header logo image


Page 12«..11121314..2030..»

Archive for the ‘Genetic medicine’ Category

‘Honey bee, it’s me’ | The Source – Washington University in St. Louis Newsroom

Thursday, October 15th, 2020

For a honey bee, few things are more important than recognizing your nestmates. Being able to tell a nestmate from an invader could mean the difference between a honey-stocked hive and a long, lean winter.

New research from Washington University in St. Louis shows that honey bees rely on chemical cues related to their shared gut microbial communities, instead of genetic relatedness, to identify members of their colony.

Most people only pay attention to the genetics of the actual bee, said Yehuda Ben-Shahar, professor of biology in Arts & Sciences and corresponding author of the study published Oct. 14 in Science Advances. What we show is that it is genetic, but its the genetics of the bacteria.

Honey bees recognize and respond to chemical signals from other bees that they detect from skin compounds known as cuticular hydrocarbons, or CHCs. This study determined that a bees particular CHC profile is dependent on its microbiome the bacteria that make up its gut microbial community and is not something innate or genetic to the bee alone.

Different colonies do in fact have colony-specific microbiomes, which has never been shown before, said Cassondra L. Vernier, postdoctoral associate at the University of Illinois, who earned her biology PhD working with Ben-Shahar at Washington University.

Bees are constantly sharing food with one another and exchanging this microbiome just within their colony, said Vernier, first author of the new study.

Co-authors include Gautam Dantas, professor of pathology and immunology and of molecular microbiology at Washington University School of Medicine in St. Louis, and Joel Levine at the University of Toronto Mississauga. The work was conducted in part with bees housed at Tyson Research Center, the environmental field station for Washington University.

The importance of this paper is that its one of the first papers that actually shows that the microbiome is involved in the basic social biology of honey bees and not just affecting their health, Vernier said. The microbiome is involved in how the colony as a whole functions, and how they are able to maintain nest defenses, rather than just immune defense within an individual.

The gut microbial community or microbiome supplies humans and other animals with vitamins, helps digest food, regulates inflammation and keeps disease-causing microbes in check. Increasingly a topic of research interest, scientists have discovered many ways that the microbiome blurs the borders between a host and its bacteria.

The microbiome has been found to influence communication in several different organisms including, notably, large animals like hyenas.

For honey bees, this study shows that the microbiome plays a critical role in defining the tightly regulated chemical signals for group membership.

Until recently, most scientists thought that honey bees identified nestmates by picking up on a homogenized scent that they recognize from members of their own colony a kind of hive B.O., Ben-Shahar joked.

Bee colonies are usually composed of highly related individuals. But the chemical signals that allow bees to recognize each other are not determined by genetics alone. Researchers know this because baby bees can be placed into other colonies without being rejected up until a certain age and level of development.

It has to be something that they acquire during their lifetime that defines their nestmate recognition cues, Vernier said.

In previous work, Vernier and Ben-Shahar showed that bees develop different scent profiles as they age, and that gatekeeper bees respond differently to foragers returning to the hive compared with younger bees that have never ventured outside.

That research established a relationship between nestmate recognition and the clearly defined, age-dependent division of labor typical to honey bee hives.

Only when a bee is old enough to interact with others outside of the hive does it become recognizable to others. That was a clue for the researchers.

If you grow a honey bee in isolation, it will never develop a complete microbiome, Vernier said. It actually has to acquire most of it from interactions with other bees.

For this study, researchers determined that forager bees from different honey bee colonies have different gut microbial communities and CHC profiles by sequencing gut samples and analyzing cuticular extracts. The scientists also conducted cross-hive fostering experiments, raising groups of newly hatched bees in either their own colonies or unrelated colonies.

In the fostering experiments, the researchers found that both source- and host-colony related factors contribute to variations in the overall gut microbial community of individual bees. Of the 14 microbial taxa that significantly differed between treatments, six were similar between bees that shared the same hive environment while they grew up regardless of actual genetic relatedness.

The researchers also found that they could manipulate the microbiome of sister bees by feeding different microbes to newly hatched bees. In addition to developing different gut microbial communities, the bees also grew to have different CHC profiles.

They were unrecognizable to their siblings, Vernier said. Manipulating the microbiome was enough to cause sister bees to develop different scent profiles.

This new work is significant in part because it shows an integral role for the microbiome in the essential, everyday social interactions of honey bees, the Earths most important pollinators, researchers said.

For bees, some of the most complex aspects of their social behavior basically depends on bacteria more than anything else! Ben-Shahar said.

It doesnt matter how related they are, he said. Their ability to say you belong to this group basically depends on getting the right bacteria at the right time. Otherwise, they are blind to it.

And bee ID is key.

The biggest enemy to honey bees is other bees.

During fall, when plants stop producing nectar, there is a period of time when robbing is very prevalent in colonies, Vernier said. Robbing bees will find other colonies, and if theyre able to get in and take some honey, they will go back to their own nests and signal, Hey, go over there. Theres a nest thats not good at guarding, and we can steal their honey.

Robber bees will take that honey and leave the other colony to starve, she said. Its a very strong pressure.

Robbing deprives both the host bees and their associated bacteria with important resources which may have been the original drive to form this special bacteria-animal partnership, the researchers said.

Ben-Shahar and Verniers previous research with honey bees showed that graduating to forager status was a requirement for social membership. Read more.

Read this article:
'Honey bee, it's me' | The Source - Washington University in St. Louis Newsroom

Read More...

Role of gut viruses in inflammatory bowel disease is focus of $8.5 million grant – Washington University School of Medicine in St. Louis

Thursday, October 15th, 2020

Visit the News Hub

Tools developed to probe the virome could aid in variety of research

Researchers at Washington University School of Medicine in St. Louis have received an $8.5 million grant to study the role of gut viruses in inflammatory bowel disease. Tools developed in the course of the project could accelerate research into other roles of the virome in health and disease.

The communities of bacteria that live in our digestive tracts help digest food and produce vitamins, protect against pathogens, and promote the healthy functioning of our immune system. But alongside gut bacteria thrives a vast community of viruses, and we know little about their impact on health and disease.

Efforts to study the gut viral community known as the virome have been hindered by a lack of tools to analyze viral diversity. Researchers at Washington University School of Medicine in St. Louis have received an $8.5 million grant from the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (NIH) to develop the tools needed to study the role of the virome in inflammatory bowel disease. Once developed, such tools could be applied widely, opening up new avenues of research into the role of the virome in normal physiology and development, as well as diseases such as diabetes, AIDS and cancer.

The virome has been linked to a number of conditions inflammatory bowel disease, malnutrition, graft-versus-host disease and there is also some evidence that the virome supports human health in some ways, said principal investigator David Wang, PhD, a professor of molecular microbiology, and of pathology and immunology. But the problem that plagues virome studies is that people find an association, and then they cant pursue it. Once you find an association, the next step is to see what happens when you introduce the virus to an animal. Does it cause the disease? Make it worse? But there are no tools to carry this out.

Tools to analyze the viral community are relatively scarce partly because viruses are more diverse than bacteria. All bacteria carry certain basic housekeeping genes necessary for life, notably the 16S ribosomal RNA gene. Scientists use this universal gene to screen mixed communities of unidentified bacteria by pulling out all the 16S ribosomal RNA genes and using the sequences to classify the bacteria into families. There is no equivalent universal gene among viruses.

Wang and colleagues previously have discovered differences between the viromes of people with inflammatory bowel disease and healthy people. Inflammatory bowel disease is caused by chronic inflammation in the digestive tract and characterized by persistent diarrhea and abdominal pain. The researchers found that people with the condition carry more Caudovirales, a group of viruses that infects bacteria, and anelloviruses, a family of viruses that infects human cells, in their intestines. But they do not yet know what, if anything, the presence of these viruses means.

The new grant will allow the researchers to follow a group of people with inflammatory bowel disease over time, along with healthy members of their households for comparison. Inflammatory bowel disease tends to be cyclical, flaring up and then resolving again and again. By taking repeated stool samples and analyzing the genetic material of the viruses in such samples, the researchers will be able to see how the makeup of the gut viral community changes over the course of the disease, and gauge whether any particular groups of viruses become more abundant during flare-ups or resolutions. They also will assess what effect treatment has on the virome.

Such analysis will require the development of computational tools to identify the viruses by their genetic sequences, classify them into family groups, identify potential genes within viral sequences, and propose functions of the genes.

With the tools we have now, more than half the sequences cant be classified because they are not similar enough to known sequences, Wang said. We frequently cant even tell whether weve found a virus that infects bacteria or human cells.

Wang and colleagues also will develop ways to cultivate viruses so they can study them. As nonliving things, viruses require a living cell to multiply, which makes cultivation in the lab tricky. To grow viruses that infect human cells, researchers must first culture human cells and then infect them with viruses. But the majority of the viruses in the intestinal tract are likely to infect bacteria, not human cells. Such viruses known as bacteriophages, Latin for bacteria eaters are even more complicated: Researchers must first identify the correct bacterial species from among the thousands in our intestines, culture that species, and then attempt to grow the virus within the bacterial culture.

In previous work, we established the first culture system for a gut virus, Wang said. Were relying on our experience there to try to culture more of these novel viruses. Some of these might actually grow in a quite straightforward way, its just that no one has tried yet. And once we have the viruses, then we can use them to start doing experiments in animal models of inflammatory bowel disease.

The impact of the gut bacterial community on human health is a hot topic of study, with a possible role in health conditions ranging from autoimmunity to heart disease to psychiatric illnesses. The virome may prove to be equally consequential if only we can find a way to investigate it.

This isnt a typical grant, because part of its goal is to build resources that will then be available to the scientific community, Wang said. Creating tools is unsexy and usually unfundable. But we have to build these tools before we can answer the exciting questions.

Along with Wang, the research team includes Michael S. Diamond, MD, PhD, the Herbert S. Gasser Professor of Medicine, and Scott Handley, PhD, an associate professor of pathology and immunology, both at Washington University; Thaddeus Stappenbeck, MD, PhD, of the Cleveland Clinic; and collaborators at Cambridge University in the United Kingdom, San Diego State University in California, and Flinders University in Australia.

Washington University School of Medicines 1,500 faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Childrens hospitals. The School of Medicine is a leader in medical research, teaching and patient care, ranking among the top 10 medical schools in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Childrens hospitals, the School of Medicine is linked to BJC HealthCare.

See more here:
Role of gut viruses in inflammatory bowel disease is focus of $8.5 million grant - Washington University School of Medicine in St. Louis

Read More...

Addressing Unmet Medical Needs of Patients with Lung Cancer – Cancer Therapy Advisor

Wednesday, October 7th, 2020

Sponsored Content by the Janssen Pharmaceutical Companies of Johnson & Johnson

When it comes to new therapies, patients with lung cancer face a significant global unmet medical need. Not only does lung cancer have the highest mortality rate of all cancers worldwide, its associated with significant heterogeneity with many driver mechanisms that make it complex and difficult to treat.

The driver mechanisms we have come to understand have provided important insights into new approaches for treating lung cancer, said Matt Lorenzi, PhD., Vice President, Disease Area Leader, Solid Tumor Targeted Therapy, Janssen. Through deeper knowledge about the biology of lung cancer, we are making progress in the advancement of precision medicines that target specific pathways, including patients who have developed a resistance to other therapies.

Ongoing research efforts are continuing to show promise. Targeted therapy approaches that have derived from an understanding of driver mechanisms have helped contribute to a decline in mortality from non-small cell lung cancer (NSCLC), the most common type of lung cancer, as recently reported in The New England Journal of Medicine. In addition, immunotherapy-based approaches to reactivate or redirect a patients immune system for tumor targeting are standard of care or showing future promise, respectively.

For key oncogenic driver pathways, researchers are learning much more about the role that various genetic mutations and alterations play, and development efforts are focused on precisely targeting these defects. One of the most common genetic alterations in NSCLC is epidermal growth factor receptor (EGFR), a mutation that helps cells grow and divide. While targeting EGFR has proven to be an effective treatment intervention, tumors eventually become resistant to treatment. Therefore, the role of bispecific therapies, meaning treatments that target more than one pathway, is becoming increasingly important in the treatment of lung and other types of cancer, along with new combination-based regimens.

As researchers learn more about non-small cell lung cancer specifically as it relates to how certain genetic factors can influence the severity of disease and how a patient responds to treatment the importance of genetic testing is becoming clear, as is the importance of novel modalities and combination therapies, said Lorenzi. The complexity of lung cancer highlights the importance of developing regimens that incorporate multiple mechanisms of action to target the key pathways underlying the disease. We aim for treatment to act against each persons unique cancer, as effectively and safely as possible.

While targeted therapies are among the most discussed current research avenues, other areas are proving promising as well. One uses an approach called synthetic lethality against additional genetic alterations in lung cancer, and another uses immune cell re-direction to leverage the immune system to specifically target lung cancer cells with tumor-associated antigens.

These therapeutic developments offer a promising outlook for the future of lung cancer treatment and are further complemented by exciting efforts underway through the Johnson & Johnson Lung Cancer Initiative, which are focused on unique approaches to intercept the disease at its earliest stage or to prevent it altogether.

Despite many encouraging treatment advances in lung cancer, its five-year survival rate remains among the lowest of any cancer. Improving this statistic will require the ongoing development of novel treatments, the identification of strategic collaborators, and the advancement of scientific leadership in disease prevention and interception. As an organization that has been at the forefront of the discovery and development of new cancer therapies for more than a decade, Janssen, together with the Johnson & Johnson Lung Cancer Initiative, is committed to advancing novel approaches to support efforts throughout the medical community to transform the trajectory of lung cancer.

More:
Addressing Unmet Medical Needs of Patients with Lung Cancer - Cancer Therapy Advisor

Read More...

Passage Bio to Participate in 2020 Virtual Cell & Gene Meeting on the Mesa – GlobeNewswire

Wednesday, October 7th, 2020

PHILADELPHIA, Oct. 06, 2020 (GLOBE NEWSWIRE) -- Passage Bio, Inc. (NASDAQ: PASG), a genetic medicines company focused on developing transformative therapies for rare, monogenic central nervous system disorders, today announced that management will participate in the virtual 2020 Cell & Gene Meeting on the Mesa, October 12-16, 2020.

Passage Bios Chief Operating Officer, Jill M. Quigley, J.D., will deliver an overview of the company as part of the 2020 company presentations segment of the conference. Passage Bios company presentation will be available to view on-demand throughout the entirety of the conference.

Additionally, Alex Fotopoulos, Chief Technical Officer of Passage Bio, will participate in the panel discussion titled, Accelerating Biotherapeutics Development and Production for Increased Market Impact of Life Saving Therapeutics, moderated by Susan DCosta, Ph.D., Senior Director, Technical Program Design, Viral Vector Services, Thermo Fisher Scientific. The session will cover key topics such as integrated vs. modular manufacturing approaches, ensuring security of supply, proactive approaches to regulatory compliance, and ultimately, the panels vision for the future. The panel session will be available on-demand to attendees as of Monday, October 12, 2020.

Organized by the Alliance for Regenerative Medicine, the Cell & Gene Meeting on the Mesa is a five-day virtual conference featuring more than 120 dedicated company presentations by leading public and private companies, highlighting technical and clinical achievements over the past 12 months in the areas of cell therapy, gene therapy, gene editing, tissue engineering, and broader regenerative medicine technologies. The meeting also includes over 100 panelists and featured speakers taking part in 20 in-depth sessions covering all aspects of cell and gene therapy commercialization.

Please visit http://www.meetingonthemesa.com for full information including registration. Complimentary attendance at this event is available for credentialed investors and members of the media only. Investors should contact Laura Stringham at lstringham@alliancerm.org and interested media should contact Kaitlyn Dupont at kdupont@alliancerm.org.

About Passage BioPassage Bio is a genetic medicines company focused on developing transformative therapies for rare, monogenic central nervous system disorders with limited or no approved treatment options. The company is based in Philadelphia, PA and has a research, collaboration and license agreement with the University of Pennsylvania and its Gene Therapy Program (GTP). The GTP conducts discovery and IND-enabling preclinical work and Passage Bio conducts all clinical development, regulatory strategy and commercialization activities under the agreement. The company has a development portfolio of six product candidates, with the option to license eleven more, with lead programs in GM1 gangliosidosis, frontotemporal dementia and Krabbe disease.

For further information, please contact:

Investors:Sarah McCabe and Zofia MitaStern Investor Relations, Inc.sarah.mccabe@sternir.com zofia.mita@sternir.com

Media:Gwen FisherPassage Bio215.407.1548gfisher@passagebio.com

View post:
Passage Bio to Participate in 2020 Virtual Cell & Gene Meeting on the Mesa - GlobeNewswire

Read More...

Konica Minolta Precision Medicine (KMPM) Company Ambry Genetics Announces Comprehensive COVID-19 Screening, Management, and Testing Program To Help…

Wednesday, October 7th, 2020

ALISO VIEJO, Calif., Oct. 1, 2020 /PRNewswire/ --Ambry Genetics(Ambry), a leading clinical genetic testing lab, is launching its CARE for COVID Program with Western Springs School District 101 and The Green Alliance International. The Ambry Genetics Comprehensive, Assessment, Risk, and Education (CARE) for COVID Program is designed to help identify and test individuals in need of coronavirus testing. The program provides Western Springs School District 101 with the system, tools, and support needed to screen and test their faculty and other employees as they return to their offices and classrooms this fall. The Western Springs School District, located in a suburb of Chicago, Illinois, serves students from kindergarten to eighth grade. The Green Alliance International will be using the CARE for COVID Program's screening and exposure questionnaire as part of their Gateway Entry Systems program. The Gateway Entry Systems program provides school systems, sports venues, and businesses across the U.S. with the tools needed to safely reopen, including disinfecting technology, wristband body temperature screening, and the CARE for COVID program's symptom and exposure digital questionnaire for remote monitoring.

The CARE for COVID program includes viral testing by RT-PCR for individuals who are exhibiting symptoms or have known exposure, with results returnedwithin 24-48hours of receipt of the sample. Ambry's RT-PCR test uses saliva collection and creates a simpler and more convenient experience than the nasopharyngeal swabs commonly used by other labs.

The CARE for COVID Program also includes:

The robust, one-stop nature of the CARE for COVID Program ensures that individuals are not missed through multiple engagement points. The CARE for COVID Program incorporates the latest guidance from federal agencies, including the CDC. Ambry worked directly with noted experts in academia, industry, and government to develop the program.

"Over the last six months or so, our team has worked tirelessly to transition our lab and the CARE Program into a comprehensive, end-to-end solution to support workforce and community testing efforts," Ambry Genetics CEO Aaron Elliott said. "We look forward to helping more businesses and schools to safely reopen."

Ambry is expanding the CARE for COVID Program to other school districts and businesses this fall. The Program can be tailored depending on the organization's needs, and employers can choose the frequency for asking individuals to complete the screening questionnaire, whether daily or less often. Ambry is contracted with health plans representing over 90% of insured individuals, making it convenient for the employers to bill insurance for the testing performed.

"With the development of our CARE for COVID program, we learned that organizations want an end-to-end solution," Ambry Genetics Chief Commercial Officer Tom Schoenherr said. "If a critical component is missing in the solution, it will not work. The CARE for COVID program includes education, evaluation, assessment, counseling, testing, post-test counseling, workplace exposure tracing, and reporting."

The Ambry CARE program is a population-health, precision-medicine tool that can address employee health and wellness across a range of medical issues. Already used to help people learn whether they are at risk for hereditary cancers including, breastand colon cancers, the program can also be adapted to help identify and manage diabetes, cardiovascular, and other diseases. To learn more about the CARE program and hereditary cancer risk, please visitambrygen.com/care.

ABOUT AMBRY GENETICS

Ambry Genetics, as part of Konica Minolta Precision Medicine, excels at translating scientific research into clinically actionable test results based upon a deep understanding of the human genome and the biology behind genetic disease. Our unparalleled track record of discoveries over 20 years, and growing database that continues to expand in collaboration with academic, corporate and pharmaceutical partners, means we are first to market with innovative products and comprehensive analysis that enable clinicians to confidently inform patient health decisions. We care about what happens to real people, their families, and the people they love, and remain dedicated to providing them and their clinicians with deeper knowledge and fresh insights, so together they can make informed, potentially life-altering healthcare decisions. For more information, please visitambrygen.com.

For more information on risk factors for hereditary cancer, please visit cancer.gov's fact sheet on hereditary cancer and genetic testing.

Press Contact:Liz Squirepress@ambrygen.com(202) 617-4662

View original content to download multimedia:http://www.prnewswire.com/news-releases/konica-minolta-precision-medicine-kmpm-company-ambry-genetics-announces-comprehensive-covid-19-screening-management-and-testing-program-to-help-schools-and-businesses-to-safely-reopen-301143750.html

SOURCE Ambry Genetics

Read the original here:
Konica Minolta Precision Medicine (KMPM) Company Ambry Genetics Announces Comprehensive COVID-19 Screening, Management, and Testing Program To Help...

Read More...

CHOP Researchers Use Precision Medicine to Reverse Severe Lymphatic Disorder in a Patient with KLA – Newswise

Wednesday, October 7th, 2020

Philadelphia, October 5, 2020Through genetic sequencing and targeted treatment, researchers from Childrens Hospital of Philadelphia (CHOP) have resolved a severe lymphatic disorder in a young woman with kaposiform lymphangiomatosis (KLA), a complex and rare disorder that causes lymphatic vessels around the heart and lung to leak fluid, causing breathing difficulties, infections, and often death. The treatment, which the research team has used successfully in other patients with lymphatic disorders, led to a complete resolution of the patients symptoms and fully remodeled her lymphatic system within a matter of months.

The findings were recently published in EMBO Molecular Medicine.

The resolution of lung disease with lymphatic remodeling is remarkable and potentially should change how we evaluate and treat lung disease in this patient population, said first author Jessica B. Foster, MD, an attending physician in CHOPs Division of Oncology. These results offer hope to other patients with lymphatic-induced lung disease and warrant further investigation.

Brenna, the patient described in the paper, first developed symptoms related to KLA at age 6 and was diagnosed with the condition when she was 10. For nearly a decade, she was treated with a variety of therapies, including rapamycin, an immunosuppressant; prednisone, a steroid; and vincristine, a chemotherapy drug. Despite aggressive treatment, her debilitating symptoms persisted, and so her clinical team at CHOP decided to explore other therapies.

Many patients with KLA have a mutation in the NRAS gene, and the team had previously used a mitogen-activated protein kinase (MEK) inhibitor called trametinib in another patient with a severe lymphatic disorder and NRASmutation. The drug resolved his symptoms and completely remodeled his lymphatic system. Although that patient did not have KLA, the researchers felt the success of trametinib in treating his severe lymphatic symptoms, combined with Brennas rapidly deteriorating condition, warranted the request for expanded access to treat Brenna with the drug.

As Brenna began taking trametinib, a drug historically used to treat metastatic melanoma, the researchers sent samples of her lymph fluid for genetic sequencing. The researchers learned that Brenna did not harbor an NRAS mutation and instead had a mutation in a different gene: CBL, a gene that operates along the Ras pathway, the same genetic pathway implicated in other lymphatic disorders, including the one for which they had used trametinib with great success. Mutations along the Ras pathway result in an overproduction of MEK, which leads to the uncontrolled proliferation of lymphatic vessels. A MEK inhibitor like trametinib brings the production of MEK under control, putting the brakes on a system in overdrive.

Brenna was the first patient with KLA to take trametinib for a lymphatic issue, and within four weeks of starting a low dose, her symptoms improved. Her shortness of breath, coughing, and difficulty breathing while lying flat disappeared. She was able to exercise again, and during the second cycle of her therapy, she began training for a 5K race.

The relatively low dose required for dramatic improvement in this case highlights that a small amount of trametinib may be sufficient to treat lymphatic disorders, which will likely limit the side effect profile compared to the higher doses used for oncologic cases, said senior author Yoav Dori, MD, PhD, Director of the Jill and Mark Fishman Center for Lymphatic Disorders at CHOP. We are now preparing ongoing prospective studies to evaluate Ras pathway inhibition in clinical trials of large cohorts of patients.

Follow up tests have shown significant improvement in Brennas restrictive lung disease, and the fluid in her lungs has disappeared. Her overabundant lymph vessels have remodeled themselves and are now behaving normally. Now 20 years old, she continues to take a daily dose of trametinib, which has kept her symptoms at bay.

Genomic evaluation of vascular anomalies such as KLA have only just begun in recent years, said Denise Adams, MD, Director of the Comprehensive Vascular Anomalies Program (CVAP), a CHOP Frontier Program. This case study demonstrates the power of collaborative, cutting-edge research that reaches across disciplines, from genetics to oncology to cardiology, to bring breakthrough treatments to patients.

Foster et al. Kaposiform lymphangiomatosis effectively treated with MEK inhibition, EMBO Molecular Medicine, online September 7, 2020, DOI: 10.15252/emmm.202012324

#

About Childrens Hospital of Philadelphia: Childrens Hospital of Philadelphia was founded in 1855 as the nations first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals, and pioneering major research initiatives, Childrens Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country. In addition, its unique family-centered care and public service programs have brought the 564-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu

More here:
CHOP Researchers Use Precision Medicine to Reverse Severe Lymphatic Disorder in a Patient with KLA - Newswise

Read More...

Editas Medicine to Participate in Upcoming Investor Conference – GlobeNewswire

Wednesday, October 7th, 2020

CAMBRIDGE, Mass., Oct. 01, 2020 (GLOBE NEWSWIRE) -- Editas Medicine, Inc. (Nasdaq: EDIT), a leading genome editing company, today announced that management will participate in the following upcoming investor conference:

Chardan Virtual 4th Annual Genetic Medicines ConferenceFireside ChatDate: Monday, October 5, 2020Time: 10:30 a.m. ET

The event will be webcast live and may be accessed on the Editas Medicine website in the Investors and Media section. Archived recordings will be available for approximately 30 days following the event.

About Editas MedicineAs a leading genome editing company, Editas Medicine is focused on translating the power and potential of the CRISPR/Cas9 and CRISPR/Cas12a (also known as Cpf1) genome editing systems into a robust pipeline of treatments for people living with serious diseases around the world. Editas Medicine aims to discover, develop, manufacture, and commercialize transformative, durable, precision genomic medicines for a broad class of diseases. For the latest information and scientific presentations, please visit http://www.editasmedicine.com.

Investor ContactMark Mullikin(617) 401-9083mark.mullikin@editasmed.com

Media ContactCristi Barnett(617) 401-0113cristi.barnett@editasmed.com

Read more here:
Editas Medicine to Participate in Upcoming Investor Conference - GlobeNewswire

Read More...

Stoke Therapeutics Announces Plans to Move Forward With Dosing of STK-001 in Children and Adolescents in its Ongoing Phase 1/2a MONARCH Study for…

Wednesday, October 7th, 2020

Oct. 7, 2020 11:00 UTC

BEDFORD, Mass.--(BUSINESS WIRE)-- Stoke Therapeutics, Inc., (Nasdaq: STOK), a clinical-stage biotechnology company pioneering a new way to treat the underlying cause of genetic diseases by precisely upregulating protein expression, today announced plans to move forward with dosing of STK-001 in children and adolescents in its ongoing Phase 1/2a MONARCH study for Dravet syndrome. Following recent interactions with the U.S. Food and Drug Administration (FDA) related to the partial clinical hold on higher dose levels in the MONARCH study, the FDA will allow the Company to add an additional higher dose level to the single ascending dose (SAD) portion of the study (previously Part A). A total of three dose levels will now be evaluated in this portion of the study: 10 mg, 20 mg and 30 mg. Dosing above 30 mg in this study remains on FDA partial clinical hold.

In addition, subject to FDA review, the Company is preparing to add a multiple ascending dose (MAD) portion to the MONARCH study, replacing Part B. This decision is based on new preclinical repeat-dose toxicology data, which were reviewed by the FDA as part of ongoing discussions with the Company. There were no adverse effects observed in the non-human primate (NHP) repeat dose study. The Company plans to submit a protocol amendment to the FDA, which will reflect these changes to the SAD and MAD portions of the study.

There is an urgent need for more effective medicines for people who are living with Dravet syndrome, so we are pleased to be moving ahead quickly with our plans to continue dosing children and adolescents in this important Phase 1/2a study of STK-001, said Edward M. Kaye, M.D., Chief Executive Officer of Stoke Therapeutics. We appreciate the FDAs timely review of our additional data and look forward to evaluating a total of three individual dose levels in the single ascending dose portion of the study. In addition, we are encouraged by preclinical data that demonstrated the ability to safely achieve greater exposure levels with multiple doses of STK-001. Based on these data, we plan to also evaluate multiple ascending doses of up to 30 mg in this ongoing study. Our team is working diligently to submit a revised protocol to the FDA in the coming days.

In March 2020, the Company announced the FDA had placed a partial clinical hold on higher doses of STK-001 in the MONARCH study, pending additional preclinical testing to determine the safety profile of doses higher than the current no observed adverse effect level (NOAEL). When intrathecal doses above the NOAEL were administered to NHPs, adverse hind limb paresis was observed. This finding is known to occur following intrathecal delivery of antisense oligonucleotides (ASOs) to NHPs and is not known to translate to the human experience. When extremely high dose levels were administered, acute convulsions were observed immediately following STK-001 administration. The dose levels were well above the range of corresponding human doses that would ever be administered in the clinic, and were delivered in a formulation that was at a higher concentration than would be administered in the clinic. There is no apparent correlation of these acute adverse events with the mechanism of action of STK-001.

Enrollment and dosing in MONARCH is ongoing. Preliminary safety and pharmacokinetic data are still anticipated in 2021.

About STK-001

STK-001 is an investigational new medicine for the treatment of Dravet syndrome. Stoke believes that STK-001, a proprietary antisense oligonucleotide (ASO), has the potential to be the first disease-modifying therapy to address the genetic cause of Dravet syndrome. STK-001 is designed to upregulate NaV1.1 protein expression by leveraging the non-mutant (wild-type) copy of the SCN1A gene to restore physiological NaV1.1 levels, thereby reducing both occurrence of seizures and significant non-seizure comorbidities. Stoke has generated preclinical data demonstrating proof-of-mechanism and proof-of-concept for STK-001. STK-001 has been granted orphan drug designation by the FDA as a potential new treatment for Dravet syndrome.

About Phase 1/2a Clinical Study (MONARCH)

The MONARCH study is a Phase 1/2a open-label study of children and adolescents ages 2 to 18 who have an established diagnosis of Dravet syndrome and have evidence of a pathogenic genetic mutation in the SCN1A gene. The primary objectives for the study will be to assess the safety and tolerability of STK-001, as well as to characterize human pharmacokinetics. A secondary objective will be to assess the efficacy as an adjunctive antiepileptic treatment with respect to the percentage change from baseline in convulsive seizure frequency over a 12-week treatment period. Stoke also intends to measure non-seizure aspects of the disease, such as quality of life, as secondary endpoints. Stoke plans to enroll approximately 48 patients across 20 sites in the United States.

About Dravet Syndrome

Dravet syndrome is a severe and progressive genetic epilepsy characterized by frequent, prolonged and refractory seizures, beginning within the first year of life. Dravet syndrome is difficult to treat and has a poor long-term prognosis. Complications of the disease often contribute to a poor quality of life for patients and their caregivers. The effects of the disease go beyond seizures and often include intellectual disability, developmental delays, movement and balance issues, language and speech disturbances, growth defects, sleep abnormalities, chronic infections, disruptions of the autonomic nervous system and mood disorders. Compared with the general epilepsy population, people living with Dravet syndrome have a higher risk of sudden unexpected death in epilepsy, or SUDEP. Dravet syndrome affects approximately 35,000 people in the United States, Canada, Japan, Germany, France and the United Kingdom, and it is not concentrated in a particular geographic area or ethnic group.

About Stoke Therapeutics

Stoke Therapeutics (Nasdaq: STOK), is a clinical-stage biotechnology company pioneering a new way to treat the underlying causes of severe genetic diseases by precisely upregulating protein expression to restore target proteins to near normal levels. Stoke aims to develop the first precision medicine platform to target the underlying cause of a broad spectrum of genetic diseases in which the patient has one healthy copy of a gene and one mutated copy that fails to produce a protein essential to health. These diseases, in which loss of approximately 50% of normal protein expression causes disease, are called autosomal dominant haploinsufficiencies. Stoke is headquartered in Bedford, Massachusetts with offices in Cambridge, Massachusetts. For more information, visit https://www.stoketherapeutics.com/ or follow the company on Twitter at @StokeTx.

Cautionary Note Regarding Forward-Looking Statements

This press release contains forward-looking statements within the meaning of the safe harbor provisions of the Private Securities Litigation Reform Act of 1995, including, but not limited to: our expectation about the dosing, timing and execution of our Phase 1/2a MONARCH study of STK-001, including our ability to include a multiple ascending dose portion in the study and the partial clinical hold on Part B of the study; the expansion of our pipeline and the use of the TANGO platform to treat other genetic diseases; our ability to use study data to advance the development of STK-001; the ability of STK-001 to treat the underlying causes of Dravet syndrome; and the ability of TANGO to design medicines to increase protein production and the expected benefits thereof. These forward-looking statements may be accompanied by such words as aim, anticipate, believe, could, estimate, expect, forecast, goal, intend, may, might, plan, potential, possible, will, would, and other words and terms of similar meaning. These forward-looking statements involve risks and uncertainties, as well as assumptions, which, if they do not fully materialize or prove incorrect, could cause our results to differ materially from those expressed or implied by such forward-looking statements. These statements involve risks and uncertainties that could cause actual results to differ materially from those reflected in such statements, including: our ability to develop, obtain regulatory approval for and commercialize STK-001 and future product candidates; the timing and results of preclinical studies and clinical trials; the risk that positive results in a clinical trial may not be replicated in subsequent trials or success in early stage clinical trials may not be predictive of results in later stage clinical trials; risks associated with clinical trials, including our ability to adequately manage clinical activities, unexpected concerns that may arise from additional data or analysis obtained during clinical trials, regulatory authorities may require additional information or further studies, or may fail to approve or may delay approval of our drug candidates; the occurrence of adverse safety events; failure to protect and enforce our intellectual property, and other proprietary rights; failure to successfully execute or realize the anticipated benefits of our strategic and growth initiatives; risks relating to technology failures or breaches; our dependence on collaborators and other third parties for the development, regulatory approval, and commercialization of products and other aspects of our business, which are outside of our full control; risks associated with current and potential delays, work stoppages, or supply chain disruptions caused by the coronavirus pandemic; risks associated with current and potential future healthcare reforms; risks relating to attracting and retaining key personnel; failure to comply with legal and regulatory requirements; risks relating to access to capital and credit markets; environmental risks; risks relating to the use of social media for our business; and the other risks and uncertainties that are described in the Risk Factors section of our most recent annual or quarterly report and in other reports we have filed with the U.S. Securities and Exchange Commission. These statements are based on our current beliefs and expectations and speak only as of the date of this press release. We do not undertake any obligation to publicly update any forward-looking statements.

View source version on businesswire.com: https://www.businesswire.com/news/home/20201007005223/en/

More here:
Stoke Therapeutics Announces Plans to Move Forward With Dosing of STK-001 in Children and Adolescents in its Ongoing Phase 1/2a MONARCH Study for...

Read More...

Our genes know kindness is the best medicine – Brainerd Dispatch

Thursday, September 24th, 2020

Editor's note: Life can be stressful, and many of us have a hard time administering self-care. The current world situation ripe with conflicts, shortages and a pandemic makes things even harder. Dr. Amit Sood, formerly of Mayo Clinic and now head of the Global Center for Resiliency and Wellbeing, is the author of books including "The Mayo Clinic Handbook for Happiness" and "SMART with Dr. Sood, and creator of the mobile app Zizo: Your Resilience Pal. Now, he is writing a weekly column answering readers' questions on these topics. See the tagline to learn how to send him your questions, and he will answer in future columns.

Dear friend,

Of the hundreds of ice-creams I have eaten so far, the only one I remember is the ice-cream I never ate.

That was in 1993. My wife Richa and I were sitting outside a shop in the sweltering New Delhi. We had just bought an ice cream to cool down. From the corner of my eye, I saw a little boy who could use a few calories. I walked up to him and offered my cone that he gladly took. I have savored the gleam I saw in his eyes at least a dozen times since then.

In a very interesting study, researchers looked at the genetic fingerprint of the two types of happiness hedonistic (self-centric) and eudaimonic (other-centric). People who were hedonistically happy had a higher inflammatory and lower anti-viral gene expression. It was just the opposite for the eudaimonic ones. With many illnesses caused by inflammation, you can see why this is so important for our health.

My take on this research is that our genes and the immune system know what is right for us and society. In the current times when a healthy immune system is extremely important for us, promoting kindness is imperative.

Kindness, research shows, pays three times over. Your kind words and actions enhance your health and wellbeing, help others, and the memory of kind actions by itself enhances your wellbeing. A very simple way to enhance your self-worth and happiness today is to count your previous kind actions.

I suggest take out a pen and paper and write the three most selfless things you have done in your life. If you feel up to it, share your experience with someone. Just counting previous acts of kindness can enhance your self-worth and bring happiness to others (you guessed it right witnessing or hearing about others kind actions also increases happiness).

In kindness,

Amit

Dr. Amit Sood answers your questions about stress, resilience, happiness, relationships, and related topics in his column. Email dearfriend@postbulletin.com.

Original post:
Our genes know kindness is the best medicine - Brainerd Dispatch

Read More...

Cracking the code to live your best life: Canadian DNA testing companies, dnaPower and Inagene, partner to unlock true personalized health through…

Thursday, September 24th, 2020

dnaPower Inc, a biotechnology company that offers DNA testing for health and wellness, announces their partnership with Inagene Diagnostics. Inagene Diagnostics is a DNA testing company that uses genetic information to predict response to medications commonly used to treat pain and mental health conditions. These two Canadian DNA testing companies have joined forces to crack the code on personalized healthcare, empowering people to take control of their health and live their best lives.

dnaPower is committed to helping people make better data-driven decisions about their day to day health using genetics. We are delighted to be partnering with Inagene, a strong female-led, Canadian DNA company to include their pharmacogenetic testing.In addition to providing tailored health solutions for your diet, exercise and lifestyle, we can now add the ability to identify the medications best suited for your body to keep you safe and get the best health outcome. Dr. Lois Nahirney, CEO, dnaPower Inc.

Through their partnership, dnaPower and Inagene offer a suite of tailored health solutions for anyone looking to maximize insights to optimize their health. Comprehensive DNA testing is available for preventative health and medical treatment optimization. Personalized insights include tailored diet, exercise, lifestyle recommendations, and medications to optimize ones treatment plan based on their genetic information. Together, these powerful genetic insights act as a biological roadmap to help individuals navigate their best health.

Advancements in technology have opened up a world of opportunities to personalized healthcare in ways never seen before. There is no one size fits all solution when it comes to health. Unique genes can respond differently to foods, types of exercise, and medications. Spending years through trial and error to find the best diet, exercise, and medication is a way of the past. Individuals can now enjoy the ability to take control of their health without the guesswork through genetic testing.

We are excited and proud to partner withdnaPower another leading-edge Canadian company! Our teams care deeply about helping clients and are passionate about bringing innovation and personalized medicine to consumers. Helping individuals and their healthcare providers determine which drug and dose will work best, with less trial and error, is just part of the equation; the opportunity to learn what diet and exercise regimen works best for you, further enhances the client experience. Nancy White, CEO, Inagene Diagnostics.

To celebrate their partnership, dnaPower and Inagene are offering a combined special on their DNA tests. The Ultimate Insights Package includes the suite of dnaPower and Inagene DNA tests at the incredible price of $648 (retail value $1495). See this special offer.

Together, dnaPower and Inagene are passionate about empowering individuals to control their health with genetic testing, sharing a unified principle that knowledge is power.

About Inagene Diagnostics

With over two decades of experience in genetic research and diagnostics, combined with over 30 years of commercial health experience, Inagene has witnessed and been a part of the growing technology that now makes personalized healthcare possible. Inagene believes patients are not simply seeking more information, but practical and individualized information they can use to help make the best decisions about their health. Inagene Personalized InsightsTM makes it easy for patients and health care practitioners to navigate to the safest and most effective treatment options for medications used for pain and mental health conditions, and steer clear of those that arent.

About dnaPower Inc

dnaPower was one of the first in the world to offer DNA health testing, launching in 2008. They saw enormous potential for new DNA technology to help support peoples health and wellness, particularly in diet and fitness. dnaPower was a pioneer in applying leading-edge gene research to develop targeted gene panels. Since then, they have been providing personalized testing and professional support to help people like you make better, data-driven decisions about your health. With years of experience, dnaPower provides clear results and specific recommendations to help you take proactive and positive action for your unique body.

Read this article:
Cracking the code to live your best life: Canadian DNA testing companies, dnaPower and Inagene, partner to unlock true personalized health through...

Read More...

ESMO Virtual Congress 2020: Real-World Patterns of Genomic Testing in Patients with Metastatic Castration-R… – UroToday

Thursday, September 24th, 2020

(UroToday.com) Since 2015, multiple studies together have suggested that approximately a quarter of metastatic castration-resistant prostate cancer (mCRPC) tumors have mutations in DNA damage repair (DDR) genes. These alterations, especially those in genes for homologous recombination repair (HRR), are associated to varying degrees with response to PARP inhibitor therapy. Two PARP inhibitors are now approved for the care of patients with mCRPC and mutations in certain HRR genes: olaparib (based on PROfound trial) and rucaparib (based on TRITON2 trial). Given the significance of alterations in HRR genes in mCRPC, genomic testing for HRR alterations has been included in mCRPC treatment guidelines with the purpose of guiding genetic counseling and therapy selection.

In this poster, Dr. Neal Shore and colleagues describe real-world patterns and predictors of tissue testing for alterations in HRR genes. They focused on the community cancer care setting. Data were collected from the Flatiron Health Electronic Health Record derived database that was collected between 2013 and March 2019, prior to the approval of PARP inhibitor therapy in mCRPC, and focused on testing for alterations in BRCA1, BRCA2, ATM, CDK12, FANCA, and PALB2). The Flatiron database contains information on patient demographics, prostate cancer characteristics, and treatment, as well as genetic testing results.

From the Flatiron database, 5,213 patients with mCRPC were identified, 91% of which were managed at community oncology care centers. Of these patients, 674 (12.9%) underwent testing for the specified HRR gene alterations. Patient characteristics are shown below.

The breakdown of the 674 patients by testing method and number of genes tested is shown below.

BRCA1 and BRCA2 were the most commonly tested genes. A substantial portion of patients underwent only blood/saliva testing (40.5%, capable of detecting germline or circulating tumor DNA) or tumor-tissue testing only (42.1%, capable of detecting germline or tumor tissue DNA alterations). Only 1.8% of patients undergoing blood/saliva testing were tested for all 6 HRR genes, and 69% of tumor-tissue testing covered all 6 genes. Amongst the 286 patients who had negative blood/saliva testing, only 12.6% underwent tumor-tissue profiling, and 5 of these patients (13.9%) had an HRR alteration found.

The most common testing platform utilized was Foundation Medicine, followed by Guardant. Testing rates and the inclusion of more genes increased with time.

The prevalence of HRR alterations found is shown below.

Treatment at an academic medical center or having received multiple prior lines of therapy was associated with a higher likelihood of having HRR mutational profiling. Older age and higher PSA value at diagnosis of mCRPC were significantly associated with a lower likelihood of HRR mutation profiling.

The poster concludes that rates of HRR mutational testing did not increase dramatically with changes to the NCCN guidelines recommending this testing in 2017. Increased awareness of recommendations for testing, especially with the approval of two therapeutic agents contingent upon the presence of HRR alterations, is critical for the care of patients with mCRPC.

Presented by: Neal Shore, MD FACS, Urologist, and Director of the Carolina Urologic Research Center, Myrtle Beach, South Carolina

Written by: Alok Tewari, MD, Ph.D., Medical Oncologist at the Dana-Farber Cancer Institute, at the 2020 European Society for Medical Oncology Virtual Congress (#ESMO20), September 19th-September 21st, 2020

Read more from the original source:
ESMO Virtual Congress 2020: Real-World Patterns of Genomic Testing in Patients with Metastatic Castration-R... - UroToday

Read More...

Vertex to Present New Data at European and North American Virtual Cystic Fibrosis Conferences Highlighting Long-Term Use of CFTR Modulators – Business…

Thursday, September 24th, 2020

BOSTON--(BUSINESS WIRE)--Vertex Pharmaceuticals Incorporated (Nasdaq: VRTX) today announced that data from the companys portfolio of cystic fibrosis (CF) medicines will be presented at the 43rd European Cystic Fibrosis Digital Conference (ECFS) held September 24-25, 2020 and the 2020 North American Cystic Fibrosis Virtual Conference (NACFC) taking place October 7-23, 2020. An oral presentation at the ECFS Digital Conference will highlight, for the first time, interim results from the TRIKAFTA open-label extension study, which showed safety and efficacy consistent with the results of the Phase 3 pivotal studies in patients with CF ages 12 and older with F508del/Minimal Function (F/MF) or F508del/F508del (F/F) genotypes. Four additional scientific abstracts for ORKAMBI and TRIKAFTA were published in the Journal of Cystic Fibrosis as part of the ECFS conference. In addition, six scientific presentations will occur at NACFC regarding KALYDECO, ORKAMBI and TRIKAFTA, including new data from KALYDECO in infants ages 4 to less than 6 months old.

As we continue to reach additional people with CF with our medicines, gaining a better understanding of their long-term and real-world impact becomes even more important, said Carmen Bozic, M.D., Executive Vice President, Global Medicines Development and Medical Affairs, and Chief Medical Officer at Vertex. We are pleased to report the first longer-term data for TRIKAFTA which show the significant benefits seen early are maintained through one year of treatment.

Data highlighting interim results from the ongoing TRIKAFTA open-label extension (OLE) study to evaluate long-term safety and efficacy in people with CF ages 12 and older with F508del/Minimal Function (F/MF) or F508del/F508del (F/F) genotypes who completed pivotal studies will be presented at the ECFS Digital Conference. In the interim analysis, TRIKAFTA was generally well-tolerated, with no new safety concerns. The data show that the marked improvements observed in the prior pivotal studies across multiple efficacy endpoints, including, percent predicted forced expiratory volume in 1 second (ppFEV1), sweat chloride (SwCl), Cystic Fibrosis Questionnaire Revised (CFQ-R) respiratory domain score, and body mass index (BMI), were sustained with continued treatment with TRIKAFTA.

A full listing of Vertex scientific presentations at ECFS and NACFC are below:

Abstract Title

PresentationType

PresentingAuthor

Date/ Time

ELX/TEZ/IVA

A phase 3, open-label extension study of elexacaftor/tezacaftor/ivacaftor: interim analysis of safety and efficacy in people with cystic fibrosis and F508del/minimal function or F508del/F508del genotypes

ECFS Oral Presentation

Professor Griese

September 24, 2020

11:21-11:45 a.m. CET

Impact of elexacaftor/tezacaftor/ivacaftor triple combination therapy on health-related quality of life in people with cystic fibrosis heterozygous for F508del and a minimal function mutation: results from a phase 3 clinical study

ECFS published abstract: Journal of Cystic Fibrosis 19S2 (2020) S55S168, P221

NACFC Poster Presentation #447

Professor Fajac

Oct 7 Oct 23, 2020

Impact of elexacaftor/tezacaftor/ivacaftor triple combination therapy on health-related quality of life in people with cystic fibrosis homozygous for F508del: results from a phase 3 clinical study

ECFS published abstract: Journal of Cystic Fibrosis 19S2 (2020) S1S36, WS19.6

NACFC Poster Presentation #478

Professor Majoor

Oct 7 Oct 23, 2020

IVA

An observational study of ivacaftor in people with cystic fibrosis and selected non-G551D gating mutations: outcomes from the third interim analysis of the VOCAL study

NACFC Poster Presentation

#466

Professor Kors van der Ent

Oct 7 Oct 23, 2020

Ivacaftor in 4 to < 6-month-old infants with a gating mutation: results of a 2-part, single-arm, phase 3 study

NACFC Poster Presentation

#415

Dr. Rosenfeld

Oct 7 Oct 23, 2020

Real-world outcomes in children aged 2-5 with CF treated with ivacaftor

NACFC Poster Presentation

#141

Dr. Volkova

Oct 7 Oct 23, 2020

LUM/IVA

Long-term safety of lumacaftor/ivacaftor in persons with cystic fibrosis aged 2-5 years homozygous for the F508del-CFTR mutation (F/F)

ECFS Published abstract:

Journal of Cystic Fibrosis 19S2 (2020) S1S36, WS19.2

Disease progression in F508del homozygous (F/F) persons with cystic fibrosis treated with lumacaftor/ivacaftor (LUM/IVA): interim results of a long-term safety study using data from the US Cystic Fibrosis Foundation Patient Registry (CFFPR)

ECFS Published abstract:

Journal of Cystic Fibrosis 19S2 (2020) S1S36, WS13.1

NACFC Poster Presentation

#190

Dr. Bower

Oct 7 Oct 23, 2020

About Cystic Fibrosis

Cystic Fibrosis (CF) is a rare, life-shortening genetic disease affecting approximately 75,000 people worldwide. CF is a progressive, multi-system disease that affects the lungs, liver, GI tract, sinuses, sweat glands, pancreas and reproductive tract. CF is caused by a defective and/or missing CFTR protein resulting from certain mutations in the CFTR gene. Children must inherit two defective CFTR genes one from each parent to have CF. While there are many different types of CFTR mutations that can cause the disease, the vast majority of all people with CF have at least one F508del mutation. These mutations, which can be determined by a genetic test, or genotyping test, lead to CF by creating non-working and/or too few CFTR proteins at the cell surface. The defective function and/or absence of CFTR protein results in poor flow of salt and water into and out of the cells in a number of organs. In the lungs, this leads to the buildup of abnormally thick, sticky mucus that can cause chronic lung infections and progressive lung damage in many patients that eventually leads to death. The median age of death is in the early 30s.

INDICATION AND IMPORTANT SAFETY INFORMATION FOR KALYDECO (ivacaftor), TRIKAFTA (elexacaftor/tezacaftor/ivacaftor and ivacaftor), and ORKAMBI (lumacaftor/ivacaftor)

What is KALYDECO?KALYDECO is a prescription medicine used for the treatment of cystic fibrosis (CF) in patients age 6 months and older who have at least one mutation in their CF gene that is responsive to KALYDECO. Patients should talk to their doctor to learn if they have an indicated CF gene mutation. It is not known if KALYDECO is safe and effective in children under 6 months of age.

What is TRIKAFTA?TRIKAFTA is a prescription medicine used for the treatment of CF in patients aged 12 years and older who have at least one copy of the F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Patients should talk to their doctor to learn if they have an indicated CF gene mutation. It is not known if TRIKAFTA is safe and effective in children under 12 years of age.

What is ORKAMBI?ORKAMBI is a prescription medicine used for the treatment of CF in patients age 2 years and older who have two copies of the F508del mutation (F508del/F508del) in their CFTR gene. ORKAMBI should only be used in these patients. It is not known if ORKAMBI is safe and effective in patients under 2 years of age.

Patients should not take KALYDECO or TRIKAFTA if they take certain medicines or herbal supplements, such as: the antibiotics rifampin or rifabutin; seizure medicines such as phenobarbital, carbamazepine, or phenytoin; or St. Johns wort.

Patients should not take ORKAMBI if they take certain medicines or herbal supplements, such as: the antibiotics rifampin or rifabutin; the seizure medicines phenobarbital, carbamazepine, or phenytoin; the sedatives and anti-anxiety medicines triazolam or midazolam; the immunosuppressant medicines cyclosporine, everolimus, sirolimus, or tacrolimus; or St. Johns wort.

Before taking KALYDECO, TRIKAFTA, or ORKAMBI, patients should tell their doctor about all of their medical conditions, including if they: have or have had liver problems; have kidney problems; have had an organ transplant; are pregnant or plan to become pregnant because it is not known if KALYDECO, TRIKAFTA, or ORKAMBI will harm an unborn baby; or are breastfeeding or planning to breastfeed because it is not known if KALYDECO, TRIKAFTA, or ORKAMBI passes into breast milk. Before taking ORKAMBI, patients should tell their doctor if they are using birth control as hormonal contraceptives, including oral, injectable, transdermal, or implantable forms should not be used as a method of birth control when taking ORKAMBI.

KALYDECO, TRIKAFTA, or ORKAMBI may affect the way other medicines work, and other medicines may affect how KALYDECO, TRIKAFTA, or ORKAMBI work. Therefore, the dose of KALYDECO, TRIKAFTA, or ORKAMBI may need to be adjusted when taken with certain medications. Patients should especially tell their doctor if they take antifungal medications such as ketoconazole, itraconazole, posaconazole, voriconazole, or fluconazole; or antibiotics such as telithromycin, clarithromycin, or erythromycin.

KALYDECO or TRIKAFTA can cause dizziness in some people who take it. Patients should not drive a car, use machinery, or do anything that needs them to be alert until they know how KALYDECO or TRIKAFTA affects them.

When taking ORKAMBI, patients should tell their doctor if they stop taking ORKAMBI for more than 1 week as their doctor may need to change the dose of ORKAMBI or other medicines the patient is taking.

Patients should avoid food or drink containing grapefruit or Seville oranges while taking KALYDECO. Patients should avoid food or drink containing grapefruit while taking TRIKAFTA.

KALYDECO, TRIKAFTA, and ORKAMBI can cause serious side effects, such as:

High liver enzymes in the blood have been reported in patients receiving KALYDECO, TRIKAFTA, or ORKAMBI. The patient's doctor will do blood tests to check their liver before starting treatment with KALYDECO, TRIKAFTA, or ORKAMBI; every 3 months during the first year of treatment; and every year while on treatment. For patients who have had high liver enzymes in the past, the doctor may do blood tests to check the liver more often. Patients should call their doctor right away if they have any of the following symptoms of liver problems: pain or discomfort in the upper right stomach (abdominal) area; yellowing of their skin or the white part of their eyes; loss of appetite; nausea or vomiting; or dark, amber-colored urine.

Breathing problems such as shortness of breath or chest tightness in patients when starting ORKAMBI, especially in patients who have poor lung function. If a patient has poor lung function, their doctor may monitor them more closely when starting ORKAMBI.

An increase in blood pressure in some people receiving ORKAMBI. The patients doctor should monitor their blood pressure during treatment with ORKAMBI.

Abnormality of the eye lens (cataract) in some children and adolescents treated with KALYDECO, TRIKAFTA, or ORKAMBI. If the patient is a child or adolescent, their doctor should perform eye examinations before and during treatment with KALYDECO, TRIKAFTA, or ORKAMBI to look for cataracts.

The most common side effects of KALYDECO include headache; upper respiratory tract infection (common cold), which includes sore throat, nasal or sinus congestion, and runny nose; stomach (abdominal) pain; diarrhea; rash; nausea; and dizziness.

The most common side effects of TRIKAFTA include headache, diarrhea, upper respiratory tract infection (common cold) including stuffy and runny nose, stomach (abdominal) pain, inflamed sinuses, increase in liver enzymes, increase in a certain blood enzyme called creatine phosphokinase, rash, flu (influenza), and increase in blood bilirubin.

The most common side effects of ORKAMBI include breathing problems, such as shortness of breath and chest tightness; nausea; diarrhea; fatigue; increase in a certain blood enzyme called creatinine phosphokinase; rash; gas; common cold, including sore throat, stuffy or runny nose; flu or flu-like symptoms; and irregular, missed, or abnormal periods (menses) and increase in the amount of menstrual bleeding. Additional side effects seen in children include: cough with sputum, stuffy nose, headache, stomach pain, and increase in sputum.

These are not all the possible side effects of KALYDECO, TRIKAFTA, or ORKAMBI. Please click product link to see the full Prescribing Information for KALYDECO, TRIKAFTA, or ORKAMBI.

About Vertex

Vertex is a global biotechnology company that invests in scientific innovation to create transformative medicines for people with serious diseases. The company has multiple approved medicines that treat the underlying cause of cystic fibrosis (CF) a rare, life-threatening genetic disease and has several ongoing clinical and research programs in CF. Beyond CF, Vertex has a robust pipeline of investigational small molecule medicines in other serious diseases where it has deep insight into causal human biology, including pain, alpha-1 antitrypsin deficiency, and APOL1-mediated kidney diseases. In addition, Vertex has a rapidly expanding pipeline of genetic and cell therapies for diseases such as sickle cell disease, beta thalassemia, Duchenne muscular dystrophy and type 1 diabetes mellitus.

Founded in 1989 in Cambridge, Mass., Vertex's global headquarters is now located in Boston's Innovation District and its international headquarters is in London, UK. Additionally, the company has research and development sites and commercial offices in North America, Europe, Australia and Latin America. Vertex is consistently recognized as one of the industry's top places to work, including 10 consecutive years on Science magazine's Top Employers list and top five on the 2019 Best Employers for Diversity list by Forbes. For company updates and to learn more about Vertex's history of innovation, visit http://www.vrtx.com or follow us on Facebook, Twitter, LinkedIn, YouTube and Instagram.

Special Note Regarding Forward-looking Statements

This press release contains forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995, including, without limitation, statements made by Dr. Carmen Bozic in this press release, statements regarding the potential benefits, safety and efficacy of TRIKAFTA, KALYDECO and ORKAMBI, and our plans to present data at the ECFS and the NACFC, including data from our TRIKAFA open-label extension study, scientific abstracts for ORKAMBI and TRIKAFTA, and scientific presentations regarding KALYDECO, ORKAMBI and TRIKAFTA. While Vertex believes the forward-looking statements contained in this press release are accurate, these forward-looking statements represent the company's beliefs only as of the date of this press release and there are a number of risks and uncertainties that could cause actual events or results to differ materially from those expressed or implied by such forward-looking statements. Those risks and uncertainties include, among other things, that data from the company's development programs may not support registration, approval or further development of its compounds due to safety, efficacy or other reasons, risks related to approval and commercialization of our medicines, and other risks listed under Risk Factors in Vertex's most recent annual report and subsequent quarterly reports filed with the Securities and Exchange Commission and available through the company's website at http://www.vrtx.com. You should not place undue reliance on these statements, or the scientific data presented. Vertex disclaims any obligation to update the information contained in this press release as new information becomes available.

(VRTX-GEN)

Read the original here:
Vertex to Present New Data at European and North American Virtual Cystic Fibrosis Conferences Highlighting Long-Term Use of CFTR Modulators - Business...

Read More...

Muscular Dystrophy Association Awards 15 Grants Totaling More Than $4 Million for Neuromuscular Disease Research – PRNewswire

Thursday, September 24th, 2020

NEW YORK, Sept. 23, 2020 /PRNewswire/ --The Muscular Dystrophy Association (MDA) announced today the awarding of 15 new MDA grants totaling more than$4 million toward research focused on a variety of neuromuscular diseases (NMDs), including Duchenne muscular dystrophy (DMD), Charcot-Marie-Tooth disease (CMT), Becker's muscular dystrophy (BMD), spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), myotonic dystrophy type 1 (DM1) and facioscapulohumeral muscular dystrophy (FSHD). This round of grant funding reinforces MDA's unwavering commitmentin the face of declining income due to the COVID-19 pandemicto the progress of neuromuscular disease research and builds on the more than$1 billionMDA has already invested in research to uncover new treatments and cures for NMDs since its inception. Some grants will go into effect this year, while others will be awarded in 2021.

"We continue to fund the most innovative research that will lead us to cures for a range of neuromuscular diseases," saysSharon Hesterlee, PhD, executive vice president and chief research officer for Muscular Dystrophy Association. "We have already seen our investment pay off with the first effective neuromuscular disease therapies, and these grantees are pushing the envelope even further in diseases once thought incurable."

Dr. Hesterlee added, "Although COVID led the cancellation of MDA's spring review session, we are pleased to announce the funding of these projects, which were reviewed in 2019."

The newly funded projects will aim to advance research discoveries and new therapy development in multiple areas. The awarded grants will fund studies to further advance our understanding of genetic causes of and risk factors for NMDs, investigate new approaches to developing gene therapies and other innovative potential treatments, including stopping disease progression and improving genetic testing technologies.

For a complete list of individual awards for this grant cycle, visit MDA's website and explore theGrants at a Glancesection. Highlights from thegrant awards for this grant cycleinclude:

ALS grants will be announced separately later this month, as will grants being given jointly by MDA and other organizations.

About the Muscular Dystrophy AssociationFor 70 years, the Muscular Dystrophy Association (MDA) has been committed to transforming the lives of people living with muscular dystrophy, ALS, and related neuromuscular diseases. We do this throughinnovations in scienceandinnovations in care. As the largest source of funding for neuromuscular disease research outside of the federal government, MDA has committed more than $1 billion since our inception to accelerate the discovery of therapies and cures.Research we have supportedis directly linked to life-changing therapies across multiple neuromuscular diseases.MDA's MOVRis the first and only data hub that aggregates clinical, genetic, and patient-reported data for multiple neuromuscular diseases to improve health outcomes and accelerate drug development. MDA supports thelargest network of multidisciplinary clinicsproviding best in class care at more than 150 of the nation's top medical institutions. OurResource Centerserves the community with one-on-one specialized support, and we offer educational conferences, events, and materials for families and healthcare providers. Each year thousands of children and young adults learn vital life skills and gain independence atsummer campand through recreational programs, at no cost to families.During the COVID-19 pandemic, MDA continues to produce virtual events and programming to support our community when in-person events and activities are not possible. MDA's COVID-19 guidelines and virtual events are posted atmda.org/COVID19. For more information, visitmda.org.

SOURCE Muscular Dystrophy Association

https://www.mda.org

Visit link:
Muscular Dystrophy Association Awards 15 Grants Totaling More Than $4 Million for Neuromuscular Disease Research - PRNewswire

Read More...

Victor Center for the Prevention of Jewish Genetic Diseases Now Serving New York, New Jersey and Maryland – PRNewswire

Thursday, September 24th, 2020

MIAMI, Sept. 22, 2020 /PRNewswire/ -- The Victor Center for the Prevention of Jewish Genetic Diseases, which offers preconception screening and genetic counseling for prospective parents, has recently expanded services to offer genetic screening and virtual clinical consults to couples and individuals in New York, New Jersey and Maryland.

The center, which also serves Florida, Massachusetts and Pennsylvania, helps future parents identify whether they are at risk of passing on genetic diseases, including those common among people of Jewish ancestry.

"Not everyone knows their full ancestral heritage, so we encourage anyone planning to start a family and their partner to undergo screening," said Debbie Wasserman, Outreach Coordinator/Genetic Counselor for the Victor Center.

Jewish genetic diseases are a group of recessive, inherited disorders that occur with significant frequency in the Ashkenazi Jewish community (those of eastern or central European descent). Individuals of Ashkenazi descent have higher carrier rates for diseases such as Tay-Sachs, Canavan, familial dysautonomia, and Gaucher. Many of the diseases are severe, and some are fatal in childhood.

One in two of those of Ashkenazi descent is a carrier for at least one Jewish genetic condition, and Sephardic and Mizrachi Jews are also at increased risk for certain genetic disorders. More than half of participants in the Victor Center screening program are carriers for one or more of the 225 plus conditions on the expanded screening panel, which also includes disorders found in other ethnicities.

The Victor Center offers a convenient screening process during this time of social distancing. Upon request, a genetic counseling session is scheduled and a screening kit is mailed to the home. Recipients provide saliva samples and return the kit to a lab for processing. Once results are available, a video consult is coordinated to convey understanding and address questions.

There is a fee for Victor Center screening services. However, most medical insurance plans cover the service. For more information, please call 786-897-9587 or visit http://www.victorcenter.org

About the Victor Center The Victor Center was founded in 2002 by Lois B. Victor in partnership with Einstein Healthcare Network in Philadelphia. Ms. Victor lost two children to a Jewish genetic disease before a test for the disorder became available. The experience galvanized her commitment to ensuring that no family endures the heartache of a preventable illness by making certain that Jews of childbearing age are screened and get the information they need to have healthy children. Nicklaus Children's Hospital was appointed the National Office for the Victor Center in 2017. The Nicklaus Children's Hospital Victor Center maintains the nation-wide collaborative work of the center in promoting education related to preconception screening while increasing knowledge, awareness, and access to genetic services.

About Nicklaus Children's HospitalFounded in 1950 by Variety Clubs International, Nicklaus Children's Hospital is South Florida's only licensed specialty hospital exclusively for children, with nearly 800 attending physicians and more than 475 pediatric subspecialists. The 309-bed hospital, known as Miami Children's Hospital from 1983 through 2014, is renowned for excellence in all aspects of pediatric medicine with several specialty programs routinely ranked among the best in the nation by U.S. News & World Report since 2008. The hospital is also home to the largest pediatric teaching program in the southeastern United States and has been designated an American Nurses Credentialing Center (ANCC) Magnet facility, the nursing profession's most prestigious institutional honor. For more information, please visit http://www.nicklauschildrens.org.

For more information: Nicklaus Children's Hospital Rachel Bixby, 305-663-8476

SOURCE Nicklaus Childrens Health System

Get your inside story.

Go here to see the original:
Victor Center for the Prevention of Jewish Genetic Diseases Now Serving New York, New Jersey and Maryland - PRNewswire

Read More...

Second Variant of Parkinson’s Disease That Begins in the Gut Is Identified – Technology Networks

Thursday, September 24th, 2020

New research suggests that Parkinson's disease is not one but two diseases, starting either in the brain or in the intestines. Which explains why patients with Parkinson's describe widely differing symptoms,. The findings points towards personalized medicine as the way forward for people with Parkinson's disease.

This is the conclusion of a study which has just been published in the leading neurology journalBrain.

The researchers behind the study are Professor Per Borghammer and Medical Doctor Jacob Horsager from the Department of Clinical Medicine at Aarhus University and Aarhus University Hospital, Denmark.

"With the help of advanced scanning techniques, we've shown that Parkinson's disease can be divided into two variants, which start in different places in the body. For some patients, the disease starts in the intestines and spreads from there to the brain through neural connections. For others, the disease starts in the brain and spreads to the intestines and other organs such as the heart," explains Per Borghammer.

He also points out that the discovery could be very significant for the treatment of Parkinson's disease in the future, as this ought to be based on the individual patient's disease pattern.

Parkinson's disease is characterised by slow deterioration of the brain due to accumulated alpha-synuclein, a protein that damages nerve cells. This leads to the slow, stiff movements which many people associate with the disease.

In the study, the researchers have used advanced PET and MRI imaging techniques to examine people with Parkinson's disease. People who have not yet been diagnosed but have a high risk of developing the disease are also included in the study. People diagnosed with REM sleep behaviour syndrome have an increased risk of developing Parkinson's disease.

The study showed that some patients had damage to the brain's dopamine system before damage in the intestines and heart occurred. In other patients, scans revealed damage to the nervous systems of the intestines and heart before the damage in the brain's dopamine system was visible.

This knowledge is important and it challenges the understanding of Parkinson's disease that has been prevalent until now, says Per Borghammer.

"Until now, many people have viewed the disease as relatively homogeneous and defined it based on the classical movement disorders. But at the same time, we've been puzzled about why there was such a big difference between patient symptoms. With this new knowledge, the different symptoms make more sense and this is also the perspective in which future research should be viewed," he says.

The researchers refer to the two types of Parkinson's disease as body-first and brain-first. In the case of body-first, it may be particularly interesting to study the composition of bacteria in the intestines known as the microbiota.

"It has long since been demonstrated that Parkinson's patients have a different microbiome in the intestines than healthy people, without us truly understanding the significance of this. Now that we're able to identify the two types of Parkinson's disease, we can examine the risk factors and possible genetic factors that may be different for the two types. The next step is to examine whether, for example, body-first Parkinson's disease can be treated by treating the intestines with faeces transplantation or in other ways that affect the microbiome," says Per Borghammer.

"The discovery of brain-first Parkinson's is a bigger challenge. This variant of the disease is probably relatively symptom-free until the movement disorder symptoms appear and the patient is diagnosed with Parkinson's. By then the patient has already lost more than half of the dopamine system, and it will therefore be more difficult to find patients early enough to be able to slow the disease," says Per Borghammer.

The study from Aarhus University is longitudinal, i.e. the participants are called in again after three and six years so that all of the examinations and scans can be repeated. According to Per Borghammer, this makes the study the most comprehensive ever, and it provides researchers with valuable knowledge and clarification about Parkinson's disease - or diseases.

"Previous studies have indicated that there could be more than one type of Parkinson's, but this has not been demonstrated clearly until this study, which was specifically designed to clarify this question. We now have knowledge that offers hope for better and more targeted treatment of people who are affected by Parkinson's disease in the future," says Per Borghammer.

According to the Danish Parkinson's Disease Association, there are 8,000 people with Parkinson's disease in Denmark and up to eight million diagnosed patients worldwide.

This figure is expected to increase to 15 million in 2050 due to the ageing population, as the risk of getting Parkinson's disease increases dramatically the older the population becomes.

Reference:

This article has been republished from materials provided by Aarhus University. Note: material may have been edited for length and content. For further information, please contact the cited source.

See the article here:
Second Variant of Parkinson's Disease That Begins in the Gut Is Identified - Technology Networks

Read More...

CRISPR Therapeutics and Vertex Pharmaceuticals Announce Priority Medicines (PRIME) Designation Granted by the European Medicines Agency (EMA) to…

Thursday, September 24th, 2020

ZUG, Switzerland and CAMBRIDGE, Mass. and BOSTON, Sept. 22, 2020 (GLOBE NEWSWIRE) -- CRISPR Therapeutics (Nasdaq: CRSP) and Vertex Pharmaceuticals Incorporated(Nasdaq: VRTX) today announced the European Medicines Agency (EMA) has granted Priority Medicines (PRIME) designation to CTX001, an investigational, autologous, ex vivo CRISPR/Cas9 gene-edited therapy for the treatment of severe sickle cell disease (SCD).

PRIME is a regulatory mechanism that provides early and proactive support to developers of promising medicines, to optimize development plans and speed up evaluations so these medicines can reach patients faster. The goal of PRIME is to help patients benefit as early as possible from innovative new therapies that have demonstrated the potential to significantly address an unmet medical need. PRIME designation was granted based on clinical data from CRISPR and Vertexs ongoing Phase 1/2 trial of CTX001 in patients with severe SCD.

About CTX001CTX001 is an investigational, autologous, ex vivo CRISPR/Cas9 gene-edited therapy that is being evaluated for patients suffering from transfusion-dependent beta thalassemia (TDT) or severe SCD, in which a patients hematopoietic stem cells are engineered to produce high levels of fetal hemoglobin (HbF; hemoglobin F) in red blood cells. HbF is a form of the oxygen-carrying hemoglobin that is naturally present at birth, which then switches to the adult form of hemoglobin. The elevation of HbF by CTX001 has the potential to alleviate transfusion requirements for TDT patients and reduce painful and debilitating sickle crises for SCD patients.

Based on progress in this program to date, CTX001 has been granted Regenerative Medicine Advanced Therapy (RMAT), Fast Track, and Orphan Drug designations from the U.S. Food and Drug Administration (FDA), and Orphan Drug Designation from the European Commission, for both TDT and SCD.

CTX001 is being developed under a co-development and co-commercialization agreement between CRISPR Therapeutics and Vertex. CTX001 is the most advanced gene-editing approach in development for TDT and SCD.

About CLIMB-111The ongoing Phase 1/2 open-label trial, CLIMB-Thal-111, is designed to assess the safety and efficacy of a single dose of CTX001 in patients ages 12 to 35 with TDT. The trial will enroll up to 45 patients and follow patients for approximately two years after infusion. Each patient will be asked to participate in a long-term follow-up trial.

About CLIMB-121The ongoing Phase 1/2 open-label trial, CLIMB-SCD-121, is designed to assess the safety and efficacy of a single dose of CTX001 in patients ages 12 to 35 with severe SCD. The trial will enroll up to 45 patients and follow patients for approximately two years after infusion. Each patient will be asked to participate in a long-term follow-up trial.

About the Gene-Editing Process in These TrialsPatients who enroll in these trials will have their own hematopoietic stem and progenitor cells collected from peripheral blood. The patients cells will be edited using the CRISPR/Cas9 technology. The edited cells, CTX001, will then be infused back into the patient as part of a stem cell transplant, a process which involves, among other things, a patient being treated with myeloablative busulfan conditioning. Patients undergoing stem cell transplants may also encounter side effects (ranging from mild to severe) that are unrelated to the administration of CTX001. Patients will initially be monitored to determine when the edited cells begin to produce mature blood cells, a process known as engraftment. After engraftment, patients will continue to be monitored to track the impact of CTX001 on multiple measures of disease and for safety.

About the CRISPR-Vertex CollaborationCRISPR Therapeutics and Vertex entered into a strategic research collaboration in 2015 focused on the use of CRISPR/Cas9 to discover and develop potential new treatments aimed at the underlying genetic causes of human disease. CTX001 represents the first treatment to emerge from the joint research program. CRISPR Therapeutics and Vertex will jointly develop and commercialize CTX001 and equally share all research and development costs and profits worldwide.

About CRISPR TherapeuticsCRISPR Therapeutics is a leading gene editing company focused on developing transformative gene-based medicines for serious diseases using its proprietary CRISPR/Cas9 platform. CRISPR/Cas9 is a revolutionary gene editing technology that allows for precise, directed changes to genomic DNA. CRISPR Therapeutics has established a portfolio of therapeutic programs across a broad range of disease areas including hemoglobinopathies, oncology, regenerative medicine and rare diseases. To accelerate and expand its efforts, CRISPR Therapeutics has established strategic collaborations with leading companies including Bayer, Vertex Pharmaceuticals and ViaCyte, Inc. CRISPR Therapeutics AG is headquartered in Zug, Switzerland, with its wholly-owned U.S. subsidiary, CRISPR Therapeutics, Inc., and R&D operations based in Cambridge, Massachusetts, and business offices in San Francisco, California and London, United Kingdom. For more information, please visit http://www.crisprtx.com.

CRISPR Therapeutics Forward-Looking Statement This press release may contain a number of forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, as well as statements regarding CRISPR Therapeutics expectations about any or all of the following: (i) the status of clinical trials (including, without limitation, the expected timing of data releases) and discussions with regulatory authorities related to product candidates under development by CRISPR Therapeutics and its collaborators, including expectations regarding the benefits of PRIME designation; (ii) the expected benefits of CRISPR Therapeutics collaborations; and (iii) the therapeutic value, development, and commercial potential of CRISPR/Cas9 gene editing technologies and therapies. Without limiting the foregoing, the words believes, anticipates, plans, expects and similar expressions are intended to identify forward-looking statements. You are cautioned that forward-looking statements are inherently uncertain. Although CRISPR Therapeutics believes that such statements are based on reasonable assumptions within the bounds of its knowledge of its business and operations, forward-looking statements are neither promises nor guarantees and they are necessarily subject to a high degree of uncertainty and risk. Actual performance and results may differ materially from those projected or suggested in the forward-looking statements due to various risks and uncertainties. These risks and uncertainties include, among others: potential impacts due to the coronavirus pandemic, such as the timing and progress of clinical trials; the potential for initial and preliminary data from any clinical trial and initial data from a limited number of patients (as is the case with CTX001 at this time) not to be indicative of final trial results; the potential that CTX001 clinical trial results may not be favorable; that future competitive or other market factors may adversely affect the commercial potential for CTX001; uncertainties regarding the intellectual property protection for CRISPR Therapeutics technology and intellectual property belonging to third parties, and the outcome of proceedings (such as an interference, an opposition or a similar proceeding) involving all or any portion of such intellectual property; and those risks and uncertainties described under the heading Risk Factors in CRISPR Therapeutics most recent annual report on Form 10-K, quarterly report on Form 10-Q and in any other subsequent filings made by CRISPR Therapeutics with the U.S. Securities and Exchange Commission, which are available on the SEC's website at http://www.sec.gov. Existing and prospective investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date they are made. CRISPR Therapeutics disclaims any obligation or undertaking to update or revise any forward-looking statements contained in this press release, other than to the extent required by law.

About VertexVertex is a global biotechnology company that invests in scientific innovation to create transformative medicines for people with serious diseases. The company has multiple approved medicines that treat the underlying cause of cystic fibrosis (CF) a rare, life-threatening genetic disease and has several ongoing clinical and research programs in CF. Beyond CF, Vertex has a robust pipeline of investigational small molecule medicines in other serious diseases where it has deep insight into causal human biology, including pain, alpha-1 antitrypsin deficiency and APOL1-mediated kidney diseases. In addition, Vertex has a rapidly expanding pipeline of genetic and cell therapies for diseases such as sickle cell disease, beta thalassemia, Duchenne muscular dystrophy and type 1 diabetes mellitus.

Founded in 1989 in Cambridge, Mass., Vertex's global headquarters is now located in Boston's Innovation District and its international headquarters is in London, UK. Additionally, the company has research and development sites and commercial offices in North America, Europe, Australia and Latin America. Vertex is consistently recognized as one of the industry's top places to work, including 10 consecutive years on Science magazine's Top Employers list and top five on the 2019 Best Employers for Diversity list by Forbes. For company updates and to learn more about Vertex's history of innovation, visit http://www.vrtx.com or follow us on Facebook, Twitter, LinkedIn, YouTube and Instagram.

Vertex Special Note Regarding Forward-Looking StatementsThis press release contains forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995, including, without limitation, statements regarding CTX001s PRIME designation or its development, the potential benefits of CTX001, our plans and expectations for our clinical trials and clinical trial sites, and the status of our clinical trials of our product candidates under development by us and our collaborators, including activities at the clinical trial sites and potential outcomes. While Vertex believes the forward-looking statements contained in this press release are accurate, these forward-looking statements represent the company's beliefs only as of the date of this press release and there are a number of risks and uncertainties that could cause actual events or results to differ materially from those expressed or implied by such forward-looking statements. Those risks and uncertainties include, among other things, that data from the company's development programs, including its programs with its collaborators, may not support registration or further development of its compounds due to safety, efficacy or other reasons, and other risks listed under Risk Factors in Vertex's annual report and subsequent quarterly reports filed with the Securities and Exchange Commission and available through the company's website at http://www.vrtx.com. Vertex disclaims any obligation to update the information contained in this press release as new information becomes available.(VRTX-GEN)

CRISPR Therapeutics Investor Contact:Susan Kim, +1 617-307-7503susan.kim@crisprtx.com

CRISPR Therapeutics Media Contact:Rachel EidesWCG on behalf of CRISPR+1 617-337-4167reides@wcgworld.com

Vertex Pharmaceuticals IncorporatedInvestors:Michael Partridge, +1 617-341-6108orZach Barber, +1 617-341-6470orBrenda Eustace, +1 617-341-6187

Media:mediainfo@vrtx.com orU.S.: +1 617-341-6992orHeather Nichols: +1 617-839-3607orInternational: +44 20 3204 5275

Excerpt from:
CRISPR Therapeutics and Vertex Pharmaceuticals Announce Priority Medicines (PRIME) Designation Granted by the European Medicines Agency (EMA) to...

Read More...

AI Algorithms Can Enhance the Creation of Bioscaffold Materials and Help Heal Wounds – Unite.AI

Thursday, September 24th, 2020

Research coming out of the University of Pennsylvania School of Medicine last month demonstrated how artificial intelligence (AI) can be utilized to fight against opioid abuse. It focused on a chatbot which sent reminders to patients who underwent surgery to fix major bone fractures.

The research was published in the Journal of Medical Internet Research.

Christopher Anthony, MD, is the studys lead author and the associate director of Hip Preservation at Penn Medicine. He is also an assistant professor of Orthopaedic Surgery.

We showed that opioid medication utilization could be decreased by more than a third in an at-risk patient population by delivering psychotherapy via a chatbot, he said. While it must be tested with future investigations, we believe our findings are likely transferable to other patient populations.

Opioids are an effective treatment for pain following a severe injury, such as a broken arm or leg, but the large prescription of the drugs can lead to addiction and dependence for many users. This is what has caused the major opioid epidemic throughout the United States.

The team of researchers believe that a patient-centered approach with the use of the AI chatbot can help reduce the number of opioids taken after such surgerys, which can be a tool used against the epidemic.

Those researchers also included Edward Octavio Rojas, MD, who is a resident in Orthopaedic Surgery at the University of Iowa Hospitals & Clinics. The co-authors included: Valerie Keffala, PhD; Natalie Ann Glass, PhD; Benjamin J. Miller, MD; Mathew Hogue, MD; Michael Wiley, MD; Matthew Karam, MD; John Lawrence Marsh, MD, and Apurva Shah, MD.

The research involved 76 patients who visited a Level 1 Trauma Center at the University of Iowa Hospitals & Clinics. They were there to receive treatment for fractures that required surgery, and those patients were separated into two groups. Both groups received the same prescription for opioids to treat pain, but only one of the groups received daily text messages from the automated chatbot.

The group that received text messages could expect two per day for a period of two weeks following their procedure. The automated chatbot relied on artificial intelligence to send the messages, which went out the day after surgery. The text messages were constructed in a way to help patients focus on coping better with the medication.

The text messages, which were created by a pain psychologist specialized in pain and commitment therapy (ACT), did not directly go against the use of the medication, but they attempted to help the patients think of something other than taking a pill.

The text messages could be broken down into six core principles, : Values, Acceptance, Present Moment Awareness, Self-As-Context, Committed Action, and Diffusion.

One message under the Acceptance principle was: feelings of pain and feelings about your experience of pain are normal after surgery. Acknowledge and accept these feelings as part of the recovery process. Remember how you feel now is temporary and your healing process will continue. Call to mind pleasant feelings or thoughts you experienced today.

The results showed that the patients who did not receive the automated messages took, on average, 41 opioid pills following the surgeries, while the group who did receive the messages averaged 26. The 37 percent difference was impressive, and those who received messages also reported less overall pain two weeks after the surgery.

The automated messages were not personalized for each individual, which demonstrates success without over-personalization.

A realistic goal for this type of work is to decrease opioid utilization to as few tablets as possible, with the ultimate goal to eliminate the need for opioid medication in the setting of fracture care, Anthony said.

The study received funding by a grant from the Orthopaedic Trauma Association.

Link:
AI Algorithms Can Enhance the Creation of Bioscaffold Materials and Help Heal Wounds - Unite.AI

Read More...

Treatment with RNA-Targeting Gene Therapy Reverses Molecular and Functional Features of Myotonic Dystrophy Type 1 in Mice – PRNewswire

Tuesday, September 15th, 2020

SAN DIEGO, Sept. 14, 2020 /PRNewswire/ -- Locanabio, Inc., a leader in RNA-targeted gene therapy, today announced that results from a preclinical study of the company's therapeutic systems for the potential treatment of myotonic dystrophy type 1 (DM1) were published in Nature Biomedical Engineering. For the full article, titled "The sustained expression of Cas9 targeting toxic RNAs reverses disease phenotypes in mouse models of myotonic dystrophy," please visit: https://www.nature.com/articles/s41551-020-00607-7

Scientists at Locanabio, working with academic collaborators at UC San Diego School of Medicine and the University of Florida, assessed whether an RNA-targeting CRISPR Cas9 system (RCas9) could provide molecular and functional rescue of dysfunctional RNA processing in a DM1 mouse model. The RCas9 system was administered with one dose of an AAV gene therapy vector. Results in both adult and neonatal mice and using both intramuscular and systemic delivery showed prolonged RCas9 expression even at three months post-injection with efficient reversal of molecular (elimination of toxic RNA foci, MBNL1 redistribution, reversal of splicing biomarkers) and physiological (myotonia) features of DM1.Importantly, there were no significant adverse responses to the treatment.

"These results are consistent with earlier findings from several in vitro studies in muscle cells derived from DM1 patients published by Locanabio's scientific co-founder Dr. Gene Yeo of UC San Diego and further indicate the significant potential of our RNA-targeting gene therapy as a DM1 treatment," said Jim Burns, Ph.D., Chief Executive Officer at Locanabio. "Data show that our RNA-targeting system is able to destroy the toxic RNA at the core of this devastating genetic disease and thereby correct the downstream molecular and biochemical changes that result in myotonia, which is a hallmark symptom of DM1. We are pleased that Nature Biomedical Engineering recognizes the value of these preclinical data and we look forward to further advancing this developmental program to the benefit of DM1 patients."

"Currently available treatments for DM1 can improve specific symptoms but do not target the underlying biology and cause of the disease. These data demonstrate that RNA-targeting systems may efficiently and specifically eliminate toxic RNA repeats that cause DM1 and potentially lead to a more effective treatment option for patients," said Dr. Yeo. "The results also indicate that RNA-targeting gene therapy has potential applications in the treatment of other diseases, such as Huntington's disease and certain genetic forms of ALS, which are also caused by a buildup of toxic RNA repeats."

These studies were funded in part by the Muscular Dystrophy Association (MDA). "We are delighted to support Locanabio's recent work in myotonic dystrophy. These preclinical results represent a promising advance and a novel scientific approach for a group of patients who represent a major unmet medical need," said Sharon Hesterlee, Ph.D., Chief Research Officer, MDA.

About Locanabio, Inc.

Locanabio is the global leader in developing a new class of genetic medicines. Our unique and multi-dimensional approach uses gene therapy to deliver RNA binding protein-based systems to correct the message of disease-causing RNA and thereby change the lives of patients with devastating genetic diseases. These broad capabilities delivered via gene therapy enable Locanabio to potentially address a wide range of severe diseases with a single administration. The company is currently advancing programs in neuromuscular, neurodegenerative and retinal diseases. For more information, visit http://www.locanabio.com.

About Myotonic Dystrophy

Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic disorder affecting skeletal muscle, cardiac muscle, the gastrointestinal tract, and the central nervous system. DM1 is caused by a mutation in the myotonic dystrophy protein kinase (DMPK) gene. This mutation leads to a repeat expansion of the CTG (cytosine-thymine-guanine) trinucleotide. The expanded CTG is transcribed into toxic CUG (cytosine-uracil-guanine) repeats in the DMPK messenger RNA (mRNA). These toxic mRNA repeats lead to disease symptoms including progressive muscle wasting, weakness and myotonia (delayed relaxation of skeletal muscle), a hallmark of DM1. The incidence of myotonic dystrophy has historically been estimated at one in 8,000 individuals worldwide or approximately 40,000 people in the United States.

Media Contact

Brian ConnorBerry & Company[emailprotected]+1-845-702-2620

SOURCE Locanabio, Inc.

Home page

The rest is here:
Treatment with RNA-Targeting Gene Therapy Reverses Molecular and Functional Features of Myotonic Dystrophy Type 1 in Mice - PRNewswire

Read More...

Long-term functional data from Sarepta Therapeutics’ Most Advanced Gene Therapy Programs to be Presented at Upcoming Annual Congress of the World…

Tuesday, September 15th, 2020

-- Webcast conference call to be held on Monday, Sept. 28, 2020 at 8:30 a.m. Eastern Time --

-- Additional poster presentations at WMS will highlight data from Sareptas RNA and gene therapy programs --

CAMBRIDGE, Mass., Sept. 14, 2020 (GLOBE NEWSWIRE) -- Sarepta Therapeutics, Inc. (NASDAQ:SRPT), the leader in precision genetic medicine for rare diseases, today announced that new data from its most advanced gene therapy programs will be presented at the WMS25 Virtual Congress, the 25th International Annual Congress of the World Muscle Society, being held Sept. 28 Oct. 2.

Sarepta will host a webcast and conference call on Monday, Sept. 28, 2020 at 8:30 a.m. ET, to discuss the results, which include two-year functional data from Study 101 of SRP-9001 for Duchenne muscular dystrophy and 18-month functional results from Cohort 1 in the study of SRP-9003 for Limb-girdle muscular dystrophy Type 2E.

This will be webcast live under the investor relations section of Sarepta's website at https://investorrelations.sarepta.com/events-presentationsand will be archived there following the call for one year. Please connect to Sarepta's website several minutes prior to the start of the broadcast to ensure adequate time for any software download that may be necessary. The conference call may be accessed by dialing (844) 534-7313 for domestic callers and (574) 990-1451 for international callers. The passcode for the call is 6793650. Please specify to the operator that you would like to join the "Long-term Functional Data from Sareptas Gene Therapy Programs call.

In total, Sarepta will present 16 abstracts at this years meeting. All posters will be available on-demand throughout the Congress beginning on Monday, Sept. 28 at 7:00 a.m. EST. The full WMS25 Virtual Congress program is available here: https://www.wms2020.com/programme/.

Gene Therapy:

RNA Platform:

Natural history and other presentations:

Presentations will be archived under the events and presentations section of the Sarepta Therapeutics website at http://www.sarepta.comforone year following their presentation at WMS25.

AboutSarepta TherapeuticsAt Sarepta, we are leading a revolution in precision genetic medicine and every day is an opportunity to change the lives of people living with rare disease. The Company has built an impressive position in Duchenne muscular dystrophy (DMD) and in gene therapies for limb-girdle muscular dystrophies (LGMDs), mucopolysaccharidosis type IIIA, Charcot-Marie-Tooth (CMT), and other CNS-related disorders, with more than 40 programs in various stages of development. The Companys programs and research focus span several therapeutic modalities, including RNA, gene therapy and gene editing. For more information, please visitwww.sarepta.com or follow us on Twitter, LinkedIn, Instagram and Facebook.

Internet Posting of Information

We routinely post information that may be important to investors in the 'For Investors' section of our website atwww.sarepta.com. We encourage investors and potential investors to consult our website regularly for important information about us.

Source: Sarepta Therapeutics, Inc.

Sarepta Therapeutics, Inc.

Investors: Ian Estepan, 617-274-4052, iestepan@sarepta.com

Media: Tracy Sorrentino, 617-301-8566, tsorrentino@sarepta.com

Originally posted here:
Long-term functional data from Sarepta Therapeutics' Most Advanced Gene Therapy Programs to be Presented at Upcoming Annual Congress of the World...

Read More...

Vaccine research deepens university-industry collaboration – University World News

Tuesday, September 15th, 2020

JAPAN

Japans official medical research funding agency Japan Agency for Medical Research and Development (AMED), reports that public financial support for university-based research in collaboration with industry into COVID-19 vaccines and treatments has ballooned since March.

Almost JPY113 billion (US$1.07 billion) in funds was allocated this fiscal year against a backdrop of increasing global competition for successful breakthroughs as second and third waves of the COVID-19 pandemic affect the economy, society and education, as well as being a serious health problem. Japan has enacted large supplementary budgets of trillions of yen to help the economy cope since the outbreak hit the country in March.

The global pandemic, which is very contagious and life-threatening, represents an emergency situation. Investment towards a cure is critical for public safety, said Atsuko Oshima, who is in charge of public relations at AMED.

Oshima explained that the government views COVID-19 and new infections as a new global challenge and has turned its attention towards strengthening research funds for pandemics.

For example, it is funding a university-led task force for joint COVID-19 research projects established by prominent Japanese universities, including the University of Tokyo, Keio University, Tokyo Institute of Technology, Kitasato University and Osaka University, with experts from diverse fields, including infectious diseases, virology, molecular genetics, genomic medicine and computational science.

In an initial project, the task force will use state-of-the-art genomic analysis technology to reveal the genetic basis for the mechanism that causes exacerbation of COVID-19 and will work to develop an effective mucosal vaccine to protect against the virus.

Academics view the COVID-19 crisis as a landmark event for multidisciplinary university research. With the novel coronavirus affecting millions of people around the world, scientists and medical communities face intense pressure to develop potential solutions, noted Takafumi Ueno, biomolecular research specialist at the leading Tokyo Institute of Technology.

The university, famous for technology development, is participating in collaborative research with the private sector and other universities, including participating in the task force.

Ueno referred to pressure to respond to the large amount of public funds poured into coronavirus-related research. With taxpayer funds available, researchers are intensely mindful that results must provide for the betterment of society, he said.

Joint research between academia and the private sector is not a new development. But COVID-19 has provided a boost against a backdrop of rising funding and pressure for swift results.

Shinzo Abe, who stepped down as prime minister on 28 August, pledged to make a vaccine available for every Japanese person.

Push for locally developed vaccine

The government is pushing for a home-grown vaccine. A special measure aimed at securing vaccines as quickly as possible was enacted in late August to exempt Japanese and foreign pharmaceutical companies and other concerned parties from liability against compensating people whose health is damaged due to vaccination against COVID-19. Instead, the government will be responsible for any redress.

Japans Kyodo News service reported in late August that the government plans to submit related bills for this measure in the Diet, the Japanese parliament, in October.

Among the slew of ongoing domestic projects to prevent COVID-19 infections, Osaka City University Hospital reported in June that it conducted the first clinical trials on humans of a DNA vaccine.

According a June news release from AnGes, this type of vaccine will inject genetically engineered circular DNA (plasmid) that produces spike proteins, which are characteristic of coronavirus. When the pathogen proteins are made, the bodys immune system is stimulated to make antibodies against the virus.

DNA vaccines are produced using an inactivated virus which only uses the genetic information of the virus rather than the virus itself, and can be manufactured faster than protein-based vaccines, according to the company statement.

However, globally to date no DNA vaccine has yet been approved for use in humans, requiring more time to determine safety and efficacy before it can be rolled out for general use.

The project is owned by AnGes Inc, a medical start-up venture by Osaka University in partnership with Japanese biotech company Takara Bio Inc. Takara Bio has production facilities and manufacturing experience with plasmid DNA products and will be responsible for vaccine production.

Special cooperation model

Yasufumi Kaneda, vice-president of Osaka University and an expert on DNA therapy, leads the industry-academia Co-creation group at the university that oversees the collaborative project. He explained to University World News that AnGess venture a separate entity affiliated with the university represents a rare set up in collaborative research.

The venture acts as a bridge between academic research and the final deployment of the product with a drug maker. By collecting and analysing information, its role is to ensure the safety of the vaccine before large-scale manufacturing for public use. The venture eases the risk faced when defining the final product, he said.

Kaneda explained that the basic research sector collaboration with cross-industry vaccine and treatment is spearheaded by universities with the private sector leading mass manufacturing and dissemination.

The success of the final product demands a high element of risk taking. While COVID-19 research is the exception, it is common practice in Japan for big companies to shun investment in projects that do not indicate clear results, he said, adding that the university-industry venture system can narrow the gap.

The role of providing concrete and appropriate data and scientific facts of the project to companies strengthens understanding and investment for the final product, he said.

The AnGes vaccine trial is now concentrating on the antibody reaction observed in patients. A separate clinical trial is planned at the Osaka hospital as another critical step to obtain government approval in 2021.

Read more from the original source:
Vaccine research deepens university-industry collaboration - University World News

Read More...

Page 12«..11121314..2030..»


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick