header logo image


Page 54«..1020..53545556..60..»

Archive for the ‘Immune System’ Category

Immune system – Wikipedia

Tuesday, November 1st, 2016

The immune system is a host defense system comprising many biological structures and processes within an organism that protects against disease. To function properly, an immune system must detect a wide variety of agents, known as pathogens, from viruses to parasitic worms, and distinguish them from the organism's own healthy tissue. In many species, the immune system can be classified into subsystems, such as the innate immune system versus the adaptive immune system, or humoral immunity versus cell-mediated immunity. In humans, the bloodbrain barrier, bloodcerebrospinal fluid barrier, and similar fluidbrain barriers separate the peripheral immune system from the neuroimmune system which protects the brain.

Pathogens can rapidly evolve and adapt, and thereby avoid detection and neutralization by the immune system; however, multiple defense mechanisms have also evolved to recognize and neutralize pathogens. Even simple unicellular organisms such as bacteria possess a rudimentary immune system, in the form of enzymes that protect against bacteriophage infections. Other basic immune mechanisms evolved in ancient eukaryotes and remain in their modern descendants, such as plants and invertebrates. These mechanisms include phagocytosis, antimicrobial peptides called defensins, and the complement system. Jawed vertebrates, including humans, have even more sophisticated defense mechanisms,[1] including the ability to adapt over time to recognize specific pathogens more efficiently. Adaptive (or acquired) immunity creates immunological memory after an initial response to a specific pathogen, leading to an enhanced response to subsequent encounters with that same pathogen. This process of acquired immunity is the basis of vaccination.

Disorders of the immune system can result in autoimmune diseases, inflammatory diseases and cancer.[2]Immunodeficiency occurs when the immune system is less active than normal, resulting in recurring and life-threatening infections. In humans, immunodeficiency can either be the result of a genetic disease such as severe combined immunodeficiency, acquired conditions such as HIV/AIDS, or the use of immunosuppressive medication. In contrast, autoimmunity results from a hyperactive immune system attacking normal tissues as if they were foreign organisms. Common autoimmune diseases include Hashimoto's thyroiditis, rheumatoid arthritis, diabetes mellitus type 1, and systemic lupus erythematosus. Immunology covers the study of all aspects of the immune system.

Immunology is a science that examines the structure and function of the immune system. It originates from medicine and early studies on the causes of immunity to disease. The earliest known reference to immunity was during the plague of Athens in 430 BC. Thucydides noted that people who had recovered from a previous bout of the disease could nurse the sick without contracting the illness a second time.[3] In the 18th century, Pierre-Louis Moreau de Maupertuis made experiments with scorpion venom and observed that certain dogs and mice were immune to this venom.[4] This and other observations of acquired immunity were later exploited by Louis Pasteur in his development of vaccination and his proposed germ theory of disease.[5] Pasteur's theory was in direct opposition to contemporary theories of disease, such as the miasma theory. It was not until Robert Koch's 1891 proofs, for which he was awarded a Nobel Prize in 1905, that microorganisms were confirmed as the cause of infectious disease.[6] Viruses were confirmed as human pathogens in 1901, with the discovery of the yellow fever virus by Walter Reed.[7]

Immunology made a great advance towards the end of the 19th century, through rapid developments, in the study of humoral immunity and cellular immunity.[8] Particularly important was the work of Paul Ehrlich, who proposed the side-chain theory to explain the specificity of the antigen-antibody reaction; his contributions to the understanding of humoral immunity were recognized by the award of a Nobel Prize in 1908, which was jointly awarded to the founder of cellular immunology, Elie Metchnikoff.[9]

The immune system protects organisms from infection with layered defenses of increasing specificity. In simple terms, physical barriers prevent pathogens such as bacteria and viruses from entering the organism. If a pathogen breaches these barriers, the innate immune system provides an immediate, but non-specific response. Innate immune systems are found in all plants and animals.[10] If pathogens successfully evade the innate response, vertebrates possess a second layer of protection, the adaptive immune system, which is activated by the innate response. Here, the immune system adapts its response during an infection to improve its recognition of the pathogen. This improved response is then retained after the pathogen has been eliminated, in the form of an immunological memory, and allows the adaptive immune system to mount faster and stronger attacks each time this pathogen is encountered.[11][12]

Both innate and adaptive immunity depend on the ability of the immune system to distinguish between self and non-self molecules. In immunology, self molecules are those components of an organism's body that can be distinguished from foreign substances by the immune system.[13] Conversely, non-self molecules are those recognized as foreign molecules. One class of non-self molecules are called antigens (short for antibody generators) and are defined as substances that bind to specific immune receptors and elicit an immune response.[14]

Microorganisms or toxins that successfully enter an organism encounter the cells and mechanisms of the innate immune system. The innate response is usually triggered when microbes are identified by pattern recognition receptors, which recognize components that are conserved among broad groups of microorganisms,[15] or when damaged, injured or stressed cells send out alarm signals, many of which (but not all) are recognized by the same receptors as those that recognize pathogens.[16] Innate immune defenses are non-specific, meaning these systems respond to pathogens in a generic way.[14] This system does not confer long-lasting immunity against a pathogen. The innate immune system is the dominant system of host defense in most organisms.[10]

Several barriers protect organisms from infection, including mechanical, chemical, and biological barriers. The waxy cuticle of many leaves, the exoskeleton of insects, the shells and membranes of externally deposited eggs, and skin are examples of mechanical barriers that are the first line of defense against infection.[14] However, as organisms cannot be completely sealed from their environments, other systems act to protect body openings such as the lungs, intestines, and the genitourinary tract. In the lungs, coughing and sneezing mechanically eject pathogens and other irritants from the respiratory tract. The flushing action of tears and urine also mechanically expels pathogens, while mucus secreted by the respiratory and gastrointestinal tract serves to trap and entangle microorganisms.[17]

Chemical barriers also protect against infection. The skin and respiratory tract secrete antimicrobial peptides such as the -defensins.[18]Enzymes such as lysozyme and phospholipase A2 in saliva, tears, and breast milk are also antibacterials.[19][20]Vaginal secretions serve as a chemical barrier following menarche, when they become slightly acidic, while semen contains defensins and zinc to kill pathogens.[21][22] In the stomach, gastric acid and proteases serve as powerful chemical defenses against ingested pathogens.

Within the genitourinary and gastrointestinal tracts, commensal flora serve as biological barriers by competing with pathogenic bacteria for food and space and, in some cases, by changing the conditions in their environment, such as pH or available iron.[23] This reduces the probability that pathogens will reach sufficient numbers to cause illness. However, since most antibiotics non-specifically target bacteria and do not affect fungi, oral antibiotics can lead to an "overgrowth" of fungi and cause conditions such as a vaginal candidiasis (a yeast infection).[24] There is good evidence that re-introduction of probiotic flora, such as pure cultures of the lactobacilli normally found in unpasteurized yogurt, helps restore a healthy balance of microbial populations in intestinal infections in children and encouraging preliminary data in studies on bacterial gastroenteritis, inflammatory bowel diseases, urinary tract infection and post-surgical infections.[25][26][27]

Inflammation is one of the first responses of the immune system to infection.[28] The symptoms of inflammation are redness, swelling, heat, and pain, which are caused by increased blood flow into tissue. Inflammation is produced by eicosanoids and cytokines, which are released by injured or infected cells. Eicosanoids include prostaglandins that produce fever and the dilation of blood vessels associated with inflammation, and leukotrienes that attract certain white blood cells (leukocytes).[29][30] Common cytokines include interleukins that are responsible for communication between white blood cells; chemokines that promote chemotaxis; and interferons that have anti-viral effects, such as shutting down protein synthesis in the host cell.[31]Growth factors and cytotoxic factors may also be released. These cytokines and other chemicals recruit immune cells to the site of infection and promote healing of any damaged tissue following the removal of pathogens.[32]

The complement system is a biochemical cascade that attacks the surfaces of foreign cells. It contains over 20 different proteins and is named for its ability to "complement" the killing of pathogens by antibodies. Complement is the major humoral component of the innate immune response.[33][34] Many species have complement systems, including non-mammals like plants, fish, and some invertebrates.[35]

In humans, this response is activated by complement binding to antibodies that have attached to these microbes or the binding of complement proteins to carbohydrates on the surfaces of microbes. This recognition signal triggers a rapid killing response.[36] The speed of the response is a result of signal amplification that occurs following sequential proteolytic activation of complement molecules, which are also proteases. After complement proteins initially bind to the microbe, they activate their protease activity, which in turn activates other complement proteases, and so on. This produces a catalytic cascade that amplifies the initial signal by controlled positive feedback.[37] The cascade results in the production of peptides that attract immune cells, increase vascular permeability, and opsonize (coat) the surface of a pathogen, marking it for destruction. This deposition of complement can also kill cells directly by disrupting their plasma membrane.[33]

Leukocytes (white blood cells) act like independent, single-celled organisms and are the second arm of the innate immune system.[14] The innate leukocytes include the phagocytes (macrophages, neutrophils, and dendritic cells), innate lymphoid cells, mast cells, eosinophils, basophils, and natural killer cells. These cells identify and eliminate pathogens, either by attacking larger pathogens through contact or by engulfing and then killing microorganisms.[35] Innate cells are also important mediators in lymphoid organ development and the activation of the adaptive immune system.[38]

Phagocytosis is an important feature of cellular innate immunity performed by cells called 'phagocytes' that engulf, or eat, pathogens or particles. Phagocytes generally patrol the body searching for pathogens, but can be called to specific locations by cytokines.[14] Once a pathogen has been engulfed by a phagocyte, it becomes trapped in an intracellular vesicle called a phagosome, which subsequently fuses with another vesicle called a lysosome to form a phagolysosome. The pathogen is killed by the activity of digestive enzymes or following a respiratory burst that releases free radicals into the phagolysosome.[39][40] Phagocytosis evolved as a means of acquiring nutrients, but this role was extended in phagocytes to include engulfment of pathogens as a defense mechanism.[41] Phagocytosis probably represents the oldest form of host defense, as phagocytes have been identified in both vertebrate and invertebrate animals.[42]

Neutrophils and macrophages are phagocytes that travel throughout the body in pursuit of invading pathogens.[43] Neutrophils are normally found in the bloodstream and are the most abundant type of phagocyte, normally representing 50% to 60% of the total circulating leukocytes.[44] During the acute phase of inflammation, particularly as a result of bacterial infection, neutrophils migrate toward the site of inflammation in a process called chemotaxis, and are usually the first cells to arrive at the scene of infection. Macrophages are versatile cells that reside within tissues and: (i) produce a wide array of chemicals including enzymes, complement proteins, and cytokines, while they can also (ii) act as scavengers that rid the body of worn-out cells and other debris, and as antigen-presenting cells that activate the adaptive immune system.[45]

Dendritic cells (DC) are phagocytes in tissues that are in contact with the external environment; therefore, they are located mainly in the skin, nose, lungs, stomach, and intestines.[46] They are named for their resemblance to neuronal dendrites, as both have many spine-like projections, but dendritic cells are in no way connected to the nervous system. Dendritic cells serve as a link between the bodily tissues and the innate and adaptive immune systems, as they present antigens to T cells, one of the key cell types of the adaptive immune system.[46]

Mast cells reside in connective tissues and mucous membranes, and regulate the inflammatory response.[47] They are most often associated with allergy and anaphylaxis.[44] Basophils and eosinophils are related to neutrophils. They secrete chemical mediators that are involved in defending against parasites and play a role in allergic reactions, such as asthma.[48] Natural killer (NK cells) cells are leukocytes that attack and destroy tumor cells, or cells that have been infected by viruses.[49]

Natural killer cells, or NK cells, are a component of the innate immune system which does not directly attack invading microbes. Rather, NK cells destroy compromised host cells, such as tumor cells or virus-infected cells, recognizing such cells by a condition known as "missing self." This term describes cells with low levels of a cell-surface marker called MHC I (major histocompatibility complex) a situation that can arise in viral infections of host cells.[35] They were named "natural killer" because of the initial notion that they do not require activation in order to kill cells that are "missing self." For many years it was unclear how NK cells recognize tumor cells and infected cells. It is now known that the MHC makeup on the surface of those cells is altered and the NK cells become activated through recognition of "missing self". Normal body cells are not recognized and attacked by NK cells because they express intact self MHC antigens. Those MHC antigens are recognized by killer cell immunoglobulin receptors (KIR) which essentially put the brakes on NK cells.[50]

The adaptive immune system evolved in early vertebrates and allows for a stronger immune response as well as immunological memory, where each pathogen is "remembered" by a signature antigen.[51] The adaptive immune response is antigen-specific and requires the recognition of specific "non-self" antigens during a process called antigen presentation. Antigen specificity allows for the generation of responses that are tailored to specific pathogens or pathogen-infected cells. The ability to mount these tailored responses is maintained in the body by "memory cells". Should a pathogen infect the body more than once, these specific memory cells are used to quickly eliminate it.

The cells of the adaptive immune system are special types of leukocytes, called lymphocytes. B cells and T cells are the major types of lymphocytes and are derived from hematopoietic stem cells in the bone marrow.[35] B cells are involved in the humoral immune response, whereas T cells are involved in cell-mediated immune response.

Both B cells and T cells carry receptor molecules that recognize specific targets. T cells recognize a "non-self" target, such as a pathogen, only after antigens (small fragments of the pathogen) have been processed and presented in combination with a "self" receptor called a major histocompatibility complex (MHC) molecule. There are two major subtypes of T cells: the killer T cell and the helper T cell. In addition there are regulatory T cells which have a role in modulating immune response. Killer T cells only recognize antigens coupled to Class I MHC molecules, while helper T cells and regulatory T cells only recognize antigens coupled to Class II MHC molecules. These two mechanisms of antigen presentation reflect the different roles of the two types of T cell. A third, minor subtype are the T cells that recognize intact antigens that are not bound to MHC receptors.[52]

In contrast, the B cell antigen-specific receptor is an antibody molecule on the B cell surface, and recognizes whole pathogens without any need for antigen processing. Each lineage of B cell expresses a different antibody, so the complete set of B cell antigen receptors represent all the antibodies that the body can manufacture.[35]

Killer T cells are a sub-group of T cells that kill cells that are infected with viruses (and other pathogens), or are otherwise damaged or dysfunctional.[53] As with B cells, each type of T cell recognizes a different antigen. Killer T cells are activated when their T cell receptor (TCR) binds to this specific antigen in a complex with the MHC Class I receptor of another cell. Recognition of this MHC:antigen complex is aided by a co-receptor on the T cell, called CD8. The T cell then travels throughout the body in search of cells where the MHC I receptors bear this antigen. When an activated T cell contacts such cells, it releases cytotoxins, such as perforin, which form pores in the target cell's plasma membrane, allowing ions, water and toxins to enter. The entry of another toxin called granulysin (a protease) induces the target cell to undergo apoptosis.[54] T cell killing of host cells is particularly important in preventing the replication of viruses. T cell activation is tightly controlled and generally requires a very strong MHC/antigen activation signal, or additional activation signals provided by "helper" T cells (see below).[54]

Helper T cells regulate both the innate and adaptive immune responses and help determine which immune responses the body makes to a particular pathogen.[55][56] These cells have no cytotoxic activity and do not kill infected cells or clear pathogens directly. They instead control the immune response by directing other cells to perform these tasks.

Helper T cells express T cell receptors (TCR) that recognize antigen bound to Class II MHC molecules. The MHC:antigen complex is also recognized by the helper cell's CD4 co-receptor, which recruits molecules inside the T cell (e.g., Lck) that are responsible for the T cell's activation. Helper T cells have a weaker association with the MHC:antigen complex than observed for killer T cells, meaning many receptors (around 200300) on the helper T cell must be bound by an MHC:antigen in order to activate the helper cell, while killer T cells can be activated by engagement of a single MHC:antigen molecule. Helper T cell activation also requires longer duration of engagement with an antigen-presenting cell.[57] The activation of a resting helper T cell causes it to release cytokines that influence the activity of many cell types. Cytokine signals produced by helper T cells enhance the microbicidal function of macrophages and the activity of killer T cells.[14] In addition, helper T cell activation causes an upregulation of molecules expressed on the T cell's surface, such as CD40 ligand (also called CD154), which provide extra stimulatory signals typically required to activate antibody-producing B cells.[58]

Gamma delta T cells ( T cells) possess an alternative T cell receptor (TCR) as opposed to CD4+ and CD8+ () T cells and share the characteristics of helper T cells, cytotoxic T cells and NK cells. The conditions that produce responses from T cells are not fully understood. Like other 'unconventional' T cell subsets bearing invariant TCRs, such as CD1d-restricted Natural Killer T cells, T cells straddle the border between innate and adaptive immunity.[59] On one hand, T cells are a component of adaptive immunity as they rearrange TCR genes to produce receptor diversity and can also develop a memory phenotype. On the other hand, the various subsets are also part of the innate immune system, as restricted TCR or NK receptors may be used as pattern recognition receptors. For example, large numbers of human V9/V2 T cells respond within hours to common molecules produced by microbes, and highly restricted V1+ T cells in epithelia respond to stressed epithelial cells.[52]

A B cell identifies pathogens when antibodies on its surface bind to a specific foreign antigen.[61] This antigen/antibody complex is taken up by the B cell and processed by proteolysis into peptides. The B cell then displays these antigenic peptides on its surface MHC class II molecules. This combination of MHC and antigen attracts a matching helper T cell, which releases lymphokines and activates the B cell.[62] As the activated B cell then begins to divide, its offspring (plasma cells) secrete millions of copies of the antibody that recognizes this antigen. These antibodies circulate in blood plasma and lymph, bind to pathogens expressing the antigen and mark them for destruction by complement activation or for uptake and destruction by phagocytes. Antibodies can also neutralize challenges directly, by binding to bacterial toxins or by interfering with the receptors that viruses and bacteria use to infect cells.[63]

Evolution of the adaptive immune system occurred in an ancestor of the jawed vertebrates. Many of the classical molecules of the adaptive immune system (e.g., immunoglobulins and T cell receptors) exist only in jawed vertebrates. However, a distinct lymphocyte-derived molecule has been discovered in primitive jawless vertebrates, such as the lamprey and hagfish. These animals possess a large array of molecules called Variable lymphocyte receptors (VLRs) that, like the antigen receptors of jawed vertebrates, are produced from only a small number (one or two) of genes. These molecules are believed to bind pathogenic antigens in a similar way to antibodies, and with the same degree of specificity.[64]

When B cells and T cells are activated and begin to replicate, some of their offspring become long-lived memory cells. Throughout the lifetime of an animal, these memory cells remember each specific pathogen encountered and can mount a strong response if the pathogen is detected again. This is "adaptive" because it occurs during the lifetime of an individual as an adaptation to infection with that pathogen and prepares the immune system for future challenges. Immunological memory can be in the form of either passive short-term memory or active long-term memory.

Newborn infants have no prior exposure to microbes and are particularly vulnerable to infection. Several layers of passive protection are provided by the mother. During pregnancy, a particular type of antibody, called IgG, is transported from mother to baby directly across the placenta, so human babies have high levels of antibodies even at birth, with the same range of antigen specificities as their mother.[65]Breast milk or colostrum also contains antibodies that are transferred to the gut of the infant and protect against bacterial infections until the newborn can synthesize its own antibodies.[66] This is passive immunity because the fetus does not actually make any memory cells or antibodiesit only borrows them. This passive immunity is usually short-term, lasting from a few days up to several months. In medicine, protective passive immunity can also be transferred artificially from one individual to another via antibody-rich serum.[67]

Long-term active memory is acquired following infection by activation of B and T cells. Active immunity can also be generated artificially, through vaccination. The principle behind vaccination (also called immunization) is to introduce an antigen from a pathogen in order to stimulate the immune system and develop specific immunity against that particular pathogen without causing disease associated with that organism.[14] This deliberate induction of an immune response is successful because it exploits the natural specificity of the immune system, as well as its inducibility. With infectious disease remaining one of the leading causes of death in the human population, vaccination represents the most effective manipulation of the immune system mankind has developed.[35][68]

Most viral vaccines are based on live attenuated viruses, while many bacterial vaccines are based on acellular components of micro-organisms, including harmless toxin components.[14] Since many antigens derived from acellular vaccines do not strongly induce the adaptive response, most bacterial vaccines are provided with additional adjuvants that activate the antigen-presenting cells of the innate immune system and maximize immunogenicity.[69]

The immune system is a remarkably effective structure that incorporates specificity, inducibility and adaptation. Failures of host defense do occur, however, and fall into three broad categories: immunodeficiencies, autoimmunity, and hypersensitivities.

Immunodeficiencies occur when one or more of the components of the immune system are inactive. The ability of the immune system to respond to pathogens is diminished in both the young and the elderly, with immune responses beginning to decline at around 50 years of age due to immunosenescence.[70][71] In developed countries, obesity, alcoholism, and drug use are common causes of poor immune function.[71] However, malnutrition is the most common cause of immunodeficiency in developing countries.[71] Diets lacking sufficient protein are associated with impaired cell-mediated immunity, complement activity, phagocyte function, IgA antibody concentrations, and cytokine production. Additionally, the loss of the thymus at an early age through genetic mutation or surgical removal results in severe immunodeficiency and a high susceptibility to infection.[72]

Immunodeficiencies can also be inherited or 'acquired'.[14]Chronic granulomatous disease, where phagocytes have a reduced ability to destroy pathogens, is an example of an inherited, or congenital, immunodeficiency. AIDS and some types of cancer cause acquired immunodeficiency.[73][74]

Overactive immune responses comprise the other end of immune dysfunction, particularly the autoimmune disorders. Here, the immune system fails to properly distinguish between self and non-self, and attacks part of the body. Under normal circumstances, many T cells and antibodies react with "self" peptides.[75] One of the functions of specialized cells (located in the thymus and bone marrow) is to present young lymphocytes with self antigens produced throughout the body and to eliminate those cells that recognize self-antigens, preventing autoimmunity.[61]

Hypersensitivity is an immune response that damages the body's own tissues. They are divided into four classes (Type I IV) based on the mechanisms involved and the time course of the hypersensitive reaction. Type I hypersensitivity is an immediate or anaphylactic reaction, often associated with allergy. Symptoms can range from mild discomfort to death. Type I hypersensitivity is mediated by IgE, which triggers degranulation of mast cells and basophils when cross-linked by antigen.[76] Type II hypersensitivity occurs when antibodies bind to antigens on the patient's own cells, marking them for destruction. This is also called antibody-dependent (or cytotoxic) hypersensitivity, and is mediated by IgG and IgM antibodies.[76]Immune complexes (aggregations of antigens, complement proteins, and IgG and IgM antibodies) deposited in various tissues trigger Type III hypersensitivity reactions.[76] Type IV hypersensitivity (also known as cell-mediated or delayed type hypersensitivity) usually takes between two and three days to develop. Type IV reactions are involved in many autoimmune and infectious diseases, but may also involve contact dermatitis (poison ivy). These reactions are mediated by T cells, monocytes, and macrophages.[76]

It is likely that a multicomponent, adaptive immune system arose with the first vertebrates, as invertebrates do not generate lymphocytes or an antibody-based humoral response.[1] Many species, however, utilize mechanisms that appear to be precursors of these aspects of vertebrate immunity. Immune systems appear even in the structurally most simple forms of life, with bacteria using a unique defense mechanism, called the restriction modification system to protect themselves from viral pathogens, called bacteriophages.[77] Prokaryotes also possess acquired immunity, through a system that uses CRISPR sequences to retain fragments of the genomes of phage that they have come into contact with in the past, which allows them to block virus replication through a form of RNA interference.[78][79] Offensive elements of the immune systems are also present in unicellular eukaryotes, but studies of their roles in defense are few.[80]

Pattern recognition receptors are proteins used by nearly all organisms to identify molecules associated with pathogens. Antimicrobial peptides called defensins are an evolutionarily conserved component of the innate immune response found in all animals and plants, and represent the main form of invertebrate systemic immunity.[1] The complement system and phagocytic cells are also used by most forms of invertebrate life. Ribonucleases and the RNA interference pathway are conserved across all eukaryotes, and are thought to play a role in the immune response to viruses.[81]

Unlike animals, plants lack phagocytic cells, but many plant immune responses involve systemic chemical signals that are sent through a plant.[82] Individual plant cells respond to molecules associated with pathogens known as Pathogen-associated molecular patterns or PAMPs.[83] When a part of a plant becomes infected, the plant produces a localized hypersensitive response, whereby cells at the site of infection undergo rapid apoptosis to prevent the spread of the disease to other parts of the plant. Systemic acquired resistance (SAR) is a type of defensive response used by plants that renders the entire plant resistant to a particular infectious agent.[82]RNA silencing mechanisms are particularly important in this systemic response as they can block virus replication.[84]

Another important role of the immune system is to identify and eliminate tumors. This is called immune surveillance. The transformed cells of tumors express antigens that are not found on normal cells. To the immune system, these antigens appear foreign, and their presence causes immune cells to attack the transformed tumor cells. The antigens expressed by tumors have several sources;[86] some are derived from oncogenic viruses like human papillomavirus, which causes cervical cancer,[87] while others are the organism's own proteins that occur at low levels in normal cells but reach high levels in tumor cells. One example is an enzyme called tyrosinase that, when expressed at high levels, transforms certain skin cells (e.g. melanocytes) into tumors called melanomas.[88][89] A third possible source of tumor antigens are proteins normally important for regulating cell growth and survival, that commonly mutate into cancer inducing molecules called oncogenes.[86][90][91]

The main response of the immune system to tumors is to destroy the abnormal cells using killer T cells, sometimes with the assistance of helper T cells.[89][92] Tumor antigens are presented on MHC class I molecules in a similar way to viral antigens. This allows killer T cells to recognize the tumor cell as abnormal.[93] NK cells also kill tumorous cells in a similar way, especially if the tumor cells have fewer MHC class I molecules on their surface than normal; this is a common phenomenon with tumors.[94] Sometimes antibodies are generated against tumor cells allowing for their destruction by the complement system.[90]

Clearly, some tumors evade the immune system and go on to become cancers.[95] Tumor cells often have a reduced number of MHC class I molecules on their surface, thus avoiding detection by killer T cells.[93] Some tumor cells also release products that inhibit the immune response; for example by secreting the cytokine TGF-, which suppresses the activity of macrophages and lymphocytes.[96] In addition, immunological tolerance may develop against tumor antigens, so the immune system no longer attacks the tumor cells.[95]

Paradoxically, macrophages can promote tumor growth [97] when tumor cells send out cytokines that attract macrophages, which then generate cytokines and growth factors that nurture tumor development. In addition, a combination of hypoxia in the tumor and a cytokine produced by macrophages induces tumor cells to decrease production of a protein that blocks metastasis and thereby assists spread of cancer cells.

Hormones can act as immunomodulators, altering the sensitivity of the immune system. For example, female sex hormones are known immunostimulators of both adaptive[98] and innate immune responses.[99] Some autoimmune diseases such as lupus erythematosus strike women preferentially, and their onset often coincides with puberty. By contrast, male sex hormones such as testosterone seem to be immunosuppressive.[100] Other hormones appear to regulate the immune system as well, most notably prolactin, growth hormone and vitamin D.[101][102]

When a T-cell encounters a foreign pathogen, it extends a vitamin D receptor. This is essentially a signaling device that allows the T-cell to bind to the active form of vitamin D, the steroid hormone calcitriol. T-cells have a symbiotic relationship with vitamin D. Not only does the T-cell extend a vitamin D receptor, in essence asking to bind to the steroid hormone version of vitamin D, calcitriol, but the T-cell expresses the gene CYP27B1, which is the gene responsible for converting the pre-hormone version of vitamin D, calcidiol into the steroid hormone version, calcitriol. Only after binding to calcitriol can T-cells perform their intended function. Other immune system cells that are known to express CYP27B1 and thus activate vitamin D calcidiol, are dendritic cells, keratinocytes and macrophages.[103][104]

It is conjectured that a progressive decline in hormone levels with age is partially responsible for weakened immune responses in aging individuals.[105] Conversely, some hormones are regulated by the immune system, notably thyroid hormone activity.[106] The age-related decline in immune function is also related to decreasing vitamin D levels in the elderly. As people age, two things happen that negatively affect their vitamin D levels. First, they stay indoors more due to decreased activity levels. This means that they get less sun and therefore produce less cholecalciferol via UVB radiation. Second, as a person ages the skin becomes less adept at producing vitamin D.[107]

The immune system is affected by sleep and rest,[108] and sleep deprivation is detrimental to immune function.[109] Complex feedback loops involving cytokines, such as interleukin-1 and tumor necrosis factor- produced in response to infection, appear to also play a role in the regulation of non-rapid eye movement (REM) sleep.[110] Thus the immune response to infection may result in changes to the sleep cycle, including an increase in slow-wave sleep relative to REM sleep.[111]

When suffering from sleep deprivation, active immunizations may have a diminished effect and may result in lower antibody production, and a lower immune response, than would be noted in a well-rested individual. Additionally, proteins such as NFIL3, which have been shown to be closely intertwined with both T-cell differentiation and our circadian rhythms, can be affected through the disturbance of natural light and dark cycles through instances of sleep deprivation, shift work, etc. As a result, these disruptions can lead to an increase in chronic conditions such as heart disease, chronic pain, and asthma.[112]

In addition to the negative consequences of sleep deprivation, sleep and the intertwined circadian system have been shown to have strong regulatory effects on immunological functions affecting both the innate and the adaptive immunity. First, during the early slow-wave-sleep stage, a sudden drop in blood levels of cortisol, epinephrine, and norepinephrine induce increased blood levels of the hormones leptin, pituitary growth hormone, and prolactin. These signals induce a pro-inflammatory state through the production of the pro-inflammatory cytokines interleukin-1, interleukin-12, TNF-alpha and IFN-gamma. These cytokines then stimulate immune functions such as immune cells activation, proliferation, and differentiation. It is during this time that undifferentiated, or less differentiated, like nave and central memory T cells, peak (i.e. during a time of a slowly evolving adaptive immune response). In addition to these effects, the milieu of hormones produced at this time (leptin, pituitary growth hormone, and prolactin) support the interactions between APCs and T-cells, a shift of the Th1/Th2 cytokine balance towards one that supports Th1, an increase in overall Th cell proliferation, and nave T cell migration to lymph nodes. This milieu is also thought to support the formation of long-lasting immune memory through the initiation of Th1 immune responses.[113]

In contrast, during wake periods differentiated effector cells, such as cytotoxic natural killer cells and CTLs (cytotoxic T lymphocytes), peak in order to elicit an effective response against any intruding pathogens. As well during awake active times, anti-inflammatory molecules, such as cortisol and catecholamines, peak. There are two theories as to why the pro-inflammatory state is reserved for sleep time. First, inflammation would cause serious cognitive and physical impairments if it were to occur during wake times. Second, inflammation may occur during sleep times due to the presence of melatonin. Inflammation causes a great deal of oxidative stress and the presence of melatonin during sleep times could actively counteract free radical production during this time.[113][114]

Overnutrition is associated with diseases such as diabetes and obesity, which are known to affect immune function. More moderate malnutrition, as well as certain specific trace mineral and nutrient deficiencies, can also compromise the immune response.[115]

Foods rich in certain fatty acids may foster a healthy immune system.[116] Likewise, fetal undernourishment can cause a lifelong impairment of the immune system.[117]

The immune response can be manipulated to suppress unwanted responses resulting from autoimmunity, allergy, and transplant rejection, and to stimulate protective responses against pathogens that largely elude the immune system (see immunization) or cancer.

Immunosuppressive drugs are used to control autoimmune disorders or inflammation when excessive tissue damage occurs, and to prevent transplant rejection after an organ transplant.[35][118]

Anti-inflammatory drugs are often used to control the effects of inflammation. Glucocorticoids are the most powerful of these drugs; however, these drugs can have many undesirable side effects, such as central obesity, hyperglycemia, osteoporosis, and their use must be tightly controlled.[119] Lower doses of anti-inflammatory drugs are often used in conjunction with cytotoxic or immunosuppressive drugs such as methotrexate or azathioprine. Cytotoxic drugs inhibit the immune response by killing dividing cells such as activated T cells. However, the killing is indiscriminate and other constantly dividing cells and their organs are affected, which causes toxic side effects.[118] Immunosuppressive drugs such as cyclosporin prevent T cells from responding to signals correctly by inhibiting signal transduction pathways.[120]

Cancer immunotherapy covers the medical ways to stimulate the immune system to attack cancer tumours.

Immunology is strongly experimental in everyday practice but is also characterized by an ongoing theoretical attitude. Many theories have been suggested in immunology from the end of the nineteenth century up to the present time. The end of the 19th century and the beginning of the 20th century saw a battle between "cellular" and "humoral" theories of immunity. According to the cellular theory of immunity, represented in particular by Elie Metchnikoff, it was cells more precisely, phagocytes that were responsible for immune responses. In contrast, the humoral theory of immunity, held, among others, by Robert Koch and Emil von Behring, stated that the active immune agents were soluble components (molecules) found in the organisms humors rather than its cells.[121][122][123]

In the mid-1950s, Frank Burnet, inspired by a suggestion made by Niels Jerne,[124] formulated the clonal selection theory (CST) of immunity.[125] On the basis of CST, Burnet developed a theory of how an immune response is triggered according to the self/nonself distinction: "self" constituents (constituents of the body) do not trigger destructive immune responses, while "nonself" entities (pathogens, an allograft) trigger a destructive immune response.[126] The theory was later modified to reflect new discoveries regarding histocompatibility or the complex "two-signal" activation of T cells.[127] The self/nonself theory of immunity and the self/nonself vocabulary have been criticized,[123][128][129] but remain very influential.[130][131]

More recently, several theoretical frameworks have been suggested in immunology, including "autopoietic" views,[132] "cognitive immune" views,[133] the "danger model" (or "danger theory",[128] and the "discontinuity" theory.[134][135] The danger model, suggested by Polly Matzinger and colleagues, has been very influential, arousing many comments and discussions.[136][137][138][139]

Larger drugs (>500 Da) can provoke a neutralizing immune response, particularly if the drugs are administered repeatedly, or in larger doses. This limits the effectiveness of drugs based on larger peptides and proteins (which are typically larger than 6000 Da). In some cases, the drug itself is not immunogenic, but may be co-administered with an immunogenic compound, as is sometimes the case for Taxol. Computational methods have been developed to predict the immunogenicity of peptides and proteins, which are particularly useful in designing therapeutic antibodies, assessing likely virulence of mutations in viral coat particles, and validation of proposed peptide-based drug treatments. Early techniques relied mainly on the observation that hydrophilic amino acids are overrepresented in epitope regions than hydrophobic amino acids;[140] however, more recent developments rely on machine learning techniques using databases of existing known epitopes, usually on well-studied virus proteins, as a training set.[141] A publicly accessible database has been established for the cataloguing of epitopes from pathogens known to be recognizable by B cells.[142] The emerging field of bioinformatics-based studies of immunogenicity is referred to as immunoinformatics.[143]Immunoproteomics is the study of large sets of proteins (proteomics) involved in the immune response.

The success of any pathogen depends on its ability to elude host immune responses. Therefore, pathogens evolved several methods that allow them to successfully infect a host, while evading detection or destruction by the immune system.[144] Bacteria often overcome physical barriers by secreting enzymes that digest the barrier, for example, by using a type II secretion system.[145] Alternatively, using a type III secretion system, they may insert a hollow tube into the host cell, providing a direct route for proteins to move from the pathogen to the host. These proteins are often used to shut down host defenses.[146]

An evasion strategy used by several pathogens to avoid the innate immune system is to hide within the cells of their host (also called intracellular pathogenesis). Here, a pathogen spends most of its life-cycle inside host cells, where it is shielded from direct contact with immune cells, antibodies and complement. Some examples of intracellular pathogens include viruses, the food poisoning bacterium Salmonella and the eukaryotic parasites that cause malaria (Plasmodium falciparum) and leishmaniasis (Leishmania spp.). Other bacteria, such as Mycobacterium tuberculosis, live inside a protective capsule that prevents lysis by complement.[147] Many pathogens secrete compounds that diminish or misdirect the host's immune response.[144] Some bacteria form biofilms to protect themselves from the cells and proteins of the immune system. Such biofilms are present in many successful infections, e.g., the chronic Pseudomonas aeruginosa and Burkholderia cenocepacia infections characteristic of cystic fibrosis.[148] Other bacteria generate surface proteins that bind to antibodies, rendering them ineffective; examples include Streptococcus (protein G), Staphylococcus aureus (protein A), and Peptostreptococcus magnus (protein L).[149]

The mechanisms used to evade the adaptive immune system are more complicated. The simplest approach is to rapidly change non-essential epitopes (amino acids and/or sugars) on the surface of the pathogen, while keeping essential epitopes concealed. This is called antigenic variation. An example is HIV, which mutates rapidly, so the proteins on its viral envelope that are essential for entry into its host target cell are constantly changing. These frequent changes in antigens may explain the failures of vaccines directed at this virus.[150] The parasite Trypanosoma brucei uses a similar strategy, constantly switching one type of surface protein for another, allowing it to stay one step ahead of the antibody response.[151] Masking antigens with host molecules is another common strategy for avoiding detection by the immune system. In HIV, the envelope that covers the virion is formed from the outermost membrane of the host cell; such "self-cloaked" viruses make it difficult for the immune system to identify them as "non-self" structures.[152]

Follow this link:
Immune system - Wikipedia

Read More...

Worlds Leading Immunology Congress | Conferenceseries

Monday, October 3rd, 2016

Accreditation Statement

This activity (World Immunology Summit 2016) has been planned and implemented in accordance with the accreditation requirements and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint providership of PeerPoint Medical Education Institute and Conference Series, LLC. PeerPoint Medical Education Institute is accredited by the ACCME to provide continuing medical education for physicians.

Designation Statement

PeerPoint Medical Education Institute designates the live format for this educational activity for AMA PRA Category 1 Credits. Physicians should only claim credit commensurate with the extent of their participation in the activity.

Conference series invites participants from all over the world to attend "6th International Conference and Exhibition on Immunology" October 24-26, 2016 Chicago, USA includes prompt keynote presentations, Oral talks, Poster presentations and Exhibitions.

Presenters can availupto 20 CME credits..

The annual International Conference on Immunology offer a unique platform for academia, Societies and Industries interested in immunology and Biomedical sciences to share the latest trends and important issues in the field. Immunology Summit-2016 brings together the Global leaders in Immunology and relevant fields to present their research at this exclusive scientific program. The Immunology Conference hosting presentations from editors of prominent refereed journals, renowned and active investigators and decision makers in the field of Immunology. Immunology Summit 2016 Organizing Committee also intended to encourage Young investigators at every career stage to submit abstracts reporting their latest scientific findings in oral and poster sessions.

Track 1:ClinicalImmunology: Current & Future Research

Immunology is the study of the immune system. The immune system is how all animals, including humans, protect themselves against diseases. The study of diseases caused by disorders of the immune system is clinical immunology. The disorders of the immune system fall into two broad categories:

Immunodeficiency, in this immune system fails to provide an adequate response.

Autoimmunity, in this immune system attacks its own host's body.

Related:Immunology Conferences|Immunologists Meetings|Conference Series LLC

2nd International Conference on Antibodies and Therapeutics, July 11-12, 2016 Philadelphia, Pennsylvania, USA;5th European Immunology Conferences, July 21-23, 2016 Berlin, Germany; 7th International Conference on Allergy, Asthma and Clinical Immunology, September 14-15, 2016 Amsterdam, Netherlands; 2nd international conference on innate immunity, July 21-22, 2016, Germany; International Conference on Autoimmunity, October 13-14, 2016 Manchester, UK; Immunology 2016, American Association of Immunologists, Annual MeetingMay 13-17, Los Angeles, USA;USA Immunology Conferences;InternationalConference onMucosalImmunology, July 28-29, 2016, Australia;International Congress of Immunology

Track 2:Cancer and Tumor Immunobiology

The immune system is the bodys first line of defence against most diseases and unnatural invaders.Cancer Immunobiologyis a branch ofimmunologyand it studies interactions between theimmune systemandcancer cells. These cancer cells, through subtle alterations, become immortal malignant cells but are often not changed enough to elicit an immune reaction.Understanding how the immune system worksor does not workagainst cancer is a primary focus of Cancer Immunology investigators. Certain cells of the immune system, including natural killer cells, dendritic cells (DCs) and effector T cells, are capable of driving potent anti-tumour responses.

Tumor Immunobiology

The immune system can promote the elimination of tumours, but often immune responses are modulated or suppressed by the tumour microenvironment. The Tumour microenvironment is an important aspect of cancer biology that contributes to tumour initiation, tumour progression and responses to therapy. Cells and molecules of the immune system are a fundamental component of the tumour microenvironment. Importantly, therapeutic strategies can harness the immune system to specifically target tumour cells and this is particularly appealing owing to the possibility of inducing tumour-specific immunological memory, which might cause long-lasting regression and prevent relapse in cancer patients. The composition and characteristics of the tumour micro environment vary widely and are important in determining the anti-tumour immune response. Tumour cells often induce an immunosuppressive microenvironment, which favours the development of immuno suppressive populations of immune cells, such as myeloid-derived suppressor cells and regulatory T cells.

Related: Immunology Conferences|Immunologists Meetings|Conference Series LLC

2nd International Conference and Exhibition on Antibodies and Therapeutics, July 11-12, 2016 Philadelphia, Pennsylvania, USA; International Conference on Tumor Immunology and Immunotherapy, July 28-30, 2016 Melbourne, Australia; International Conference on Cancer Immunology and Immunotherapy, July 28-30, 2016 Melbourne, Australia, 2nd international congress on Neuroimmunology & therapeutics, Dec 01-03, 2016, USA; 2nd international conference on innate immunity, July 21-22, 2016, Germany;Immunology events;9th EuropeanMucosal ImmunologyMeetings, October 9 - 12 October, Scotland; international congress on immunology, august 21-26, 2016, Australia; 4th European Immunology events September 6-9, 2015, Austria

Track 3:Inflammation and Therapies

Inflammation is the body's attempt at self-protection; the aim being to remove harmful stimuli, including damaged cells, irritants, or pathogens - and begin the healing process. In Inflammation the body's whiteblood cellsand substances they produce protect us from infection with foreign organisms, such as bacteria and viruses. However, in some diseases, likearthritis, the body's defense system, the immune system triggers an inflammatory response when there are no foreign invaders to fight off. In these diseases, called autoimmune diseases, the body's normally protective immune system causes damage to its own tissues. The body responds as if normal tissues are infected or somehow abnormal. Inflammation involves immune cells, blood vessels, and molecular mediators. The purpose of inflammation is to eliminate the initial cause of cell injury, clear out necrotic cells and tissues damaged from the original insult and the inflammatory process, and to initiate tissue repair. signs of acute inflammation are pain, heat, redness, swelling, and loss of function

Therapies

Inflammation Therapy is a treatment for chronic disease involving a combination of lifestyle factors and medications designed to enable the immune system to fight the disease. Techniques used include heat therapy, cold therapy, electrical stimulation, traction, massage, and acupuncture. Heat increases blood flow and makes connective tissue more flexible. It temporarily decreases joint stiffness, pain, and muscle spasms. Heat also helps reduce inflammation and the buildup of fluid in tissues (edema). Heat therapy is used to treat inflammation (including various forms of arthritis), muscle spasm, and injuries such as sprains and strains. Cold therapy Applying cold may help numb tissues and relieve muscle spasms, pain due to injuries, and low back pain or inflammation that has recently developed. Cold may be applied using an ice bag, a cold pack, or fluids (such as ethyl chloride) that cool by evaporation. The therapist limits the time and amount of cold exposure to avoid damaging tissues and reducing body temperature (causing hypothermia). Cold is not applied to tissues with a reduced blood supply (for example, when the arteries are narrowed by peripheral arterial disease).

Related: Immunology Conferences|Immunologists Meetings|Conference Series LLC

7th International Conference on Allergy, Asthma and Clinical Immunology, September 14-15, 2016 Amsterdam, Netherlands ; 5th European Immunology Conferences, July 21-23, 2016 Berlin, Germany; 2nd International Conference on Antibodies and Therapeutics, July 11-12, 2016 Philadelphia, Pennsylvania, USA; International Conference on Tumor Immunology and Immunotherapy, July 28-30, 2016 Melbourne, Australia; International Conference on Cancer Immunology and Immunotherapy, July 28-30, 2016 Melbourne, Australia; InternationalcongressonImmunology, August 21-26, 2016, Australia; 18th International Conference on Inflammation, Amsterdam, Netherlands, May 12 - 13, 2016; 14th Cytokines & Inflammation Conference 2526 January 2016 San Diego, United States;

Track 4:Molecular and Structural Immunology

Molecular Immunology

Molecular immunology deals with immune responses at cellular and molecular level. Molecular immunology has been evolved for better understanding of the sub-cellular immune responses for prevention and treatment of immune related disorders and immune deficient diseases. Journal of molecular immunology focuses on the invitro and invivo immunological responses of the host. Molecular Immunology focuses on the areas such as immunological disorders, invitro and invivo immunological host responses, humoral responses, immunotherapies for treatment of cancer, treatment of autoimmune diseases such as Hashimotos disease, myasthenia gravis, rheumatoid arthritis and systemic lupus erythematosus. Treatment of Immune deficiencies such as hypersensitivities, chronic granulomatous disease, diagnostic immunology research aspects, allografts, etc..

Structural Immunology

Host immune system is an important and sophisticated system, maintaining the balance of host response to "foreign" antigens and ignorance to the normal-self. To fulfill this achievement the system manipulates a cell-cell interaction through appropriate interactions between cell-surface receptors and cell-surface ligands, or cell-secreted soluble effector molecules to their ligands/receptors/counter-receptors on the cell surface, triggering further downstream signaling for response effects. T cells and NK cells are important components of the immune system for defending the infections and malignancies and maintaining the proper response against over-reaction to the host. Receptors on the surface of T cells and NK cells include a number of important protein molecules, for example, T cell receptor (TCR), co-receptor CD8 or CD4, co-stimulator CD28, CTLA4, KIR, CD94/NKG2, LILR (ILT/LIR/CD85), Ly49, and so forth.

Related: Immunology Conferences|Immunologists Meetings|Conference Series LLC

2nd International Conference and Exhibition on Antibodies and Therapeutics, July 11-12, 2016 Philadelphia, Pennsylvania, USA; 7th International Conference on Allergy, Asthma and Clinical Immunology, September 14-15, 2016 Amsterdam, Netherlands; 2nd international conference on innate immunity, July 21-22, 2016, Germany; International Conference on Autoimmunity, October 13-14, 2016 Manchester, UK; Immunology 2016, American Association of Immunologists, Annual MeetingMay 13-17, Los Angeles, USA;9th EuropeanMucosal ImmunologyMeetings, October 9 - 12 October, Scotland;Immunology events;International Congress of Immunology

Track 5:Transplantation Immunology

Transplantation is an act of transferring cells, tissues, or organ from one site to other. Graft is implanted cell, tissue or organ. Development of the field of organ and tissue transplantation has accelerated remarkably since the human major histocompatibility complex (mhc) was discovered in 1967. Matching of donor and recipient for mhc antigens has been shown to have a significant positive effect on graft acceptance. The roles of the different components of the immune system involved in the tolerance or rejection of grafts and in graft-versus-host disease have been clarified. These components include: antibodies, antigen presenting cells, helper and cytotoxic t cell subsets, immune cell surface molecules, signaling mechanisms and cytokines that they release. The development of pharmacologic and biological agents that interfere with the alloimmune response and graft rejection has had a crucial role in the success of organ transplantation. Combinations of these agents work synergistically, leading to lower doses of immunosuppressive drugs and reduced toxicity. Significant numbers of successful solid organ transplants include those of the kidneys, liver, heart and lung.

Related: Immunology Conferences|Immunologists Meetings|Conference Series LLC

2ndInternationalCongress onNeuroimmunology&Therapeutics, Dec 01-03, 2016, USA; 7th International Conference on Allergy, Asthma and Clinical Immunology, September 14-15, 2016 Amsterdam, Netherlands ; 2nd International Conference on Antibodies and Therapeutics, July 11-12, 2016 Philadelphia, Pennsylvania, USA;USA Immunology Conferences;International Conference on Tumor Immunology and Immunotherapy, July 28-30, 2016 Melbourne, Australia; International Conference on Cancer Immunology and Immunotherapy, July 28-30, 2016 Melbourne, Australia; British society for Immunology Annual Immunology Congress, 6-9 Dec, 2016, Liverpool, UK; InternationalConference onMucosalImmunology, July 28-29, 2016, Australia; Immunology events

Track 6:Infectious Diseases, Emerging and Reemerging diseases: Confronting Future Outbreaks

Infectious diseasesare disorders caused by organisms such as bacteria, viruses,fungior parasites. Many organisms live in and on our bodies. They're normally harmless or even helpful, but under certain conditions, some organisms may causedisease.Someinfectious diseasescan be passed from person to person. Many infectious diseases, such asmeaslesand chickenpox, can be prevented by vaccines. Frequent and thorough hand-washing also helps protect you from infectious diseases.

There are four main kinds of germs:

Bacteria - one-celled germs that multiply quickly and may release chemicals which can make you sick

Viruses- capsules that contain genetic material, and use your own cells to multiply

Fungi - primitive plants, like mushrooms or mildew

Related: Immunology Conferences|Immunologists Meetings|Conference Series LLC

InternationalConference on Pediatric Care and Pediatric Infectious Disease, August 24-25, 2016 Philadelphia, Pennsylvania, USA; 4th InternationalCongress on Bacteriology and Infectious Diseases, May 16-18, 2016 San Antonio, Texas, USA; 2ndWorld Congress on Infectious DiseasesAugust 24 - 26, 2016 Philadelphia, Pennsylvania, USA; WorldCongress on Infection Prevention and Control, November 28-29, 2016 Valencia, Spain; Internationalconference on Emerging Infectious Diseases, Aug 24-26, Atlanta, Georgia;Immunology 2016, The 25th Annual CanadianConference on HIV/AIDSResearch Winnipeg, Manitoba, Canada , May 12, 2016 - May 15, 2016;Infectious DiseasesScandinavia-Russia Cruise 1626 June 2016, Copenhagen, Denmark; Immunology 2016, American Association of Immunologists, Annual Meeting May 13-17, Los Angeles, USA, 7th InternationalConference on Allergy, Asthma and Clinical Immunology, September 14-15, 2016 Amsterdam, Netherlands

Track 7:Autoimmune Diseases

An autoimmune disease develops when your immune system, which defends your body against disease, decides your healthy cells are foreign. As a result, your immune system attacks healthy cells. An autoimmune disorder may result in the destruction of body tissue, abnormal growth of an organ, Changes in organ function. Depending on the type, an autoimmune disease can affect one or many different types of body tissue. Areas often affected by autoimmune disorders include Blood vessels, Connective tissues, Endocrineglands such as the thyroid or pancreas, Joints Muscles, Red blood cells, Skin It can also cause abnormal organ growth and changes in organ function. There are as many as 80 types of autoimmune diseases. Many of them have similar symptoms, which makes them very difficult to diagnose. Its also possible to have more than one at the same time. Common autoimmune disorders include Addison's disease, Dermatomyositis, Graves' disease, Hashimoto's thyroiditis, Multiple sclerosis, Myasthenia gravis, Pernicious anemia, Reactive arthritis. Autoimmune diseases usually fluctuate between periods of remission (little or no symptoms) and flare-ups (worsening symptoms). Currently, treatment for autoimmune diseases focuses on relieving symptoms because there is no curative therapy.

Related: Immunology Conferences|Immunologists Meetings|Conference Series LLC

International Conference on Autoimmunity, October 13-14, 2016 Manchester, UK; 2nd international conference on innate immunity, July 21-22, 2016, Germany; 2nd International Conference andExhibition on Antibodiesand Therapeutics, July 11-12, 2016 Philadelphia, Pennsylvania, USA;Immunology events; 5th European Immunology Conferences, July 21-23, 2016 Berlin, Germany; 7th International Conference on Allergy, Asthma and Clinical Immunology, September 14-15, 2016 Amsterdam, Netherlands; 2nd Conference on Rheumatic and Autoimmune Diseases, June 1 to 3, 2016 Nanjing, China; 18th International Autoimmune Diseases Meetings, Paris, France, September 26 - 27, 2016; British society for Immunology Annual Immunology Congress, 6-9 Dec, 2016, Liverpool, UK;International Congress of Immunology

Track 8:Viral Immunology: Emerging and Re-emerging Diseases

Immunology is the study of all aspects of the immune system in all organisms. It deals with the physiological functioning of the immune system in states of both health and disease; malfunctions of the immune system in immunological disorders (autoimmune diseases, hypersensitivities, immune deficiency, transplant rejection); the physical, chemical and physiological characteristics of the components of the immune system in vitro, in situ, and in vivo.

Viruses are strongly immunogenic and induces 2 types of immune responses; humoral and cellular. The repertoire of specificities of T and B cells are formed by rearrangements and somatic mutations. T and B cells do not generally recognize the same epitopes present on the same virus. B cells see the free unaltered proteins in their native 3-D conformation whereas T cells usually see the Ag in a denatured form in conjunction with MHC molecules. The characteristics of the immune reaction to the same virus may differ in different individuals depending on their genetic constitutions.

Related: Immunology Conferences|Immunologists Meetings|Conference Series LLC

6thInternational Conference andExhibition onImmunology,Oct 24-26, 2016, USA;InternationalConference onAutoimmunity, Oct 24-26, 2016, UK;5thEuropeanImmunologyConference, July 21-23, 2016, Germany; InternationalConference onCancer ImmunologyandImmunotherapy, July 28-30, 2016, Australia;International Conference onMucosal Immunology, July 28-29, 2016, Australia; 2nd InternationalConference on Antibodiesand Therapeutics, July 11-12, 2016 Philadelphia, Pennsylvania, USA; InternationalConference on Tumor Immunologyand Immunotherapy, July 28-30, 2016 Melbourne, Australia; InternationalConference on Cancer Immunologyand Immunotherapy, July 28-30, 2016 Melbourne, Australia

Track 9:Pediatric Immunology

A child suffering from allergies or other problems with his immune system is referred as pediatric immunology. Childs immune system fights against infections. If the child has allergies, their immune system wrongly reacts to things that are usually harmless. Pet dander, pollen, dust, mold spores, insect stings, food, and medications are examples of such things. This reaction may cause their body to respond with health problems such as asthma, hay fever, hives, eczema (a rash), or a very severe and unusual reaction calledanaphylaxis. Sometimes, if your childs immune system is not working right, he may suffer from frequent, severe, and/or uncommon infections. Examples of such infections are sinusitis (inflammation of one or more of the sinuses), pneumonia (infection of the lung), thrush (a fungus infection in the mouth), and abscesses (collections of pus surrounded by inflamed tissue) that keep coming back.

Related: Immunology Conferences|Immunologists Meetings|Conference Series LLC

International Conference on Pediatric Care and Pediatric Infectious Disease, August 24-25, 2016 Philadelphia, Pennsylvania, USA; 7th International Conference on Pediatric Nursing and Healthcare, July 11-12, 2016 Cologne, Germany; International Congress on Pediatrics, 02-05 Jun 2016, Copenhagen, Denmark; 7th InternationalConference on Allergy, Asthma and Clinical Immunology, September 14;-15, 2016 Amsterdam, Netherlands; 2nd international conference on innate immunity, July 21-22, 2016, Germany; World Summit on Pediatric , 23 - 26 Jun 2016, Porto, Portugal; International Conference on Pediatric Nursing and Healthcare, Jul 11 - 13 2016, Cologne, Germany; Immunology 2016, American Association of Immunologists, Annual Meeting May 13-17, Los Angeles, USA; Immunology events;USA Immunology Conferences

Track 10:Immunotherapy & Cancer Immunotherapy: From Basic Biology to Translational Research

Immunotherapy is treatment that uses certain parts of a persons immune system to fight diseases such as cancer. This can be done in a couple of ways:

Stimulating your own immune system to work harder or smarter to attack cancer cells Giving you immune system components, such as man-made immune system proteins

Some types of immunotherapy are also sometimes called biologic therapy or biotherapy. In the last few decades immunotherapy has become an important part of treating some types of cancer. Newer types of immune treatments are now being studied, and theyll impact how we treat cancer in the future. Immunotherapy includes treatments that work in different ways. Some boost the bodys immune system in a very general way. Others help train the immune system to attack cancer cells specifically.

Cancer immunotherapy is the use of the immune system to treat cancer. The main types of immunotherapy now being used to treat cancer include:

Monoclonal antibodies: these are man-made versions of immune system proteins. Antibodies can be very useful in treating cancer because they can be designed to attack a very specific part of a cancer cell.

Immune checkpoint inhibitors: these drugs basically take the brakes off the immune system, which helps it recognize and attack cancer cells.

Cancer vaccines: vaccines are substances put into the body to start an immune response against certain diseases. We usually think of them as being given to healthy people to help prevent infections. But some vaccines can help prevent or treat cancer.

Other, non-specific immunotherapies: these treatments boost the immune system in a general way, but this can still help the immune system attack cancer cells.

Immunotherapy drugs are now used to treat many different types of cancer. For more information about immunotherapy as a treatment for a specific cancer, please see our information on that type of cancer.

Related: Immunology Conferences|Immunologists Meetings|Conference Series LLC

2nd International Conference and Exhibition on Antibodies and Therapeutics, July 11-12, 2016 Philadelphia, Pennsylvania, USA; InternationalConference on Tumor Immunologyand Immunotherapy, July 28-30, 2016 Melbourne, Australia; InternationalConference on Cancer Immunologyand Immunotherapy, July 28-30, 2016 Melbourne, Australia, 2nd internationalCongress on Neuroimmunology& therapeutics, Dec 01-03, 2016, USA;International Congress of Immunology;2nd international conference on innate immunity, July 21-22, 2016, Germany;5th European Immunology Conferences, July 21-23, 2016 Berlin, Germany; 9th European Mucosal Immunology meetings, October 9 - 12 October, Scotland; international congress on immunology, august 21-26, 2016, Australia; 4th European Immunology events September 6-9, 2015, Austria

Track 11:Immunology and Diabetes

Immunologyis the study of the immune system, which is responsible for protecting the body from foreign cells such as viruses, bacteria and parasites. Immune system cells called T and B lymphocytes identify and destroy these invaders. Thelymphocytesusually recognize and ignore the bodys own tissue (a condition called immunological self-tolerance), but certain autoimmune disorders trigger a malfunction in the immune response causing an attack on the bodys own cells due to a loss ofimmune tolerance.

Type 1 diabetes is anautoimmune diseasethat occurs when the immune system mistakenly attacks insulin-producing islet cells in the pancreas. This attack begins years before type 1 diabetes becomes evident, so by the time someone is diagnosed, extensive damage has already been done and the ability to produceinsulinis lost.

Related: Immunology Conferences|Immunologists Meetings|Conference Series LLC

InternationalConference onMucosalImmunology, July 28-29, 2016, Australia; International Conference onAllergy, March 29-30, 2016, Spain; 2ndInternationalCongress onNeuroimmunology&Therapeutics, Dec 01-03, 2016, USA;7th InternationalConference on Allergy, Asthma and Clinical Immunology, September 14-15, 2016 Amsterdam, Netherlands; Asthma EventsSeptember 14-15, 2016 Amsterdam, Netherlands;2nd InternationalConference on Antibodiesand Therapeutics, July 11-12, 2016 Philadelphia, Pennsylvania, USA; InternationalConference on Tumor Immunologyand Immunotherapy, July 28-30, 2016 Melbourne, Australia; InternationalConference on Cancer Immunologyand Immunotherapy, July 28-30, 2016 Melbourne, Australia; Immunology events InternationalcongressonImmunology, August 21-26, 2016, Australia; British society for Immunology Annual Immunology Congress, 6-9 Dec, 2016, Liverpool, UK

Track 12:Immune Tolerance

Immunological toleranceis the failure to mount animmuneresponse to an antigen. It can be: Natural or "self"tolerance. This is the failure (a good thing) to attack the body's own proteins and other antigens. If the immunesystem should respond to "self",an autoimmune diseasemay result. Natural or "self" tolerance: Induced tolerance: This is tolerance to externalantigens that has been created by deliberately manipulating theimmune system.

Related: Immunology Conferences|Immunologists Meetings|Conference Series LLC

InternationalConference onMucosalImmunology, July 28-29, 2016, Australia; International Conference onAllergy, March 29-30, 2016, Spain; 2ndInternationalCongress onNeuroimmunology&Therapeutics, Dec 01-03, 2016, USA;7th InternationalConference on Allergy, Asthma and Clinical Immunology, September 14-15, 2016 Amsterdam, Netherlands; Asthma EventsSeptember 14-15, 2016 Amsterdam, Netherlands;2nd InternationalExhibition on Antibodiesand Therapeutics, July 11-12, 2016 Philadelphia, Pennsylvania, USA; InternationalConference on Tumor Immunologyand Immunotherapy, July 28-30, 2016 Melbourne, Australia; InternationalConference on Cancer Immunologyand Immunotherapy, July 28-30, 2016 Melbourne, Australia; Immunology events InternationalcongressonImmunology, August 21-26, 2016, Australia; British society for Immunology Annual Immunology Congress, 6-9 Dec, 2016, Liverpool, UK

Track 13:Vaccines and Immunotherapy

Vaccine is a biological preparation that improves immunity to particular disease. It contains certain agent that not only resembles a disease causing microorganism but it also stimulates bodys immune system to recognise the foreign agents. Vaccines are dead or inactivated organisms or purified products derived from them. whole organism vaccines purified macromolecules as vaccines,recombinant vaccines, DNA vaccines. The immune system recognizes vaccine agents as foreign, destroys them, and "remembers" them. The administration of vaccines is called vaccination. In order to provide best protection, children are recommended to receive vaccinations as soon as their immune systems are sufficiently developed to respond to particular vaccines with additional "booster" shots often required to achieve "full immunity".

Immunotherapy is treatment that uses certain parts of a persons immune system to fight diseases such as cancer. This can be done in a couple of ways:

Stimulating your own immune system to work harder or smarter to attack cancer cells

Giving you immune system components, such as man-made immune system proteins

Some types of immunotherapy are also sometimes called biologic therapy or biotherapy. In the last few decades immunotherapy has become an important part of treating some types of cancer. Newer types of immune treatments are now being studied, and theyll impact how we treat cancer in the future. Immunotherapy includes treatments that work in different ways. Some boost the bodys immune system in a very general way. Others help train the immune system to attack cancer cells specifically. Immunotherapy works better for some types of cancer than for others. Its used by itself for some of these cancers, but for others it seems to work better when used with other types of treatment.

Related: Immunology Conferences|Immunologists Meetings|Conference Series LLC

10th Euro Global Summit andExpo on Vaccines & VaccinationJune 16-18, 2016 Rome, Italy; 11th Global Summit andExpo on Vaccines, Vaccination and TherapeuticsSeptember 12-14, 2016 Phoenix, Arizona, USA; 12th Asia Pacific Global Summit andExpo on Vaccines & VaccinationNovember 24-26, 2016 Melbourne, Australia;International Congress of Immunology;7th InternationalConference on Allergy, Asthma and Clinical Immunology, September 14-15, 2016 Amsterdam, Netherlands; International Conference on Autoimmunity, October 13-14, 2016 Manchester, UK;World Vaccine CongressApril 10-12, 2017 Washington; 10thVaccine Congress4-7 September 2016, Amsterdam, The Netherlands 10thVaccine Congress, 4-7 September 2016, Amsterdam British society for Immunology Annual Immunology Congress, 6-9 Dec, 2016, Liverpool, UK; 5th European Immunology Conferences, July 21-23, 2016 Berlin, Germany;USA Immunology Conferences

Track 14:Immunologic Techniques, Microbial Control and Therapeutics

Immunological techniques include both experimental methods to study the immune system and methods to generate or use immunological reagents as experimental tools. The most common immunological methods relate to the production and use of antibodies to detect specific proteins in biological samples. Various laboratory techniques exist that rely on the use of antibodies to visualize components of microorganisms or other cell types and to distinguish one cell or organism type from another. Immunologic techniques are used for: Quantitating and detectingantibodiesand/orantigens, Purifying immunoglobulins, lymphokines and other molecules of the immune system, Isolating antigens and other substances important in immunological processes, Labelling antigens and antibodies, Localizing antigens and/or antibodies in tissues and cells, Detecting, and fractionatingimmunocompetent cells, Assaying forcellular immunity, Documenting cell-cell interactions, Initiating immunity and unresponsiveness, Transplantingtissues, Studying items closely related to immunity such as complement,reticuloendothelial systemand others, Molecular techniques for studying immune cells and theirreceptors, Imaging of the immune system, Methods for production or their fragments ineukaryoticandprokaryotic cells.

Microbial control:

Control of microbial growth, as used here, means to inhibit or prevent growth of microorganisms. This control is achieved in two basic ways: (1) by killing microorganisms or (2) by inhibiting the growth of microorganisms. Control of growth usually involves the use of physical or chemical agents which either kill or prevent the growth of microorganisms. Agents which kill cells are called cidal agents; agents which inhibit the growth of cells (without killing them) are referred to as static agents. Thus, the term bactericidal refers to killing bacteria, and bacteriostatic refers to inhibiting the growth of bacterial cells. A bactericide kills bacteria, a fungicide kills fungi, and so on. In microbiology, sterilization refers to the complete destruction or elimination of all viable organisms in or on a substance being sterilized. There are no degrees of sterilization: an object or substance is either sterile or not. Sterilization procedures involve the use of heat, radiation or chemicals, or physical removal of cells.

Related: Immunology Conferences|Immunologists Meetings|Conference Series LLC

2nd international conference on innate immunity, July 21-22, 2016, Germany; 2nd International Conference and Exhibition on Antibodies and Therapeutics, July 11-12, 2016 Philadelphia, Pennsylvania, USA;7th InternationalConference on Allergy, Asthma and Clinical Immunology, September 14-15, 2016 Amsterdam, Netherlands, September 14-15, 2016 Amsterdam, Netherlands;International Conference on Autoimmunity, October 13-14, 2016 Manchester, UK; Immunology 2016, American Association of Immunologists, Annual MeetingMay 13-17, Los Angeles, USA;9th EuropeanMucosal Immunology meetings, October 9 - 12 October, Scotland;

Track 15:Immunodeficiency

Immunodeficiency is a state in which theimmune system's ability to fightinfectious diseaseis compromised or entirely absent. Immunodeficiency disorders prevent your body from adequately fighting infections and diseases. An immunodeficiency disorder also makes it easier for you to catch viruses and bacterial infections in the first place. Immunodeficiency disorders are often categorized as either congenital or acquired. A congenital, or primary, disorder is one you were born with. Acquired, or secondary, disorders are disorders you get later in life. Acquired disorders are more common thancongenital disorders. Immune system includes the following organs: spleen, tonsils, bone marrow, lymph nodes. These organs make and release lymphocytes. Lymphocytes are white blood cells classified as B cells and T cells. B and T cells fight invaders called antigens. B cells release antibodies specific to the disease your body detects. T cells kill off cells that are under attack by disease. An immunodeficiency disorder disrupts your bodys ability to defend itself against these antigens. Types of immunodeficiency disorder are Primary immunodeficiency disorders & Secondary immunodeficiency disorders.

Primary immunodeficiency disorders are immune disorders you are born with. Primary disorders include:

X-linked agammaglobulinemia (XLA)

Common variable immunodeficiency (CVID)

Severe combined immunodeficiency(SCID)

Secondary disorders happen when an outside source, such as a toxic chemical or infection, attacks your body. Severe burns and radiation also can cause secondary disorders.

View post:
Worlds Leading Immunology Congress | Conferenceseries

Read More...

8th European Immunology Conference June 29-July 01, 2017 …

Saturday, October 1st, 2016

Conference Series invites all the participants from all over the world to attend"8th European Immunology Conference, June 29-July 01, 2017 Madrid, Spain, includesprompt keynote presentations, Oral talks, Poster presentations and Exhibitions.

European ImmunologyConferenceis to gathering people in academia and society interested inimmunologyto share the latest trends and important issues relevant to our field/subject area.Immunology Conferencesbrings together the global leaders in Immunology and relevant fields to present their research at this exclusive scientific program. TheImmunology Conferencehosting presentations from editors of prominent refereed journals, renowned and active investigators and decision makers in the field of Immunology.European Immunology ConferenceOrganizing Committee also invites Young investigators at every career stage to submit abstracts reporting their latest scientific findings in oral and poster sessions.

Track:1Cellular Immunology

The study of the molecular and cellular components that comprise the immune system, including their function and interaction, is the central science ofimmunology. The immune system has been divided into a more primitive innate immune system and, in vertebrates, an acquired oradaptive immune system

The field concerning the interactions among cells and molecules of the immunesystem,and how such interactions contribute to the recognition and elimination of pathogens. Humans possess a range of non-specific mechanical and biochemical defences against routinely encountered bacteria, parasites, viruses, and fungi. The skin, for example, is an effective physical barrier to infection. Basic chemical defences are also present in blood, saliva, and tears, and on mucous membranes. True protection stems from the host's ability to mount responses targeted to specific organisms, and to retain a form of memory that results in a rapid, efficient response to a given organism upon a repeat encounter. This more formal sense of immunity, termed adaptive immunity, depends upon the coordinated activities of cells and molecules of the immune system.

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

9thworld congress & expo on Immunology, Oct 02-04, 2017, Toronto, Canada; 3rdAntibodies and Bio Therapeutics Congress, November 02-03, 2017 Las Vegas, USA; Molecular Immunology & Immunogenetics Congress, March 20-21, 2017 Rome, Italy; Annual Meeting on Immunology and Immunologist, July 03-05, 2017 Malyasia, Kuala lumpur; 3rd International Congress on Neuroimmunology and Therapeutics, September 18-19, 2017 Philadelphia, USA; 2nd Autoimmunity Conference, Nov 9-10, 2017 Madrid, Spain; Integrating Metabolism and Immunity , May 29 - June 2, 2017 | Dublin, Ireland

Track: 2Inflammatory/Autoimmune Diseases

Autoimmune diseasescan affect almost any part of the body, including the heart, brain, nerves, muscles, skin, eyes, joints, lungs, kidneys, glands, the digestive tract, and blood vessels.

The classic sign of an autoimmune disease is inflammation, which can cause redness, heat, pain, and swelling. How an autoimmune disease affects you depends on what part of the body is targeted. If the disease affects the joints, as inrheumatoid arthritis, you might have joint pain, stiffness, and loss of function. If it affects the thyroid, as in Graves disease and thyroiditis, it might cause tiredness, weight gain, and muscle aches. If it attacks the skin, as it does in scleroderma/systemic sclerosis, vitiligo, andsystemic lupus erythematosus(SLE), it can cause rashes, blisters, and colour changes. Many autoimmune diseases dont restrict themselves to one part of the body. For example, SLE can affect the skin, joints, kidneys, heart, nerves, blood vessels, and more. Type 1 diabetes can affect your glands, eyes, kidneys, muscles, and more.

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

9thworld congress & expo on Immunology, Oct 02-04, 2017, Toronto, Canada; 3rdAntibodies and Bio Therapeutics Congress, November 02-03, 2017 Las Vegas, USA; Molecular Immunology & Immunogenetics Congress, March 20-21, 2017 Rome, Italy; 3nd International Congress on Neuroimmunology and Therapeutics, September 18-19, 2017 Philadelphia, USA; 18th International Conference on Immunology (ICI) Dec 12-13, 2016, Bangkok, Thailand; Annual Meeting on Immunology and Immunologist, July 03-05, 2017 Malyasia, Kuala lumpur; British Society for Immunology Congress, Dec 06-09, 2016, Liverpool, United Kingdom; 7thInternational Conference on Allergy, Asthma and Clinical Immunology

Track: 3T-Cells and B-Cells

T cell: A type of white blood cell that is of key importance to the immune system and is at the core of adaptive immunity, the system that tailors the body's immune response to specific pathogens. The T cells are like soldiers who search out and destroy the targeted invaders. Immature T cells (termed T-stem cells) migrate to the thymus gland in the neck, where they mature and differentiate into various types of mature T cells and become active in the immune system in response to a hormone called thymosin and other factors. T-cells that are potentially activated against the body's own tissues are normally killed or changed ("down-regulated") during this maturational process.There are several different types of mature T cells. Not all of their functions are known. T cells can produce substances called cytokines such as the interleukins which further stimulate the immune response. T-cell activation is measured as a way to assess the health of patients withHIV/AIDSand less frequently in other disorders. T cell are also known as T lymphocytes. The "T" stands for "thymus" -- the organ in which these cells mature. As opposed to B cells which mature in the bone marrow.B cells, also known asBlymphocytes, are a type of white bloodcellof the lymphocyte subtype. They function in thehumoral immunitycomponent of the adaptive immune system by secreting antibodies. Many B cells mature into what are called plasma cells that produce antibodies (proteins) necessary to fight off infections while other B cells mature into memory B cells. All of the plasma cells descended from a single B cell produce the same antibody which is directed against the antigen that stimulated it to mature. The same principle holds with memory B cells. Thus, all of the plasma cells and memory cells "remember" the stimulus that led to their formation. The maturation of B cells takes place in birds in an organ called the bursa of Fabricus. B cells in mammals mature largely in the bone marrow. The B cell, or B lymphocyte, is thus an immunologically important cell. It is not thymus-dependent, has a short lifespan, and is responsible for the production ofimmunoglobulins.It expresses immunoglobulins on its surface.

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

Molecular Immunology & Immunogenetics Congress, March 20-21, 2017 Rome, Italy; 3nd International Congress on Neuroimmunology and Therapeutics, September 18-19, 2017 Philadelphia, USA; 18thInternational Conference on Immunology (ICI) Dec 12-13, 2016, Bangkok, Thailand; Annual Meeting on Immunology and Immunologist, July 03-05, 2017 Malyasia, Kuala lumpur; 19thInternational Conference on Immunology (ICI) Sept 14-17, 2017, Berlin, Germany; Modelling Viral Infections and Immunity (E1) , May 1 - 4, 2017 | Estes Park, Colorado, USA; 7thInternational Conference on Allergy, Asthma and Clinical Immunology

Track: 4Cancer and Tumor Immunobiology

The tumour is an important aspect of cancer biology that contributes to tumour initiation, tumour progression and responses to therapy. Cells and molecules of the immune system are a fundamental component of the tumour microenvironment. Importantly,therapeutic strategies for cancer treatmentcan harness the immune system to specifically target tumour cells and this is particularly appealing owing to the possibility of inducing tumour-specific immunological memory, which might cause long-lasting regression and prevent relapse in cancer patients.The composition and characteristics of the tumour microenvironment vary widely and are important in determining the anti-tumour immune response.Immunotherapyis a new class ofcancer treatmentthat works to harness the innate powers of the immune system to fight cancer. Because of the immune system's unique properties, these therapies may hold greater potential than current treatment approaches to fight cancer more powerfully, to offer longer-term protection against the disease, to come with fewer side effects, and to benefit more patients with more cancer

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

9thworld congress & expo on Immunology, Oct 02-04, 2017, Toronto, Canada; 3rdAntibodies and Bio Therapeutics Congress, November 02-03, 2017 Las Vegas, USA; Molecular Immunology & Immunogenetics Congress, March 20-21, 2017 Rome, Italy; 3nd International Congress on Neuroimmunology and Therapeutics, September 18-19, 2017 Philadelphia, USA; 18th International Conference on Immunology (ICI) Dec 12-13, 2016, Bangkok, Thailand; Annual Meeting on Immunology and Immunologist, July 03-05, 2017 Malyasia, Kuala lumpur; British Society for Immunology Congress, Dec 06-09, 2016, Liverpool, United Kingdom; 7thInternational Conference on Allergy, Asthma and Clinical Immunology

Track: 5 Vaccines

A vaccine is a biological preparation that improves immunity to a particular disease. A vaccine typically contains an agent that resembles a disease-causing microorganism, and is often made from weakened or killed forms of the microbe, its toxins or one of its surface proteins. The agent stimulates the body's immune system to recognize the agent as foreign, destroy it, and "remember" it, so that the immune system can more easily recognize and destroy any of these microorganisms that it later encounters. There are two basictypes of vaccines: live attenuated and inactivated. The characteristics of live and inactivatedvaccinesare different, and these characteristics determine how thevaccineis used. Liveattenuatedvaccinesare produced by modifying a disease-producing (wild) virus or bacteria in a laboratory.

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

Molecular Immunology & Immunogenetics Congress, March 20-21, 2017 Rome, Italy; 3nd International Congress on Neuroimmunology and Therapeutics, September 18-19, 2017 Philadelphia, USA; 18thInternational Conference on Immunology (ICI) Dec 12-13, 2016, Bangkok, Thailand; Annual Meeting on Immunology and Immunologist, July 03-05, 2017 Malyasia, Kuala lumpur; 19thInternational Conference on Immunology (ICI) Sept 14-17, 2017, Berlin, Germany; Modelling Viral Infections and Immunity (E1) , May 1 - 4, 2017 | Estes Park, Colorado, USA; 7thInternational Conference on Allergy, Asthma and Clinical Immunology

Track: 6Immunotherapy

Immunotherapy,also called biologic therapy, is a type of cancer treatment designed to boost the body's natural defences to fight the cancer. It uses materials either made by the body or in a laboratory to improve, target, or restore immune system function. Immunotherapy is treatment that uses certain parts of a persons immune system to fight diseases such as cancer. This can be done in a couple of ways:1)Stimulating your own immune system to work harder or smarter to attack cancer cells2)Giving you immune system components, such as man-made immune system proteins. Some types of immunotherapy are also sometimes called biologic therapy or biotherapy.

In the last few decadesimmunotherapyhas become an important part of treating some types of cancer. Newer types of immune treatments are now being studied, and theyll impact how we treat cancer in the future. Immunotherapy includes treatments that work in different ways. Some boost the bodys immune system in a very general way. Others help train the immune system to attack cancer cells specifically. Immunotherapy works better for some types of cancer than for others. Its used by itself for some of these cancers, but for others it seems to work better when used with other types of treatment.

Many different types of immunotherapy are used to treat cancer. They include:Monoclonal antibodies,Adoptive cell transfer,Cytokines, Treatment Vaccines, BCG,

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

9thworld congress & expo on Immunology, Oct 02-04, 2017, Toronto, Canada; 3rdAntibodies and Bio Therapeutics Congress, November 02-03, 2017 Las Vegas, USA; Molecular Immunology & Immunogenetics Congress, March 20-21, 2017 Rome, Italy; Annual Meeting on Immunology and Immunologist, July 03-05, 2017 Malyasia, Kuala lumpur; 3rd International Congress on Neuroimmunology and Therapeutics, September 18-19, 2017 Philadelphia, USA; 2nd Autoimmunity Conference, Nov 9-10, 2017 Madrid, Spain; Integrating Metabolism and Immunity , May 29 - June 2, 2017 | Dublin, Ireland; American Academy of Allergy, Asthma & Immunology (AAAAI) Annual Meeting, March 03-06, 2017, Atlanta, Georgia

Track: 7Neuro Immunology

Neuroimmunology, a branch of immunologythat deals especially with the inter relationships of the nervous system and immune responses andautoimmune disorders. It deals with particularly fundamental and appliedneurobiology,meetings onneurology,neuropathology, neurochemistry,neurovirology, neuroendocrinology, neuromuscular research,neuropharmacologyand psychology, which involve either immunologic methodology (e.g. immunocytochemistry) or fundamental immunology (e.g. antibody and lymphocyte assays).

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

Molecular Immunology & Immunogenetics Congress, March 20-21, 2017 Rome, Italy; 3nd International Congress on Neuroimmunology and Therapeutics, September 18-19, 2017 Philadelphia, USA; 18thInternational Conference on Immunology (ICI) Dec 12-13, 2016, Bangkok, Thailand; Annual Meeting on Immunology and Immunologist, July 03-05, 2017 Malyasia, Kuala lumpur; 19thInternational Conference on Immunology (ICI) Sept 14-17, 2017, Berlin, Germany; Modelling Viral Infections and Immunity (E1) , May 1 - 4, 2017 | Estes Park, Colorado, USA; 7thInternational Conference on Allergy, Asthma and Clinical Immunology; 18thInternational Conference on Immunology (ICI) Dec 12-13, 2016, Bangkok, Thailand

Track: 8Infectious Diseases and Immune System

Infectious diseases are caused by pathogenic microorganisms, such as bacteria, viruses, parasites or fungi; the diseases can be spread, directly or indirectly, from one person to another.Zoonotic diseasesare infectious diseases of animals that can cause disease when transmitted to humans. Some infectious diseases can be passed from person to person. Some are transmitted by bites from insects or animals. And others are acquired by ingesting contaminated food or water or being exposed to organisms in the environment. Signs and symptoms vary depending on the organism causing the infection, but often include fever and fatigue. Mild complaints may respond to rest and home remedies, while some life-threatening infections may require hospitalization.

Many infectious diseases, such as measles andchickenpox, can be prevented by vaccines. Frequent and thorough hand-washing also helps protect you from infectious diseases

There are four main kinds of germs:

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

Molecular Immunology & Immunogenetics Congress, March 20-21, 2017 Rome, Italy; 3nd International Congress on Neuroimmunology and Therapeutics, September 18-19, 2017 Philadelphia, USA; 18thInternational Conference on Immunology (ICI) Dec 12-13, 2016, Bangkok, Thailand; Annual Meeting on Immunology and Immunologist, July 03-05, 2017 Malyasia, Kuala lumpur; 19thInternational Conference on Immunology (ICI) Sept 14-17, 2017, Berlin, Germany; Modelling Viral Infections and Immunity (E1) , May 1 - 4, 2017 | Estes Park, Colorado, USA; 7thInternational Conference on Allergy, Asthma and Clinical Immunology; 18thInternational Conference on Immunology (ICI) Dec 12-13, 2016, Bangkok, Thailand

Track: 9Reproductive Immunology,

Reproductive immunologyrefers to a field of medicine that studies interactions (or the absence of them) between the immune system and components related to thereproductivesystem, such as maternal immune tolerance towards the fetus, orimmunologicalinteractions across the blood-testis barrier. The immune system refers to all parts of the body that work to defend it against harmful enemies. In people with immunological fertility problems their body identifies part of reproductive function as an enemy and sendsNatural Killer (NK) cellsto attack. A healthy immune response would only identify an enemy correctly and attack only foreign invaders such as a virus, parasite, bacteria, ect.

The concept of reproductive immunology is not widely accepted by all physicians.Those patients who have had repeated miscarriages and multiple failed IVF's find themselves exploring it's possibilities as the reason. With an increased amount of success among treating any potential immunological factors, the idea of reproductive immunology can no longer be overlooked.The failure to conceive is often due to immunologic problems that can lead to very early rejection of the embryo, often before the pregnancy can be detected by even the most sensitive tests. Women can often produce perfectly healthy embryos that are lost through repeated "mini miscarriages." This most commonly occurs in women who have conditions such asendometriosis, an under-active thyroid gland or in cases of so called "unexplained infertility." It has been estimated that an immune factor may be involved in up to 20% of couples with otherwiseunexplained infertility. These are all conditions where abnormalities of the womans immune system may play an important role.

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

9thworld congress & expo on Immunology, Oct 02-04, 2017, Toronto, Canada; 3rdAntibodies and Bio Therapeutics Congress, November 02-03, 2017 Las Vegas, USA; Molecular Immunology & Immunogenetics Congress, March 20-21, 2017 Rome, Italy; 3nd International Congress on Neuroimmunology and Therapeutics, September 18-19, 2017 Philadelphia, USA; 18th International Conference on Immunology (ICI) Dec 12-13, 2016, Bangkok, Thailand; Annual Meeting on Immunology and Immunologist, July 03-05, 2017 Malyasia, Kuala lumpur; British Society for Immunology Congress, Dec 06-09, 2016, Liverpool, United Kingdom; 7thInternational Conference on Allergy, Asthma and Clinical Immunology; Cancer Immunology and Immunotherapy: Taking a Place in Mainstream Oncology (C7), March 19 - 23, 2017, Whistler, British Columbia, Canada

Track:10Auto Immunity,

Autoimmunityis the system ofimmuneresponses of an organism against its own cells and tissues. Any disease that results from such an aberrantimmuneresponse is termed an autoimmune disease.

Autoimmunity is present to some extent in everyone and is usually harmless. However, autoimmunity can cause a broad range of human illnesses, known collectively as autoimmune diseases. Autoimmune diseases occur when there is progression from benign autoimmunity to pathogenicautoimmunity. This progression is determined by genetic influences as well as environmental triggers. Autoimmunity is evidenced by the presence of autoantibodies (antibodies directed against the person who produced them) and T cells that are reactive with host antigens.

Autoimmune disorders

An autoimmune disorder occurs whenthe bodys immune systemattacks and destroys healthy body tissue by mistake. There are more than 80 types of autoimmune disorders.

Causes

The white blood cells in the bodys immune system help protect against harmful substances. Examples include bacteria, viruses,toxins,cancercells, and blood and tissue from outside the body. These substances contain antigens. The immune system producesantibodiesagainst these antigens that enable it to destroy these harmful substances. When you have an autoimmune disorder, your immune system does not distinguish between healthy tissue and antigens. As a result, the body sets off a reaction that destroys normal tissues. The exact cause of autoimmune disorders is unknown. One theory is that some microorganisms (such as bacteria or viruses) or drugs may trigger changes that confuse the immune system. This may happen more often in people who have genes that make them more prone toautoimmune disorders.

An autoimmune disorder may result in:

A person may have more than one autoimmune disorder at the same time. Common autoimmune disorders include:

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

9thworld congress & expo on Immunology, Oct 02-04, 2017, Toronto, Canada; 3rdAntibodies and Bio Therapeutics Congress, November 02-03, 2017 Las Vegas, USA; Molecular Immunology & Immunogenetics Congress, March 20-21, 2017 Rome, Italy; 3nd International Congress on Neuroimmunology and Therapeutics, September 18-19, 2017 Philadelphia, USA; 18th International Conference on Immunology (ICI) Dec 12-13, 2016, Bangkok, Thailand; Annual Meeting on Immunology and Immunologist, July 03-05, 2017 Malyasia, Kuala lumpur; British Society for Immunology Congress, Dec 06-09, 2016, Liverpool, United Kingdom; 7thInternational Conference on Allergy, Asthma and Clinical Immunology; Cancer Immunology and Immunotherapy: Taking a Place in Mainstream Oncology (C7), March 19 - 23, 2017, Whistler, British Columbia, Canada

Track: 11Costimmulatory pathways in multiple sclerosis

Costimulatory moleculescan be categorized based either on their functional attributes or on their structure. The costimulatory molecules discussed in this review will be divided into (1)positive costimulatory pathways:promoting T cell activation, survival and/or differentiation; (2)negative costimulatory pathways:antagonizing TCR signalling and suppressing T cell activation; (3) as third group we will discuss themembers of the TIM family, a rather new family of cell surface molecules involved in the regulation of T cell differentiation and Treg function.Costimulatory pathways have a critical role in the regulation of alloreactivity. A complex network of positive and negative pathways regulates T cell responses. Blocking costimulation improves allograft survival in rodents and non-human primates. The costimulation blocker belatacept is being developed asimmunosuppressivedruginrenal transplantation.

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

3rdAntibodies and Bio Therapeutics Congress, November 02-03, 2017 Las Vegas, USA; Molecular Immunology & Immunogenetics Congress, March 20-21, 2017 Rome, Italy; Annual Meeting on Immunology and Immunologist, July 03-05, 2017 Malyasia, Kuala lumpur; 3rd International Congress on Neuroimmunology and Therapeutics, September 18-19, 2017 Philadelphia, USA; 2nd Autoimmunity Conference, Nov 9-10, 2017 Madrid, Spain; Integrating Metabolism and Immunity , May 29 - June 2, 2017 | Dublin, Ireland; American Academy of Allergy, Asthma & Immunology (AAAAI) Annual Meeting, March 03-06, 2017, Atlanta, Georgia

Track: 12Autoimmunity and Therapathies

Autoimmunityis the system ofimmuneresponsesof an organism against its own cells and tissues. Any disease that results from such an aberrantimmuneresponse is termed an autoimmune disease.

Autoimmunity is present to some extent in everyone and is usually harmless. However, autoimmunity can cause a broad range of human illnesses, known collectively as autoimmune diseases.Autoimmune diseasesoccur when there is progression from benign autoimmunity to pathogenic autoimmunity. This progression is determined by genetic influences as well as environmental triggers. Autoimmunity is evidenced by the presence of autoantibodies (antibodies directed against the person who produced them) and T cells that are reactive with host antigens.

Current treatments for allergic and autoimmune disease treat disease symptoms or depend on non-specific immune suppression. Treatment would be improved greatly by targeting the fundamental cause of the disease, that is the loss of tolerance to an otherwise innocuous antigen in allergy or self-antigen in autoimmune disease (AID). Much has been learned about the mechanisms of peripheral tolerance in recent years. We now appreciate that antigen presenting cells (APC) may be either immunogenic or tolerogenic, depending on their location, environmental cues and activation state

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

3rdAntibodies and Bio Therapeutics Congress, November 02-03, 2017 Las Vegas, USA; Molecular Immunology & Immunogenetics Congress, March 20-21, 2017 Rome, Italy; Annual Meeting on Immunology and Immunologist, July 03-05, 2017 Malyasia, Kuala lumpur; 3rd International Congress on Neuroimmunology and Therapeutics, September 18-19, 2017 Philadelphia, USA; 2nd Autoimmunity Conference, Nov 9-10, 2017 Madrid, Spain; Integrating Metabolism and Immunity , May 29 - June 2, 2017 | Dublin, Ireland; American Academy of Allergy, Asthma & Immunology (AAAAI) Annual Meeting, March 03-06, 2017, Atlanta, Georgia

Track: 13DiagnosticImmunology

Diagnostic Immunology. Immunoassays are laboratory techniques based on the detection of antibody production in response to foreign antigens. Antibodies, part of the humoral immune response, are involved in pathogen detection and neutralization.

Diagnostic immunology has considerably advanced due to the development of automated methods.New technology takes into account saving samples, reagents, and reducing cost.The future of diagnosticimmunologyfaces challenges in the vaccination field for protection against HIV and asanti-cancer therapy. Modern immunology relies heavily on the use of antibodies as highly specific laboratory reagents. The diagnosis of infectious diseases, the successful outcome of transfusions and transplantations, and the availability of biochemical and hematologic assays with extraordinary specificity and sensitivity capabilities all attest to the value of antibody detection.Immunologic methods are used in the treatment and prevention ofinfectious diseasesand in the large number of immune-mediated diseases. Advances in diagnostic immunology are largely driven by instrumentation, automation, and the implementation of less complex and more standardized procedures.

Examples of such processes are as follows:

These methods have facilitated the performance of tests and have greatly expanded the information that can be developed by a clinical laboratory. The tests are now used for clinical diagnosis and the monitoring of therapies and patient responses. Immunology is a relatively young science and there is still so much to discover. Immunologists work in many different disease areas today that include allergy, autoimmunity, immunodeficiency, transplantation, and cancer.

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

3nd International Congress on Neuroimmunology and Therapeutics, September 18-19, 2017 Philadelphia, USA; 18thInternational Conference on Immunology (ICI) Dec 12-13, 2016, Bangkok, Thailand; Annual Meeting on Immunology and Immunologist, July 03-05, 2017 Malyasia, Kuala lumpur; 19thInternational Conference on Immunology (ICI) Sept 14-17, 2017, Berlin, Germany; Modelling Viral Infections and Immunity (E1) , May 1 - 4, 2017 | Estes Park, Colorado, USA; 7thInternational Conference on Allergy, Asthma and Clinical Immunology; 18thInternational Conference on Immunology (ICI) Dec 12-13, 2016, Bangkok, Thailand

Track: 14Allergy and Therapathies

Although medications available for allergy are usually very effective, they do not cure people of allergies. Allergenimmunotherapyis the closest thing we have for a "cure" for allergy, reducing the severity of symptoms and the need for medication for many allergy sufferers. Allergen immunotherapy involves the regular administration of gradually increasing doses of allergen extracts over a period of years. Immunotherapy can be given to patients as an injection or as drops or tablets under the tongue (sublingual).Allergen immunotherapy changes the way the immune system reacts to allergens, by switching off allergy. The end result is that you become immune to the allergens, so that you can tolerate them with fewer or no symptoms. Allergen immunotherapy is not, however, a quick fix form of treatment. Those agreeing to allergen immunotherapy need to be committed to 3-5 years of treatment for it to work, and to cooperate with your doctor to minimize the frequency of side effects.Allergen immunotherapyis usually recommended for the treatment of potentially life threatening allergic reactions to stinging insects. Published data on allergen immunotherapy injections shows that venom immunotherapy can reduce the risk of a severe reaction in adults from around 60 % per sting, down to less than 10%. In Australia and New Zealand,venom immunotherapyis currently available for bee and wasp allergy. Jack Jumper Ant immunotherapy is available in Tasmania for Tasmanian residents. Allergen immunotherapy is often recommended for treatment ofallergic rhinitis

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

Molecular Immunology & Immunogenetics Congress, March 20-21, 2017 Rome, Italy; 3nd International Congress on Neuroimmunology and Therapeutics, September 18-19, 2017 Philadelphia, USA; 18thInternational Conference on Immunology (ICI) Dec 12-13, 2016, Bangkok, Thailand; Annual Meeting on Immunology and Immunologist, July 03-05, 2017 Malyasia, Kuala lumpur; 19thInternational Conference on Immunology (ICI) Sept 14-17, 2017, Berlin, Germany; Modelling Viral Infections and Immunity (E1) , May 1 - 4, 2017 | Estes Park, Colorado, USA; 7thInternational Conference on Allergy, Asthma and Clinical Immunology; 18thInternational Conference on Immunology (ICI) Dec 12-13, 2016, Bangkok, Thailand

Track: 15Technological Innovations inImmunology

Immunology is the branch of biomedical sciences concerned with all aspects of the immune system in all multicellular organisms. Immunology deals with physiological functioning of the immune system in states of both health and disease as well as malfunctions of the immune system in immunological disorders like allergies, hypersensitivities, immune deficiency, transplant rejection andautoimmune disorders.

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

9thworld congress & expo on Immunology, Oct 02-04, 2017, Toronto, Canada; 3rdAntibodies and Bio Therapeutics Congress, November 02-03, 2017 Las Vegas, USA; Molecular Immunology & Immunogenetics Congress, March 20-21, 2017 Rome, Italy; Annual Meeting on Immunology and Immunologist, July 03-05, 2017 Malyasia, Kuala lumpur; 3rd International Congress on Neuroimmunology and Therapeutics, September 18-19, 2017 Philadelphia, USA; 2nd Autoimmunity Conference, Nov 9-10, 2017 Madrid, Spain; Integrating Metabolism and Immunity , May 29 - June 2, 2017 | Dublin, Ireland; American Academy of Allergy, Asthma & Immunology (AAAAI) Annual Meeting, March 03-06, 2017, Atlanta, Georgia

Track:16Antigen Processing

Antigen processingis an immunologicalprocessthat prepares antigensfor presentation to special cells of the immune system called T lymphocytes. It is considered to be a stage ofantigenpresentation pathways. The process by which antigen-presenting cells digest proteins from inside or outside the cell and display the resulting antigenic peptide fragments on cell surface MHC molecules for recognition by T cells is central to the body's ability to detect signs of infection or abnormal cell growth. As such, understanding the processes and mechanisms of antigen processing and presentation provides us with crucial insights necessary for the design ofvaccines and therapeutic strategiesto bolster T-cell responses.

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

3rdAntibodies and Bio Therapeutics Congress, November 02-03, 2017 Las Vegas, USA; Molecular Immunology & Immunogenetics Congress, March 20-21, 2017 Rome, Italy; Annual Meeting on Immunology and Immunologist, July 03-05, 2017 Malyasia, Kuala lumpur; 3rd International Congress on Neuroimmunology and Therapeutics, September 18-19, 2017 Philadelphia, USA; 2nd Autoimmunity Conference, Nov 9-10, 2017 Madrid, Spain; Integrating Metabolism and Immunity , May 29 - June 2, 2017 | Dublin, Ireland; American Academy of Allergy, Asthma & Immunology (AAAAI) Annual Meeting, March 03-06, 2017, Atlanta, Georgia

Track: 17Immunoinformatics and Systems Immunology

Immunoinformaticsis a branch ofbioinformaticsdealing with in silico analysis and modelling of immunological data and problems Immunoinformatics includes the study and design of algorithms for mapping potential B- andT-cell epitopes, which lessens the time and cost required for laboratory analysis of pathogen gene products. Using this information, an immunologist can explore the potential binding sites, which, in turn, leads to the development of newvaccines. This methodology is termed reversevaccinology and it analyses the pathogen genome to identify potential antigenic proteins.This is advantageous because conventional methods need to cultivate pathogen and then extract its antigenic proteins. Although pathogens grow fast, extraction of their proteins and then testing of those proteins on a large scale is expensive and time consuming. Immunoinformatics is capable of identifying virulence genes and surface-associated proteins.

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

9thworld congress & expo on Immunology, Oct 02-04, 2017, Toronto, Canada; 3rdAntibodies and Bio Therapeutics Congress, November 02-03, 2017 Las Vegas, USA; Molecular Immunology & Immunogenetics Congress, March 20-21, 2017 Rome, Italy; 3nd International Congress on Neuroimmunology and Therapeutics, September 18-19, 2017 Philadelphia, USA; 18th International Conference on Immunology (ICI) Dec 12-13, 2016, Bangkok, Thailand; Annual Meeting on Immunology and Immunologist, July 03-05, 2017 Malyasia, Kuala lumpur; British Society for Immunology Congress, Dec 06-09, 2016, Liverpool, United Kingdom; 7thInternational Conference on Allergy, Asthma and Clinical Immunology; Cancer Immunology and Immunotherapy: Taking a Place in Mainstream Oncology (C7), March 19 - 23, 2017, Whistler, British Columbia, Canada

Track: 18Rheumatology

Rheumatology represents a subspecialty in internal medicine and pediatrics, which is devoted to adequate diagnosis andtherapy of rheumatic diseases(including clinical problems in joints, soft tissues, heritable connective tissue disorders, vasculitis and autoimmune diseases). This field is multidisciplinary in nature, which means it relies on close relationships with other medical specialties.The specialty of rheumatology has undergone a myriad of noteworthy advances in recent years, especially if we consider the development of state-of-the-art biological drugs with novel targets, made possible by rapid advances in the basic science of musculoskeletal diseases and improved imaging techniques.

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

Molecular Immunology & Immunogenetics Congress, March 20-21, 2017 Rome, Italy; 3nd International Congress on Neuroimmunology and Therapeutics, September 18-19, 2017 Philadelphia, USA; 18thInternational Conference on Immunology (ICI) Dec 12-13, 2016, Bangkok, Thailand; Annual Meeting on Immunology and Immunologist, July 03-05, 2017 Malyasia, Kuala lumpur; 19thInternational Conference on Immunology (ICI) Sept 14-17, 2017, Berlin, Germany; Modelling Viral Infections and Immunity (E1) , May 1 - 4, 2017 | Estes Park, Colorado, USA; 7thInternational Conference on Allergy, Asthma and Clinical Immunology; 18thInternational Conference on Immunology (ICI) Dec 12-13, 2016, Bangkok, Thailand

Track: 19Nutritional Immunology

Nutritional immunologyis an emerging discipline that evolved with the study of the detrimental effect of malnutrition on the immune system. The clinical and public health importance of nutritional immunology is also receiving attention. Immune system dysfunctions that result from malnutrition are, in fact, NutritionallyAcquired Immune Deficiency Syndromes(NAIDS). NAIDS afflicts millions of people in the Third World, as well as thousands in modern centers, i.e., patients with cachexia secondary to serious disease, neoplasia or trauma. The human immune system functions to protect the body against foreign pathogens and thereby preventing infection and disease. Optimal functioning of the immune system, both innate and adaptive immunity, is strongly influenced by an individuals nutritional status, with malnutrition being the most common cause of immunodeficiency in the world. Nutrient deficiencies result in immunosuppression and dysregulation of the immune response including impairment of phagocyte function and cytokine production, as well as adversely affecting aspects of humoral and cell-mediated immunity. Such alterations in immune function and the resulting inflammation are not only associated with infection, but also with the development of chronic diseases including cancer, autoimmune disease, osteoporosis, disorders of the endocrine system andcardiovascular disease.

RelatedImmunology Conferences|Immunologists Meetings|Conference Series LLC:

Original post:
8th European Immunology Conference June 29-July 01, 2017 ...

Read More...

Blood transfusions and the immune system – Blood Groups …

Monday, August 22nd, 2016

The immune system never restsits cells constantly patrol the circulation. Without the immune system, the body would be overwhelmed with infections. With it, blood transfusions must be performed with great care.

If incompatible blood is given in a transfusion, the donor cells are treated as if they were foreign invaders, and the patient's immune system attacks them accordingly. Not only is the blood transfusion rendered useless, but a potentially massive activation of the immune system and clotting system can cause shock, kidney failure, circulatory collapse, and death.

This chapter discusses the causes of transfusion reactions and how the hazards of blood transfusions are minimized.

Many of the adverse effects of blood transfusions are mediated by the recipient's immune system. In general, the formation of this and other immune responses occur in three stages:

the immune system detects foreign material (antigen)

the immune system processes the antigen

the immune system mounts a response to remove the antigen from the body

The immune response varies tremendously, depending on the individual (the health of his or her immune system and genetic factors) and the antigen (how common it is and how "provocative" it is to the immune system).

The red blood cells (RBCs) from one person may enter into the circulation of another person in two different ways, either by a blood transfusion or by pregnancy. The RBCs will appear foreign if they contain antigens that are not found on the patient's own RBCs.

When the macrophage encounters an antigen, it engulfs it, digests it, and then presents the antigenic fragments on its cell surface together with MHCII (Major Histocompatibility Complex II).

A T helper cell binds to the antigen/MHCII on the macrophage, and the two cells interact. The macrophage secretes cytokines to stimulate the T cell, which in turn secretes cytokines to stimulate the growth and production of more T cells.

The T helper cell, now activated, leaves to activate a third type of cell, the B cell. Existing B cells are stimulated by the T cell to grow, divide, and produce genetically identical daughter cells. Some of the daughter cells become plasma cells that produce antibodies that are specific for the antigen that stimulated their production. The amount and type of antibody produced results from the interaction of T helper cells (which stimulate antibody production) and T suppressor cells (which inhibit antibody production). Other daughter cells remain as B cells in the circulation for many years. They serve as "memory cells", remembering the encounter with the antigen that stimulated their production.

Read a summary of antigen presentation to T cells in Janeway & Traver's Immunobiology

If this is the first time the antigen has been encountered, a primary immune response is mounted. Usually there is a delay of several days, then IgM antibody is produced, followed by a switch to IgG antibody production. The initial IgM molecules bind the antigen weakly, but the subsequent IgG molecules are much better targeted. IgG continues to be produced long after the encounter with the antigen, providing long-lasting immunity.

If the immune system has encountered the antigen before, it will already be armed with primed B cells (memory cells) that accelerate the production of larger amounts of IgG (rather than IgM). This is called the secondary immune response. It is faster, more specific, and the production of the specific antibody may remain high for years. B cells may also undergo changes to further improve how the antibodies they produce bind to the antigen.

There are two main arms of immune response: humoral (using antibodies) and cellular (using immune cells). Severe immune-mediated transfusion reactions usually involve the humoral arm. In the case of a foreign red blood cell antigen, the patient's pre-existing antibodies bind to the antigen, coating the donor RBCs.

Some types of antibody may activate the complement cascade, a series of enzyme-driven reactions involving protein fragments. The cascade ends with the formation of a "membrane attack complex", a large molecule that punches a hole in the cell membrane. Other antibodies simply bind to the donor RBCs and cause them to clump together (agglutinate). The agglutinated cells may survive or may be prematurely removed from the circulation by the macrophages.

Otherwise, the fate of the incompatible RBCs largely rests in the hands of macrophages in the liver or the spleen. They remove the antibody-coated cells from the circulation and phagocytose them. Phagocytosis is aided by the macrophages having a receptor that binds to the antibodies and another receptor that binds to complement fragments. Therefore, incompatible RBCs are rapidly destroyed after antibody binding. In addition, this antibody response may cause dangerous hemolytic transfusion reactions as described below.

To avoid a transfusion reaction, donated blood must be compatible with the blood of the patient who is receiving the transfusion. More specifically, the donated RBCs must lack the same ABO and Rh D antigens that the patient's RBCs lack. For example, a patient with blood group A can receive blood from a donor with blood group A (which lacks the B antigen) or blood group O (which lacks all ABO blood group antigens). However, they cannot receive blood from a donor with blood group B or AB (which both have the B antigen).

Before a blood transfusion, two blood tests known as a "type and cross match" are done. First, the recipient's blood type is determined, i.e., their ABO type and Rh D status. In theory, once the recipient's blood type is known, a transfusion of compatible blood can be given. However, in practice, donor blood may still be incompatible because it contains other antigens that are not routinely typed but may still cause a problem if the recipient's serum contains antibodies that will target them. Therefore, a "cross match" is done to ensure that the donor RBCs actually do match against the recipient's serum.

To perform a cross match, a small amount of the recipient's serum is mixed with a small amount of the donor RBCs. The mixture is then examined under a microscope. If the proposed transfusion is incompatible, the donor RBCs are agglutinated by antibodies in the recipient's serum.

Immune-mediated transfusion reactions occur when incompatible blood products are transfused into a patient's circulation, triggering a response from the patient's immune system. The destruction of incompatible RBCs is called a hemolytic transfusion reaction, which may occur immediately (acute) or after a period of days (delayed). The destruction of incompatible donor white blood cells (WBCs) causes a febrile non-hemolytic transfusion reaction (FNHTR), and the destruction of incompatible donor platelets causes post-transfusion purpura (PTP).

The symptoms produced by these transfusion reactions are often similar, beginning with chills, fever, shaking, and aching. Some transfusion reactions are mild and resolve by themselves (e.g., FNHTR) whereas others can develop into a life-threatening reaction (e.g., acute hemolytic transfusion reaction).

The risks are minimized by using blood products only when necessary and, even then, using a specific blood component rather than whole blood. Also, all WBCs are now removed from donated blood; leukodepletion reduces the risk of certain infections as well as the risk of fever due to white blood cell incompatibility.

Hemolytic transfusion reactions (HTRs) are reactions in which donor RBCs are destroyed by antibodies in the recipient's circulation. They occur when antigen-positive donor RBCs are transfused into a patient who has preformed antibodies to that antigen. The donor RBCs may be destroyed immediately (a potentially serious reaction) or may have a shortened or even normal survival time (milder reactions).

Red blood cell incompatibility may also occur when the patient's RBC antigens are attacked by antibodies from the donor's plasma. This tends to be a minor problem because of the small amount of antibody present in the donated plasma, which is further diluted on transfusion into the recipient's circulation.

Acute hemolytic transfusion reactions occur within 24 hours of the transfusion and often occur during the transfusion. Ominously, the patient may report a "feeling of impending doom". They may also complain of a burning sensation at the site of the infusion, together with chills, fever, and pain in the back and flanks.

The severity of the reaction depends upon: (1) how much incompatible antigen was transfusedhow much blood was given and the number of antigens per red blood cell; (2) the nature of the antigen - its size and location on the red blood cell membrane; and (3) the nature of the recipient's antibodies - the type (IgG or IgM) and subtype (IgG3) of antibody, the amount present in the circulation at the time of the transfusion, its avidity for binding to the antigen, and its ability to activate complement.

The most severe reactions involve an intravascular hemolysis; the donor RBCs are destroyed by the recipient's antibodies while they are still inside blood vessels. Such reactions involve antibodies that strongly activate complement, which in turn lyses the donor RBCs. Hemoglobin is released into the plasma and excreted in urine (hemoglobinuria), turning the urine a dark brown color. Bilirubin, a metabolite of hemoglobin usually secreted into bile by the liver, instead accumulates in the blood causing jaundice. Massive activation of complement can cause shock, as can the large amounts of tissue factor released by RBC debris that triggers an uncontrollable clotting cascade (disseminated intravascular coagulation).

The most common cause of an acute intravascular hemolytic transfusion reaction is ABO incompatibility. The ABO blood group antigens are densely expressed on the RBC surface, and most people have adequate amounts of preformed antibodies that can not only bind to the RBCs but can also activate complement. Although routine typing and cross matching should prevent incompatible ABO blood group antigens from triggering this type of reaction, human error occasionally leads to the "wrong blood" being given during a transfusion.

Apart from anti-A and anti-B, other antibodies capable of intravascular hemolysis of transfused RBCs include anti-H produced in people with the Bombay blood group (see the H blood group), anti-Jka (see the Kidd blood group), and anti-P, P1, Pk (see the P blood group system).

In extravascular hemolytic reactions, the donor RBCs are removed from the circulation by macrophages in the spleen and liver. The macrophages destroy the red blood cells inside these organs.

The donor RBCs may still be coated with the recipient's antibodies, but these antibodies do not trigger an immediate intravascular hemolysis. Instead, their presence (specifically, the Fc component of the antibody) is recognized by IgG-Fc receptors of macrophages, which aids the phagocytosis of the cells. Antibodies directed at antigens of the Rh blood group mediate this type of RBC removal.

Other types of antibody that bind to the donor RBCs may bind the complement component C3b without activating the entire cascade. This further aids the phagocytosis by macrophages that have C3b receptors. Such antibodies include those directed against antigens of the ABO, Duffy, and Kidd blood groups.

Because the extravascular destruction of RBCs is slower and more controlled than intravascular hemolysis, very little free hemoglobin is released into the circulation or excreted in the urine. The liver can keep up with the increased production of bilirubin, and jaundice rarely occurs. Therefore, the main symptoms of this type of reaction are fever and chills.

Delayed hemolytic transfusion reactions may occur as soon as 1 day or as late as 14 days after a blood transfusion. The donor RBCs are destroyed by the recipient's antibodies, but the hemolysis is "delayed" because the antibodies are only present in low amounts initially.

The recipient's antibodies were formed during a previous sensitization (primary stimulation) with a particular antigen. However, by the time a cross match is done, the level of antibody in the recipient's plasma is too low to cause agglutination, making this type of reaction difficult to prevent. Likewise, during the blood transfusion the level of antibody is too low to cause an acute transfusion reaction.

However, during the blood transfusion, as the patient re-encounters the antigen, his or her immune system is stimulated to rapidly produce more antibodies (secondary stimulation). Over the following days, the recipient's antibodies bind to the donor RBCs, which are subsequently removed from the circulation by macrophages (extravascular hemolysis).

The clinical outcome depends upon the rate at which the patient can produce antibodies and hence destroy the donor RBCs. Usually, this type of reaction is much less severe than acute hemolytic reactions.

This type of transfusion reaction is associated with antibodies that target the Kidd and Rh antigens.

The most common transfusion reaction is a fever without signs of hemolysis. This is called a febrile non-hemolytic transfusion reaction (FNHTR). Most cases are mildthe patients may describe feeling hot and cold, their temperatures rise by at least 1C, and they may have rigors. Only when other potentially severe causes of transfusion reactions have been excluded may FNHRT be diagnosed.

The cause is thought to be the patient's preformed antibodies attacking transfused WBCs, binding to their HLA antigens. Another factor might be that during the storage of blood units, WBCs release cytokines that may provoke a fever when the unit of blood is transfused into a patient.

The risk of FNHRT is reduced by removing WBCs from blood units prior to storagea process known as leukodepletion. In addition, patients who receive multiple transfusions may be given an anti-pyretic before the transfusion to lessen fever symptoms.

Post transfusion purpura (PTP) is defined as a thrombocytopenia (low number of platelets) that occurs 5 to 10 days after a platelet transfusion. Patients are at risk of bleeding, and bleeding into the skin causes a purplish discoloration of the skin known as purpura.

PTP is caused by the recipient having a platelet-specific antibody that reacts with the donor platelets. The recipient's own platelets are also attacked. The platelet antigen HPA-1a appears to be most frequently targeted.

PTP is more common in women because pregnancy increases the likelihood of forming the platelet-specific antibody. It may also have formed after an earlier platelet transfusion. Treatment includes the use of intravenous immunoglobulin to neutralize the antibodies or to remove them from the plasma by plasmapheresis.

Some patients can have an allergic reaction after their blood transfusionsthey report feeling itchy and break out into hives (urticaria). This is more common in patients who have a history of allergic conditions such as hay fever.

This type of allergic reaction happens when existing IgE antibody binds to its antigen and triggers the release of histamine from the patient's mast cells and basophils. In an allergic reaction to a blood transfusion, either the transfused blood contains IgE that binds to antigen from the recipient's blood, or the antibody is the recipient's own and binds to antigen in the transfused blood.

Fortunately, symptoms are usually mild and can be controlled by stopping the transfusion and giving antihistamines.

Anaphylaxis is a life-threatening allergic reaction that can occur after only a few milliliters of blood have been transfused. The patient reports difficulty breathing and may be wheezing and coughing. There may also be nausea and vomiting in the absence of a fever. Other signs include low blood pressure, loss of consciousness, respiratory arrest, and circulatory shock. Urgent treatment is essential and includes giving epinephrine.

Usually the antigen that triggers the anaphylaxis is not known. In the case of patients with IgA deficiency, it is thought that the presence of IgA in the donor's plasma is the trigger. IgA-deficient patients have a mild immunodeficiency that may not have been diagnosed. Because they lack IgA, their immune systems can be sensitized to it. Although this type of transfusion reaction is rare in these patients, special precautions are taken to reduce their risk of exposure to IgA in blood products.

Transfusion associated lung injury (TRALI) is a rare and occasionally fatal transfusion reaction characterized by a sudden onset of shortness of breath.

The underlying mechanism is not fully understood, but it is thought to involve the transfusion of donor plasma that contains antibodies that attack the recipient's WBCs. These donor antibodies bind to, and cause the aggregation of, the recipient's WBCs in the blood vessels that supply the lungs. The white cells release inflammatory mediators that increase the permeability of the lung capillaries, causing fluid to accumulate in the tissue of the lungs, a condition known as pulmonary edema for which supportive treatment is given.

Transfusion associated graft-versus-host disease (TA-GVHD) arises when transfused blood cells (the graft) attack the patient's own cells (the host). It is more common in immunocompromised patients whose immune systems fail to eliminate the transfused cells. Instead, the surviving donor T cells attack cells that bear HLA antigens.

This type of reaction becomes apparent about one week after the transfusion. Signs include a fever, characteristic skin lesions, and diarrhea. Blood tests reveal signs of bone marrow failure and liver malfunction.

To prevent TA-GVHD, special precautions are taken with high-risk patients. They only receive blood products that have been irradiated. This prevents all donor cells, including the T cells, from being able to divide and attack the host. In cases where TA-GVHD does develop, the outcome is grave. The patient usually dies several weeks after the blood transfusion.

Not all of the problems that can arise during a blood transfusion are attributable to the immune system. Some are mechanical, especially in patients who need multiple blood transfusions. For example, blood that is not sufficiently warmed before transfusion can cause hypothermia. Also, the volume of blood that needs to be transfused may be too great for the patient's cardiovascular system, especially in elderly patients or patients with varying degrees of heart failure. In such cases, transfusion can cause volume overload and respiratory difficulty.

Metabolic disturbances can also occur, older or damaged RBCs release potassium, and transfusing such blood may cause hyperkalemia (an increased level of potassium) in the patient, putting them at risk of heart arrhythmias. In large amounts, citrate, a blood preservative that prevents clotting, can lower the level of calcium in the plasma (hypocalcemia), leading to muscle tremors and heart arrhythmias.

Finally, the risk of blood transfusions transmitting infectious diseases has been greatly reduced, but a small risk still remains. A virus can be passed on from the donor who is unaware that he or she has an infection. Infection may also occur after the blood has been donated; bacteria can contaminate blood products while they are being stored.

To minimize the risk of infection, blood donors are now screened, and people who are at risk of infectious diseases are excluded from donating blood. In addition, all donated blood is tested for infectious agents. Currently in the USA, blood is tested for HIV, hepatitis B virus, hepatitis C virus, syphilis, and HTLV types I and II, which are linked to leukemia. Since 2003, blood has also been screened for West Nile virus (WNV).

Continue reading here:
Blood transfusions and the immune system - Blood Groups ...

Read More...

Expanding the Science and Practice of Gratitude | Greater Good

Monday, August 22nd, 2016

For too long, weve taken gratitude for granted.

Yes, thank you is an essential, everyday part of family dinners, trips to the store, business deals, and political negotiations. That might be why so many people have dismissed gratitude as simple, obvious, and unworthy of serious attention.

But thats starting to change. Recently scientists have begun to chart a course of research aimed at understanding gratitude and the circumstances in which it flourishes or diminishes. Theyre finding that people who practice gratitude consistently report a host of benefits:

Thats why the Greater Good Science Center at the University of California, Berkeleyin collaboration with the University of California, Davislaunched the multiyear project Expanding the Science and Practice of Gratitude. The project is supported with funding from the John Templeton Foundation. The general goals of this initiative are to:

To achieve these goals, we have developed a range of research and education initiatives, from a research grant competition to a series of articles on gratitude to a large public event.

You can learn more about the fruits of the first phase of the project (through June 2014) in this short video; the second three-year phase of the project launched in early 2015. A more detailed description of the entire project is below.

1. Research Grant Competition. At the end of 2011, we launched a $3 million research initiative to expand the scientific understanding of gratitude, particularly in the key areas of health and well-being, developmental science, and social contexts. We received nearly 300 applications from institutions all over the United States, and we evaluated each one based on its scientific significance, approach and methods, creativity, potential influence, and capacity for success.

The 14 winning projects were announced in August of 2012; they cover topics ranging from the neuroscience of gratitude to the role of gratitude in romantic relationships to how gratitude might reduce bullying. In the fall of 2013, grant award winners participated in a research retreat, where they presented their work to date and discussed the next stages of building the field.

2. Dissertation Research Awards. In January 2013, we announced 15 grants in support of the most innovative dissertation research projects on gratitude, with emphasis on research than spans two or more disciplines. Awardees received $10,000 for one year to assist in the conduct of their research into topics that include workplace gratitude, the role of gratitude in couples coping with breast cancer, and the neuropharmacological basis of gratitude.

3. Youth Gratitude Research Project. Building on research into the development of gratitude in children and adolescents, researchers at California State University, Dominguez Hills, the University of California, Davis, and Hofstra University have been running a multi-year study to address the following questions: What is the role of gratitude in positive youth development? What can the people with the greatest influence over childrenparents, teachers, coaches, and othersdo to foster gratitude in children? What is the developmental trajectory of gratitude in children? What school-based interventions can promote sustainable increases in grateful character traits? Is there a critical period when the capacity for gratitude is best transmitted from an older to a younger generation? To what degree is gratitude predictive of positive outcomes such as school success, overall well-being, community service, resiliency, health behaviors, and less risk taking? You can learn more about the Youth Gratitude Project here.

1. Expanding Coverage of the Science of Gratitude. New research on gratitude has the potential to improve the lives of millions, if not billions, of people worldwide. For almost a decade, the Greater Good Science Center has provided trailblazing coverage of the science of gratitude through its website, books, and other media. Now, as part of the project, the GGSC has greatly expanded its coverage, helping the general public understand new findings from the science of gratitude and apply this research to their personal and professional lives. In the latest phase of the ESPG project, the GGSC will also report on the launch, progress, and results of the research funded through the Expanding Gratitude project.

You can view our latest stories on gratitude here, including articles, videos, and posts to Christine Carters Raising Happiness parenting blog. Also check out our gratitude definition page, succinctly outlining what gratitude is, why its worth practicing, and how to cultivate it. For more on gratitude, see our list of key gratitude books, studies, and organizations.

2. Gratitude Radio Specials. As part of the GGSCs efforts to illuminate the results of gratitude research through high-quality journalism, it has partnered with the Peabody Award-winning Ben Manilla Productions to produce a series of specials for public radio. First was the State of Gratitude seriesa series of short pieces exploring different aspects of gratitude, such as the importance of gratitude in romantic relationships, in friendships, and in the workplace. The pieces aired on public radio stations nationwide around Thanksgiving of 2013 and can be heard here.

Building on that success, the GGSC and Ben Manilla Productions then co-produced The Science of Gratitude, an hour-long, documentary-style special narrated by Academy Award-winner Susan Sarandon and distributed by Public Radio International to stations across North America. That special includes segments exploring gratitudes role in health, happiness, education, and even death, combining the latest scientific findings with stories that bring the research to life. The Science of Gratitude is airing around Thanksgiving of 2015 and through the holiday season on public radio stations in New York, San Francisco, Chicago, Dallas/Fort Worth, Detroit, Atlanta, San Diego, Cleveland, Portland, and many other cities. Check with your local public radio station to determine when The Science of Gratitude will be broadcast in your area.

3. Digital Gratitude Journal. In the fall of 2012, we launched Thnx4.org, an online journal that allows users to record and share the things for which theyre grateful. This unprecedented, web-based effort to track and promote the practice of gratitude worldwide also serves as an invaluable source of scientific data on gratitude: Users of Thnx4 can see how practicing gratitude affects their health and happiness, and these results will also be made available to the research community, though individual users always have the option to keep their data private. In effect, Thnx4 gives the public and researchers the opportunity to study trends in the practice of gratitude, and it has the potential to provide a truly global snapshot of our planets current state of gratefulness.

Thnx4s launch received considerable media coverage and engaged users from around the world; our analysis of its initial round of data showed that it gave a significant boost to users health and happiness. Thnx4 went offline in the summer of 2013 and is relaunching in the fall of 2015.

4. Public Event. In June of 2014, the GGSC hosted The Greater Good Gratitude Summit, a large public event where more than 600 people participated in a day of science, stories, and inspiration. This event featured presentations by researchers (including many of the GGSCs gratitude grant recipients), educators, and special guests such as U.S. Olympic womens swimming head coach Teri McKeever, producers from the public radio series StoryCorps, and spiritual teachers Jack Kornfield and Brother David Steindl-Rast.

We have since reported on some of the key insights shared at the event and produced videos of the presentations.

In the latest three-year phase of the ESPG project, running from 2015-2018, the GGSC is partnering with leaders in education, health care, and business to explore how the fruits of gratitude research can inform new initiatives to build well-being in each of those fields.

The GGSCs work to apply gratitude research findings to the real world will be conducted in collaboration with GreatSchools.org, Teach for America, the Committee for Children (which runs the Second Step program), Kaiser Permanente, Sharp HealthCare, and several other prominent organizations.

What to know more about the science and practice of gratitude? Please see these Greater Good resources:

Expanding the Science and Practice of Gratitude Greater Good Science Center University of California, Berkeley, MC 6070 Berkeley, CA 94720-6070 510.642.2490 .(JavaScript must be enabled to view this email address) http://greatergood.berkeley.edu/expandinggratitude

Link:
Expanding the Science and Practice of Gratitude | Greater Good

Read More...

Immune System – the Body’s Natural Defense Mechanism

Thursday, August 4th, 2016

Science Photo Library - PASIEKA./ Brand X Pictures/ Getty Images

By Regina Bailey

Updated January 14, 2015.

There's a mantra in organized sports that says, defense is king! In today's world, with germs lurking around every corner, it pays to have a strong defense. I'm talking about the body's natural defense mechanism, the immune system.

Cells of the immune system, known aswhite blood cells,are found in our bone marrow, lymph nodes, spleen, thymus, tonsils, and in the liver of embryos. When microorganisms such as bacteria or viruses invade the body, nonspecific defense mechanisms provide the first line of defense.

These are the primary deterrents which ensure protection from numerous germs. There are physical deterrents (including the skin and nasal hairs), chemical deterrents (enzymes found in perspiration and saliva), and inflammatory reactions. These particular mechanisms are named appropriately because their responses are not specific to any particular pathogen. Think of these as a perimeter alarm system on a house. No matter who trips the motion detectors, the alarm will sound.

In cases where microorganisms get through the primary deterrents, there is a back-up system the specific defense mechanisms which consists of two components: the humoral immune response and the cell mediated immune response.

The humoral immune response or antibodymediated responseprotects against bacteria and viruses present in the fluids of the body. This system uses white blood cells called B cells, which have the ability to recognize organisms that don't belong to the body. In other words, if this isn't your house, get out! Intruders are referred to as antigens. B cell lymphocytes produce antibodies that recognize and bind to a specific antigen to identify it as an invader that needs to be terminated.

The cell mediated immune response protects against foreign organisms that have managed to infect body cells. It also protects the body from itself by controlling cancerous cells. White blood cells involved in cell mediated immunity include macrophages, natural killer (NK) cells, and T cell lymphocytes. Unlike B cells, T cells are actively involved with the disposal of antigens. They make proteins called T-cell receptors that help them recognize a specific antigen. There are three classes of T cells that play specific roles in the destruction of antigens: Cytotoxic T cells (which directly terminate antigens), Helper T cells (which precipitate the production of antibodies by B cells), and Regulatory T cells (which suppress the response of B cells and other T cells).

There are serious consequences when the immune system is compromised. Three known immune disorders are allergies, severe combined immunodeficiency (T and B cells are not present or functional), and HIV/AIDS (severe decrease in the number of Helper T cells). In cases involving autoimmune disease, the immune system attacks the body's own normal tissues and cells. Examples of autoimmune disorders include multiple sclerosis (affects the central nervous system), rheumatoid arthritis (affects joints and tissues), and graves disease (affects the thyroid gland).

The lymphatic system is a component of the immune system that is responsible for the development and circulation of immune cells, specifically lymphocytes. Immune cells are produced in bone marrow. Certain types of lymphocytes migrate from bone marrow to lymphatic organs, such as the spleen and thymus, to mature into fully functioning lymphocytes. Lymphatic structures filter blood and lymph of microorganisms, cellular debris, and waste.

See the original post here:
Immune System - the Body's Natural Defense Mechanism

Read More...

The Immune System – in More Detail – Nobelprize.org

Thursday, August 4th, 2016

Introduction

The immune system is one of nature's more fascinating inventions. With ease, it protects us against billions of bacteria, viruses, and other parasites. Most of us never reflect upon the fact that while we hang out with our friends, watch TV, or go to school, inside our bodies, our immune system is constantly on the alert, attacking at the first sign of an invasion by harmful organisms.

The immune system is very complex. It's made up of several types of cells and proteins that have different jobs to do in fighting foreign invaders. In this section, we'll take a look at the parts of the immune system in some detail. If you're reading about the immune system for the first time, we recommend that you take a look at the Immune System Overview first (see link below).

The Complement System

The first part of the immune system that meets invaders such as bacteria is a group of proteins called the complement system. These proteins flow freely in the blood and can quickly reach the site of an invasion where they can react directly with antigens - molecules that the body recognizes as foreign substances. When activated, the complement proteins can

Phagocytes

This is a group of immune cells specialized in finding and "eating" bacteria, viruses, and dead or injured body cells. There are three main types, the granulocyte, the macrophage, and the dendritic cell.

White blood cells called lymphocytes originate in the bone marrow but migrate to parts of the lymphatic system such as the lymph nodes, spleen, and thymus. There are two main types of lymphatic cells, T cells and B cells. The lymphatic system also involves a transportation system - lymph vessels - for transportation and storage of lymphocyte cells within the body. The lymphatic system feeds cells into the body and filters out dead cells and invading organisms such as bacteria.

On the surface of each lymphatic cell are receptors that enable them to recognize foreign substances. These receptors are very specialized - each can match only one specific antigen.

To understand the receptors, think of a hand that can only grab one specific item. Imagine that your hands could only pick up apples. You would be a true apple-picking champion - but you wouldn't be able to pick up anything else.

In your body, each single receptor equals a hand in search of its "apple." The lymphocyte cells travel through your body until they find an antigen of the right size and shape to match their specific receptors. It might seem limiting that the receptors of each lymphocyte cell can only match one specific type of antigen, but the body makes up for this by producing so many different lymphocyte cells that the immune system can recognize nearly all invaders.

T cells come in two different types, helper cells and killer cells. They are named T cells after the thymus, an organ situated under the breastbone. T cells are produced in the bone marrow and later move to the thymus where they mature.

B Cells

The B lymphocyte cell searches for antigen matching its receptors. If it finds such antigen it connects to it, and inside the B cell a triggering signal is set off. The B cell now needs proteins produced by helper T cells to become fully activated. When this happens, the B cell starts to divide to produce clones of itself. During this process, two new cell types are created, plasma cells and B memory cells.

The plasma cell is specialized in producing a specific protein, called an antibody, that will respond to the same antigen that matched the B cell receptor. Antibodies are released from the plasma cell so that they can seek out intruders and help destroy them. Plasma cells produce antibodies at an amazing rate and can release tens of thousands of antibodies per second.

When the Y-shaped antibody finds a matching antigen, it attaches to it. The attached antibodies serve as an appetizing coating for eater cells such as the macrophage. Antibodies also neutralize toxins and incapacitate viruses, preventing them from infecting new cells. Each branch of the Y-shaped antibody can bind to a different antigen, so while one branch binds to an antigen on one cell, the other branch could bind to another cell - in this way pathogens are gathered into larger groups that are easier for phagocyte cells to devour. Bacteria and other pathogens covered with antibodies are also more likely to be attacked by the proteins from the complement system.

The Memory Cells are the second cell type produced by the division of B cells. These cells have a prolonged life span and can thereby "remember" specific intruders. T cells can also produce memory cells with an even longer life span than B memory cells. The second time an intruder tries to invade the body, B and T memory cells help the immune system to activate much faster. The invaders are wiped out before the infected human feels any symptoms. The body has achieved immunity against the invader.

Conclusion

Although rather long and complex, our presentation is just a glimpse of the immune system and the intricate ways in which its various parts interact. Immunity is a fascinating subject that still conceals many secrets. When the immune system is fully understood, it will most likely hold the key to ridding humankind of many of its most feared diseases.

First published 8 November 2004

Read the original post:
The Immune System - in More Detail - Nobelprize.org

Read More...

MedlinePlus Medical Encyclopedia: Immune Response

Thursday, August 4th, 2016

The immune system protects the body from possibly harmful substances by recognizing and responding to antigens. Antigens are substances (usually proteins) on the surface of cells, viruses, fungi, or bacteria. Nonliving substances such as toxins, chemicals, drugs, and foreign particles (such as a splinter) can also be antigens. The immune system recognizes and destroys substances that contain antigens.

Your body's cells have proteins that are antigens. These include a group of antigens called HLA antigens. Your immune system learns to see these antigens as normal and usually does not react against them.

INNATE IMMUNITY

Innate, or nonspecific, immunity is the defense system with which you were born. It protects you against all antigens. Innate immunity involves barriers that keep harmful materials from entering your body. These barriers form the first line of defense in the immune response. Examples of innate immunity include:

Innate immunity also comes in a protein chemical form, called innate humoral immunity. Examples include the body's complement system and substances called interferon and interleukin-1 (which causes fever).

If an antigen gets past these barriers, it is attacked and destroyed by other parts of the immune system.

ACQUIRED IMMUNITY

Acquired immunity is immunity that develops with exposure to various antigens. Your immune system builds a defense against that specific antigen.

PASSIVE IMMUNITY

Passive immunity is due to antibodies that are produced in a body other than your own. Infants have passive immunity because they are born with antibodies that are transferred through the placenta from their mother. These antibodies disappear between ages 6 and 12 months.

Passive immunization may also be due to injection of antiserum, which contains antibodies that are formed by another person or animal. It provides immediate protection against an antigen, but does not provide long-lasting protection. Immune serum globulin (given for hepatitis exposure) and tetanus antitoxin are examples of passive immunization.

BLOOD COMPONENTS

The immune system includes certain types of white blood cells. It also includes chemicals and proteins in the blood, such as antibodies, complement proteins, and interferon. Some of these directly attack foreign substances in the body, and others work together to help the immune system cells.

Lymphocytes are a type of white blood cell. There are B and T type lymphocytes.

As lymphocytes develop, they normally learn to tell the difference between your own body tissues and substances that are not normally found in your body. Once B cells and T cells are formed, a few of those cells will multiply and provide "memory" for your immune system. This allows your immune system to respond faster and more efficiently the next time you are exposed to the same antigen. In many cases it will prevent you from getting sick. For example, a person who has had chickenpox or has been immunized against chickenpox is immune from getting chickenpox again.

INFLAMMATION

The inflammatory response (inflammation) occurs when tissues are injured by bacteria, trauma, toxins, heat, or any other cause. The damaged cells release chemicals including histamine, bradykinin, and prostaglandins. These chemicals cause blood vessels to leak fluid into the tissues, causing swelling. This helps isolate the foreign substance from further contact with body tissues.

The chemicals also attract white blood cells called phagocytes that "eat" germs and dead or damaged cells. This process is called phagocytosis. Phagocytes eventually die. Pus is formed from a collection of dead tissue, dead bacteria, and live and dead phagocytes.

IMMUNE SYSTEM DISORDERS AND ALLERGIES

Immune system disorders occur when the immune response is directed against body tissue, is excessive, or is lacking. Allergies involve an immune response to a substance that most people's bodies perceive as harmless.

IMMUNIZATION

Vaccination (immunization) is a way to trigger the immune response. Small doses of an antigen, such as dead or weakened live viruses, are given to activate immune system "memory" (activated B cells and sensitized T cells). Memory allows your body to react quickly and efficiently to future exposures.

COMPLICATIONS DUE TO AN ALTERED IMMUNE RESPONSE

An efficient immune response protects against many diseases and disorders. An inefficient immune response allows diseases to develop. Too much, too little, or the wrong immune response causes immune system disorders. An overactive immune response can lead to the development of autoimmune diseases, in which antibodies form against the body's own tissues.

Complications from altered immune responses include:

Continued here:
MedlinePlus Medical Encyclopedia: Immune Response

Read More...

Immune System – kidshealth.org

Thursday, August 4th, 2016

The immune system, which is made up of special cells, proteins, tissues, and organs, defends people against germs and microorganisms every day. In most cases, the immune system does a great job of keeping people healthy and preventing infections. But sometimes problems with the immune system can lead to illness and infection.

The immune system is the body's defense against infectious organisms and other invaders. Through a series of steps called the immune response, the immune system attacks organisms and substances that invade body systems and cause disease.

The immune system is made up of a network of cells, tissues, and organs that work together to protect the body. One of the important cells involved are white blood cells, also called leukocytes, which come in two basic types that combine to seek out and destroy disease-causing organisms or substances.

Leukocytes are produced or stored in many locations in the body, including the thymus, spleen, and bone marrow. For this reason, they're called the lymphoid organs. There are also clumps of lymphoid tissue throughout the body, primarily as lymph nodes, that house the leukocytes.

The leukocytes circulate through the body between the organs and nodes via lymphatic vessels and blood vessels. In this way, the immune system works in a coordinated manner to monitor the body for germs or substances that might cause problems.

The two basic types of leukocytes are:

A number of different cells are considered phagocytes. The most common type is the neutrophil, whichprimarily fights bacteria. If doctors are worried about a bacterial infection, they might order a blood test to see if a patient has an increased number of neutrophils triggered by the infection. Other types of phagocytes have their own jobs to make sure that the body responds appropriately to a specific type of invader.

The two kinds of lymphocytes are B lymphocytes and T lymphocytes. Lymphocytes start out in the bone marrow and either stay there and mature into B cells, or they leave for the thymus gland, where they mature into T cells. B lymphocytes and T lymphocytes have separate functions: B lymphocytes are like the body's military intelligence system, seeking out their targets and sending defenses to lock onto them. T cells are like the soldiers, destroying the invaders that the intelligence system has identified.

When antigens (foreign substances that invade the body) are detected, several types of cells work together to recognize themand respond. These cells trigger the B lymphocytes to produce antibodies, which are specialized proteins that lock onto specific antigens.

Once produced, these antibodies stay in a person's body, so that if his or herimmune system encounters that antigen again, the antibodies are already there to do their job. So if someone gets sick with a certain disease, like chickenpox, that person usually won't get sick from it again.

This is also how immunizations prevent certain diseases. An immunization introduces the body to an antigen in a way that doesn't make someone sick, but does allow the body to produce antibodies that will then protect the person from future attack by the germ or substance that produces that particular disease.

Although antibodies can recognize an antigen and lock onto it, they are not capable of destroying it without help. That's the job of the T cells, which are part of the system that destroys antigens that have been tagged by antibodies or cells that have been infected or somehow changed. (Some T cells are actually called "killer cells.") T cells also are involved in helping signal other cells (like phagocytes) to do their jobs.

Antibodies also can neutralize toxins (poisonous or damaging substances) produced by different organisms. Lastly, antibodies can activate a group of proteins called complement that are also part of the immune system. Complement assists in killing bacteria, viruses, or infected cells.

All of these specialized cells and parts of the immune system offer the body protection against disease. This protection is called immunity.

See the original post:
Immune System - kidshealth.org

Read More...

12 Ways to Support Your Immune System Naturally

Thursday, August 4th, 2016

Your immune system is your frontline defense against environmental toxins, viruses, bacteria, and other harmful microorganisms. Unfortunately, the toxins present in todays world are weakening the human immune system at an ever-increasing rate and theres only so much we can do to control what were exposed to. On the flip side, certain tools and supplements can help support your immune system.

Your immune system is your bodys security system. Its your natural defense against harmful organisms that cause sickness and contagious outbreaks. You come in contact with these agents every day and most are neutralized by your immune system without you even knowing it. However, if your immune system is weak, it may not win the battle against invading organisms, and thats when you can get sick. The quality of your immune system relies on you what you eat, what youre exposed to, your physical health, and even your mental health. Suffice to say, you can support your immune system with nutrition, you can support it by bolstering your defenses and reducing the invading microorganisms it has to defend against, and you can support it by having good physical and mental health.

A healthy diet devoid of refined sugar and processed foods is one of the best ways to support your immune system and physical exercise is also important. While these methods are helpful, they arent always enough. In a world where toxins run rampant and exposure is difficult to avoid, we really need to take extra precautions.

Here are 12 ways to support your immune system naturally.

The good bacteria in your gut are known as probiotics and are responsible for supporting digestion, combating harmful organisms, and keeping your immune system in check. Considering that 70% majority of your immune system resides in your gut, maintaining a balance of probiotic bacteria is essential for nurturing your immune defenses. [1][2] Probiotic-rich foods like kombucha, sauerkraut, and kefir, or a high-quality, probiotic supplement can help balance your ratio of good to bad bacteria. A probiotic supplement like Latero-Flora is another effective way to encourage good balance.

Whether youre on the road, at your computer, eating, or sleeping on a toxic mattress, its a safe bet that youre exposed to toxins 24 hours a day. Most toxins take up residence in your intestines to wreak havoc on your health by degrading your immune system and weakening your defenses. Regular intestinal cleansing with an oxygen based colon cleanser like Oxy-Powder can support your immune system by providing a balanced, clean environment for probiotic bacteria to thrive. The positive benefits of intestinal cleansing with Oxy-Powder are enhanced when its paired with a good probiotic supplement.

Oregano oil, one of the most antioxidant-rich oils on the planet, is extremely beneficial for immune system support by defending against dangerous organisms. [3] Organic oregano oils potency is due to a compound called carvacrol, which has been shown to promote a healthy balance of good to bad bacteria. [4]

Enzymes are essential for digestion and metabolic function and research even suggests theyre beneficial for your immune system. [5] Part of the reason for this is because, as you get older, your body produces less of its own enzymes. Supplementing that gap can help you absorb more nutrients from your food to better support your immune system, and overall health. As mentioned, your gut is where 70% of your immune system originates, so introducing enzymes to support gut health and digestion only makes sense. I recommend VeganZyme, its the most advanced full-spectrum systemic and digestive enzyme formula in the world.

Colloidal silver acts as a secondary defense for your immune system by helping defend against the microbes and harmful organisms that attack. [6] By being an extra shield, colloidal silver not only helps take the burden off of your immune system, but promotes overall body health. I use and recommend Silver Fuzion.

Mixing raw apple cider vinegar (ACV) with purified water is a helpful tonic for supporting your immune system. Raw ACV is loaded with enzymes and beneficial bacteria that promote intestinal balance. ACV also helps to balance your bodys pH and transition it into a more alkaline state which is absolutely crucial for a healthy immune system response. Mix 1 to 2 tbsp. of raw ACV with 8 ounces of purified water and consume daily, preferably using a straw so the acidic ACV avoids contact with your teeth.

Emotional, mental, and physical stress takes a toll and can age you and your immune system beyond your years. Research has shown that immune system activity drastically decreases when youre stressed. Finding productive ways to deal with it is important for keeping your body strong and resilient. [7] While stress is part of life and can never be totally avoided, meditation, exercising, and eating a healthy diet can really help ease its effects.

The importance of sleep simply cannot be overstated. Sleep resets your entire system and provides an avenue through which you can relieve stress and improve not only your immune system, but your overall health. [8] Without adequate sleep, your immune system will suffer and be far more susceptible to invading microbes and harmful organisms. In general, seven or eight hours of sleep a night satisfies most people.

One of the most powerful ways you can revolutionize your health is by juicing raw vegetables and fruits. This is an awesome way to give the cells in your body the most concentrated, live, bioavailable nutrients and antioxidants available nutrition required by your immune system. Make sure leafy green vegetables are a foundation in each recipe as they are a great source of vitamin C, a much-needed antioxidant and nutrient that supports immune health. [9]

Vitamin D, AKA the sunshine vitamin, is another nutrient that keeps your immune system strong. In fact, vitamin D deficiency has been directly linked to a compromised immune system. [10] Exposure to sunlight is the best way to encourage your body to produce vitamin D, but its not always accessible. Vitamin D supplementation is an easy way to fill the gaps, and make sure to choose vitamin D3 over vitamin D2.

A yellowish spice popular in Indian dishes, turmeric has a number of proven health benefits forthe human body. Its high in antioxidants to protect immune cells from free radical damage. In addition, some studies have reported that the active ingredient in turmeric curcumin may be responsible for supporting the action of T cells, B cells, and natural killer cells. [11] This immunomodulatory effect seems to provide support for the body against a wide range of viruses, fungi, and pathogenic bacteria. Add 1/2 to 1 tsp. of turmeric to your meals, or take a high-quality turmeric supplement to provide further nutritional support.

Iodine is a fantastic one-two punch for supporting your immune system. First off, theres no bacteria, virus, or other microorganism that can survive or adapt to an iodine-rich environment. Its why people put it on cuts; its why its swabbed onto your skin before surgery its incredible defense against harmful microorganisms. Second, your iodine is the best nutritional support for your thyroid. Your thyroid controls your metabolism and the efficiency of your metabolism is directly related to that of your immune system. [12] If youre not getting enough iodine in your food, and most people arent, I highly recommend supplementing with nascent iodine, the strongest, and most bioavailable form of iodine available.

When you examine this list and begin to condense it down, it doesnt take long to see that promoting the health of your immune system is similar to promoting your overall health. Give yourself good nutrition, appropriate supplementation, physical fitness, and a de-stressed mind these tactics are absolutely powerful for transforming your health and catapulting you into a more energetic, vibrant state of life.

How do you stay healthy? Leave a comment below and share your experience!

Results may vary. Information and statements made are for education purposes and are not intended to replace the advice of your doctor. Global Healing Center does not dispense medical advice, prescribe, or diagnose illness. The views and nutritional advice expressed by Global Healing Center are not intended to be a substitute for conventional medical service. If you have a severe medical condition or health concern, see your physician.

Read the original post:
12 Ways to Support Your Immune System Naturally

Read More...

Immune System: Diseases, Disorders & Function

Thursday, August 4th, 2016

The role of the immune system a collection of structures and processes within the body is to protect against disease or other potentially damaging foreign bodies. When functioning properly, the immune system identifies a variety of threats, including viruses, bacteria and parasites, and distinguishes them from the body's own healthy tissue, according toMerck Manuals.

Lymph nodes:Small, bean-shaped structures that produce and store cells that fight infection and disease and are part of the lymphatic system which consists of bone marrow, spleen, thymus and lymph nodes, according to "A Practical Guide To Clinical Medicine" from theUniversity of California San Diego(UCSD). Lymph nodes also contain lymph, the clear fluid that carries those cells to different parts of the body. When the body is fighting infection, lymph nodes can become enlarged and feel sore.

Spleen:The largest lymphatic organ in the body, which is on your left side, under your ribs and above your stomach, contains white blood cells that fight infection or disease. According to theNational Institutes of Health(NIH), the spleen also helps control the amount of blood in the body and disposes of old or damaged blood cells.

Bone marrow:The yellow tissue in the center of the bones produces white blood cells. This spongy tissue inside some bones, such as the hip and thigh bones, contains immature cells, called stem cells, according to the NIH. Stem cells, especially embryonic stem cells, which are derived from eggs fertilized in vitro (outside of the body), are prized for their flexibility in being able to morph into any human cell.

Lymphocytes: These small white blood cells play a large role in defending the body against disease, according to theMayo Clinic. The two types of lymphocytes are B-cells, which make antibodies that attack bacteria and toxins, and T-cells, which help destroy infected or cancerous cells. Killer T-cells are a subgroup of T-cells that kill cells that are infected with viruses and other pathogens or are otherwise damaged. Helper T-cells help determine which immune responses the body makes to a particular pathogen.

Thymus:This small organ is where T-cells mature. This often-overlooked part of the immune system, which is situated beneath the breastbone (and is shaped like a thyme leaf, hence the name), can trigger or maintain the production of antibodies that can result in muscle weakness, the Mayo Clinic said. Interestingly, the thymus is somewhat large in infants, grows until puberty, then starts to slowly shrink and become replaced by fat with age, according to the National Institute of Neurological Disorders and Stroke.

Leukocytes: These disease-fighting white blood cells identify and eliminate pathogens and are the second arm of the innate immune system. A high white blood cell count is referred to as leukocytosis, according to the Mayo Clinic. The innate leukocytes include phagocytes (macrophages, neutrophils and dendritic cells), mast cells, eosinophils and basophils.

If immune system-related diseases are defined very broadly, then allergic diseases such as allergic rhinitis, asthma, and eczema are very common. However, these actually represent a hyper-response to external allergens, according to Dr. Matthew Lau, chief, department of allergy and immunology atKaiser Permanente Hawaii. Asthma and allergies also involve the immune system. A normally harmless material, such as grass pollen, food particles, mold or pet dander, is mistaken for a severe threat and attacked.

Other dysregulation of the immune system includes autoimmune diseases such as lupus and rheumatoid arthritis. "Finally, some less common disease related to deficient immune system conditions are antibody deficiencies and cell mediated conditions that may show up congenitally," Lau told Live Science.

Disorders of the immune system can result in autoimmune diseases, inflammatory diseases and cancer, according to the NIH.

Immunodeficiency occurs when the immune system is not as strong as normal, resulting in recurring and life-threatening infections, according to theUniversity of Rochester Medical Center. In humans, immunodeficiency can either be the result of a genetic disease such as severe combined immunodeficiency, acquired conditions such as HIV/AIDS, or through the use of immunosuppressive medication.

On the opposite end of the spectrum, autoimmunity results from a hyperactive immune system attacking normal tissues as if they were foreign bodies, according to the University of Rochester Medical Center. Common autoimmune diseases include Hashimoto's thyroiditis, rheumatoid arthritis, diabetes mellitus type 1 and systemic lupus erythematosus. Another disease considered to be an autoimmune disorder is myasthenia gravis (pronounced my-us-THEE-nee-uh GRAY-vis).

Even though symptoms of immune diseases vary, fever and fatigue are common signs that the immune system is not functioning properly, the Mayo Clinic noted.

Most of the time, immune deficiencies are diagnosed with blood tests that either measure the level of immune elements or their functional activity, Lau said.

Allergic conditions may be evaluated using either blood tests or allergy skin testing to identify what allergens trigger symptoms.

In overactive or autoimmune conditions, medications that reduce the immune response, such as corticosteroids or other immune suppressive agents, can be very helpful. "In some immune deficiency conditions, the treatment may be replacement of missing or deficiency elements," Lau said. "This may be infusions of antibodies to fight infections."

Treatment may also include monoclonal antibodies, Lau said. A monoclonal antibody is a type of protein made in a lab that can bind to substances in the body. They can be used to regulate parts of the immune response that are causing inflammation, Lau said. According to the National Cancer Institute, monoclonal antibodies are being used to treat cancer. They can carry drugs, toxins or radioactive substances directly to cancer cells.

An allergist/immunologist is a physician specially trained to diagnose, treat and manage allergies, asthma and immunologic disorders, including primary immunodeficiency disorders, according to theAmerican College of Asthma, Allergy and Immunology(ACAAI). These conditions range from common to extremely rare, spanning all ages and encompassing various organ systems.

To become an allergist/immunologist, physicians must undergo three years of training in internal medicine or pediatrics after completing medical school and graduating with a medical degree, according to the ACAAI. They must also pass the exam of either the American Board of Internal Medicine (ABIM) or the American Board of Pediatrics (ABP).

Internists and pediatricians must undergo a two-year fellowship in an allergy/immunology training program to become an allergist/immunologist, the ACAAI said.

1718: Lady Mary Wortley Montagu, the wife of the British ambassador to Constantinople, observed the positive effects of variolation the deliberate infection with the smallpox disease on the native population and had the technique performed on her own children.

1796: Edward Jenner was the first to demonstrate the smallpox vaccine.

1840: Jakob Henle put forth the first modern proposal of the germ theory of disease.

1857-1870: The role of microbes in fermentation was confirmed by Louis Pasteur.

1880-1881: The theory that bacterial virulence could be used as vaccines was developed. Pasteur put this theory into practice by experimenting with chicken cholera and anthrax vaccines. On May 5, 1881, Pasteur vaccinated 24 sheep, one goat, and six cows with five drops of live attenuated anthrax bacillus.

1885: Joseph Meister, 9 years old, was injected with the attenuated rabies vaccine by Pasteur after being bitten by a rabid dog. He is the first known human to survive rabies.

1886: American microbiologist Theobold Smith demonstrated that heat-killed cultures of chicken cholera bacillus were effective in protecting against cholera.

1903: Maurice Arthus described the localizing allergic reaction that is now known as the Arthus response.

1949: John Enders, Thomas Weller and Frederick Robbins experimented with the growth of polio virus in tissue culture, neutralization with immune sera, and demonstration of attenuation of neurovirulence with repetitive passage.

1951: Vaccine against yellow fever was developed.

1983: HIV (human immunodeficiency virus) was discovered by French virologist Luc Montagnier.

1986: Hepatitis B vaccine was produced by genetic engineering.

2005: Ian Frazer developed the human papillomavirus vaccine.

Editors Note: If youd like more information on this topic, we recommend the following book:

Systems of the human body

Parts of the human body

Continued here:
Immune System: Diseases, Disorders & Function

Read More...

Medical treatment Healthcare Siemens Southern Africa

Thursday, August 4th, 2016

With products and solutions for cancer treatment, radiation therapy, and HIV/AIDS treatment, we help healthcare professionals fight the most threatening diseases. Breast cancer treatment in South Africa

Breast cancer is a malignant tumor of the mammary gland. Not only is it one of the most common types of cancer in the Western world, its becoming an increasing threat also for women in developing nations. More women die from breast cancer than from any other form of this life-threatening disease. According to the Cancer Association of South Africa (CANSA), breast cancer is detected in one in 29 women in South Africa. Early diagnosis and advanced technologies, like radiation therapy, can help reduce mortality rate from breast cancer.

Mobile medical treatment to fight breast cancer in South Africa.

Detecting breast cancer as early as possible is essential for successful cancer treatment. Siemens helps improve cancer care for women by offering innovative technologies, such as breast screening and radiation therapy. In May 2012, Siemens donated a new mobile mammography unit outfitted with state-of-the-art medical equipment to the Netcare Foundation. The Mammo Trailer provides breast cancer screening services to underprivileged women in rural and semirural areas of South Africa free of charge.

HIV/AIDS treatment is very important in Africa

The human immunodeficiency virus (HIV) is a retrovirus that infects the cells of the immune system, destroying or impairing their ability to function. With 33 million people currently living with HIV/AIDS and 2.7 million new infections each year, HIV/AIDS is a global epidemic. On the African continent, HIV/AIDS is a major healthcare challenge, with the Sub-Saharan region being hit the hardest.

We offer a broad portfolio of testing capabilities across diagnostic disciplines from screening and diagnosis to medical treatment selection and monitoring. To expand access of cost-effective healthcare in Africa, Siemens is working with funding agencies and local partners. Through the REACH program (Resources Embracing Africa with Care and Hope), for example, we are able to deliver HIV/AIDS treatment in settings where it would have otherwise been impossible.

Here is the original post:
Medical treatment Healthcare Siemens Southern Africa

Read More...

HIV and Aids Care (Short Learning Programme)

Thursday, August 4th, 2016

HIV and Aids care short learning programme (32 credits)

Programme framework:

Assessment:

Two scheduled tests and one practical examination in counselling. In order to pass the short course, a final mark of 50% is needed. The mark will be constituted in the following manner: Test 1 + Test 2 + Practical exam 3 = mark (50%)

Format of presentation:

On registration students will receive a CD containing:

Please note that students have to come prepared to classes, since discussions on content will be initiated by students and no lectures will be given on any content. Students will be given the opportunity to clarify any content problems they may experience with the lecturer during classes.

Who will benefit from completing the short course?

All health and non-health personnel who are interested in making a change in the lives of HIV/AIDS infected and affected persons.

For more information about this programme, and other short learning programmes please contact:

Mrs Diane Keegan Assistant Director: Short Learning Programmes School of Nursing University of the Free State Tel: +27(0)51 401 3629 / 2914 Fax: +27(0)51 401 3282 E-mail: KeeganD@ufs.ac.za

Last updated: 12 October 2014 20:04

See the original post here:
HIV and Aids Care (Short Learning Programme)

Read More...

Lectroject Transdermal Drug Delivery | Herpes Treatment

Thursday, August 4th, 2016

What are drug delivery systems? Lectroject is an iontophoretic drug delivery (Particle Transport) system that takes existing medication into the cell where it does its work by interfering with the DNA of the virus to prevent it from replicating and spreading. (In theory it quarantines the viruses). Drugs have long been used to improve health and extend lives. The practice of drug delivery has changed dramatically in the last few decades, with focus to increase drug safety and efficacy. Particle Transport Technology Lectroject drug delivery technology is far more effective than oral or injected medication as it is not subject to gastric or hepatic degradation. Iontophoresis (Iontophoretic drug delivery) has been used in the USA for many years and is an accepted form of therapy. If you look up "iontophoresis" and "transdermal drug delivery devices" on the internet you'll find that not only Lectroject but all such machines are effective. See what out satisfied patient say Mode Of Action When Acyclovir is induced with Lectrojects drug delivery system, it gets taken up by herpes-infected cells and metabolized in the presence of guanylate and thymedine kinase; it gets changed a bit and becomes a powerful drug. Once metabolized, it blocks the infecting Herpes virus from replicating its DNA, keeping it from producing more of the virus. Acyclovir is a drug primarily used to treat people infected with Herpes Simplex virus (HSV). It has also been used for the treatment of chickenpox, patients infected with Epstein-Barr virus and to prevent cytomegalovirus infections. Its been available to use for quite some time and often works well to treat people with HSV infections like genital herpes, herpes labialis (cold sores) or shingles (caused by another herpesvirus, Herpes zoster) and some other viral diseases.

See more here:
Lectroject Transdermal Drug Delivery | Herpes Treatment

Read More...

Beriglobin / Human immune globulin – Page 2 – Training …

Thursday, August 4th, 2016

There seems to be two aspects to this thread - one that Beriglobin will improve performance and the other that beriglobin will help when your immune system is struggling.

On the performance side - if you think a beriglobin injection will make you faster find the nearest wall and bang your head against it until you forget the word "beriglobin". It will not help your performance.

If you think it'll help a compromised immune system then I would recommend it. Sure it's harvested from human blood but my investigations couldn't find a single case where contaminated beriglobin caused a problem - if anybody knows any different please let us know - it'll certainly factor in my decision if I ever need another one.

I got sick in late June and have had every illness known to man since then colds, 'flu, ear infection, chest infection, pneumonia etc. I've spent R1000s on blood tests, antibiotics, doctor's appointments and medicine. Nothing helped - eating right, loads of rest, easy exercise - diddly squat.

Finally out of desperation I tried the beriglobin. That was 11 days ago and so far so good. This is the best I've felt in ages. Saturday was the first time in 3 months that I felt like I was riding the bike not the other way around.

It could be cosmic timing, pure coincidence or zen healing but personally I credit beriglobin with handing my health back to me.

Read more:
Beriglobin / Human immune globulin - Page 2 - Training ...

Read More...

Say hello to Mother Nature and her health-powering foods

Thursday, August 4th, 2016

Then you need to continue reading this...

You see, you dont need to pop unnecessary pills to live a healthy life and prevent life-threatening diseases.

Its all thanks to Mother Nature and the precious health-powering foods she provides...

They contain all the essential vitamins, minerals and antioxidants that your body needs to be healthy, prevent diseases, look and feel younger and maintain your ideal weight.

What you can do to refuel and take care of your hardworking body every day...

These foods have been scientifically proven to protect your body from all the health-threatening complications that are out there.

Superfoods will help you:

Just look at what experts are saying about Superfoods:

Superfoods are the greatest foods identified by the greatest civilizations in the history of the world. They are foods that have a whole array of tricks under their sleeve. They are extremely easy to use and agree with a lot of different body types and metabolisms. Dr David Wolfe

In a new study out of Europe, researchers found that women who ate higher amounts of foods with flavonoids Superfoods, were half as likely to develop stomach cancer as were women who ate the smallest amounts. Dr Jonathan V Wright

Eating Superfoods goes beyond the idea of dieting. It's really a way of life. 'It's the non-diet diet.' It's food you can eat for a lifetime." Dr Steven Pratt

But what are these Superfoods and what benefits do they provide?

Wonder no more...

Protect yourself against high cholesterol, heart disease, cancer and more...

Superfoods fuel your body with all the essentials you need to live a longer, healthier and disease-free life...

But as healthy as Superfoods are, its important you get the right amount of each Superfood you choose to eat, to make sure youre reaping their optimum health benefits.

And thats why you need to get your hands onSuperfoods for The Healthy New You...

Itll show exactly what the different Superfoods are, what health benefits they provide and how to eat them so you can reap all their benefits.

Start living a healthier life today...

I want to share all the information about Superfoods with you so you can take charge of your life and start living a healthier life today...

And thats why I am willing to give you Superfoods for the Healthy New Younow for just R199.95 instead of the full official price of R249. You save R50.

But thats not all...

Get a 30-day money-back guarantee

With Superfoods for the Healthy New Youyoull get the reassurance of my 30-day money-back guarantee...

If at any time during that period you feel Superfoods for The Healthy New You isnt right for you, then you can simply return the book and Ill give you a full refund.

But thats not all youll get. If you order today, youll receive yourSuperfoods Cheat Sheet to Looking Younger and Feeling Stronger - FREE!So you'll know at a quick glance which superfoods are super-good for you.

Here's to a healthier you...

View original post here:
Say hello to Mother Nature and her health-powering foods

Read More...

Sanaka Health | Invest in your Wellness ::. – Home

Thursday, August 4th, 2016

An ideal ratio of essential fatty acids, proven by research to benefit cardiovascular health, enhance stamina and energy, and improve general health and well-being. Certified Organic. "Low-fat diets are risky and may increase your chances of infections, allergies, behavioural problems and exhaustion, says world-renowned nutrition expert Udo Erasmus, Ph.D. Short-term weight-loss programs like starvation diets, fat blockers and diet pills over-stimulate the body and do more harm than good. Additionally, diets that promise fat loss by avoiding fats fail 90% of the time. read more >>

From the beginning of March, we relocated our offices. As a consequence, our telephone numbers have also changed. Details Below:

Telephone: 0114635877 Fax: 011866727765

Physical Address 1st Floor (same office as Batswadi Pharmaceuticals) Building D La Rocca office Park 321 Main Road (corner Petunia Street) Bryanston 2021 South Africa

Every bottle of Beyond O2 Minerals contains calcium, magnesium, and over 70 trace minerals. These essential minerals (electrolytes) become ionic in water allowing them to be absorbed quickly and easily by your body. Beyond O2 Minerals is delivered in a pure ionic form, which means it is immediately bio-available to the body.

Some of the symptoms associated with acidic conditions in the body include weight loss problems, fatigue & tiredness, forgetfulness, insomnia, water retention, joint & muscle pain, arthritis, migraine headaches, constipation, colds, flu, stomach ulcers, acid reflux and even cancer. An overly acidic body greatly diminishes the effectiveness of your immune system and usually leads to disease.

Acidic conditions in the body are caused by MANY of lifes daily norms like; junk food, processed food, proteins, carbohydrates, fats, carbonated beverages, coffee, sports drinks, alcohol, environmental toxins, and most of all STRESS. Considering this long list of items that can lead to acidic challenges in our body, it becomes very clear why it is so important to drink an alkaline beverage like Beyond O2 Minerals every day.

GRASSROOTS SOLUTION

Udo Erasmus, Father of "Organic, Unrefined Flax Oil" & Udo's Choice Oil Blend: Udo Erasmus, Ph.D., introduced the importance of essential fats (EFA's) derived from organic flax seeds to the world. He pioneered methods for producing unrefined oils made with health in mind. He believes in the GRASSROOTS SOLUTION for Modern Health concerns. The three basic causes of degenerative disease are malnutrition, toxicity and poor digestion and the grassroots Solutions to these modern health concerns lie within our diet.

Essential fats, enzymes, Probiotics and fibre are healthy foods supplied by nature that can create health and longevity by providing nutrition, detoxification and proper digestion. Udos Choice products are a family of food blends offering individuals an ideal program for increasing energy levels, improving digestion, stimulating the immune system, and managing weight. An internationally recognised and award winning brand based in Canada producing high quality health products since 1965. Flora Health has won 40 consumer awards in Canada since 1994 and in 2004 earned the Best Product Award in UKs leading health magazine Heres Health.

Here is the original post:
Sanaka Health | Invest in your Wellness ::. - Home

Read More...

Welcome to MoringaCare – Organic Moringa Oleifera the Miracle …

Thursday, August 4th, 2016

Moringa an Amazing Tree of Life

The Moringa tree is one of the most incredible plants ever encountered. This may sound sensationalist, but Moringa's nutritional and medicinal properties have the potential to end malnutrition, starvation, as well as prevent and heal many diseases and maladies worldwide. Moringa is truly a miracle plant, and a divine gift for the nourishing and healing of man. This plant has so many uses and special features. This is the result of our research on Moringa. From many books, research papers, videos and many websites. Moringacare has distilled the best and most useful information from all of these sources in order to save you the reader from having to wade through all of the information out there about Moringa.

Moringa is the sole genus in the owering plant family Moringaceae. The genus Moringa in turn is made up of 13 species. The species most common, and which is the main subject of this website. The species called "Moringa Oleifera." Moringa Oleifera is found in many tropical and sub-tropical regions. Moringa can be grown in the even the harshest and driest of soils, where barely anything else will grow. In fact, one of the nicknames of Moringa is "never die" due to its incredible ability to survive harsh weather and even drought.

View our range of Organic Moringa Oleifera products, Moringacare supply to health stores countrywide and direct to you, we stock the highest quality Organic Moringa products like Dry Leaf Powder, Nutritional Shakes, Probiotic booster, Honey and even Aloe Moringaline for skin care.

As seen in the chart above, not only does Moringa contain vitamin A, vitamin C, Calcium, Potassium, Iron, and Protein, it contains it in high amounts that are easily digested and assimilated by the human body. The chart above highlights some of the commonly known nutrients needed by the human body. Moringa also contains, not one, not two, not three, but over 40 antioxidants. Moringa is said to contain 539 known compounds which according to traditional African and Indian medicine (Ayurvedic) is said to prevent of 300 diseases and maladies.

Miracle Moringa taken in conjunction with CDS, MMS and MMS can increase your well-being tenfold.

See the rest here:
Welcome to MoringaCare - Organic Moringa Oleifera the Miracle ...

Read More...

Allegedly murdered baby’s funeral date announced …

Thursday, August 4th, 2016

Daemon ( Joshua) Botha before the incident.

Daemon (Joshua) Botha, the baby that died due to alleged abuse by the father, will be laid to rest on Monday, 29 February.

On 8 February Daemons mother, Christene Botha, 23, allegedly left Daemon with his grandmother, not knowing she would leave the three-week-old in her sons care for the night. The next day when Botha went to fetch her baby, Daemon allegedly had an injury to his lip and blue marks across his body.

They took their child to the clinic, but the alleged father then disappeared. A case of child abuse was opened on 12 February. After having been admitted to two separate government hospitals, Daemon died on the morning of 17 February while on life support. The next day Daemons alleged father was apprehended and arrested.

He is being held at the Krugersdorp Correctional facility. Randfontein Police have not confirmed the date of his appearance in court.

Daemons body was sent for an autopsy, since the case was changed from child abuse to murder following his passing. Community members followed the story with interest, many of them saying they would love for Daemon to have a beautiful funeral and even offered their help.

Daemons funeral service will be held on Monday 29 February at the Gemeentes van Christus church at 63 Henning Street, Randgate at 2pm.

Botha said anybody who wishes to attend the funeral is welcome. Brenda Williams-Ludick said if anybody would be able to help with providing refreshments after the service, it would be greatly appreciated, as the family is unable to do so.

Please contact Brenda on 072 542 7455 if you are able to help.

Want to receive news alerts via WhatsApp? Send us an SMS/ WhatsApp message with your name and cellphone number to 079 413 8726.

Familiarise yourself with our WhatsApp service disclaimer.

Do you perhaps have more information pertaining to this story? Email us at randfonteinherald@caxton.co.za(remember to include your contact details) or phone us on011 693 3671.

Also read:

UPDATE: Alleged baby abuser arrested

BREAKING NEWS: Baby allegedly abused by father has died

Mother of alleged abused baby speaks out

Baby-abuse allegations surface

For free daily localnews on the West Rand, also visit our sister newspaper websites Roodepoort Record,Krugersdorp NewsandGet It Joburg WestMagazine

Remember to visit our Facebook, Twitter and Instagrampages to let your voice be heard!

See the original post:
Allegedly murdered baby's funeral date announced ...

Read More...

Sh’Zen for beautiful face, body, hands, hair, nails and feet.

Thursday, August 4th, 2016

This refreshing body wash provides the perfect energy boost thanks to four sparkling essential oils.

A key ingredient is May Chang essential oil, extracted from the small, pepper-like fruits of an evergreen tree native to the Far East. It has a spicy, lemony, citrus aroma and is recognised for its stimulating, uplifting action that relieves fatigue and lethargy. It's blended with refreshing Lemon, reviving Bergamot and regenerating Neroli oils to provide a cleansing, fragrant pick-me-up.

Size: 200ml Price: R199 each

Read the Radiant Review:

Yesterday afternoon I came home feeling very hot, sticky and tired after a badminton match. As I had some work I needed to do last night, I decided to try my new Revive Cleansing Wash instead of my usual relaxing shower gel. Wow! The fragrance really is a fabulous pick-me-up and I felt refreshed, revived and ready to go! This will definitely become my everyday morning wash so I can kick-start my day. - Lynn

Read more here:
Sh'Zen for beautiful face, body, hands, hair, nails and feet.

Read More...

Page 54«..1020..53545556..60..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick