medical professionals who are passionate about medicine and biology. We can combine both of these expert fields to improve your quality of life. Having successfully treated over 1000 patients using biological medical procedures, you can rely on us to keep your safety and well-being in mind.

Our aim is to provide a range of biological treatments in Sydney that alleviates any pain and discomfort you may experience on a day-to-day basis. As one of the leading biological treatment clinics around, Macquarie Stem Cells can help patients suffering from early stages of arthritis or even chronic osteoarthritis. Osteoarthritis can be a very complex condition. It is not as black and white as repairing cartilage and expecting improvements in your pain levels. When patients suffer from osteoarthritis, the cartilage begins to thin and this leads to inflammation in your joints. As the inflammation continues your synovial fluid can become affected, as well as the surrounding structures of the joints such as the muscles, tendons, ligaments & blood vessels.

We have been working with many professionals and we understand the whole approach to treating and managing osteoarthritis. After you proceed with one of the range of treatments offered by us, you will need to rebuild lost strength and regain the flexibility of your joints once your arthritis pain improves.We will guide you through thisprocess.

Please learn more by clicking through to the osteoarthritis treatment page by Macquarie Stem Cells.

Nerve pain can occur for patients who suffer from osteoarthritis, it is actually quite common since your joints are full of nerves that become inflamed. Once inflamed the nerves may continue to generate pain signals by themselves and not be a sign of new damage in the joint. This is typically felt as pain at rest for example when you are in bed resting with no weight on the joint. Biological treatment options offered by Macquarie Stem Cells can repair the inflammation surrounding these nerve cells. In cases where the nerve cells have taken damage, this treatment can promote repairs and growth of new nerve cells. This allows thenerves to return to normal function and alleviate the neuropathic pain (nerve pain).

To understand more about nerve pain, please click through to this link.

As arthritis settles into your joints, the supporting structures become weaker, your muscles, tendons, ligaments and cartilage can go through the process of degeneration as well. It can be very common for you to suffer partial or complete tears from having degenerative osteoarthritis, not just sports or high impact sports injuries. We understand your body naturally looks to repair any form of damage, however in certain cases it may only be able to do so with scar tissue. Treatments by Macquarie Stem Cells may be able to repair that damage without creating scar tissue. For pre-existing tears where there may be existing scar tissue formation, one of the treatments by Macquarie Stem Cells can soften the scar tissue formation and allow for a better range of motion, whilst reducing the risk of a re-occurring tear adjacent to the existing tear.

To understand more about treatment that applies to tears, please click through to this link.

Its important to note we do not treat rheumatoid arthritis as a standalone issue. However, it is quite common for patients who suffer from osteoarthritis to also have rheumatoid arthritis as a comorbidity. In the past we have treated patients whom suffer from osteoarthritis as well as rheumatoid arthritis, and we have noticed patterns where the patients immune system is able to enter into a period of remission, also known as tolerogenesis.Once the immune system attack has settled, this treatmentwill target the inflamed arthritic joints and start repairs in these areas, thus providing improvements to your pain levels as well as function of the joint.At Macquarie Stem Cells, we have observed the CRP and RF levels of these patients blood test results and we have been able to confirm positive changes to inflammation and immune activity within your body.

Macquarie Stem Cells has provided the information above so consumers can understand the services we provide. We dont aim to encourage consumers to seek out such treatments prior to an assessment by a health professional to determine your suitability for treatment. We aim to provide you with an unbiased range of treatments that are available aside from biological therapy, this is discussedin supporting information>other-options page on our website.

See original here:
Macquarie Stem Cells Treatment - Sydney, Melbourne, Perth ...

Read More...

Where Do We Get Adult Stem Cells? | Boston Children’s Hospital

Tuesday, June 26th, 2018

There are several ways adult stem cells can be isolated, most of which are being actively explored by our researchers.

1) From the body itself:Scientists are discovering that many tissues and organs contain a small number of adult stem cells that help maintain them. Adult stem cells have been found in the brain, bone marrow, blood vessels, skeletal muscle, skin, teeth, heart, gut, liver, and other (although not all) organs and tissues. They are thought to live in a specific area of each tissue, where they may remain dormant for years, dividing and creating new cells only when they are activated by tissue injury, disease or anything else that makes the body need more cells.

Adult stem cells can be isolated from the body in different ways, depending on the tissue. Blood stem cells, for example, can be taken from a donors bone marrow, from blood in the umbilical cord when a baby is born, or from a persons circulating blood. Mesenchymal stem cells, which can make bone, cartilage, fat, fibrous connective tissue, and cells that support the formation of blood can also be isolated from bone marrow. Neural stem cells (which form the brains three major cell types) have been isolated from the brain and spinal cord. Research teams at Childrens, headed by leading scientists Stuart Orkin, MD and William Pu, MD, both affiliate members of the Stem Cell Program, recently isolated cardiac stem cells from the heart.

Isolating adult stem cells, however, is just the first step. The cells then need to be grown to large enough numbers to be useful for treatment purposes. The laboratory of Leonard Zon, MD, director of the Stem Cell Program, has developed a technique for boosting numbers of blood stem cells thats now in Phase I clinical testing.

2) From amniotic fluid:Amniotic fluid, which bathes the fetus in the womb, contains fetal cells including mesenchymal stem cells, which are able to make a variety of tissues. Many pregnant women elect to have amniotic fluid drawn to test for chromosome defects, the procedure known as amniocentesis. This fluid is normally discarded after testing, but Childrens Hospital Boston surgeon Dario Fauza, MD, a Principal Investigator at Childrens and an affiliate member of the Stem Cell Program, has been investigating the idea of isolating mesenchymal stem cells and using them to grow new tissues for babies who have birth defects detected while they are still in the womb, such as congenital diaphragmatic hernia. These tissues would match the baby genetically, so would not be rejected by the immune system, and could be implanted either in utero or after the baby is born.

3) From pluripotent stem cells:Because embryonic stem cells and induced pluripotent cells (iPS cells), which are functionally similar, are able to create all types of cells and tissues, scientists at Childrens and elsewhere hope to use them to produce many different kinds of adult stem cells. Laboratories around the world are testing different chemical and mechanical factors that might prod embryonic stem cells or iPS cells into forming a particular kind of adult stem cell. Adult stem cells made in this fashion would potentially match the patient genetically, eliminating both the problem of tissue rejection and the need for toxic therapies to suppress the immune system.

4) From other adult stem cells:A number of research groups have reported that certain kinds of adult stem cells can transform, or differentiate, into apparently unrelated cell types (such as brain stem cells that differentiate into blood cells or blood-forming cells that differentiate into cardiac muscle cells). This phenomenon, called transdifferentiation, has been reported in some animals. However, its still far from clear how versatile adult stem cells really are, whether transdifferentiation can occur in human cells, or whether it could be made to happen reliably in the lab.

More here:
Where Do We Get Adult Stem Cells? | Boston Children's Hospital

Read More...

Types of Stem Cells

Monday, June 18th, 2018

Stem cells are the foundation for every organ and tissue in your body. There are many different types of stem cells that come from different places in the body or are formed at different times in our lives. These include embryonic stem cells that exist only at the earliest stages of development and various types of tissue-specific (or adult) stem cells that appear during fetal development and remain in our bodies throughout life.

All stem cells can self-renew (make copies of themselves) and differentiate (develop into more specialized cells). Beyond these two critical abilities, though, stem cells vary widely in what they can and cannot do and in the circumstances under which they can and cannot do certain things. This is one of the reasons researchers use all types of stem cells in their investigations.

In this section:

Embryonic stem cells are obtained from the inner cell mass of the blastocyst, a mainly hollow ball of cells that, in the human, forms three to five days after an egg cell is fertilized by a sperm. A human blastocyst is about the size of the dot above this i.

In normal development, the cells inside the inner cell mass will give rise to the more specialized cells that give rise to the entire bodyall of our tissues and organs. However, when scientists extract the inner cell mass and grow these cells in special laboratory conditions, they retain the properties of embryonic stem cells.

Embryonic stem cells are pluripotent, meaning they can give rise to every cell type in the fully formed body, but not the placenta and umbilical cord. These cells are incredibly valuable because they provide a renewable resource for studying normal development and disease, and for testing drugs and other therapies. Human embryonic stem cells have been derived primarily from blastocysts created by in vitro fertilization (IVF) for assisted reproduction that were no longer needed.

Tissue-specific stem cells (also referred to as somatic or adult stem cells) are more specialized than embryonic stem cells. Typically, these stem cells can generate different cell types for the specific tissue or organ in which they live.

For example, blood-forming (or hematopoietic) stem cells in the bone marrow can give rise to red blood cells, white blood cells and platelets. However, blood-forming stem cells dont generate liver or lung or brain cells, and stem cells in other tissues and organs dont generate red or white blood cells or platelets.

Some tissues and organs within your body contain small caches of tissue-specific stem cells whose job it is to replace cells from that tissue that are lost in normal day-to-day living or in injury, such as those in your skin, blood, and the lining of your gut.

Tissue-specific stem cells can be difficult to find in the human body, and they dont seem to self-renew in culture as easily as embryonic stem cells do. However, study of these cells has increased our general knowledge about normal development, what changes in aging, and what happens with injury and disease.

You may hear the term mesenchymal stem cell or MSC to refer to cells isolated from stroma, the connective tissue that surrounds other tissues and organs. Cells by this name are more accurately called stromal cells by many scientists. The first MSCs were discovered in the bone marrow and were shown to be capable of making bone, cartilage and fat cells. Since then, they have been grown from other tissues, such as fat and cord blood. Various MSCs are thought to have stem cell, and even immunomodulatory, properties and are being tested as treatments for a great many disorders, but there is little evidence to date that they are beneficial. Scientists do not fully understand whether these cells are actually stem cells or what types of cells they are capable of generating. They do agree that not all MSCs are the same, and that their characteristics depend on where in the body they come from and how they are isolated and grown.

Induced pluripotent stem (iPS) cells are cells that have been engineered in the lab by converting tissue-specific cells, such as skin cells, into cells that behave like embryonic stem cells. IPS cells are critical tools to help scientists learn more about normal development and disease onset and progression, and they are also useful for developing and testing new drugs and therapies.

While iPS cells share many of the same characteristics of embryonic stem cells, including the ability to give rise to all the cell types in the body, they arent exactly the same. Scientists are exploring what these differences are and what they mean. For one thing, the first iPS cells were produced by using viruses to insert extra copies of genes into tissue-specific cells. Researchers are experimenting with many alternative ways to create iPS cells so that they can ultimately be used as a source of cells or tissues for medical treatments.

Here is the original post:
Types of Stem Cells

Read More...

The Healing Power of Stem Cells – Gulf Coast Stem Cell Center

Monday, June 18th, 2018

What Are Stem Cells?

They are cells that maintain a state of open-mindedness thoughout the life of the individual from fetal life senescence, to enable them to participate in repair, replacement and regeneration of the tissue they happen to be in, in addition to affecting tissues in other parts of the body by migration and by producing growth factors and cytokines. They are regarded as undifferentiated and are found in different tissues of the body, throughout life. The early fetal stem cells are pluripotent with a vast potential; while non-embryonic adult mesenchymal stem cells are multipotent. This means they are less versatile than those of the fetus, but non-the-less can turn into several different kinds of cells within any tissue type.

Undifferentiated, non-embryonic adult mesenchymal stem cells are found everywhere in the body, in all tissues, but especially infat tissue, bone marrow and blood- in that order. The stem cells found in blood and bone marrow are hematopoietic stem cells because, under normal circumstances, they are destined to form red blood cells (RBCs), white blood cells (WBCs), and platelets; and those stem cells that are found in fat (adipose) tissue, among fat cells, are called adipose stem cells.

GCSC&RMC uses adipose stem cells because they are approximately 2,500 times as abundant as hematopoietic stem cells, per a given mass of tissue. Furthermore, no organs are hurt or disturbed in the process of harvesting adipose tissue, which only requires local anesthesia.

Stem cells have the potential to repair human tissue and certain internal organs by forming new cells and producing substances to regenerate cartilage, bone, ligaments, tendons, nerve, fat, muscle, and blood vessels. Stem cells are being investigated and researched as an innovative therapy option for more than 70 major diseases and conditions that affect millions of people worldwide. These include diabetes mellitus, Parkinsons, Alzheimers, multiple sclerosis, ALS (Lou Gehrigs Disease), spinal cord injuries, various eye conditions, and HIV/AIDS.

Gulf Coast Stem Cell & RMC has a specific SVF harvest and injection protocol. First, a couple of ounces of fat are harvested from the love handle areas of the back, under surgically sterile conditions and local anesthesia, by minimally-invasive mini-liposuction. This procedure lasts a mere 20 minutes; and this small amount of fat yields millions of stem cells (at least half a million per ml of fat). In fact, it is possible to obtain well over 50 million cells from a single harvest.

After the cells are harvested, the stem cells are separated from the fat cells and are ready for deployment within 90 minutes or less from harvest. They can then be injected into a vein to reach wider targets throughout the entire body, and directly into target areas likethe spinal space, joints and specific tissues.

Stem cell therapy is a minimally invasive, low-risk option that may help patients who suffer from the daily discomforts of orthopedic conditions such as osteoarthritis, rheumatoid arthritis, sports-related injuries, spine disease, and general problems with shoulders, elbows, hands/wrists, hips, knees, or ankles. Research indicates that most orthopedic issues are fundamentally caused by inflammatory, autoimmune, or degenerative processes. Stem cells have the potential to reduce discomfort by decreasing inflammation, modulating autoimmunity, and repairing or replacing bone, tendons, and ligaments that have deteriorated due to injury or a degenerative joint disease. This investigational therapy could benefit the near 350 million people worldwide who are afflicted by arthritis, about 50 million of whom live in the United States, including over a quarter million children.

Over one billion people worldwide suffer from neurological diseases. In universities and medical research centers around the world, stem cells are being explored for their regenerative potential. We at GCSC&RMC have research protocols for many neurological conditions, including multiple sclerosis, peripheral neuropathy, Parkinsons disease, muscular dystrophy, spinal cord injuries, and more. Beyond their ability to become different kinds of cells, stem cells are able to cross the blood-brain barrier, aided by hygroscopic molecules like Mannitol. This potential for transmigration, or crossing the barrier, means that stem cells can reach broader areas of brain tissue that have been affected by injuries or degenerative diseases. This has been shown to be the case in a rat model. Subtle differences in brain function can affect mood, balance, thought processes, and other areas that have significant impacts on a patients overall quality of life.

Cardiac disease is the most common killer in the United States. Every day, 2,200 people die from cardiovascular diseasesthats 1 in every 3 deaths. Stem cell therapy has the potential to help with cardiac and pulmonary conditions such as a heart attacks, myocardial infarctions, congestive heart failure, ischemic heart disease, COPD, and pulmonary fibrosis. The purpose of our researchprotocols is to target inflammation, reducing it; regenerating cells lost in cardiac ischemia, replacing damaged or diseased heart-muscle cells, and promoting the development of new coronary artery branches. The latter can be effected throughthe production of substances like the angiogenesis factor. When an intravenous dose of SVF or stem cells is given, the infused molecules and cells pass through the heart to the vastcapillary network of the lungs, where a significant proportion of the cells stay. There they participate in various repair processes, which, according to published results and our own, often improve gaseous exchange and may result clinical improvement.

Autoimmune diseases happen when the bodys immune system turns against itself and starts mistakenly attacking healthy cells. Many disease processes are considered autoimmune, and many of those conditions have shown response to research protocols using stem cell therapy, including lupus, hepatitis, Crohns disease, rheumatoid arthritis, scleroderma, myasthenia neuropathy, CIDP, and ulcerative colitis. Deploying stem cells in these diseases may reduce inflammation of affected organs and tissues, regenerate damaged cells and tissue, and help modulate the immune response by possibly block compliment reactions.

Intersticial Cystitis (IC) and Lichen Sclerosis are among the most distressing, chronic conditions that can afflict women and men, although they are much commoner in women. There are anestimated 108 million peoplesuffering from lichen sclerosis around the world. When women are afflicted, the labia may fuse together, adding to the distress. Our research findings, as well as those of others in our group (CSN), indicate that SVF deployment mayhelp both women and men who suffer with those conditions. Furthermore, according to our research findings, patients who had local injections of filtered fat (nanofat) into the labia and surrounding skin, in addition to the SVF appeared to have better outcomes. Clearly, in those who benefit the stem cells as well as growth factors and cytokines re-direct the atrophic, inflammatory process towards healing and resolution.

Erectile Dysfunction may be a very distressing entity to those afflicted and the condition afflictsapproximately 50% of men over 40, to some degree. Naturally the causes may be multifactorial, but research results indicate that combining pressure wave therapy with SVF may result in significant improvement in over 60-70% of men. In those who benefit, stem cells may have the potential to stimulate the growth of the smooth muscle lining of vessels and improve endothelial function, repair and rejuvenate damaged and effete cells and boost blood flow to erectile tissues.

See the original post:
The Healing Power of Stem Cells - Gulf Coast Stem Cell Center

Read More...

About Stem Cells

Thursday, September 28th, 2017

Stem cells are found in the early embryo, the foetus, amniotic fluid, the placenta and umbilical cord blood. After birth and for the rest of life, stem cells continue to reside in many sites of the body, including skin, hair follicles, bone marrow and blood, brain and spinal cord, the lining of the nose, gut, lung, joint fluid, muscle, fat, and menstrual blood, to name a few.In the growing body, stem cells are responsible for generating new tissues, and once growth is complete, stem cells are responsible for repair and regeneration of damaged and ageing tissues. The question that intrigues medical researchers is whether you can harness the regenerative potential of stem cells and be able to grow new cells for treatments to replace diseased or damaged tissue in the body.

To find out more about how stem cells are used in research and in the development of new treatments download a copy of The Australian Stem Cell Handbook or visit Stem Cell Clinical Trials to find out more about the latest clinical research using stem cells.

Stem cells can be divided into two broad groups:tissue specific stem cells(also known as adult stem cells) andpluripotent stem cells(including embryonic stem cells and iPS cells).

To learn more about the different types of stem cells visit our frequently asked questions page.

Read the original post:
About Stem Cells

Read More...

New therapy could protect diabetic bones – Science Magazine

Thursday, September 7th, 2017

A new therapy changes the balance of osteoblasts (pictured here) and fat cells in the bone marrow, leading to stronger bones.

Science Picture Co/Science Source

By Emma YasinskiSep. 5, 2017 , 2:59 PM

A drug that can reverse diabetes and obesity in mice may have an unexpected benefit: strengthening bones. Experiments with a compound called TNP (2,4,6-trinitrophenol, which is also known as picric acid), which researchers often use to study obesity and diabetes, show that in mice the therapy can promote the formation of new bone. Thats in contrast to many diabetes drugs currently in wide use that leave patients bones weaker. If TNP has similar effects in humans, it may even be able to stimulate bone growth after fractures or prevent bone loss due to aging or disuse.

As more and more patients successfully manage diabetes with drugs that increase their insulin sensitivity, doctors and researchers have observed a serious problem: Thedrugs seem to decrease the activity of cells that produce bone, leaving patients prone to fractures and osteoporosis.

There are millions and millions of people that have osteoporosis [with or without diabetes], and it's not something we can cure, says Sean Morrison, a stem cell researcher at University of Texas Southwestern in Dallas. We need new agents that promote bone formation.

Morrison and his colleagues have shown that a high-fat diet causes mice to develop bones that contain more fat and less bone. The diet increased the levels of leptina hormone produced by fat cells that usually signals satiety in the brainin the bone marrow, which promoted the development of fat cells instead of bone cells. That suggests that nutrition has a direct effect on the balance of bone and fat in the bone marrow.

After reading Morrisons work, Siddaraju Boregowda, a stem cell researcher at the Scripps Research Institute in Jupiter, Florida, was reminded of genetically altered mice that dont gain body fat or develop diabetes, even when fed high-fat diets. He and his boss, stem cell researcher Donald Phinney, wondered whetherthose mice were also protected from the fattening of the bone marrow that accompanies a high-fat diet.

They contacted Anutosh Chakraborty, a molecular biologist who was studying such mice down the hall at Scripps at the time. The animals lack the gene for an enzyme called inositol hexakisphosphate kinase 1 (IP6K1), which is known to play a role in fat accumulation and insulin sensitivity. The scientists suspected that the lost enzyme might affect the animals' mesenchymal stem cells (MSCs)stem cells found in the bone marrow that are capable of developing into both thebone cells and fat cells that make up our skeletons. If too many fat cells develop, they take the place of bone cells, weakening the bone.

The researchers fed genetically altered and normal mice a high-fat diet for 8weeks. Not only did the genetically altered mice develop fewer fat cells than their normal counterparts, but their production of bone cells was higher than that of the normal mice, the team reported last month in Stem Cells.

The scientists then set out to see whetherthey could use a drug to achieve the same effect in normal mice. For 8weeks, they fed normal mice a high-fat diet and gave them daily injections of either TNP, a well-known IP6K1 inhibitor, or a placebo. When they analyzed the animals bones and marrow, they found that mice that had received TNP had significantly more bone cells, fewer fat cells, and greater overall bone area. The IP6K1 inhibitor apparently protected the mice from the detrimental effects of the high-fat diet.

The study provided thesurprising result that one new therapy currently being explored to lower insulin resistance promotes, rather than decreases, the formation of bone in mice, says DarwinProckop,a stem cell researcher at Texas A&M College of Medicine in Temple, who was not involved in the work.

The researchers still need to figure out how to deliver TNPs effects only to MSCs, instead of the entire body, given that it sometimes blocks other enzymes along with IP6K1. Inhibition of IP6K1 is a promising target for patients with both diabetes and obesity, Boregowda says. He says he and his colleagues are now enthusiastic about testing their findings in a wide range of bone-related diseases and disorders. It might even help heal broken bones, he speculates.

Phinney, on the other hand, is aiming even higher. He wonders whetherthe therapy could also be useful for space travel, because bones are especially vulnerable to deterioration in zero gravity. Its a whole new field of science and drug discovery.

More here:
New therapy could protect diabetic bones - Science Magazine

Read More...

‘Unscrupulous’ stem cell clinics targeted in FDA crackdown – Genetic Literacy Project

Thursday, September 7th, 2017

Denise Grady & Sheila Kaplan | September 7, 2017 | New York Times

TheFood and Drug Administrationannounced a crackdown on dangerousstem cellclinicswhile at the same time pledging to ease the path to approval for companies and doctors with legitimate treatments in the growing field.

The agency reported actions against two large stem cell clinics and a biotech company, saying that it was critical to shut down unscrupulous actors

Federal marshals seized 500 doses of live Vaccinia virus vaccine forsmallpoxbelonging to StemImmune Inc., a San Diego firm that develops stem cell-based immunotherapies forcancer. The raid came after the F.D.A. learned that the vaccine was being used to create an unapproved stem cell product, a combination of excess amounts of vaccine and stem cells derived from body fat, which was then administered to cancer patients with potentially compromised immune systems.

StemImmune obtained at least some of the vaccine from the Centers for Disease Control and Prevention, according to Thomas Skinner, a C.D.C. spokesman.

Those enterprises put the entire field at risk, Dr. Gottlieb said. Products that are reliably and carefully developed will be harder to advance if bad actors are able to make hollow claims and market unsafe science.

The GLP aggregated and excerpted this blog/article to reflect the diversity of news, opinion, and analysis. Read full, original post:F.D.A. Cracks Down on Unscrupulous Stem Cell Clinics

Related Stories

Read more:
'Unscrupulous' stem cell clinics targeted in FDA crackdown - Genetic Literacy Project

Read More...

Pathway to Solve "Aging Population Syndrome", New Hope Has Been Delivered at TEDx Event – Markets Insider

Thursday, September 7th, 2017

CHENGDU, China, Sept. 7, 2017 /PRNewswire/ -- Aging and related diseases are problems we have to face. Recently, Dr. Y. James Kang, CEO/CSO of Revotek and a pathfinder in Regenerative Medicine, delivered a talk entitled "Transforming Disease-based Medication to Personalized Healthcare"at theTEDx event in Chengdu, China. He unveiled techniques that would improve the quality of life for 2 billion people worldwide.

Aging Population Syndrome and Disease-based Medication

Although it is not recognized, people who are over 60 years oldhave a lower quality oflife. This sounds rare but is really true. "Let me tell you what I heard from them, 'my doctor told me I need seven stents in my heart, but now I only put a couple and wait for a while to put them all,' and then they will talk about how to save money for future disease treatment," said Dr. Kang, "I call this aging population syndrome."

The syndrome results from the disease-based medication, or standard end-stage medication. Dr. Kang further explained, "A man, whose coronary arteries are 30% blocked with atherosclerosis plaque, might only be suggested by his doctor use bypass or vascular stents to reopen the vessel conduit when the plague further grows to the point leading to life threatening problem. Until then, he could take some statin drugs to slow down, but not to stop the plaque growth. This is disease-based medication." It is widely applied in today's medical practice but did not match well with patients' personalized problems.

Personalized Healthcare

Instead of spending rest of our life in drug-keeping, living a quality-maintained healthy life is our ultimate goal. The personalized healthcare is totally different from disease-based medication. It advocates solving personalized problems at an early stage to prevent the disease from deteriorating. Hence, transforming disease-based medication to personalized healthcare is highly demanded and closely related to our lives.

Regenerative medicine, the core of personalized healthcare, is capable of recovering the function of failing organs through integrated approaches including stem cells whichnaturally occur/stored in the human body and arecapable of repairing injured organs. When a body is injured, the injured tissue sends out signals, then the repair materials (stem cells) would respond and be recruited to the injury site for repair. Stem cells, the essence of personalized medicine, however,have not beenwell recognized until now.

DEVELOR

Stem cells are well known to almost everyone. However, their approved clinical applications are rare. Rather than inducing stem cells to a desired cell type before its induction into a patient,Dr. Kang's team created a brand-new approach of utilizing the stem cells, called "Destination-Engaged Vector Evolving Lineage Organ Regeneration (DEVELOR)". In brief, the core concept is to firstly maintain the stemness of stem cells during the culturing and proliferation procedures, and deliver anadequate number of cells to the injury site, which would orchestrate the behavior of stem cells by secreting regenerative signals.

How to use DEVELOR to repair the damaged organs? Dr. Kang's team isolated mesenchymal stem cells from 5 g fat tissue of rhesus monkeys, cultured and prepared to "Biosynsphere", a new type of bio-ink. Then, the bio-ink was stacked through the 3D bioprinter and covered with prosthetic vascular graft to form hybrid vascular graft, which was used to replace the susceptible sites of atherosclerosis, the abdominal aorta of donor monkey. One month post the surgery, the graft was integrated with the monkey's own abdominal aorta, and the structure and function of whichwere identical. Apart from this application, DEVELORhas also beenapplied to damaged organs with scar tissue, presented by Dr. Kang in his TEDx talk.

Dr. Kang's team simply develop a technique to rejuvenate the self-repair process which is orchestrated by the injured site itself. With this approach, disease-based medication could be transformed to personalized healthcare through regenerative medicine. Dr. Kang's team offered novel solutions to the present and future of aging and disease problems.

For more info, contact: rel="nofollow">contact@revotekco.cn

Related Links: https://www.youtube.com/watch?v=26ioUypNIKshttp://v.youku.com/v_show/id_XMjk3NDAxMTcxMg==.html?spm=a2h0k.8191407.0.0&from=s1.8-1-1.2

View original content with multimedia:http://www.prnewswire.com/news-releases/pathway-to-solve-aging-population-syndrome-new-hope-has-been-delivered-at-tedx-event-300515420.html

SOURCE Sichuan Revotek Co.,Ltd

Read the original post:
Pathway to Solve "Aging Population Syndrome", New Hope Has Been Delivered at TEDx Event - Markets Insider

Read More...

Stem Cell Therapy Expands Beyond Chronic Pain – WBAY

Thursday, September 7th, 2017

APPLETON, Wisc. (WBAY) As stem cell therapy grows in popularity in Northeast Wisconsin, treatment is expanding beyond chronic pain in the knees, hips, back and shoulders.

A Green Bay man battling lung disease says stem cell therapy saved his life.

Ken Schiller has lived on oxygen for the past 12 years while suffering from COPD, emphysema and Agent Orange.

"Tried to get a lung transplant and they told me well, can't do it, you're too old," says Schiller.

Five years ago, doctors gave Schiller four years to live.

But now he's breathing a sigh of relief.

"I couldn't walk 15-feet nine months ago without stopping to rest for 3-5 minutes, now I can walk through the grocery store, can walk out of this building to the car, I don't have a big problem," says Schiller.

Schiller turned to stem cell therapy at Optimal Stem Cell & Wellness Institute in Appleton.

"Now we've really seen incredible results with lung disease, COPD, pulmonary fibrosis, emphysema, these patients have nowhere else to go," says Dr. Michael Johnson who runs the clinic.

Dr. Johnson says patients like Schiller begin with a platelet rich plasma treatment, followed by stem cell treatment using stem cells from their own body fat.

"We draw off the fat, adipose, spin it down, draw off the stem cells and IV it back into them, after one round of stem cell therapy they're already doing better, it usually takes two or three for severe cases," says Dr. Johnson.

Schiller just underwent his third treatment and says he has a new lease on life.

"Two weeks ago we went to Laughlin, Nevada for four days, took a plane and came back, I thought those days were over, but they're not," says Schiller.

While stem cell therapy is still not FDA approved, or covered by insurance, Dr. Johnson says his office is fielding around 100 calls a week.

"This is the future," says Dr. Johnson.

Read more:
Stem Cell Therapy Expands Beyond Chronic Pain - WBAY

Read More...

Page 10«..9101112..20..»


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick