header logo image


Page 10«..9101112..2030..»

Archive for the ‘Gene therapy’ Category

Taysha Gene Therapies Announces New Data on Multiple Preclinical Programs and Upcoming R&D Day – BioSpace

Saturday, April 17th, 2021

DALLAS--(BUSINESS WIRE)-- Taysha Gene Therapies, Inc. (Nasdaq: TSHA), a patient-centric, pivotal-stage gene therapy company focused on developing and commercializing AAV-based gene therapies for the treatment of monogenic diseases of the central nervous system (CNS) in both rare and large patient populations, today announced new data for multiple preclinical programs and a planned R&D Day, which will be held in June 2021.

Collectively, these new preclinical data highlight Tayshas next wave of novel gene therapies that have the potential to impact meaningful patient populations. The promising data underscore our ability to rapidly and reproducibly investigate disease biology, design innovative gene therapies and efficiently advance the development of these drug candidates, said RA Session II, President, Founder and Chief Executive Officer of Taysha. Among the compelling new data, for the first time, we have shown that TSHA-113, an AAV9 gene therapy that utilizes AAV-mediated gene silencing, reduced tau expression in mouse models of human tauopathies. The potential implications of these data are far reaching, and we intend to further evaluate TSHA-113 in additional preclinical studies. The totality of the preclinical data presented today support the fundamental elements of our scientific approach of coupling validated technology with novel targeted payload design while utilizing a proven HEK293 suspension manufacturing process. We believe our deep pipeline and innovative scientific engine hold tremendous potential, and we are poised to continue delivering meaningful value to patients with monogenic CNS diseases.

Todays data demonstrate the breadth, depth and velocity of our development engine as a sustainable pivotal-stage gene therapy company. There are no approved disease modifying therapies for any of the programs in our portfolio and we are encouraged by the results of our gene therapy approach of vectorized RNA and gene replacement therapies across our portfolio, said Suyash Prasad, MBBS, M.SC., MRCP, MRCPCH, FFPM, Chief Medical Officer and Head of Research and Development of Taysha. We are very excited to further develop TSHA-113 in tauopathies, including Alzheimers disease, MAPT-associated frontotemporal dementia and progressive supranuclear palsy, based on the significant reduction in tau expression demonstrated in transgenic mouse models of human tauopathies. In addition, to date, we have advanced five programs into IND/CTA-enabling studies, including TSHA-105 in SLC13A5 deficiency, TSHA-111-LAFORIN in Lafora disease, TSHA-111-MALIN in Lafora disease, TSHA-112 in APBD and TSHA-119 in GM2 AB variant. We intend to file an IND/CTA for one of these five named programs by the end of 2021. By mid-year, we intend to select a development candidate for Angelman syndrome and obtain interim expression and safety data from confirmatory non-human primate studies by year-end. We remain on track to report Phase 1/2 biomarker data for TSHA-101 in GM2 gangliosidosis in the second half of this year and to provide a clinical and regulatory update for TSHA-120 in giant axonal neuropathy by year-end. Finally, in the second half of the year, we continue to expect dosing of the first patient with CLN1 disease in a Phase 1/2 trial for TSHA-118 under an already open IND, filing an IND/CTA for TSHA-102 in Rett syndrome and TSHA-104 in SURF1-associated Leigh syndrome, and filing an IND for TSHA-101 in GM2 gangliosidosis in the U.S. These anticipated clinical and regulatory milestones are expected to be followed by the initiation of Phase 1/2 clinical trials for each of these indications. We look forward to providing additional updates at our R&D Day in June.

TSHA-113 for Tauopathies

Taysha is developing tau-specific microRNA (miRNA) shuttles designed to target tau mRNA for all six isoforms found in the human brain and/or mouse brain. TSHA-113 is an AAV9 capsid that packages these miRNA shuttles and is delivered in the CSF for the treatment of tauopathies.

TSHA-105 for SLC13A5 deficiency

TSHA-105 is a recombinant self-complementary AAV9 vector that expresses the human SLC13A5 protein under the control of a ubiquitous promoter. The drug candidate is being developed for the treatment of SLC13A5 deficiency.

TSHA-106 for Angelman syndrome

TSHA-106 is an intrathecally delivered AAV9 viral vector designed for shRNA-mediated knockdown of UBE3A-ATS, the antisense transcript governing the expression of UBE3A through the paternal allele.

TSHA-112 for Adult Polyglucosan Body Disease (APBD)

TSHA-112 is an intrathecally delivered AAV9 viral vector designed for miRNA-mediated knockdown of the GYS1 gene to treat APBD.

TSHA-111-LAFORIN for EPM2A and TSHA-111-MALIN for EPM2B for Lafora disease

TSHA-111-LAFORIN and TSHA-111-MALIN are intrathecally delivered AAV9 viral vectors designed for miRNA-mediated knockdown of the GYS1 gene to treat Lafora disease.

TSHA-119 for GM2 AB variant

TSHA-119 is a self-complementary AAV9 vector designed to deliver a functional copy of the GM2A gene to treat GM2 AB variant.

About Taysha Gene Therapies

Taysha Gene Therapies (Nasdaq: TSHA) is on a mission to eradicate monogenic CNS disease. With a singular focus on developing curative medicines, we aim to rapidly translate our treatments from bench to bedside. We have combined our teams proven experience in gene therapy drug development and commercialization with the world-class UT Southwestern Gene Therapy Program to build an extensive, AAV gene therapy pipeline focused on both rare and large-market indications. Together, we leverage our fully integrated platforman engine for potential new cureswith a goal of dramatically improving patients lives. More information is available at http://www.tayshagtx.com.

Forward-Looking Statements

This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Words such as anticipates, believes, expects, intends, projects, and future or similar expressions are intended to identify forward-looking statements. Forward-looking statements include statements concerning the potential of our product candidates, including our preclinical product candidates, to positively impact quality of life and alter the course of disease in the patients we seek to treat, our research, development and regulatory plans for our product candidates, the potential for these product candidates to receive regulatory approval from the FDA or equivalent foreign regulatory agencies, and whether, if approved, these product candidates will be successfully distributed and marketed, and the potential market opportunity for these product candidates. Forward-looking statements are based on managements current expectations and are subject to various risks and uncertainties that could cause actual results to differ materially and adversely from those expressed or implied by such forward-looking statements. Accordingly, these forward-looking statements do not constitute guarantees of future performance, and you are cautioned not to place undue reliance on these forward-looking statements. Risks regarding our business are described in detail in our Securities and Exchange Commission (SEC) filings, including in our Annual Report on Form 10-K for the full-year ended December 31, 2020, which is available on the SECs website at http://www.sec.gov. Additional information will be made available in other filings that we make from time to time with the SEC. Such risks may be amplified by the impacts of the COVID-19 pandemic. These forward-looking statements speak only as of the date hereof, and we disclaim any obligation to update these statements except as may be required by law.

View source version on businesswire.com: https://www.businesswire.com/news/home/20210414005278/en/

Follow this link:
Taysha Gene Therapies Announces New Data on Multiple Preclinical Programs and Upcoming R&D Day - BioSpace

Read More...

From gene therapies to medical treatments, cutting-edge research finds a home in NC – WRAL.com

Saturday, April 17th, 2021

By Abbey Slattery, WRAL Digital Solutions

This article was written for our sponsor, the North Carolina Biotechnology Center.

For decades, North Carolina has been known as a nerve center for the life sciences industry. In fact, after the creation of the Biotech Center in the 1980s, North Carolina became the first state in the country to have a state-supported entity dedicated to growing the industry.

N.C. Biotech runs a number of programs to support technology and company development, to recruit companies and to connect North Carolina residents to high-paying jobs.

In the years since then, numerous life sciences companies have established a base in North Carolina, including major names like Biogen, BASF, LabCorp and Merck, among others. By committing to the industry early and cultivating a strong university system, the state established itself as a hub and prepared a workforce that rivals that of anywhere else in the country. Now, it's the site of global scientific breakthroughs and game-changing medical advancements.

"North Carolina has really done a good job with creating a flow from the workforce to the industry, and we've continued to grow and expand because of that. We now have a lot of research and development tools, and we have a tremendous amount of manufacturing here," said Laura Gunter, executive vice president at NCBIO. "All of the amenities of North Carolina and climate and education attract people, but then we've done a good job of educating folks and giving North Carolinians an opportunity to work and thrive here."

With a highly trained workforce of over 67,000, 775 diverse bioscience companies and nearly 2,500 companies, the state has created a thriving ecosystem for the industry. In the Triangle region alone, agricultural and biopharma manufacturing companies are developing exciting new advancements with potential for global impacts.

"A company called Pairwise in Durham is focused on using the gene-editing technology called CRISPR, but with plants. They're working on developing more nutrients or better growing capabilities with plants using that CRISPR technology," said Gunter. "They've developed a new variety of leafy green called brassica that's related to Brussels sprouts, cauliflower and kale. It's nutrient-dense and naturally resistant to pests, but apparently, it has a very pungent flavor. What they've done is work on the flavor, while keeping the nutrients and resistance."

"Another major company is Novozymes, and they specialize in industrial enzymes and microorganisms. If you've ever toured any of these facilities where they're doing fermentation, like a beer brewing facility, Novozymes does that on a massive scale with industrial enzymes," continued Gunter. "Those enzymes can be used in everything from pharmaceuticals to food to detergent. They're also working on some things on the agriculture side to improve crop yields through microbes."

Biogen founded in 1978 and one of the world's first global biotechnology companies is another major player that finds a home in Durham. While Pairwise and Novozymes are more focused on the agricultural side of biotech, Biogen is making advancements in pharmaceutical manufacturing and medical research programs. Its active research includes treatments for conditions like multiple sclerosis, spinal muscular atrophy and other serious neurological conditions.

The company announced a $200 million expansion in March to produce gene therapies and other treatments in their project pipeline. It joins Novartis Gene Therapies, which is producing its Zolgensma therapy for spinal muscular atrophy in Durham, alongside Adverum, Audentes, Beam Therapeutics, bluebird bio, Cellectis, Pfizer, Taysha Gene Therapies and more.

The benefit of cell and gene therapies is the treatments are potentially curative. Early applications are for diseases caused by single-gene mutations, and those that are life-threatening. Thanks to these companies, North Carolina will be the place these treatments are produced. The treatments would likely have a global impact on improving the lives of those who suffer.

One specific example is spinal muscular atrophy, which is the loss of nerve cells and the weakening of muscles near the spine. This degenerative disease has previously been a fatal diagnosis for infants.

"The fascinating thing about spinal muscular atrophy treatments, in the case of Biogen and Novartis, they're both game-changing and potentially curative treatments versus just trying to alleviate a symptom," said Gunter. "With the gene replacement therapy that Novartis is using, if it works, then that child could potentially no longer have the disease. If it ends up being a long-term fix, it's pretty miraculous and it's made right here."

The list of companies that develop products and treatments in North Carolina goes on from endoscopy devices at Cook Medical to in vitro products at bioMerieux to injectable drugs at Hospira. Thanks to forward-thinking from the state and organizations like N.C. Biotech, North Carolina is well-equipped to continue being the site of life sciences products and advancements.

"North Carolina has paid attention to reinforcing the entire pipeline starting with idea and proof of concept by a university researcher. Small companies are created from the research, and we help them navigate a bumpy road to success. Then, we work with companies all around the world looking for the right place to manufacture their products," said Doug Edgeton, president and CEO of N.C. Biotech.

"We continue to invest in this innovation infrastructure, and train the talent to do these important jobs. We think it's why North Carolina is a global leader in this field."

This article was written for our sponsor, the North Carolina Biotechnology Center.

Original post:
From gene therapies to medical treatments, cutting-edge research finds a home in NC - WRAL.com

Read More...

University of Cambridge research suggests gene therapies offer hope in treating glaucoma and dementia – Cambridge Independent

Saturday, April 17th, 2021

Promising research at the University of Cambridge suggests gene therapies could help repair some of the damage caused in chronic neurodegenerative conditions such as glaucoma and dementia, writes editor Paul Brackley.

Their studies in animals offer hope that such therapies could be effective in polygenic conditions, which are complex and do not have a single genetic cause.

Gene therapies involve replacing a missing or defective gene with a healthy version.

They have become increasingly common, but typically for rare and monogenic conditions those caused by a single defective gene, such as Lebers congenital amaurosis, spinal muscular atrophy and Lebers hereditary optic neuropathy.

There have been limited applications of such therapies to polygenic conditions, which include the majority of neurodegenerative conditions.

In their new research, Cambridge scientists delivered two candidate molecules simultaneously to nerve cells using a single virus to achieve a strong effect on axonal growth.

Dr Tasneem Khatib, from the John van Geest Centre for Brain Repair at the University of Cambridge, the studys first author, explained: The axons of nerve cells function a bit like a railway system, where the cargo is essential components required for the cells to survive and function.

In neurodegenerative diseases, this railway system can get damaged or blocked. We reckoned that replacing two molecules that we know work effectively together would help to repair this transport network more effectively than delivering either one alone, and that is exactly what we found.

This combined approach also leads to a much more sustained therapeutic effect, which is very important for a treatment aimed at a chronic degenerative disease.

Rather than using the standard gene therapy approach of replacing or repairing damaged genes, we used the technique to supplement these molecules in the brain.

Axons are long fibres that transmit electrical signals, allowing nerve cells to communicate with one another and with muscles.

Axonal transport is a cellular process that moves key molecules and cellular building blocks such as mitochondria, lipids and proteins to and from the body of a nerve cell.

It has been suggested that stimulating this process by enhancing intrinsic neuronal processes in the diseased central nervous system could be a way of repairing damaged nerve cells.

The Cambridge team explored this idea using two candidate molecules for improving axonal function brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB).

They tested the idea in two models of neurodegenerative disease known to be associated with reduced axonal transport glaucoma and tauopathy, a degenerative disease associated with dementia.

Glaucoma involves damage to the optic nerve and is typically associated with abnormally high pressure in the eye.

Using rats, researchers deployed a tracer dye to show axonal transport between the eye and brain was impaired in glaucoma, while a reduction in electrical activity in the retina in response to light suggested vision was also impaired.

Dr Khatib and colleagues then used viral vectors which are gene therapy delivery systems to deliver the two molecules to the retina of rats. The movement of the dye showed this restored axonal transport between the retina and the brain and the retinas also showed an improved electrical response to light, which is a prerequisite for visual restoration.

Next they used transgenic mice bred to model tauopathy, which is the build-up of tangles of tau protein in the brain.

Tauopathy is seen in neurodegenerative diseases, including Alzheimers disease and frontotemporal dementia.

Injecting the dye again enabled the team to show that axonal transport was impaired between the eye and the brain and that it was restored using the viral vectors.

They even found preliminary evidence of possible improvement in the mices short-term memory using an object recognition task.

Before the treatment, a mouse was placed at the start of a Y-shaped maze and left to explore two identical objects at the end of the two arms.

Shortly after, the mouse was once again placed in the maze, but this time one arm contained a new object, while the other contained a copy of the repeated object.

The researchers measured the amount of the time the mouse spent exploring each object to see whether it had remembered the object from the previous task.

After the viral vector had been injected into the mouses brain, the test was repeated and suggested a small improvement in short-term memory. The result here was not deemed statistically significant, but the researchers were encouraged and plan a larger study to confirm it.

Professor Keith Martin, from the Centre for Eye Research Australia and the University of Melbourne, who led the study while at Cambridge, said: While this is currently early stage research, we believe it shows promise for helping to treat neurodegenerative diseases that have so far proved intractable.

Gene therapy has already proved effective for some rare monogenic conditions, and we hope it will be similarly useful for these more complex diseases which are much more common.

In the study, published in Science Advances, the researchers write: We feel that these findings do have implication for clinical practice.

The research was supported by Fight for Sight, Addenbrookes Charitable Trust, the Cambridge Eye Trust, the Jukes Glaucoma Research Fund, Quethera Ltd, Alzheimer's Research UK, Gates Cambridge Trust, Wellcome and the Medical Research Council.

Read more

Addenbrookes Hospital in Cambridge becomes first in region to offer revolutionary CAR-T cell therapy for cancer patients

Avacta extends its partnership with Daewoong Pharmaceutical and AffyXell Therapeutics for Covid-19 stem cell treatments

Gene therapy: Discussing the worlds most expensive treatments at Health Horizons Future Healthcare Forum

Originally posted here:
University of Cambridge research suggests gene therapies offer hope in treating glaucoma and dementia - Cambridge Independent

Read More...

What is AAV Gene Therapy and What Makes it Safe? – Freethink

Saturday, April 17th, 2021

Genetic diseases were thought to be incurable letters carved in stone (or on a double helix). But gene therapy could change all that.

From treating Duchenne muscular dystrophy, autism, or glaucoma, there has been a surge in the news surrounding gene therapy (type "gene therapy" into the Freethink search tool, and you'll see endless stories about medical breakthroughs).

The total number of completed or ongoing gene therapy clinical trials reached 4000 in February 2020. This type of treatment is on its way toward addressing some of the most severe and complicated ailments known to man. Gene therapy even shows promise for treating diseases like cancer or Huntington's disease longstanding mysteries of medical science.

Instead of using medications or surgery, doctors can use gene therapy to fight diseases at their source. Gene therapy attempts to cure a disease, or boost the body's ability to combat a disease, by replacing a defective gene or adding a new gene.

The success of gene therapy all hinges on the ability to deliver that precious genetic cargo into the patient's cells safely. To do that, scientists use a "vector" as a delivery vessel for the genetic material. In most cases, that vector is a virus.

Scientists engineer an unwitting virus to act as a vector to deliver a therapeutic genetic payload.

We don't typically think fondly of viruses. Usually, they don't enter the human body to help. Instead, viruses like the flu or coronavirus make humans sick by inserting their genetic material into human cells and hijacking them. The cell reads the viral DNA (or RNA) and produces virus offspring, infecting other cells, repeating the process.

But, since viruses naturally deliver genetic material into a human cell, they are the most widely used vectors in gene therapy.

Scientists engineer an unwitting virus to act as a vector to deliver a therapeutic genetic payload. They strip the virus of its own genes and replace it with new genes. Once the virus transports its genetic cargo into tissues, the altered genes get to work producing further instructions to treat the disease.

But the human body can recognize the virus as a foreign invader and launch an immune response attempting to target and reject the virus.

Enter the adeno-associated viruses (AAV) a small virus that has emerged as the most promising platform for gene therapy.

These small, versatile viruses have several advantages over other gene therapy vectors.

First, despite their small size, they can carry a sizeable genetic payload. They are not known to cause many human diseases, and they can be designed to target particular types of cells or tissues. They cannot replicate on their own, so scientists can control how much gene therapy is delivered to the body.

The best part: they don't trigger a very large immune response like other viruses. A gene therapy trial in the 1990s that used an adenovirus (a kind of cold virus, different from AAVs) caused a deadly immune overreaction in one patient and effectively ended gene therapy research in humans for a decade.

After that, researchers went back to the drawing board, looking for safer vectors. AAVs, because they don't cause disease and can't replicate, generally fly under the immune system's radar. These characteristics make them perfect vessels for gene therapy. And clinical trials have since shown that AAV gene therapy is safe and, for some diseases, effective.

Now that AAVs are established as gene therapy vectors, scientists are working to improve their delivery and create the next generation of AAV gene therapy.

Researchers have been successful with AAV gene therapy in the clinical setting. Currently, two FDA-approved gene therapy treatments use AAVs: Luxturna, which was approved in 2017 for a rare vision disorder, and Zolgensma, which was approved last year for spinal muscular atrophy.

But there are challenges to overcome. Because AAVs are viruses that people are naturally exposed to, many people have already developed antibodies against them. When a patient who has been previously exposed to an AAV receives AAV gene therapy, these antibodies could block the therapy.

Recently, a team of researchers figured out how to cloak the AVV to sneak past the immune system and deliver its gene therapy payload without triggering any immune response.

With the recent surge in AAVs as viral vectors and more clinical studies in the pipeline, we can expect to see new gene therapies that are safe and effective.

We'd love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at [emailprotected]

See the original post here:
What is AAV Gene Therapy and What Makes it Safe? - Freethink

Read More...

ATMPS and Ori Biotech Collaborate on an Integrated Digital Platform for Cell and Gene Therapy Developers – BioSpace

Saturday, April 17th, 2021

The collaboration will improve visibility and reporting of cell and gene therapy manufacturing through a pre-integrated data solution

London, UK and Woodcliff Lake, NJ, US, April 14, 2021 ATMPS Ltd, a leader in blockchain-based vein to vein cell orchestration platforms for advanced therapies, and Ori Biotech, an innovator in cell and gene therapy (CGT) manufacturing platforms, today announce a global collaboration to create seamless integration between their respective data platforms to support the development of Advanced Therapies.

The non-exclusive partnership will result in the integration of Oris proprietary CGT manufacturing platforms data architecture with ATMPS HataaliTM, a secure data sharing platform, specially designed as a scalable system for advanced therapies. The combination of the two proprietary platforms will provide improved product tracking, scheduling as well as live monitoring of the manufacturing status across the entire CGT supply chain from vein to vein.

Ori selected ATMPS Hataali technology for integration with our platform to allow the secure sharing of relevant process data with therapy developers, contract development and manufacturing organizations (CDMOs) and even clinicians or patients in real-time. This collaboration will provide increased visibility into the treatment process for those involved at each stage of the treatment process, said Jason C. Foster, CEO, Ori Biotech. The addition of established technologies from companies like ATMPS allows Ori to further its mission of enabling partners across the CGT industry to bring therapies as safely, cost effectively and quickly as possible to large numbers of patients with few alternative therapeutic options.

Hataali encrypts and stores data using distributed ledger technology through a process known as hashing. This process ensures data security is protected through a system of private keys and cryptography. Hataali was the first cell orchestration platforminstalled in a hospital globally and ATMPS the first blockchain company to integrate with the UK National Health Service for the delivery of advanced therapies.

Ori is an ideal partner for ATMPS, as both companies share a common mission to lower the costs and improve processes for cell and gene therapies. Oris work in helping innovators scale from preclinical to commercial is a massive step towards reducing complexity and bringing these vital therapies to patients more quickly, said Raja Sharif, CEO, ATMPS. We all know how challenging and expensive the development and manufacturing of CGTs can be. With the help of Hataali, Ori can securely leverage vein-to-vein data to advance their manufacturing solutions much more efficiently. This will enable real-time therapy tracking, improved patient trust and expediated clinical development.

Ori continues to experience significant growth since closing a $30 million Series A round of funding as it prepares to bring its platform to market. The company is actively recruiting the best talent in cell and gene therapy technology through its networks and through http://www.oribiotech.com.

###

About ATMPS

ATMPS Ltd provides patent pending advanced technical solutions for healthcare companies in the Advanced Therapy Medicines Products sector, including CAR-T treatments, stem cell and gene treatments. ATMPS have a unique distributed ledger solution which provides immutable and incorruptible data and automation capabilities. The solution is operational, configurable and can provide data analytics modules. It can integrate with all LIMS, MES and legacy solutions. It provides full chain of custody, identity and condition of samples, treatments and assets which it tracks. It also schedules and co-ordinates the supply chain participants, as well as giving them information at the same time, in real time, from a "single source of truth. For more information, please visit ATMPS website athttps://www.atmps.net/.

About Ori Biotech

Ori is a London and New Jersey based cell and gene therapy (CGT) manufacturing technology company. Ori has developed a proprietary, flexible manufacturing platform that closes, automates and standardizes CGT manufacturing allowing therapeutics developers to further develop and bring their products to market at commercial scale. The promise of the full stack Ori platform is to fully automate CGT manufacturing to increase throughput, improve quality and decrease costs by combining hardware, software and data services.

Ori was founded by Professor Chris Mason (AVRO) and Dr. Farlan Veraitch (UCL) and has brought together a seasoned Board and executive management team with over 100 years of pharmaceutical, CGT and venture building experience including CEO Jason C. Foster (Indivior), CBO Jason Jones (Miltenyi Biotec), VP Tom Heathman (Minaris), VP David Smith (Minaris) alongside expert advisers like Bruce Levine, Anthony Davies and Annalisa Jenkins. For more information, visit http://www.oribiotech.com.

For media enquiries, please contact:

Alex Heeley or Abdul Khalifeh

De Facto Communications

T: +44 (0) 203 735 8168

E:a.heeley@defacto.co.uk/a.khalifeh@defacto.co.uk

See the original post:
ATMPS and Ori Biotech Collaborate on an Integrated Digital Platform for Cell and Gene Therapy Developers - BioSpace

Read More...

CRISPR Therapies Pipeline Insights 2021: Analysis of Key Companies, Emerging Therapies, Recent Happenings and Futuristic Trends – GlobeNewswire

Saturday, April 17th, 2021

Los Angeles, USA, April 12, 2021 (GLOBE NEWSWIRE) -- CRISPR Therapies Pipeline Insights 2021: Analysis of Key Companies, Emerging Therapies, Recent Happenings and Futuristic Trends

The leading gene-editing companies looking at commercializing CRISPR-based therapeutics are CRISPR Therapeutics, Intellia Therapeutics, and Editas Medicine. CRISPR Therapeutics has the largest market cap of the three, at $10.9B, with a clinical development program that is more advanced than those of Intellia and Editas. Editas Medicine has the smallest market cap of the three companies. Intellia has established high profile collaborations with Regeneron and Novartis.

DelveInsights CRISPR Therapies Pipeline Insight report offers a broad view of available CRISPR therapies in the market, pipeline CRISPR therapies, their MoA, RoA, key companies working in the domain and competitive assessment.

Some of the key takeaways from the CRISPR Therapies Pipeline Report:

Interested in knowing more? Request for the sample @ CRISPR Therapies in the Pipeline

The report underlines the present unmet needs in the market, driving factors and market constraints, along with the holistic view of the inactive therapeutics (comprising dormant and terminated products) with the reasons behind their downfall, detailed insights into the structure and gene editing tool of the pipeline CRISPR therapies to help clients gauge the opportunities and risks in the market.

In the News

Know what is happening in the CRISPR Pipeline Therapies @ CRISPR Pipeline Recent Happenings

What is CRISPR?

CRISPRs (Clusters of Regularly Interspaced Short Palindromic Repeats) are specialized stretches of DNA and are a shorthand for CRISPR-Cas9, which are transcribed by the bacteria to RNA stretches during viral infections. The same CRISPR technology can be leveraged to identify, alter and modify the DNA sequences and genomes.

The technique is used to correct genetic defects, prevent the spread of disease by altering the genetic sequence, improving crop viability and durability, and so on without affecting the functions of other genes.

Want to learn more about the leading candidates in different clinical stages of trials? Reach out @ CRISPR Emerging Therapies and Key Companies

At a Glance: Emerging CRISPR Therapies, RoA, MoA and Companies

Know more about budding CRISPR therapies projected to transform the landscape @ Emerging CRISPR Therapeutics and Market Scenario

CRISPR Therapeutic Assessment The CRISPR Therapies Pipeline report proffers comprehensive insights into active pipeline assets segmented by Stage, Product Type, Route of Administration, Molecule Type, Target and Indications of various drugs.

By Product Type

By Stage

By Route of Administration

By Mechanism of Action

By Targets

By Stage and Route of Administration

By Stage and Product Type

To know more, Visit CRISPR CAS-9 Technology and Emerging Trends

Scope of the report

Learn more about the scope and highlights of the report @ CRISPR Pipeline Emerging Drug Pipeline

Key Questions Answered in the Report

Got queries? Get in touch @ CRISPR Technology and Pipeline Therapies

Table of Contents

Know more about report offerings @ CRISPR Pipeline Insights

Related Reports Adeno Associated Virus Vectors In Gene Therapy MarketDelveInsight's "Adeno-Associated Virus Vectors in Gene Therapy - Market Insights, Epidemiology, and Market Forecast-2030" report.

Gene Therapy In Oncology Innovation To Commercialization Competitive LandscapeDelveInsights Gene Therapies in Oncology - Innovation to Commercialization: Competitive Landscape, Technological Advancements, Market Opportunities & Future Directions, 2018 report.

Complicated Urinary Tract Infections MarketDelveInsight's "Complicated Urinary Tract Infections - Market Insights, Epidemiology, and Market Forecast-2030" report.

Usher Syndrome Type 2 MarketDelveInsight's "Usher Syndrome Type 2 - Market Insights, Epidemiology, and Market Forecast-2030" report.

Diffuse Large B Cell Lymphoma MarketDelveInsight's "Diffuse Large B-cell Lymphoma - Market Insights, Epidemiology, and Market Forecast-2030" report.

Beta Thalassemia Thal MarketDelveInsight's "Beta-thalassemia (B-thal) - Market Insights, Epidemiology, and Market Forecast-2030" report.

Sickle Cell Disease MarketDelveInsight's "Sickle Cell Disease - Market Insights, Epidemiology, and Market Forecast-2030" report.

Gene and Cell Therapies in CNS DisordersAnalysis of the key companies in the domain is BrainStorm Cell Therapeutics, Helixmith, Q therapeutics, Neuroplast, StemCyte, Axovant, Libella Gene Therapeutics, Voyager Therapeutics and many others.

CRISPR Gene-Editing and Stem-Cell Technology

About DelveInsight

DelveInsight is a leading Business Consultant and Market Research firm focused exclusively on life sciences. It supports Pharma companies by providing end-to-end comprehensive solutions to improve their performance. Get hassle-free access to all the healthcare and pharma market research reports through our subscription-based platform PharmDelve.

See the original post:
CRISPR Therapies Pipeline Insights 2021: Analysis of Key Companies, Emerging Therapies, Recent Happenings and Futuristic Trends - GlobeNewswire

Read More...

Mirum Pharmaceuticals and Vivet Therapeutics Enter into Exclusive Worldwide Option and License Agreement for Vivet’s Gene Therapy Programs Targeting…

Saturday, April 17th, 2021

FOSTER CITY, Calif. & PARIS--(BUSINESS WIRE)--Mirum Pharmaceuticals, Inc. (Nasdaq: MIRM) and Vivet Therapeutics (Vivet) announced today an agreement whereby Mirum has the exclusive option to develop and subsequently commercialize Vivets two proprietary AAV gene therapy programs for progressive familial intrahepatic cholestasis (PFIC), subtypes 3 and 2. The two programs, VTX-803 and VTX-802, are currently being evaluated in preclinical studies by Vivet, a privately-held gene therapy biotechnology company.

Under the terms of the agreement, Vivet will continue to advance the preclinical studies for VTX-803 and VTX-802 for PFIC3 and PFIC2, respectively. Mirum has the exclusive option to license the programs after which Mirum would lead the clinical development and any future commercialization of the programs. Until that time, Mirum will provide funding to support the continued research and development costs associated with the two gene therapy programs.

This gene therapy collaboration will work to address the root cause of PFIC3 and PFIC2 and provide an option for patients who do not respond to ASBT inhibition, said Chris Peetz, president and chief executive officer at Mirum. We are encouraged by the expertise and dedication of the Vivet team to develop next-generation gene therapies that have the potential to transform the lives of patients and their families. There are clear synergies in our combined missions to help the people who need it the most.

Mirums dedication to the treatment of cholestatic liver diseases and those rare diseases for which there are limited medications make them a great partner to potentially develop and bring to market VTX-803 and VTX-802, said Jean-Philippe Combal, chief executive officer and co-founder of Vivet. Their leadership in rare liver disease and in particular PFIC, is important as they not only understand the urgent need for patients but also that todays treatment options will never be enough. Gene therapy is a transformative approach, potentially benefiting more patients.

VTX-803 and VTX-802 are two proprietary AAV gene therapy programs of Vivet currently being evaluated in preclinical studies for progressive familial intrahepatic cholestasis (PFIC), subtypes 3 and 2. It is thought that successful correction by gene therapy of the defective MDR3 transporter and bile salt export pump (BSEP) functions for PFIC3 and PFIC2, respectively, may ultimately provide a cure for patients living with these rare liver diseases. Such an approach carries the potential to overcome the main limitations of current standard of care for PFIC3 and PFIC2. It may provide long-lasting benefits by restoring physiological bile secretion and preventing severe hepatic complications of the diseases and outweighing its related significant costs.

Vivet has received Orphan Drug Designation for VTX-803 by the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Additionally, preclinical proof-of-concept studies highlighting VTX-803 were published in Nature Communications in 2019. The data demonstrated sustained and significant reversal of PFIC3 disease biomarkers in a model of PFIC3.

About Mirum Pharmaceuticals, Inc.

Mirum Pharmaceuticals, Inc. is a clinical-stage biopharmaceutical company focused on the development and commercialization of a late-stage pipeline of novel therapies for debilitating liver diseases. Mirums lead product candidate, maralixibat, is an investigational oral drug in development for Alagille syndrome (ALGS), progressive familial intrahepatic cholestasis (PFIC), and biliary atresia. Mirum has submitted an NDA for maralixibat in the treatment of cholestatic pruritus in patients with ALGS. The NDA has been accepted for priority review by the FDA with a PDUFA action date of September 29, 2021. Additionally, Mirums marketing authorization application for the treatment of pediatric patients with PFIC2 has been accepted for review (validated) by the European Medicines Agency. Mirum is also developing volixibat, also an oral ASBT-inhibitor, in primary sclerosing cholangitis, intrahepatic cholestasis of pregnancy, and primary biliary cholangitis. For more information, visit MirumPharma.com.

To augment its pipeline in cholestatic liver disease, Mirum has acquired the exclusive option to develop and commercialize VTX-803 and VTX-802 for PFIC3 and PFIC2, respectively, from Vivet Therapeutics, following preclinical evaluation and IND/CTA-enabling studies.

Follow Mirum on Twitter, Facebook, LinkedIn and Instagram.

About Vivet Therapeutics

Vivet Therapeutics is a clinical stage emerging biotechnology company developing novel gene therapy treatments for rare, inherited metabolic diseases.

Vivet is building a diversified gene therapy pipeline based on novel recombinant adeno-associated virus (rAAV) technologies developed through its partnerships with, and exclusive licenses from, the Fundacin para la Investigacin Mdica Aplicada (FIMA), a not-for-profit foundation at the Centro de Investigacin Medica Aplicada (CIMA), University of Navarra based in Pamplona, Spain.

Vivets lead program, VTX-801, currently under IND clinical development with the GATEWAY clinical trial, is a novel investigational gene therapy for Wilson disease which has been granted Orphan Drug Designation (ODD) by the Food and Drug Administration (FDA) and the European Commission (EC). This rare genetic disorder is caused by mutations in the gene encoding the ATP7B protein, which reduces the ability of the liver and other tissues to regulate copper levels causing severe hepatic damages, neurologic symptoms and potentially death.

Vivets second gene therapy product, VTX-803 for PFIC3, received US and European Orphan Drug Designation in May 2020.

Vivet is supported by international life science investors including Novartis Venture Fund, Roche Venture Fund, HealthCap, Pfizer Inc., Columbus Venture Partners, Ysios Capital, Kurma Partners and Idinvest Partners.

Please visit us on http://www.vivet-therapeutics.com and follow us on Twitter at @Vivet_tx and LinkedIn.

About PFIC

Progressive familial intrahepatic cholestasis (PFIC) is a rare genetic disorder that causes progressive liver disease typically leading to liver failure. In people with PFIC, liver cells are less able to secrete bile. The resulting buildup of bile causes liver disease in affected individuals. Signs and symptoms of PFIC typically begin in infancy. Patients experience severe itching, jaundice, failure to grow at the expected rate (failure to thrive), and an increasing inability of the liver to function (liver failure). The disease is estimated to affect one in every 50,000 to 100,000 births in the United States and Europe. Six types of PFIC have been genetically identified, all of which are similarly characterized by impaired bile flow and progressive liver disease The PFIC2 patient population accounts for approximately 60% of the PFIC patient population. PFIC2 is caused by a mutation in the ABCB11 gene, which normally encodes a bile salt export pump protein that moves bile acids out of the liver.

Forward-Looking Statements

Statements contained in this press release regarding matters that are not historical facts are forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Such forward-looking statements include statements regarding, among other things, the option and license agreement between Mirum and Vivet and the potential development of VTX-802 and VTX-803. Because such statements are subject to risks and uncertainties, actual results may differ materially from those expressed or implied by such forward-looking statements. Words such as plans, will, may, anticipates, expects, potential and similar expressions are intended to identify forward-looking statements. These forward-looking statements are based upon Mirums current expectations and involve assumptions that may never materialize or may prove to be incorrect. Actual results could differ materially from those anticipated in such forward-looking statements as a result of various risks and uncertainties, which include, without limitation, risks and uncertainties associated with Mirums business in general, the impact of the COVID-19 pandemic, and the other risks described in Mirums filings with the Securities and Exchange Commission. All forward-looking statements contained in this press release speak only as of the date on which they were made and are based on managements assumptions and estimates as of such date. Mirum undertakes no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made, except as required by law.

Original post:
Mirum Pharmaceuticals and Vivet Therapeutics Enter into Exclusive Worldwide Option and License Agreement for Vivet's Gene Therapy Programs Targeting...

Read More...

LGBT+ Investment Firm Gaingels Joins American Gene Technologies’ Mission to Cure HIV, and Other Serious Human Diseases – PRNewswire

Saturday, April 17th, 2021

ROCKVILLE, Md., April 15, 2021 /PRNewswire/ --AmericanGene Technologies(AGT),an emerging gene and cell therapy company, announced today that Gaingels, a leading venture investment syndicate in service of the LGBT+ community and its allies, made an investment in AGT to support the Phase 1 clinical trial of an HIV cure. The Phase 1 human trial is investigating the safety of AGT103-T, a single dose, autologous cell therapy intended to cure the disease.

This investment places Gaingels alongside private investors who believe deeply in AGT's mission, rapid drug development platform, and gene and cell therapy programs for HIV, cancer, and PKU.

Gaingels is an investment network comprised of 1000+ investors focused on high-growth venture-backed companies who embrace LGBT+ leadership. Gaingels works to support its portfolio companies in identifying and recruiting diverse leadership talent, fostering a vibrant global community of industry leaders, investors, operators, and entrepreneurs who share a common goal for positive social change through business and successful investments.

"Diversity in every aspect of society and business leads to the best outcomes for all of humanity," said Jeff Galvin, CEO and Founder of American Gene Technologies. "AGT is a place where smart, motivated people of every background thriveour team, investors, and the populations we serve are all diverse. We're proud to partner with Gaingels to accelerate solutions to the market and to achieve success for patients and investors alike. This investment is symbolic to us at AGT. Our science, mission, and team present opportunities and products that uplift everyone without regard to background, lifestyle, or identity," Galvin added. "AGT's one-and-done cell therapy is intended to create a durable natural immunity to HIV, returning HIV+ persons to a life without daily antiretroviral medication, and free of the risks of AIDS, transmitting HIV to others, or becoming reinfected. Gaingels support will put us another step closer to achieving this goal."

"As the largest investor network focused on supporting and investing in the best venture-backed companies that embrace and value diverse leadership, including LGBTQ+, Gaingels is proud of participating in AGT's financing," said Lorenzo Thione, Managing Director of Gaingels. "Its mission hits uniquely close to home for the LGBTQ+ community given AGT's focus on creating functional immunity and thus an effective cure for HIV. We are resolved on helping the company grow and scale and achieve this uniquely ambitious and important goal, while strengthening its prospects of success by building a culture that reflects the diversity of its executive teams, staff and customers."

About Gaingels Gaingelsis the leading investment syndicate in support of and representing the LGBTQ community and allies in the venture capital space. With over $150,000,000 deployed into a portfolio of over 300 companies, Gaingels seeks to directly and indirectly influence the venture ecosystem towards greater diversity, inclusion and equity of access. Gaingels invests in companies resolved on building diverse and inclusive teams who are aligned with our mission and seek to expand and embrace LGBTQ leadership into their companies and boards. We actively support our portfolio companies in identifying and recruiting diverse leadership talent, and we strive to foster a vibrant global community of industry leaders, investors, operators, and entrepreneurs who share a common goal for positive social change through business and successful investments. Gaingels is a founding co-signer of the Diversity Term Sheet Rider Initiative to increase access to venture funding events for non-traditional check writers, and regularly co-invests with select VC leads across a variety of sectors, from technology, to B2B, healthcare and consumer, in competitive and over-subscribed rounds from Seed to Growth/pre-IPO.

Website: https://gaingels.com/

About American Gene Technologies (AGT) AmericanGene Technologies(AGT)is a gene and cell therapy company with a proprietary gene-delivery platform for rapid development of cell and gene therapies to cure infectious diseases, cancers, and inherited disorders. AGT's mission is to transform people's lives through genetic medicines that rid the body of disease. AGT has three patents for the technology used to make the AGT103-T cell product which is currently in a clinical trial to test its ability to functionally cure HIV+ individuals. AGT also has received ten patents for its uniqueimmuno-oncology approachto stimulategamma-delta () T cellsto eliminate a variety of human solid tumors, such as breast, prostate, and liver cancer. The company has developed a synthetic gene for treatingPhenylketonuria (PKU), a debilitating inherited disease, and has been grantedOrphan Drug Designationby the Food and Drug Administration (FDA).

For more information on AGT's Phase 1 clinical trial, visit clinicaltrials.gov (Study Identifier: NCT04561258).

Website: https://www.americangene.com

American Gene Technologies Contact:C. Neil Lyons, Chief Financial OfficerPhone:(301) 337-2269Email:Contact Requests

For media inquiries, please contact:Sasha Whitaker, Digital Marketing and CommunicationsPhone:(301) 337-2100Email:Contact Requests

SOURCE American Gene Technologies

http://www.americangene.com

See the rest here:
LGBT+ Investment Firm Gaingels Joins American Gene Technologies' Mission to Cure HIV, and Other Serious Human Diseases - PRNewswire

Read More...

Global Regenerative Medicines Market 2020-2030: Opportunities in Drug Approvals and Strong Pipeline of Cell and Gene Therapies & Multiple…

Saturday, April 17th, 2021

DUBLIN--(BUSINESS WIRE)--The "Global Regenerative Medicines Market 2020-2030: Focus on Products, Applications, 17 Countries' Data and Competitive Landscape" report has been added to ResearchAndMarkets.com's offering.

The global regenerative medicines market is projected to reach $87.03 billion by 2030 and set to witness a CAGR of 13.99% from 2020 and 2030.

The market is driven by certain factors, including increasing consolidation among healthcare juggernauts, rising number of clinical trials for regenerative therapies, a favorable regulatory environment to accelerate approvals and market entry, and rising awareness for stem cell therapeutics, that are fueling the growth of the global regenerative medicines market.

Regenerative medicine is challenging the current healthcare practices by targeting the treatment of the root causes of disease and disorders, transforming it into an incredibly exciting space. However, these advancements have not come without significant challenges and uncertainties, which will also further need to be overcome to realize the full potential of regenerative medicine.

Cell and gene therapies, under the regenerative umbrella, are slowly and steadily becoming a healthcare standard, particularly in developed regions such as the U.S. and Europe, where already established markets for tissue engineering and stem cell have largely been responsible for driving the global regenerative medicine phenomenon. Cell and gene therapies, though advancing at a rapid pace, have primarily been targeted for hematological malignancies.

However, the same potential has not been replicated in solid tumor applications, consequently creating demand for cell therapies focusing on solid tumors. As a result, the industry is now moving toward the research and subsequent clinical translation of next-generation therapies, led by natural killer (NK) cells, which offer a viable option for solid tumors as well. Such trends are consistently propelling the industry toward realizing the true potential of precision medicine.

Within the research report, the market is segmented on the basis of products, applications, and region. Each of these segments covers the snapshot of the market over the projected years, the inclination of the market revenue, underlying patterns, and trends by using analytics on the primary and secondary data obtained.

Competitive Landscape

The global regenerative medicines market is currently witnessing several developments, primarily aimed toward bringing new products to support clinicians for the treatment of life-threatening disorders. Major manufacturers of regenerative medicine products are actively involved in undertaking significant business strategies in order to translate success in research and development into the commercial clinical setting. Although tissue engineering and stem cells remain the dominating product segments, the advent of cell and gene therapy has revolutionized the regenerative medicine phenomenon, moving it more toward the precision medicine space.

Key Topics Covered:

Executive Summary

1 Product Definition and Market Scope

1.1 Inclusion and Exclusion

1.2 Scope of Work

1.3 Key Questions Answered in the Report

2 Research Methodology

3 Market Overview

3.1 Clinical Importance of Regenerative Medicine

3.2 Market Footprint

3.3 Impact of COVID-19

4 Market Dynamics

4.1 Impact Analysis

4.2 Market Drivers

4.2.1 Increasing Consolidation in the Regenerative Medicines Market

4.2.2 Rising Number of Clinical Trials

4.2.3 Favorable Regulatory Environment

4.2.4 Rising Awareness for Stem Cell Therapeutics

4.3 Market Restraints

4.3.1 Lack of Reliable Vector Production for Cell and Gene Therapy

4.3.2 Exorbitant Cost of Next-Generation Therapies

4.4 Opportunities

4.4.1 Drug Approvals and Strong Pipeline of Cell and Gene Therapies

4.4.2 Multiple Investments in Expansion of cGMP Units

4.4.3 Innovations in Regenerative Medicine

5 Industry Insights

5.1 Overview

5.2 Legal and Regulatory Framework in the U.S.

5.2.1 Cell and Gene Therapy

5.2.1.1 Cell and Gene Therapy Manufacturing QC

5.2.1.1.1 Product Testing

5.2.1.1.1.1 Microbial Testing

5.2.1.1.1.2 Identity

5.2.1.1.1.3 Purity

5.2.1.1.1.4 Potency

5.2.1.1.1.5 Viability

5.2.1.1.1.6 Cell Number/Dose

5.2.2 Stem Cell Therapy

5.2.3 Tissue-Engineered Products

5.3 Legal and Regulatory Framework in Europe

5.4 Legal and Regulatory Framework in Asia-Pacific

5.4.1 China

5.4.2 Japan

6 Global Regenerative Medicines Market: Competitive Insights

6.1 Overview

6.2 Synergistic Activities

6.3 Product Approval

6.4 Mergers and Acquisitions

6.5 Business Expansion and Funding

6.6 Product Launches and Upgradations

6.7 Market Share Analysis, 2019-2020

6.7.1 Market Share Analysis for Global Regenerative Medicines Market (Tissue Engineering), 2019-2020

6.7.2 Market Share Analysis for Global Regenerative Medicines Market (Cell and Gene Therapy), 2019-2020

6.7.3 Market Share Analysis for Global Regenerative Medicines Market (Stem Cell Therapy), 2019-2020

6.8 Growth Share Analysis

6.8.1 Growth Share Analysis (by Company)

6.8.2 Growth Share Analysis (by Product)

6.8.3 Growth Share Analysis (by Application)

7 Global Regenerative Medicines Market (by Product Type), $Million, 2019-2030

7.1 Overview

7.2 Tissue Engineering

7.2.1 Allogeneic Tissue

7.2.2 Autologous Tissue

7.2.3 Xenogeneic Tissue

7.2.4 Synthetic Tissue

7.2.5 Other Tissues

7.3 Stem Cells

7.3.1 Stem Cell Services

7.3.2 Stem Cell Therapy

7.4 Cell and Gene Therapy

7.4.1 Cell Therapy

7.4.1.1 Cell Therapy (by Type)

7.4.2 Gene Therapy

8 Global Regenerative Medicines Market (by Application), $Million, 2019-2030

8.1 Overview

8.2 Orthopedic and Musculoskeletal

8.3 Oncology

8.4 Wound Care

8.5 Cardiology

8.6 Immunology

8.7 Dermatology

8.8 Other Applications

9 Global Regenerative Medicines Market (by Region), $Million, 2019-2030

10 Company Profiles

For more information about this report visit https://www.researchandmarkets.com/r/qxqvs4

Go here to read the rest:
Global Regenerative Medicines Market 2020-2030: Opportunities in Drug Approvals and Strong Pipeline of Cell and Gene Therapies & Multiple...

Read More...

Novartis, Gates Foundation pursue a simpler gene therapy for sickle cell – STAT

Friday, February 19th, 2021

Novartis and the Bill and Melinda Gates Foundation are joining forces to discover and develop a gene therapy to cure sickle cell disease with a one-step, one-time treatment that is affordable and simple enough to treat patients anywhere in the world, especially in sub-Saharan Africa where resources may be scarce but disease prevalence is high.

The three-year collaboration, announced Wednesday, has initial funding of $7.28 million.

Current gene therapy approaches being developed for sickle cell disease are complex, enormously expensive, and bespoke, crafting treatments for individual patients one at a time. The collaboration aims to instead create an off-the-shelf treatment that bypasses many of the steps of current approaches, in which cells are removed and processed outside the body before being returned to patients.

advertisement

Sickle cells cause is understood. The people it affects are known. But its cure has been elusive, Jay Bradner, president of the Novartis Institutes for BioMedical Research, told STAT.

We understand perfectly the disease pathway and the patient, but we dont know what it would take to have a single-administration, in vivo gene therapy for sickle cell disease that you could deploy in a low-resource setting with the requisite safety and data to support its use, he said. Im a hematologist and can assure you that in my experience in the clinic, it was extremely frustrating to understand a disease so perfectly but have so little to offer.

advertisement

Sickle cell disease is a life-threatening inherited blood disorder that affects millions around the world, with about 80% of affected people in sub-Saharan Africa and more than 100,000 in the U.S. The mutation that causes the disease emerged in Africa, where it protects against malaria. While most patients with sickle cell share African ancestry, those with ancestry from South America, Central America, and India, as well as Italy and Turkey, can also have the hereditary disease.

The genetic mutation does its damage by changing the structure of hemoglobin, hampering the ability of red blood cells to carry oxygen and damaging blood vessels when the misshapen cells get stuck and block blood flow. Patients frequently suffer painful crises that can be fatal if not promptly treated with fluids, medication, and oxygen. Longer term, organs starved of oxygen eventually give out. In the U.S., that pain and suffering is amplified when systemic and individual instances of racism deny Black people the care they need.

Delivering gene therapy for other diseases has been costly and difficult even in the best financed, most sophisticated medical settings. Challenges include removing patients cells so they can be altered in a lab, manufacturing the new cells in high volume, reinfusing them, and managing sometimes severe responses to the corrected cells. Patients also are given chemotherapy to clear space in their bone marrow for the new cells.

Ideally, many of those steps could be skipped if there were an off-the-shelf gene therapy. That means, among other challenges, inventing a way to eliminate the step where each patients cells are manipulated outside the body and given back the in vivo part of the plan to correct the genetic mutation.

Thats not the only obstacle. For a sickle cell therapy to be successful, Bradner said, it must be delivered only to its targets, which are blood stem cells. The genetic material carrying corrected DNA must be safely transferred so it does not become randomly inserted into the genome and create the risk of cancer, a possibility that halted a Bluebird Bio clinical trial on Tuesday. The payload itself mustnt cause such problems as the cytokine storm of immune overreaction. And the intended response has to be both durable and corrective.

In a way, the gene delivery is the easy part because we know that expressing a normal hemoglobin, correcting the mutated hemoglobin, or reengineering the switches that once turned off normal fetal hemoglobin to turn it back on, all can work, Bradner said. The payload is less a concern to me than the safe, specific, and durable delivery of that payload.

For each of these four challenges delivery, gene transfer, tolerability, durability there could be a bespoke technical solution, Bradner said. The goal is to create an ensemble form of gene therapy.

Novartis has an existing sickle-cell project using CRISPR with the genome-editing company Intellia, now in early human trials, whose lessons may inform this new project. CRISPR may not be the method used; all choices are still on the table, Bradner said.

Vertex Pharmaceuticals has seen encouraging early signs with its candidate therapy developed with CRISPR Therapeutics. Other companies, including Beam Therapeutics, have also embarked on gene therapy development.

The Novartis-Gates collaboration is different in its ambition to create a cure that does not rely on an expensive, complicated framework. Novartis has worked with the Gates Foundation on making malaria treatment accessible in Africa. And in October 2019, the Gates Foundation and the National Institutes of Health said together they would invest at least $200 million over the next four years to develop gene-based cures for sickle cell disease and HIV that would be affordable and available in the resource-poor countries hit hardest by the two diseases, particularly in Africa.

Gene therapies might help end the threat of diseases like sickle cell, but only if we can make them far more affordable and practical for low-resource settings, Trevor Mundel, president of global health at the Gates Foundation, said in a statement about the Novartis collaboration. Its about treating the needs of people in lower-income countries as a driver of scientific and medical progress, not an afterthought.

Asked which is the harder problem to solve: one-time, in vivo gene therapy, or making it accessible around the world, David Williams, chief of hematology/oncology at Boston Childrens Hospital, said: Both are going to be difficult to solve. The first will likely occur before the therapy is practically accessible to the large number of patients suffering the disease around the world.

Williams is also working with the Gates Foundation, as well as the Koch Institute for Integrative Cancer Research at MIT, Dana-Farber Cancer Institute, and Massachusetts General Hospital, on another approach in which a single injection of a reagent changes the DNA of blood stem cells. But there are obstacles to overcome there, too, that may be solved by advances in both the technology to modify genes and the biological understanding of blood cells.

Bradner expects further funding to come to reach patients around the world, once the science progresses more.

There is no plug-and-play solution for this project in the way that mRNA vaccines were perfectly set up for SARS-CoV-2. We have no such technology to immediately redeploy here, he said. Were going to have to reimagine what it means to be a gene therapy for this project.

Read this article:
Novartis, Gates Foundation pursue a simpler gene therapy for sickle cell - STAT

Read More...

Charles River Dives Deep Into Cell and Gene Therapy With Cognate BioServices Acquisition – BioSpace

Friday, February 19th, 2021

Igor Golovniov/SOPA Images/LightRocket via Getty Images

Charles River Laboratories will acquire Cognate BioServices, a cell and gene therapy contract development and manufacturing organization, in an $875 million cash deal that will significantly expand the companys capabilities in the high-growth cell and gene therapy sector.

In addition to expanding Charles Rivers capabilities in the cell and gene therapy space, the company said the acquisition of Memphis, Tenn.-based Cognate will also establish a comprehensive solution from discovery and non-clinical development through CGMP manufacturing in advanced drug modalities. Cognate has a global presence with more than 500 employees. In January, Cognate announced plans to significantly expand cell and gene therapy manufacturing capacity, laboratory space, warehousing capabilities, and increase office support at its facilities inthe United StatesandEurope.

The company has extensive experience producing various cell types and technologies used in cellular immunotherapy and immuno-oncology, regenerative medicine and advanced cell therapy. Its primary area of expertise is in CGMP cell therapy manufacturing, which processes a variety of cellular products and other starting materials to develop and produce allogeneic (donor-derived) and autologous (patient-derived) cell therapies. Cognate also produces plasmid DNA, which is a foundational tool used in the development of gene-modified cell therapies and gene therapies, as well as other CDMO inputs, Charles River said.

James C. Foster, president and chief executive officer of Charles River Labs, said Cognate provides a synergistic fit for Charles River. He said bringing Cognate under the companys umbrella presents a unique opportunity to expand the companys capabilities and also enhance its offerings to clients in emerging areas of scientific innovation.

Additionally, Charles River said the addition of Cognate will complement its existing Biologics Testing Solutions business. Cognates capabilities will enable clients to seamlessly conduct analytical testing, process development, and manufacturing for advanced modalities with the same scientific partner, enabling them to achieve their goal of driving greater efficiency, the company said.

The addition of Cognate is also expected to provide a significant financial boost to Charles River. Cognate is expected to generate annual revenue of approximately $140 million in 2021, and is expected to grow at least 25% annually over the next five years, the company said.

This acquisition will be an exceptional strategic fit, adding to our comprehensive suite of early-stage research and manufacturing support solutions and enabling us to achieve our goal of establishing a single scientific partner to provide biopharmaceutical clients with an integrated solution to help accelerate their cell and gene therapy programs from discovery and non-clinical development through commercialization, Foster said in a statement. Because of the synergistic fit with Charles River, the market growth potential, and the emerging role of advanced drug modalities as treatments for oncology and rare disease, we believe Cognate will meaningfully enhance our long-term revenue and earnings growth potential.

The acquisition is expected to move quickly. Charles River anticipates the closing of the deal by the end of the first quarter of 2021. Based on the anticipated completion of the acquisition by the end of the first quarter, Cognate is expected to add approximately $110 million to Charles Rivers 2021 consolidated revenue for the partial year.

Most Read Today

Go here to read the rest:
Charles River Dives Deep Into Cell and Gene Therapy With Cognate BioServices Acquisition - BioSpace

Read More...

Novartis and Gates Foundation Team Up To Deliver Affordable Sickle Cell Gene Therapy – BioSpace

Friday, February 19th, 2021

Taljat David/Shutterstock

Novartis and the Bill & Melinda Gates Foundation have partnered on a single-dose, in vivo gene therapy for sickle cell disease (SCD). The Foundation will offer funding for development of the therapy.

Existing gene therapy approaches to sickle cell disease are difficult to deliver at scale and there are obstacles to reaching the vast majority of those affected by this debilitating disease, said Jay Bradner, a hematologist and president of the Novartis Institutes for BioMedical Research (NIBR). This is a challenge that calls for collective action, and we are thrilled to have the support of the Bill & Melinda Gates Foundation in addressing this global unmet medical need.

The announcement comes only a day after bluebird bio announced that it has placed its Phase I/II and Phase III trial of LentiGlobin gene therapy for sickle cell disease (SCD) on temporary suspension. The cause is a Suspected Unexpected Serious Adverse Reaction (SUSAR) of acute myeloid leukemia (AML).

HGB-206 is the companys ongoing Phase I/II trial of LentiGlobin for SCD. It includes three cohorts, A, B and C. In Group C, a refined manufacturing process designed to increase vector copy number was used.

Group C also received LentiGlobin for SCD manufactured from hematopoietic (blood) stem cells (HSCs) collected from peripheral blood after mobilization with plerixafor, instead of by way of bone marrow harvest, which was the method used in Groups A and B.

HGB-210 is their ongoing Phase III single-arm open-label trial. It is evaluating efficacy and safety of LentiGlobin for SCD in patients between two years and 50 years of age with sickle cell disease.

Which underlines that even though gene therapy is making headway, it is still a cutting-edge technology.

SCD is a hereditary blood disease that affects millions of people globally, with more than 300,000 born with it each year. It primarily affects people of African descent, and sub-Saharan Africa bears about 80% of the disease burden. It affects the structure of red blood cells, causing a distinct sickle shape, which decreases the ability of red blood cells to transport oxygen efficiently.

Gene therapies might help end the threat of diseases like sickle cell, but only if we can make them far more affordable and practical for low-resource settings, said Trevor Mundel, president of Global Health at the Gates Foundation. Whats exciting about this project is that it brings ambitious science to bear on that challenge. Its about treating the needs of people in lower-income countries as a driver of scientific and medical progress, not an afterthought. It also holds the promise of applying lessons learned to help develop potentially curative options for other debilitating diseases affecting low-income populations, such as HIV.

Novartis also announced today that the U.S. Food and Drug Administration (FDA) approved the expanded indication for Entresto (sacubitril/valsartan) to decrease the risk of cardiovascular death and hospitalization for heart failure in adults with chronic heart failure. The biggest benefit was for patients with left ventricular ejection fraction (LVEF) below normal.

The expansion was based on data in the PARAGON-HF Phase III trial.

This approval is a significant advancement, providing a treatment to many patients who were not eligible for treatment before because their ejection fraction was above the region we normally considered reduced, said Scott Solomon, professor of Medicine at Harvard Medical School and Brigham and Womens Hospital, and PARAGON-HF Executive Committee co-chair. We can now offer a treatment to a wider range of patients who have an LVEF below normal.

Featured Jobs on BioSpace

Read more:
Novartis and Gates Foundation Team Up To Deliver Affordable Sickle Cell Gene Therapy - BioSpace

Read More...

Kolon Life executives acquitted of falsifying data of gene therapy drug – The Korea Herald

Friday, February 19th, 2021

Two Kolon Life Science executives were acquitted Friday of involvement in the company's allegedly fraudulent report on a key ingredient in its gene therapy drug.

The Seoul Central District Court handed down the ruling to the drugmaker's two executives, surnamed Cho and Kim, who were indicted on charges that included fraud related to the company's suspected illegalities in the development and sales of Invossa, a cell and gene therapy for osteoarthritis.

But the court separately ordered Cho, a senior director at the company's clinical development team, to pay a fine of 5 million won ($4,500) for bribing an official at the Ministry of Food and Drug Safety in seeking favors in the company's drug development process.

They were suspected of having been involved in submitting fraudulent documents on purpose to the ministry to get approval for Invossa.

While acknowledging that the company submitted some false data, the court said the ministry seemed to have failed to perform due diligence in verifying the submitted documents.

The court also found them not guilty of fraud and other charges for having received a state subsidy of 8.2 billion won based on allegedly fraudulent documents.

Kolon Life Science, a unit of Kolon Group, initially received the approval for Invossa in 2017. But it was revoked in May 2019 after it was revealed that a key material used in Invossa came from a kidney cell, instead of from cartilage as stated in the document submitted for approval.

The company acknowledged that a substance in the joint pain treatment drug had been mislabeled, but claimed no one has suffered from any medical complications from the drug use.

Later in the day, however, the Seoul Administrative Court ruled against the drugmaker, dismissing its plea to reinstate the license for Invossa.

Having submitted false data was "a grave fault as drugs can have a significant effect on people's lives and health," the court said, even though it was hard to confirm with the evidence presented that the company intentionally committed any wrongdoing.

"There is no illegality with the ministry's decision to revoke the license since it did not seem to be aware of data that could raise suspicions about the drug's safety," the court ruled. (Yonhap)

Read this article:
Kolon Life executives acquitted of falsifying data of gene therapy drug - The Korea Herald

Read More...

Cancer and Gene Therapy | In the Pipeline – Science Magazine

Friday, February 19th, 2021

Theres news today that Bluebird has suspended its gene therapy work on sickle cell disease because of two cases of cancer in its treatment population. Another had been reported in 2018, so that takes us to two cases of myelodysplastic syndrome and one case of myeloid leukemia (which can be a sequel of MDS in some cases). This isnt good. Youll note that all of these are diseases of the bone marrow, and the marrow is where a good deal of the action in this sort of gene therapy takes place.

There are several companies working in this space, and its no coincidence. Sickle cell anemia is the absolute prototype of a genetically linked disorder, famously first identified in 1949 by Linus Pauling and co-workers. That paper termed it a molecular disease, and Pauling certainly deserves the credit he gets as a founder of molecular biology. Both sickle cell and the conceptually related beta-thalassemias are defects in the production of hemoglobin, and it has been obvious for decades that if you could somehow yank the defective gene out of the patients and replace it with a normal sequence that they simply wouldnt have these conditions any more.

There are by now plenty of other genetic disorders that fall into the same category, but these blood-cell based ones have a unique feature that has put them into the forefront of actual attempts at gene therapy. In these cases, all the relevant cells come from the same tissue, the bone marrow. And we actually have ways to kill that off and to swap in new tissue of our choosing: a bone marrow transplant. It is a tough procedure to go through, for sure, but not as tough as living a life of acute sickle cell attacks (or being killed off early by rampaging leukemia, to pick another application).

Contrast that with so many other gene-linked disorders take Huntingtons, for example. We know the gene for that one, and the protein it codes for, and it is equally obvious that if you could magically yank out that gene from a patient and insert the normal one for the Htt protein that they would no longer have the disease. But there is no analogous procedure for killing off the basal ganglia of the brain and replacing it with new neuronal tissue. Not quite. No, bone marrow based disorders are a unique opportunity, and thats why so much effort has gone into this area.

Its a similar situation to the way that therapeutic RNAs have been aimed at liver disorders. In that case, youre not wiping out the old cell population but rather trying to overwhelm it in situ, and the liver is chosen because we dont really know how to make i.v. dosed RNA species accumulate anywhere else. So we make do with what we have and turn the Liver Problem into the Liver Advantage. If we ever get to the point of treating Huntingtons at a genetic level, its surely going to be via a similar rework-things-in-situ method as well, but figuring out to do that in only the desired regions of the brain without causing trouble elsewhere is quite a challenge youve lost the Liver Advantage.

Now, Bluebird. They have been using a lentivirus vector to rewrite the bone marrow transplant tissue, and theres a solid reason for that. Lentiviruses (of which HIV is the most famous/infamous example) insert their genetic payloads into the host cells DNA. Its their key step, and they can do it even on non-dividing cells. Now, when a person hears viral vector these days, the thought is immediately of vaccines, and that takes us to the worry that the vaccines aimed at the COVID-19 pandemic will do things to our DNA. But were not using lentiviruses for the viral-vector vaccines were using adenoviruses, because those explicitly do not work by inserting genes into host DNA. Thats also a feature of the mRNA vaccines: messenger RNA is not incorporated into our DNA. Those two species are constantly working in close proximity in living cells and theres a huge pile of optimized protein machinery to keep them from getting crossed in that fashion. Nor does a messenger RNA sequence get turned back into DNA and inserted that way. Every cell has hundreds of thousands of mRNA molecules in it at any given time, and things would come to a catastrophic halt if these started getting reversed back into DNA sequences. (Our cells do have some RNA-to-DNA machinery in them, but it doesnt work like that).

But for gene therapy, the opposite considerations apply you most certainly want to insert new genes into human DNA, and you want it done quickly, efficiently, and right where you tell it to go. That last part is always the worry with any gene-insertion technique, be it some variety of CRISPR, zinc-finger nucleases, lentivirus vectors or what have you. This is one of the main reasons the human-editing experiment in China was so amazingly irresponsible, because our control over such things in a human embryo is just not acceptable yet. Not even close.

In fact, its tricky enough just in the stem cells pulled out of bone marrow. Thats one possibility for what Bluebird is seeing that when they treated the patients extracted cells with their lentivirus vector, that some of the hemoglobin genetic data got mishandled and plopped into the wrong stretch of DNA, demolishing some other important genes function in the process. You can be sure that theyre sequencing the abnormal blood cells from these patients now to see if this shows up. The MDS patient from 2018 turned out not to have this problem, so its possible that these two just reported dont, either. So whats the problem, if not that?

Well, as mentioned, bone marrow transplantation is a grueling process no matter what. The process of (either mostly or completely) wiping out a persons bone marrow stem cells involves severe treatments mixing chemotherapy with radiation, and one of the compounds used (and used by Bluebird) is called busulfan. The organic chemists in the crowd will find that one interesting: its the bis-mesylate of 1,4-butanediol, nothing more and nothing less, and if the thought of taking a reactive small molecule like that intravenously gives you the shivers, well, welcome to chemotherapy and get ready for some stuff thats even worse. The thing is, busulfan itself is a Class I carcinogen (as one would expect from its structure). Many older chemotherapy agents are. They are destructive to cells, and the only way you would take any of them is if you have a population of cells that you actually want to see destroyed, and you are willing to take your chances that you can bear up under the collateral damage of doing that. So its certainly possible that the leukemia seen in Bluebirds patients is at least partly driven by the bone marrow transplantation procedure rather than the gene alteration part. In case youre wondering, this could well be happening with some bone marrow transplant patients who undergo this whole procedure to treat leukemia itself, in which case it lands silently in the relapsed category. No, you only do bone marrow transplants when theres no alternative.

As that first link in todays post (Adam Feuerstein at STAT) mentions, though, theres ongoing research to make that part of the process less risky. Survival rates for bone marrow transplants in general have steadily improved over the years, and everyone knows that one of the rough parts is the pre-treatment. But that problem might or might not get solved in time to help out Bluebird (or to quell the worries that other gene-therapy outfits might have who are also targeting that hematopoietic tissue). If indeed its the problem in the first place. . .

Read the original here:
Cancer and Gene Therapy | In the Pipeline - Science Magazine

Read More...

Avance Biosciences Expanding Houston Campus in Support of Cell and Gene Therapy Drug Development – BioSpace

Friday, February 19th, 2021

HOUSTON, Feb. 16, 2021 /PRNewswire/ -- Avance Biosciences Inc., a leading CRO providing GLP/GMP-compliant assay development, assay validation, and sample testing services supporting biological drug development and manufacturing, announced today that its Houston facility, which successfully passed an inspection by the U.S. Food and Drug Administration in Oct 2018, is undergoing major expansion to handle rapidly growing demand for their services.

The new facility, expected to be completed by Q3 2021, is located adjacent to the current facility and will expand the Houston campus by an additional 5,500 square feet. The new facility will be devoted to cell-based assay services and enable Avance to better address the specific needs of their GMP clients. Additionally, Avance is expanding their mammalian cell culture related assay capabilities including: mycoplasma testing, adventitious agents testing, sterility, potency, and others.

As a provider of genomics and biological testing services, Avance Biosciences offers a broad range of molecular biology and microbiology assays in compliance with current Good Manufacturing Practices (21 CFR Parts 210 & 211) and Good Laboratory Practices (21 CFR Part 58) to support its clients' regulatory submissions.

Avance's CEO, Dr. Xuening Huang commented, "We take a partnership approach with our clients and that means an extended relationship; from discovery to development to clinical testing and on to manufacturing. Our most recent expansions will ensure that we can keep pace with our customer's increased needs when ramping up development and manufacturing activities. Our primary goals are to deliver world-class service and complete customer satisfaction."

Avance's Vice President of Sales and Marketing, Cal Froberg commented, "It's clear there is tremendous growth in the development of cell and gene therapies and we're proactively managing resources to handle increased market demand for related support services. The industry is expanding rapidly and Avance is positioned well to address the specific needs of these customers."

This most recent expansion comes on the heels of another 7,500 square foot expansion completed in 2020 which has significantly increased Avance's NGS and ddPCR capabilities. This facility has been pivotal in addressing gene therapy development support needs such as: edited gene testing, gene integration assays, and DNA/RNA biodistribution studies.

Recently, Avance Biosciences was recognized as a top 10 Genomics Solutions Company for 2020. Current and future expansion plans will serve to solidify this position among the premier providers in this space.

About Avance Biosciences

Avance offers cGMP/GLP compliant genomics biological testing services in support of drug development and manufacturing. Its leading scientists have designed, validated, and tested thousands of assays under cGMP/GLP regulations for the FDA, EPA, and European and Japanese regulatory agencies. Avance's team has extensive knowledge and experience working with scientists, QA/QC professionals and project managers from over 100 pharmaceutical and biotechnology companies and organizations throughout the world.

Contact

Xuening Huangxuening.huang@avancebio.com877-909-52109770 West Little York RoadHouston, TX 77040 USA

View original content to download multimedia:http://www.prnewswire.com/news-releases/avance-biosciences-expanding-houston-campus-in-support-of-cell-and-gene-therapy-drug-development-301226865.html

SOURCE Avance Biosciences

Read more:
Avance Biosciences Expanding Houston Campus in Support of Cell and Gene Therapy Drug Development - BioSpace

Read More...

Sensorion and Institut Pasteur announce new gene therapy collaboration – BioPharma-Reporter.com

Friday, February 19th, 2021

The new gene therapy target,GJB2 coding for the Connexin 26 protein, has been added to Sensorions development portfolio: with the target the third candidate to emerge from the R&D collaboration with Institut Pasteur. It represents the largest gene therapy opportunity for the French biotech to date.

The GJB2 program will focus on major new markets with an estimated patient population of 300,000 children and adults in Europe and the US alone.

Sensorion, a French clinical-stage biotech based in Montpellier, was founded in 2009 to develop novel therapies to restore, treat and prevent hearing loss disorders.

The GJB2 program draws on new research from Institut Pasteur which shows that the same genes that underly congenital deafness are also involved in severe forms of presbycusis (age-related hearing loss). These forms of presbycusis appearing to be monogenic types of hearing loss that can be potentially treated by gene therapy.

Although the types ofGJB2mutations in children and adults may differ, Sensorion says gene therapy could potentially provide a solution to both.

Mutations inGJB2are believed to alter a gap junction protein widely expressed in the inner ear, disturbing intercellular exchanges of molecules and leading to hearing loss that is severe-to-profound in a majority of cases.

Institut Pasteur research now shows three pathologies related to GJB2 mutations: congenital deafness;age-related hearing loss in adults; and progressive forms of hearing loss in children. Sensorion will prioritize the latter two forms, saying it is the first company to address these needs and offering the potential of large market opportunities.

The emergence of a new gene therapy target candidate validates our conviction that long-term solutions for restoring hereditary hearing loss will arise from an in-depth analysis of the "genetic landscape" of hearing loss," saidNawal Ouzren, CEO of Sensorion.

"It was clear that mutations in the GJB2 gene are important in severe to profound childhood hearing loss. However, the new discovery made by our collaborators at Institut Pasteur shows that alteration of this gene in adults offers new opportunities for Sensorion. It marks significant potential expansion of our pipeline and supports our goal of becoming a global leader in the field of gene therapies for hearing loss disorders.

Sensorions collaboration with Institut Pasteur initiated in 2019 has already led to gene therapy candidate programs in two other indications. Its USHER-CT gene therapy development program aims to restore inner ear function for patients suffering from Usher Syndrome Type 1 by providing a healthy copy of the USH1G gene coding for the SANS protein.

Meanwhile, the OTOF-GT gene therapy development program seeks to restore hearing in people with Otoferlin deficiency, one of the most common forms of congenital deafness.

Both of these have been proved in concept in preclinical studies.

Visit link:
Sensorion and Institut Pasteur announce new gene therapy collaboration - BioPharma-Reporter.com

Read More...

Gene Therapy GS010 Safe, Well-Tolerated for LHON Patients – MD Magazine

Friday, February 19th, 2021

New data from GenSight Biologics showed promising results for lenadogene nolparvovec (LUMVOQ), an intravitreal gene therapy for leber hereditary optic neuropathy (LHON) caused by mutations in the mitochondrial ND4 gene.

Overall, the therapy was well-tolerated in patients, had a favorable safety profile, and was shown that it may lead to clinically meaningful improvements.

A team, led by Catherine Vignal-Clermont, MD, Rothschild Foundation Hospital, Paris, France, conducted an open-label, single-center, dose-escalation study that primarily assessed safety and tolerability of the gene therapy among 15 patients with LHON.

Therapeutic options for adolescent and adult patients with LHON are currently limited to idebenone (Raxone), a synthetic analog of coenzyme Q10, which is approved only in Europe under exceptional circumstances for treatment of LHON, Vignal-Clermont and team wrote.

They further acknowledged that no approved treatment exists in the United States.

REVEAL A Phase I/IIa Study

Among the exclusion criteria were vision loss in the fellow eye, glaucoma, diabetic retinopathy, macula edema, vitreoretinal disease, pathology of the retina or the optic nerve, retinal vein occlusion, narrow angles, optic neuropathy for other causes, or any other disease that would have an effect on visual function.

Eligible patients were divided into a dosing cohort to receive a single injection and then were followed-up immediately at day 3 for safety and efficacy assessments.

The investigators pursued further follow-up at weeks 1, 2, 4, 8, 12, 24, 36, and 48 post-treatment. Additional follow-up was performed at years 1.5, 2, 2.5, 3, 4, and 5.

The studys primary endpoint was the overall incidences of adverse events up to 5 years post-treatments for each dosing level and for the treatment as a whole.

Secondary endpoints included best corrected visual acuity (BCVA; calculated as logarithm of the minimal angle of resolution [LogMAR]), among other efficacy measurements.

Results

Throughout the follow-up period, the investigators noted no serious adverse events that were considered related to treatments.

Furthermore, patients did not experience unexpected adverse events nor grades 3 or 4 Common Terminology Criteria for Adverse Events.

Anterior chamber inflammation and vitritis were mostly managed with topical steroids, and ocular inflammation was considered to be dose limiting by the independent data safety monitoring board based on the benefits/risks for the subjects, the investigators wrote.

In terms of efficacy, the team reported that analysis of the LogMAR BCVA in both treated and untreated eyes showed clinically relevant and durable improvements compared with baseline.

As such, the mean improvement for the treated eye was -0.44 LogMAR and for the untreated eye was -0.49.

Thus, at 5 years post-treatment, the final value of LogMAR was +1.96 and +1.85, respectively, for the treated and untreated eyes.

As for those treated with the optimal dose level of 9 1010 viral genomes/eye (n = 6), the mean visual acuity improvement from baseline was 0.68 LogMAR for treated eyes and 0.64 LogMAR for untreated eyes.

The final mean value for the treated and untreated eyes were LogMAR +1.77 and +1.78, respectively.

While there was a meaningful improvement in visual acuity for REVEAL subjects, the final visual acuity was less favorable than that seen in the two subsequent pivotal phase III studies in which subjects were treated earlier during the course of their disease, Vignal-Clermont and colleagues wrote.

Nevertheless, the team acknowledged that these findings are a promising prelude to the Phase III RESCUE and REVERSE studies, which are running in tandem and currently assessing the efficacy of the single injection of the gene therapy in a larger population.

The study, "Safety of Intravitreal Gene Therapy for Treatment of Subjects with Leber Hereditary Optic Neuropathy due to Mutations in the Mitochondrial ND4 Gene: The REVEAL Study," was published online in BioDrugs.

See the rest here:
Gene Therapy GS010 Safe, Well-Tolerated for LHON Patients - MD Magazine

Read More...

bluebird bio ‘baffled’ after NICE rejects beta-thalassaemia gene therapy – – pharmaphorum

Friday, February 19th, 2021

Its back to the drawing board for bluebird bio and its discussions with NICE, which has rejected its beta thalassaemia gene therapy Zynteglo for regular NHS use in first draft guidance.

NICE is assessing Zynteglo (betibeglogene autotemcel), a one-off gene therapy for the condition, which can have life-threatening consequences and is associated with a curtailed life expectancy.

There is a curative treatment for people who rely on blood transfusions to survive and maintain their levels of red blood cells.

But haematopoietic stem cell transplantation is only possible when a donor with a matching human leukocyte antigen signature, within the correct age range, is available.

In this first draft guidance NICE raised a series of issues with Zynteglo, which bluebird has already agreed to supply at a confidential discount from its hefty price tag, which is around 1.57 million in Europe.

NICE said that data came from a small sample of patients and is using its standard discount rate of 3.5% to calculate the long-term benefits of the treatment.

The company has unsuccessfully pushed for a rate of 1.5%, which would attach more value to the long-term benefits of the therapy over a patients lifetime.

There was also a long list of other technical issues raised by NICE that count against Zynteglo in the assessment, including costs of fertility preservation and the number of simulated profiles in bluebirds data.

Nicola Redfern, bluebird bios UK general manager, said the first step is to present a new analysis of data addressing issues raised by NICE before there are any discussions about lowering the price again.

She pointed out that the dossier presented to NICE was compiled in 2019 and the company now has six years worth of follow-up data.

Redfern also added that this is the first time that NICE had assessed a gene therapy using its single technology assessment process, which is used for medicines likely to be used more widely on the NHS.

However Redfern was still surprised the rejection given the discussions with NICE so far in the process.

She said: Some of the specifics we thought we had covered off with them and discussed. The thing that baffled me most was the lack of understanding of this disease upon the people living with it.

The UK Thalassaemia Society noted NICEs citation of a UK patient reference report stating that 37% of respondents would immediately accept a referral to a transplant specialist and betibeglogene autotemcel if offered it.

Romaine Maharaj, executive director at UKTS, said: Most of our members are very excited about the new therapy developments and are keen to explore these treatment options.

Bone marrow transplant is only an option for a very small proportion of people with thalassaemia and so gene therapy offers a real potential alternative as a one-off resolution to this life-limiting condition.

Read more here:
bluebird bio 'baffled' after NICE rejects beta-thalassaemia gene therapy - - pharmaphorum

Read More...

What We’re Reading: Sickle Cell Gene Therapy Partnership; Global COVID-19 Cases on Decline; Storms Slow Vaccine Rollout – AJMC.com Managed Markets…

Friday, February 19th, 2021

Novartis is teaming up with the Gates Foundation to develop a gene therapy for sickle cell disease; the World Health Organization reports a drop in global cases of coronavirus disease 2019 (COVID-19); storms hinder vaccine rollout across the United States.

The Bill and Melinda Gates Foundation and Novartis are collaborating to discover and develop a one-step, one-time gene therapy treatment to cure sickle cell disease, STAT News reports. Although the cause of sickle cell disease is understood and the people it affects are known, a cure has been difficult to pin down. Through a 3-year partnership, the companies aim to create a treatment that is affordable and simple enough to treat individuals anywhere in the world, including sub-Saharan Africa, where disease prevalence is high. Current gene therapy approaches are complex and expensive, and they create treatments for patients one at a time. With an initial funding amount of $7.28 million, the companies ultimately hope to create an off-the-shelf product.

In the past week, the rate of new coronavirus disease 2019 (COVID-19) cases has declined by 16% around the world, according to the World Health Organization. This decline comes even as more virulent strains of COVID-19 have caused new outbreaks in some regions, The Washington Post reports. In addition to the decline in cases, over the past week there has been a 10% reduction in the number of deaths worldwide, with the greatest drop in cases seen in Europe and the Americas. In the United States alone, the number of new infections decreased by nearly 24% in the past week.

Deadly storms across the country hampered COVID-19 vaccination efforts on Tuesday, forcing appointment cancellations and delaying vaccine deliveries, according to the Associated Press. The surge of bad weather comes as the federal government rolled out new vaccination sites targeting hard-hit communities and seeks to boost the amount of vaccine sent to states to 13.5 million doses per week. Currently, the United States administers an average of 1.7 million doses per day, but the bad weather halted vaccinations in Pennsylvania, Illinois, Tennessee, and Missouri and is expected to disrupt shipments from facilities in Tennessee and Kentucky.

Continued here:
What We're Reading: Sickle Cell Gene Therapy Partnership; Global COVID-19 Cases on Decline; Storms Slow Vaccine Rollout - AJMC.com Managed Markets...

Read More...

Selecta Biosciences and AskBio Initiate First-in-Human Dose-Escalation Study to Evaluate ImmTOR in Gene Therapy – PRNewswire

Friday, February 19th, 2021

WATERTOWN, Mass., and Research Triangle Park, N.C., Feb. 17, 2021 /PRNewswire/ --Selecta Biosciences, Inc. (NASDAQ: SELB) and Asklepios BioPharmaceutical, Inc. (AskBio), a wholly owned and independently operated subsidiary of Bayer AG, today announced the initiation of a Phase 1 dose-escalation trial of SEL-399, an adeno-associated viral serotype 8 (AAV8) empty vector capsid (EMC-101) containing no DNA combined with ImmTOR. The trial aims to determine the optimal dose of ImmTOR to mitigate the formation of antibodies to AAV8 capsids used in gene therapies.

"We are pleased to further evaluate ImmTOR's ability to reduce the formation of antibodies to AAV capsids and potentially enable gene therapy redosing by having initiated this dose-escalation study of SEL-399," said Carsten Brunn, Ph.D., president and chief executive officer of Selecta. "This trial builds upon our strong preclinical data in non-human primates and marks the first time that ImmTOR in conjunction with an AAV capsid has been dosed in humans, which is a significant milestone. Data from this study will inform the design of future clinical trials in patients as we seek to unlock the full potential of gene therapy."

The dose-escalation trial of SEL-399 is designed to evaluate the safety and preliminary efficacyof ImmTOR in gene therapy. The study, being conducted in healthy volunteers at the SGS Life Sciences Clinical Pharmacology Unit in Antwerp, Belgium, plans to enroll up to 45 subjects to investigate increasing doses of ImmTOR and EMC-101. Subjects will be randomized in a 3:1 ratio of ImmTOR plus empty AAV8 capsid to empty capsid alone. Preliminary efficacy will be measured by assessing levels of AAV8-specific neutralizing antibodies.

Jude Samulski, Ph.D., chief scientific officer and co-founder of AskBio said, "By determining the dose at which ImmTOR is able to inhibit the formation of AAV-specific antibodies,this study could be a significant first step toward overcoming some of the unwanted immune responses associated with gene therapies. We look forward to using these findings to inform future studies as we work to develop strategies for repetitive dosing of AAV, thus extending durability of expression."

Selecta and AskBio expect to report initial results from this clinical trial in the fourth quarter of 2021.

AboutSelecta Biosciences, Inc.Selecta Biosciences Inc. (NASDAQ: SELB) is leveraging its clinically validated ImmTOR platform to develop tolerogenic therapies that selectively mitigate unwanted immune responses. With a proven ability to induce tolerance to highly immunogenic proteins, ImmTOR has the potential to amplify the efficacy of biologic therapies, including redosing of life-saving gene therapies, as well as restore the body's natural self-tolerance in autoimmune diseases. The company's first program aimed at addressing immunogenicity to AAV gene therapies is expected to enter clinical trials in early 2021 in partnership with AskBio for the treatment of methylmalonic acidemia (MMA), a rare metabolic disorder. A wholly-owned program focused on addressing IgA nephropathy driven by ImmTOR and a therapeutic enzyme is also in development among additional product candidates. Selecta recently licensed its Phase 3 clinical product candidate, SEL-212, in chronic refractory gout to Sobi. For more information, please visitwww.selectabio.com.

About AskBioAsklepios BioPharmaceutical, Inc. (AskBio), a wholly owned and independently operated subsidiary of Bayer AG acquired in 2020,is a fully integrated AAV gene therapy company dedicated to developing life-saving medicines that cure genetic diseases. The company maintains a portfolio of clinical programs across a range of neuromuscular, central nervous system, cardiovascular and metabolic disease indications with a clinical-stage pipeline that includes therapeutics for Pompe disease, Parkinson's disease and congestive heart failure, as well as out-licensed clinical indications for hemophilia and Duchenne muscular dystrophy. AskBio's gene therapy platform includes Pro10, an industry-leading proprietary cell line manufacturing process, and an extensive AAV capsid and promoter library. With global headquarters in Research Triangle Park, North Carolina, and European headquarters in Edinburgh, UK, the company has generated hundreds of proprietary third-generation AAV capsids and promoters, several of which have entered clinical testing. Founded in 2001 and an early innovator in the gene therapy field, the company holds more than 500 patents in areas such as AAV production and chimeric and self-complementary capsids. Learn more atwww.askbio.comor follow us onLinkedIn.

About BayerBayer is a global enterprise with core competencies in the life science fields of health care and nutrition. Its products and services are designed to benefit people by supporting efforts to overcome the major challenges presented by a growing and aging global population. At the same time, the Group aims to increase its earning power and create value through innovation and growth. Bayer is committed to the principles of sustainable development, and the Bayer brand stands for trust, reliability and quality throughout the world. In fiscal 2019, the Group employed around 104,000 people and had sales of43.5 billion euros. Capital expenditures amounted to2.9 billion euros, R&D expenses to5.3 billion euros. For more information, visit http://www.bayer.com.

AskBio Forward-Looking StatementsThis press release contains "forward-looking statements." Any statements contained in this press release that are not statements of historical fact may be deemed to be forward-looking statements. Words such as "believes," "anticipates," "plans," "expects," "will," "intends," "potential," "possible" and similar expressions are intended to identify forward-looking statements. These forward-looking statements include without limitation statements regarding AskBio's pipeline of development candidates; AskBio's collaboration with Selecta; AskBio's clinical trials, including its ability to enroll subjects, the timing of any such trials and any potential side effects; whether ImmTOR will be able to reduce the formation of antibodies to AAV capsids and potentially enable gene therapy redosing; the timing of and results from the SEL-399/101 trial; whether the SEL-399/101 study could be a significant first step in overcoming the immunogenicity concerns associated with gene therapies; AskBio's strategies for repetitive dosing of AAV, extending durability of expression; AskBio's goal of developing life-saving medicines aimed at curing genetic diseases; and the potential benefits of AskBio's development candidates to patients. These forward-looking statements involve risks and uncertainties, many of which are beyond AskBio's control. Known risks include, among others: AskBio may not be able to execute on its business plans and goals, including meeting its expected or planned regulatory milestones and timelines, clinical development plans and bringing its product candidates to market, due to a variety of reasons, including the ongoing COVID-19 pandemic, possible limitations of company financial and other resources, manufacturing limitations that may not be anticipated or resolved in a timely manner, potential disagreements or other issues with our third-party collaborators and partners, and regulatory, court or agency feedback or decisions, such as feedback and decisions from the United States Food and Drug Administration or the United States Patent and Trademark Office. Any of the foregoing risks could materially and adversely affect AskBio's business and results of operations. You should not place undue reliance on the forward-looking statements contained in this press release. AskBio does not undertake any obligation to publicly update its forward-looking statements based on events or circumstances after the date hereof.

Selecta Forward-Looking StatementsAny statements in this press release about the future expectations, plans and prospects ofSelecta Biosciences, Inc.("the company"), including without limitation, statements regarding the unique proprietary technology platform of the company, and the unique proprietary platform of its partners, the potential of ImmTOR to enable re-dosing of AAV gene therapy, the potential treatment applications of product candidates utilizing the ImmTOR platform in areas such as gene therapy, the ability of the Company and AskBio to develop gene therapy products using ImmTOR and AskBio's technology, the novelty of treatment paradigms that the Company is able to develop, whether the observations made in non-human primate study subjects will translate to studies performed with human beings, the potential of any therapies developed by the company and AskBio to fulfill unmet medical needs, the company's plan to apply its ImmTOR technology platform to a range of biologics for rare and orphan genetic diseases, the potential of the company's intellectual property to enable repeat administration in gene therapy product candidates and products, the ability to re-dose patients and the potential of ImmTOR to allow for re-dosing, the potential to safely re-dose AAV, the ability to restore transgene expression, the potential of the ImmTOR technology platform generally and the company's ability to grow its strategic partnerships, and other statements containing the words "anticipate," "believe," "continue," "could," "estimate," "expect," "hypothesize," "intend," "may," "plan," "potential," "predict," "project," "should," "target," "would," and similar expressions, constitute forward-looking statements within the meaning of The Private Securities Litigation Reform Act of 1995. Actual results may differ materially from those indicated by such forward-looking statements as a result of various important factors, including, but not limited to, the following: the uncertainties inherent in the initiation, completion and cost of clinical trials including proof of concept trials, including the uncertain outcomes, the availability and timing of data from ongoing and future clinical trials and the results of such trials, whether preliminary results from a particular clinical trial will be predictive of the final results of that trial or whether results of early clinical trials will be indicative of the results of later clinical trials, the ability to predict results of studies performed on human beings based on results of studies performed on non-human primates, the unproven approach of the company's ImmTOR technology, potential delays in enrollment of patients, undesirable side effects of the company's product candidates, its reliance on third parties to manufacture its product candidates and to conduct its clinical trials, the company's inability to maintain its existing or future collaborations, licenses or contractual relationships, its inability to protect its proprietary technology and intellectual property, potential delays in regulatory approvals, the availability of funding sufficient for its foreseeable and unforeseeable operating expenses and capital expenditure requirements, the company's recurring losses from operations and negative cash flows from operations raise substantial doubt regarding its ability to continue as a going concern, substantial fluctuation in the price of its common stock, and other important factors discussed in the "Risk Factors" section of the company's most recent Quarterly Report on Form 10-Q, and in other filings that the company makes with theSecurities and Exchange Commission. In addition, any forward-looking statements included in this press release represent the company's views only as of the date of its publication and should not be relied upon as representing its views as of any subsequent date. The company specifically disclaims any intention to update any forward-looking statements included in this press release.

SOURCE Asklepios BioPharmaceutical, Inc.

http://www.askbio.com

See the original post:
Selecta Biosciences and AskBio Initiate First-in-Human Dose-Escalation Study to Evaluate ImmTOR in Gene Therapy - PRNewswire

Read More...

Page 10«..9101112..2030..»


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick