header logo image


Page 18«..10..15161718

Archive for the ‘Nano medicine’ Category

Nanomedicine, bionanotechnology | NanomedicineCenter.com

Monday, June 1st, 2015

A lot of patients suffering from colon cancer might well present no symptoms or signs during the earliest stages of the condition. When symptoms do eventually present, they can be many and varied, and can very much depend upon the size of the affliction, how far it has spread and also its actual location. It might be that some symptoms that present are as a result of a condition other than cancer itself, ranging from irritable bowel syndrome (IBS), inflammatory bowel disease (IBD) and occasionally diverticulosis. Also, such problems as abdominal pain or swelling can be symptomatic of colon problems and may well require further investigation.

You may also notice that, upon going to the lavatory, you have some blood in your stools, and this can be a symptom of cancer. Of course, having black poop doesnt ultimately mean that cancer is present. It can, however, also be indicative of other conditions and problems. For example, the kind of bright red blood that you may see on your toilet tissue could be as a result of hemorrhoids or anal fissures. It should also be remembered that various food items can also result in red poop, and these include beetroot and red liquorice. Some medications can also be culprits, and some can also turn the stools black-including iron supplements. Irrespective, any sign of blood or change in your stools should prompt you to seek advice from your GP, as it is always best to be sure that it is not a sign of a more serious condition, and with any cancer,early detection and treatment is essential to a successful recovery.

You should also note-if you are currently concerned-any change in the regularity of your stools-including whether or not they are more thin or irregular than usual-especially over a period of several weeks. Also, be mindful if you have diarrhea for several days in a row or, conversely, constipation.

You might also experience pain in your lower abdomen-including a feeling of hardness. You may also experience persistent pain or discomfort in your abdominal region, and this can include wind and cramps. You may also get the sensation that, when evacuating your bowels, that the bowel doesnt empty fully. Another symptom that you might recognize is colored stool mainly black stool, but could be green stool too. Also, if you have an iron deficiency (or anemia), it may be an indication that there is bleeding in your colon. Also, as in most cases and types of cancer, you should seek medical advice immediately if you experience any sudden and unexpected or unexplained weight loss, as this is one of the principal red flags. Also be aware of more vague, seemingly incidental symptoms, such as fatigue. IF you have a couple of symptoms and also feel fatigued for days in a row inexplicably, then this is also another warning sign and you should seek medical advice. It is important not to panic, but just to be aware of what might be going on.

Remember, cases of colon cancer account for around 90% of all cases of intestinal cancers, and also account for more deaths every year of men and women from cancer. Early treatment is an absolute must.

Read more from the original source:
Nanomedicine, bionanotechnology | NanomedicineCenter.com

Read More...

Nano Medicine

Monday, May 25th, 2015

May 21st, 2015 Filed under Magnetic Resonance Imaging Tagged angelo-mosso, animals, balance, bold, cambridge, energy, gradient, magnetic, nuclei, proportion, redistribution, study, the-brain Comments Off on Functional magnetic resonance imaging Wikipedia, the

FMRI redirects here. For Fault Management Resource Identifier, see OpenBSM.

Functional magnetic resonance imaging or functional MRI (fMRI) is a functional neuroimaging procedure using MRI technology that measures brain activity by detecting associated changes in blood flow.[1][2] This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases.[3]

The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast,[4] discovered by Seiji Ogawa. This is a type of specialized brain and body scan used to map neural activity in the brain or spinal cord of humans or other animals by imaging the change in blood flow (hemodynamic response) related to energy use by brain cells.[4] Since the early 1990s, fMRI has come to dominate brain mapping research because it does not require people to undergo shots, surgery, or to ingest substances, or be exposed to radiation, etc.[5] Other methods of obtaining contrast are arterial spin labeling [6] and diffusion MRI.

The procedure is similar to MRI but uses the change in magnetization between oxygen-rich and oxygen-poor blood as its basic measure. This measure is frequently corrupted by noise from various sources and hence statistical procedures are used to extract the underlying signal. The resulting brain activation can be presented graphically by color-coding the strength of activation across the brain or the specific region studied. The technique can localize activity to within millimeters but, using standard techniques, no better than within a window of a few seconds.[citation needed]

fMRI is used both in the research world, and to a lesser extent, in the clinical world. It can also be combined and complemented with other measures of brain physiology such as EEG and NIRS. Newer methods which improve both spatial and time resolution are being researched, and these largely use biomarkers other than the BOLD signal. Some companies have developed commercial products such as lie detectors based on fMRI techniques, but the research is not believed to be ripe enough for widespread commercialization.[7]

The fMRI concept builds on the earlier MRI scanning technology and the discovery of properties of oxygen-rich blood. MRI brain scans use a strong, permanent, static magnetic field to align nuclei in the brain region being studied. Another magnetic field, the gradient field, is then applied to kick the nuclei to higher magnetization levels, with the effect depending on where they are located. When the gradient field is removed, the nuclei go back to their original states, and the energy they emit is measured with a coil to recreate the positions of the nuclei. MRI thus provides a static structural view of brain matter. The central thrust behind fMRI was to extend MRI to capture functional changes in the brain caused by neuronal activity. Differences in magnetic properties between arterial (oxygen-rich) and venous (oxygen-poor) blood provided this link.[8]

Since the 1890s it has been known that changes in blood flow and blood oxygenation in the brain (collectively known as hemodynamics) are closely linked to neural activity.[9] When neurons become active, local blood flow to those brain regions increases, and oxygen-rich (oxygenated) blood displaces oxygen-depleted (deoxygenated) blood around 2 seconds later. This rises to a peak over 46 seconds, before falling back to the original level (and typically undershooting slightly). Oxygen is carried by the hemoglobin molecule in red blood cells. Deoxygenated hemoglobin (dHb) is more magnetic (paramagnetic) than oxygenated hemoglobin (Hb), which is virtually resistant to magnetism (diamagnetic). This difference leads to an improved MR signal since the diamagnetic blood interferes with the magnetic MR signal less. This improvement can be mapped to show which neurons are active at a time.[10]

During the late 19th century, Angelo Mosso invented the human circulation balance, which could non-invasively measure the redistribution of blood during emotional and intellectual activity.[11] However, although briefly mentioned by William James in 1890, the details and precise workings of this balance and the experiments Mosso performed with it have remained largely unknown until the recent discovery of the original instrument as well as Mossos reports by Stefano Sandrone and colleagues.[12]Angelo Mosso investigated several critical variables that are still relevant in modern neuroimaging such as the signal-to-noise ratio, the appropriate choice of the experimental paradigm and the need for the simultaneous recording of differing physiological parameters.[12] Mossos manuscripts do not provide direct evidence that the balance was really able to measure changes in cerebral blood flow due to cognition,[12] however a modern replication performed by David T Field[13] has now demonstrated using modern signal processing techniques unavailable to Mosso that a balance apparatus of this type is able detect changes in cerebral blood volume related to cognition.

In 1890, Charles Roy and Charles Sherrington first experimentally linked brain function to its blood flow, at Cambridge University.[14] The next step to resolving how to measure blood flow to the brain was Linus Paulings and Charles Coryells discovery in 1936 that oxygen-rich blood with Hb was weakly repelled by magnetic fields, while oxygen-depleted blood with dHb was attracted to a magnetic field, though less so than ferromagnetic elements such as iron. Seiji Ogawa at AT&T Bell labs recognized that this could be used to augment MRI, which could study just the static structure of the brain, since the differing magnetic properties of dHb and Hb caused by blood flow to activated brain regions would cause measurable changes in the MRI signal. BOLD is the MRI contrast of dHb, discovered in 1990 by Ogawa. In a seminal 1990 study based on earlier work by Thulborn et al., Ogawa and colleagues scanned rodents in a strong magnetic field (7.0T) MRI. To manipulate blood oxygen level, they changed the proportion of oxygen the animals breathed. As this proportion fell, a map of blood flow in the brain was seen in the MRI. They verified this by placing test tubes with oxygenated or deoxygenated blood and creating separate images. They also showed that gradient-echo images, which depend on a form of loss of magnetization called T2* decay, produced the best images. To show these blood flow changes were related to functional brain activity, they changed the composition of the air breathed by rats, and scanned them while monitoring brain activity with EEG.[15] The first attempt to detect the regional brain activity using MRI was performed by Belliveau and others at Harvard University using the contrast agent Magnevist, a ferromagnetic substance remaining in the bloodstream after intravenous injection. However, this method is not popular in human fMRI, because any medically unnecessary injection is to a degree unsafe and uncomfortable, and because the agent stays in the blood only for a short time. [16]

Read the original:
Nano Medicine

Read More...

Nanomedicine – Wikipedia, the free encyclopedia

Wednesday, May 20th, 2015

Nanomedicine is the medical application of nanotechnology.[1] Nanomedicine ranges from the medical applications of nanomaterials, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials (materials whose structure is on the scale of nanometers, i.e. billionths of a meter).

Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles.

Nanomedicine seeks to deliver a valuable set of research tools and clinically useful devices in the near future.[2][3] The National Nanotechnology Initiative expects new commercial applications in the pharmaceutical industry that may include advanced drug delivery systems, new therapies, and in vivo imaging.[4] Nanomedicine research is receiving funding from the US National Institutes of Health, including the funding in 2005 of a five-year plan to set up four nanomedicine centers.

Nanomedicine is a large industry, with nanomedicine sales reaching $6.8 billion in 2004, and with over 200 companies and 38 products worldwide, a minimum of $3.8 billion in nanotechnology R&D is being invested every year.[5] In April 2006, the journal Nature Materials estimated that 130 nanotech-based drugs and delivery systems were being developed worldwide.[6] As the nanomedicine industry continues to grow, it is expected to have a significant impact on the economy.

Nanotechnology has provided the possibility of delivering drugs to specific cells using nanoparticles.

The overall drug consumption and side-effects may be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. Targeted drug delivery is intended to reduce the side effects of drugs with concomitant decreases in consumption and treatment expenses. Drug delivery focuses on maximizing bioavailability both at specific places in the body and over a period of time. This can potentially be achieved by molecular targeting by nanoengineered devices.[7][8] More than $65 billion are wasted each year due to poor bioavailability.[citation needed] A benefit of using nanoscale for medical technologies is that smaller devices are less invasive and can possibly be implanted inside the body, plus biochemical reaction times are much shorter. These devices are faster and more sensitive than typical drug delivery.[9] The efficacy of drug delivery through nanomedicine is largely based upon: a) efficient encapsulation of the drugs, b) successful delivery of drug to the targeted region of the body, and c) successful release of the drug.[citation needed]

Drug delivery systems, lipid- [10] or polymer-based nanoparticles,[11] can be designed to improve the pharmacokinetics and biodistribution of the drug.[12][13][14] However, the pharmacokinetics and pharmacodynamics of nanomedicine is highly variable among different patients.[15] When designed to avoid the body's defence mechanisms,[16] nanoparticles have beneficial properties that can be used to improve drug delivery. Complex drug delivery mechanisms are being developed, including the ability to get drugs through cell membranes and into cell cytoplasm. Triggered response is one way for drug molecules to be used more efficiently. Drugs are placed in the body and only activate on encountering a particular signal. For example, a drug with poor solubility will be replaced by a drug delivery system where both hydrophilic and hydrophobic environments exist, improving the solubility.[17] Drug delivery systems may also be able to prevent tissue damage through regulated drug release; reduce drug clearance rates; or lower the volume of distribution and reduce the effect on non-target tissue. However, the biodistribution of these nanoparticles is still imperfect due to the complex host's reactions to nano- and microsized materials[16] and the difficulty in targeting specific organs in the body. Nevertheless, a lot of work is still ongoing to optimize and better understand the potential and limitations of nanoparticulate systems. While advancement of research proves that targeting and distribution can be augmented by nanoparticles, the dangers of nanotoxicity become an important next step in further understanding of their medical uses.[18]

Nanoparticles can be used in combination therapy for decreasing antibiotic resistance or for their antimicrobial properties.[19][20][21] Nanoparticles might also used to circumvent multidrug resistance (MDR) mechanisms.[22]

Two forms of nanomedicine that have already been tested in mice and are awaiting human trials that will be using gold nanoshells to help diagnose and treat cancer,[23] and using liposomes as vaccine adjuvants and as vehicles for drug transport.[24][25] Similarly, drug detoxification is also another application for nanomedicine which has shown promising results in rats.[26] Advances in Lipid nanotechnology was also instrumental in engineering medical nanodevices and novel drug delivery systems as well as in developing sensing applications.[27] Another example can be found in dendrimers and nanoporous materials. Another example is to use block co-polymers, which form micelles for drug encapsulation.[11]

Polymeric nano-particles are a competing technology to lipidic (based mainly on Phospholipids) nano-particles. There is an additional risk of toxicity associated with polymers not widely studied or understood. The major advantages of polymers is stability, lower cost and predictable characterisation. However, in the patient's body this very stability (slow degradation) is a negative factor. Phospholipids on the other hand are membrane lipids (already present in the body and surrounding each cell), have a GRAS (Generally Recognised As Safe) status from FDA and are derived from natural sources without any complex chemistry involved. They are not metabolised but rather absorbed by the body and the degradation products are themselves nutrients (fats or micronutrients).

More:
Nanomedicine - Wikipedia, the free encyclopedia

Read More...

IGERT Nanomedicine at Northeastern University

Wednesday, May 20th, 2015

STUDENT SPOTLIGHT

IGERT HIGHLIGHT

NSF Renews IGERT Nanomedicine PhD Program! 2010-2015

We are pleased to announce that the IGERT Nanomedicine Program has been renewed for an additional term 2010-2015. The new $3.1M IGERT Nanomedicine project leverages the success of the current Nanomedicine program at Northeastern to establish a global research and educational partnership between collaborators at Northeastern, University of Puerto Rico Mayaguez, Tuskegee University, collaborators at Harvard Medical School hospitals, and foreign partners including universities in Naples, Sao Paulo, York and Delhi.

MISSION

IGERT Nanomedicine Science and Technology is a new integrated doctoral education program in the emerging field of Nanomedicine, created with support from the National Cancer Institute and the National Science Foundation. The program aims to educate the next generation of scientists and technologists with the requisite skill sets to address scientific and engineering challenges, with the necessary business, ethical and global perspectives that will be needed in the rapidly emerging area of applying nanotechnology to human health.

The program began at Northeastern University in 2005 with an NSF IGERT grant funded through the National Cancer Institute. The success of the program has since then led to an NSF funded IGERT renewal grant for the period 2010-2015 with new partners, Tuskegee University, The University of Puerto Rico Mayaguez and collaborators at hospitals affiliated with Harvard Medical School.

The program combines the interdisciplinary expertise of world-renowned faculty members in 11 departments at 3 Universities, collaborating with researchers at teaching hospitals and industry. Students enrolled in a Ph.D. program in Biology, Chemistry, Physics, Chemical Engineering, Mechanical/Industrial Engineering, Electrical/Computer Engineering, or Pharmaceutical Sciences (Northeastern University), Materials Science and Engineering or Integrative Biosciences (Tuskegee University), Applied Chemistry or Chemical Engineering (UPRM) may apply to the IGERT interdisciplinary program. The IGERT fellow will graduate with a Ph.D. degree in their core subject with specialization in Nanomedicine Science and Technology.

Download the IGERT Nanomedicine e-book summarizing the achievements of the Northeastern University IGERT Nanomedicine program

More here:
IGERT Nanomedicine at Northeastern University

Read More...

Nanotechnology in Medicine – Nanomedicine

Wednesday, May 20th, 2015

The use of nanotechnology in medicine offers some exciting possibilities. Some techniques are only imagined, while others are at various stages of testing, or actually being used today.

Nanotechnology in medicine involves applications of nanoparticles currently under development, as well as longer range research that involves the use of manufactured nano-robots to make repairs at the cellular level (sometimes referred to as nanomedicine).

Whatever you call it, the use of nanotechnology in the field of medicine could revolutionize the way we detect and treat damage to the human body and disease in the future, and many techniques only imagined a few years ago are making remarkable progress towards becoming realities.

One application of nanotechnology in medicine currently being developed involves employing nanoparticles to deliver drugs, heat, light or other substances to specific types of cells (such as cancer cells). Particles are engineered so that they are attracted to diseased cells, which allowsdirect treatment of those cells. This technique reduces damage to healthy cells in the body and allows for earlier detection of disease.

For example, nanoparticles that deliver chemotherapy drugs directly to cancer cells are under development. Tests are in progress for targeted delivery of chemotherapy drugs and their final approval for their use with cancer patients is pending. One company, CytImmune has published the results of a Phase 1 Clinical Trial of their first targeted chemotherapy drug and another company, BIND Biosciences, has published preliminary results of a Phase 1 Clinical Trial for their first targeted chemotherapy drug and is proceeding with a Phase 2 Clinical Trial.

Researchers at the University of Illinois have demonstated that gelatin nanoparticles can be used to deliver drugs to damaged brain tissue.

Researchers at MIT using nanoparticles to deliver vaccine.The nanoparticles protect the vaccine, allowing the vaccine time to trigger a stronger immune response.

Reserchers are developing a method to release insulin that uses a sponge-like matrix that contains insulin as well as nanocapsules containing an enzyme. When the glucose level rises the nanocapsules release hydrogen ions, which bind to the fibers making up the matrix. The hydrogen ions make the fibers positively charged, repelling each other and creating openings in the matrix through which insulin is released.

Researchers are developing a nanoparticle that can be taken orally and pass through the lining of the intestines into the bloodsteam. This should allow drugs that must now be delivered with a shot to be taken in pill form.

Researchers are also developing a nanoparticle to defeat viruses. The nanoparticle does not actually destroy viruses molecules, but delivers an enzyme that prevents the reproduction of viruses molecules in the patients bloodstream.

See the rest here:
Nanotechnology in Medicine - Nanomedicine

Read More...

Nanomedicine

Tuesday, May 19th, 2015

This site uses cookies to improve performance. If your browser does not accept cookies, you cannot view this site.

There are many reasons why a cookie could not be set correctly. Below are the most common reasons:

This site uses cookies to improve performance by remembering that you are logged in when you go from page to page. To provide access without cookies would require the site to create a new session for every page you visit, which slows the system down to an unacceptable level.

This site stores nothing other than an automatically generated session ID in the cookie; no other information is captured.

In general, only the information that you provide, or the choices you make while visiting a web site, can be stored in a cookie. For example, the site cannot determine your email name unless you choose to type it. Allowing a website to create a cookie does not give that or any other site access to the rest of your computer, and only the site that created the cookie can read it.

Read the original here:
Nanomedicine

Read More...

Home [clinam.org]

Tuesday, May 19th, 2015

The European Summit for Clinical Nanomedicine and Targeted Medicine - The Translation to Knowledge Based Nanomedicine

Eighth Conference And Exhibition, June 28 - July 1, 2015

Sunday, June 28, 2015 General Assembly of the European Society for Nanomedicine (15.30 h) Meeting of the International Society for Nanomedicine (16.30 h) Editorial Board Meeting, European Journal of Nanomedicine (18.00 h) Welcome Dinner for Speakers & invited Guests [19.45 Swisstel Le Plaza, 1st Floor]

Co-founded by the Swiss Confederation. Swiss Derpartment of Economic Affairs, Education and Research

Scientific Committee: Prof. Dr. med. Patrick Hunziker, University Hospital Basel (CH) (Chairman) Prof. Dr. Yechezkel Barenholz, Hebrew University, Hadassah Medical School, Jerusalem (IL) Dr. med. h.c. Beat Lffler, MA, European Foundation for Clinical Nanomedicine (CLINAM), Basel (CH) Prof. Dr. Gert Storm, Institute for Pharmaceutical Sciences, Utrecht University, (NL) Prof. Dr. Marisa Papaluca Amati, European Medicines Agency, London (GB) Prof. Dr. med. Janos Szebeni, Bay Zoltan Ltd and Semmelweis/Miskolc Universities, Budapest (HU) Prof. Dr. med. Christoph Alexiou, Head and Neck Surgery, University Hospital Erlangen (D) Prof. Dr. Claus-Michael Lehr, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarbrucken (D) Prof. Dr. Gerd Binnig, Founder of Definiens AG, Nobel Laureate, Munich (DE) Patrick Boisseau, CEA-Lti, Chairman of the ETPN, Grenoble (FR) Prof. Dr. Viola Vogel, Laboratory for Biologically Oriented Materials, ETH, Zrich (CH) Prof. Dr. Jan Mollenhauer, Director Lundbeckfonden Center of Excellence University of Southern Denmark, Odense (DK) Dr. Yanay Ofran, Systems Biology & Functional Genomics, Bar Ilan University, Ramat Gan (IL)

Conference Venue: Congress Center, Messeplatz 21, 4058 Basel, Switzerland, Phone + 41 58 206 28 28 This email address is being protected from spambots. You need JavaScript enabled to view it.

Follow this link:
Home [clinam.org]

Read More...

Regenerative Medicine Biotech Company, Eqalix, Names Scientific Advisory Board

Tuesday, October 9th, 2012

Eqalix Inc., an emerging regenerative medicine company, announces its Scientific Advisory Board (SAB). This SAB gives Eqalix a depth and breadth of experience necessary to take it to the next level.

Reston, VA (PRWEB) October 09, 2012

"We are very pleased to bring together these key thought leaders to establish the Eqalix Scientific Advisory Board," stated Joseph P. Connell, Eqalix CEO and Chairman of the Board. "I have worked with Drs. Gold and Goldman for years and have always admired their abilities. Dr Lelkes technologies will make a profound impact upon aesthetic dermatology, wound healing and regenerating blood vessels, nerve endings and damaged organs with the guidance of this distinguished panel. It is not clich in any manner when I say that we are thrilled to work with this team. We look to their guidance, industry knowledge and network to help deliver these therapies into clinic and prospective patients as soon as possible, as I am confident our technologies will make a difference, said Connell.

The members of the Eqalix Scientific Advisory Board are:

Peter I. Lelkes, PhD: Chief Scientific Advisor; Dr. Lelkes is the Laura H. Carnell Professor and Founding Chair of the Department of Bioengineering in the College of Engineering at Temple University and the Inaugural Director of the Institute for Regenerative Medicine and Engineering (TIME) at Temple Universitys School of Medicine. While at Drexel, Prof. Lelkes directed an interdisciplinary program in tissue engineering and regenerative medicine, focusing on nanotechnology-based biomaterials and soft tissue engineering, employing developmental biological principles to enhance the tissue-specific differentiation of embryonic and adult stem cells. Dr. Lelkes has organized several Keystone conferences and published more than 160 peer-reviewed papers and 45 book chapters and made more than 400 presentations nationally and internationally.

Dr. Lelkes basic and translational research has been support by federal (NIH, NSF, NASA, DOE) and state funding agencies, (NTI and Dept. of Commerce, Tobacco Settlement Funds) and private Foundations, including the Coulter Foundation. Most recently, Dr. Lelkes has been named Director of the Surgical Engineering Enterprise, one of the major initiatives of the strategic plan of Drexel Universitys College of Medicine. In addition, Dr. Lelkes has been the team leader for tissue engineering at the Nanotechnology Institute of Southeastern Pennsylvania (NTI) and is the Co-Director of PATRIC, the Pennsylvania Advanced Textile Research and Innovation Center, focusing on BioNanoTextiles and Stem Cell Biology.

Dr Lelkes stated, "I am delighted and excited to partner with Eqalix to translate our inventions from the bench to the bedside in a timely fashion.

Mitchel P. Goldman, MD, Scientific Advisor, Founder and Medical Director of Goldman Butterwick Fitzpatrick, Groff & Fabi, Cosmetic Laser Dermatology. A graduate of Boston University, Summa Cum Laude, and the Stanford University Medical School, Dr. Goldman is a Volunteer Clinical Professor in Medicine/Dermatology at the University of California, San Diego. Dr Goldman is Board Certified by both the American Board of Dermatology and the American Board of Cosmetic Surgery.

He is a fellow of the American Academy of Dermatology, American Society for Dermatologic Surgery, American Society for Laser Medicine and Surgery, American Academy of Cosmetic Surgery and the American Society of Liposuction Surgery. He is former President of the American College of Phlebology and President-Elect of the American Society for Dermatologic Surgery. He presently serves on the Board of Trustees for the American Academy of Cosmetic Surgery. He also has authored and/or co-authored 21 Textbooks on Dermatology, Sclerotherapy, Ambulatory Phlebectomy, Cutaneous Laser Surgery, Cellulite and Dermatologic Surgery as well as over 300 peer-reviewed publications and textbook chapters.

Dr Goldman added: I am very interested and excited to work with the Eqalix team to make these technologies a success. I believe that my background lends well to truly shaping the successful commercialization of these products for my patients to improve outcomes.

Original post:
Regenerative Medicine Biotech Company, Eqalix, Names Scientific Advisory Board

Read More...

U.S. and Canadian Scientists Form a Global Alliance for Nano-Bio-Electronics in Order to Rapidly Find Solutions for …

Tuesday, February 14th, 2012

LOS ANGELES, Feb. 13, 2012 /PRNewswire/ -- The Society for Brain Mapping and Therapeutics (SBMT) announced today that the organization will hold its 9th Annual World Congress on Brain, Spinal Cord Mapping, and Image Guided Therapy from June 2-4, 2012 in Toronto, Canada.  The world's top brain and spinal cord scientists and surgeons will converge on the Toronto Metro Convention Center to find solutions to some of the most difficult to treat neurological disorders, including traumatic brain and spinal cord injuries, Parkinson's Disease, Alzheimer's Disease, and neurological cancers. 

The 2012 World Congress of SBMT is jointly supported by the American Association of Neurological Surgeons, the Government of Canada, the University of Toronto, and MaRS innovation; it is endorsed by the International Society for Magnetic Resonance Imaging in Medicine.

The theme of this year's World Congress is "Nano-Bio-Electronics," which focuses on the integration of nanotechnology, stem cell research, and biomedical engineering, and imaging of the brain and spinal cord to make progress in the fight against neurological diseases. The aim of the Congress is to provide a multidisciplinary forum for health professionals in the fields of neurosurgery, neurology, psychiatry, radiology, neuroscience, engineering, as well as policymakers, to collaborate as a global alliance to rapidly advance treatment of neurological disorders.

"The meeting will help us kick start a unique and efficient consortium, which will unite scientists and consolidate resources in order to help us quickly come up with solutions for the devastating neurological diseases affecting millions and costing billions in the US alone," said Babak Kateb, Chairman of the Board of SBMT, President of the Brain Mapping Foundation, and Director of the National Center for Nano-Bio-Electronics (NCNBE). Dr. Kateb states, "The purpose of the Nano-Bio-Electronic alliance is to facilitate integration of nanotechnology, Stem cell and cellular therapy with medical devices and imaging. This consortium will impact global biomedical science and healthcare delivery through national and international partnerships with governments, universities, leading organizations and industries."

Among the notable participants of the 2012 World Congress includes Canadian Surgeon General Hans W. Jung, U.S. Navy Surgeon General Matthew Nathan, and Canadian Parliament Member Kirsty Duncan.  Dr. Duncan, an advocate for brain research in Canada and a global voice for neuroscience initiatives, stated "I am honored to participate in this important conference.  It is vital that we work to enhance our understanding of brain health through research and collaboration."  She added, "We must also affirm our commitment to improving the quality of life of those who live with a brain condition and of their families and informal caregivers."

Toronto was chosen for this year's meeting because of the city's strong and globally-connected network of neuroscientists, biomedical engineers, and investors in the biomedical and nanotechnology fields.   Michael Fehlings, chairman of the local organizing committee, Professor of Neurosurgery, and Director of the Neuroscience Program at the University of Toronto, said "The meeting will showcase Canadian and international neuroscience talent in a broad range of disciplines and will highlight the latest advances in imaging, molecular and cellular mechanisms, bioengineering and surgical intervention."

Parimal Nathwani, Vice President of MaRS Innovation, added, "Forums like this represent an excellent opportunity for reviewing technologies and supporting collaboration across different institutions for more effective translation and commercialization opportunity."

The 9th Annual World Congress is still accepting abstract proposals for the meeting's workshops, lectures, and presentation sessions. Abstract submission  is open now until March 15th 2012.

For the full list of 2012 speakers to register, or support of the 9th Annual World Congress of SBMT on Brain, Spinal Cord Mapping, and Image-Guided Therapy, please visit http://www.worldbrainmapping.org  or call (310) 500-6196.

Society of Brain Mapping and Therapeutics
SBMT is a non-profit society organized for the purpose of encouraging basic and clinical scientists who are interested in areas of Brain Mapping and Intra-operative Surgical planning to improve the diagnosis, treatment and rehabilitation of patients afflicted with neurological disorders.

This society promotes the public welfare and improves patient care through the translation of new technologies into life saving diagnostic and therapeutic procedures. The society is committed to excellence in education, and scientific discovery. The society achieves its mission through multi-disciplinary collaborations with government agencies, patient advocacy groups, educational institutes and private sector (industry) as well as philanthropic organization. http://www.IBMISPS.org

University of Toronto Neuroscience Program
The University Of Toronto Faculty Of Medicine established the U of T Neuroscience Program (UTNP) as a new academic program and appointed Professor Michael G. Fehlings as its first Director on September 1, 2008. The UTNP is a robust, integrated and collaborative academic program in neurosciences that leverages the unparalleled health science network at the University of Toronto, which includes U of T's many departments and institutes, health science faculties, 9 fully-affiliated research hospitals and 20 community-affiliated hospitals and clinical care sites.

MaRS Innovation
MaRS Innovation provides an integrated commercialization platform that harnesses the economic potential of the exception discovery pipeline of 16 leading academic institutions in Ontario. MaRS Innovation is a not-for-profit organization with an independent industry- led board of directors, funded through the Government of Canada's Networks of Centres of Excellence, the Province of Ontario through the Ministry of Research and Innovation, and contributions of its member institutions. Designed to enhance the commercial output of Toronto's outstanding scientific research cluster, MaRS Innovation will make a significant contribution to Canada's economic outlook and the quality of life for Canadians and others around the world. MaRS Innovation will advance commercialization through industry partnerships, licensing and company creation. The MaRS Innovation mission is to put Canada on the global innovation stage, by better connection of research with industry and strengthening Canada's competitive capacity in the knowledge based business – in short, to launch a new generation of robust high growth Canadian companies.  www.marsinnovation.com

American Association of Neurological Surgeons
The American Association of Neurological Surgeons (AANS) is the organization that speaks for all of neurosurgery. The AANS is dedicated to advancing the specialty of neurological surgery in order to promote the highest quality of patient care.  http://aans.org

More here:
U.S. and Canadian Scientists Form a Global Alliance for Nano-Bio-Electronics in Order to Rapidly Find Solutions for ...

Read More...

I believe in Renewable Energy, and here’s why

Sunday, May 8th, 2011

Renewable energy (RE) is a subjective and divisive topic, one that is influenced by many factors, including corruption, greed and purposeful ignorance, scientific and technological advances, and simple entrepreneurial spirit vs. entrenched interests.

Here are some of the reasons that I believe that we will see RE replace old energy by the midpoint of this century:

* It has been estimated that an area 55 miles by 55 miles dedicated to current solar technologies could replace all the electrical generating power of coal and oil (in the US). Or an area 80x80 miles to replace oil, coal and natural gas. (Here in the US we have over 100,000 square miles of desert, so space isn’t a problem)

* Regarding storage technologies (1) for when the sun is down: consider the advances taking place in fuel cells, batteries (LI, redox flow batteries, and 1300-ton battery modules used for grid stabilization), flywheels, compressed air, ultracapacitors and the likelihood that we will also use battery powered vehicles as storage.

* Regarding “getting the power from the solar installation to the people” – consider advances in superconducting wire and other advanced materials which are very likely to enable cheap and efficient transmission of power from where ever it is generated to where ever it is needed.

* Rooftop and local solar: My solar powered home won’t have to worry about darkness; we’ll tap into the battery reserve, as will all rooftop solar installations. A small percentage of our overall use to be sure, but significant none the less.

And as for explicit subsidies: on a per-energy-unit basis, then yes, solar has received more subsidies than fossil fuels in the very recent past. However, on the amount that each of us taxpayers has spent in a recent five-year period, fossil fuels subsidies far exceed solar.

Estimates range: (2)

Coal subsidies = somewhere between $17B and $72B
Solar subsidies = somewhere between $500M and $5B

And let us not forget that coal subsidizes also include intangible (and often purposefully left out) costs for cleaning up the ecosystem, and the public health expenses associated with all of the damage that the mining and use of coal causes. (3)

In my opinion, at the end of the day it all boils down to two simple facts: 1) technological change is on a double exponential growth curve (4) and 2) simple entrepreneurial spirit.

While we certainly need to wean society off finite, dangerous, polluting resources like coal and oil, the earth can and may go to hell in a handbasket. However, I think that entrepreneurial spirit and the certain fact that there is a barrel of money to be made in renewable energy solutions suggests that we will see RE replace old energy by the midpoint of this century. (5)

(1) "Of the ten advanced energy storage technologies, eight have applications in storage for electric power utilities at some level of development, aiming to provide reliable, economic, and energy-efficient power back-up options." Technical Insights Analyst Miriam Nagel

A123 Systems currently sells 2MW to 200MW grid stabilization systems (battery systems). Being used for large-scale energy storage deployment to support wind and solar integration. Small in comparison to the overall needs, but just one of many rapidly improving technologies.

“If investments in the smart grid infrastructure continue, electric vehicles may become ubiquitous — both because of the economic and environmental sense they make for consumers, and because of the vast store of batteries that will be available to grid operators to balance out the intermittency of wind and solar resources.”

“There are several major studies and research showing how the United States could reach 100 percent renewable electricity by 2050. Over the next two decades, the continually rising costs of fossil fuels will make it prohibitive to continue burning them, so we’ll witness the overdue transition to a largely renewable system. Smart grid upgrades will feature two-way communication to consumer appliances, real-time pricing information, more efficient transmission infrastructure, and advanced battery and flywheel technologies to balance the inherent fluctuations of wind and solar resources.”

http://www.mnn.com/earth-matters/energy/blogs/quayle-hodek-a-young-ceo-running-with-the-wind?hpt=Sbin

(2) “What if solar got the same subsidies as coal?” (Oct 21, 2010)
http://cleantechnica.com/2010/10/21/what-if-solar-got-the-same-subsidies-as-coal/

Coal subsidies: The U.S. coal industry enjoyed subsidies of around $17 billion between 2002 and 2008, including tax credits for production of "nonconventional" fuels ($14.1 billion), tax breaks on coal royalties ($986 million), exploration, and development breaks ($342 million), according to a study by the Environmental Law Institute.

http://sierraclub.typepad.com/mrgreen/2010/03/does-the-coal-industry-get-subsidies.html

Solar and wind subsidies: So far, the government has handed out about $5.4 billion, according to the Energy Department.

http://money.cnn.com/2010/11/18/news/economy/renewable_energy_tax_credit/index.htm

(3) Very informative investigative article http://wonkroom.thinkprogress.org/2011/02/03/manchin-coal-subsidies/

(4) “Most long range forecasts of technical feasibility in future time periods dramatically underestimate the power of future technology because they are based on what I call the “intuitive linear” view of technological progress rather than the “historical exponential view.” To express this another way, it is not the case that we will experience a hundred years of progress in the twenty-first century; rather we will witness on the order of twenty thousand years of progress (at today’s rate of progress, that is).” Ray Kurzweil http://www.kurzweilai.net/the-law-of-accelerating-returns

(5) During the past 11 years, as the editor of the leading nanoscale technologies web portal, I read and posted over 50,000 articles about advanced and frequently mind-blowing technologies. I have closely followed the very rapid progress in our understanding and utilization of the unique properties of the nanoscale (which greatly differ from the properties that we already understand). At the very least, we are headed for a future that not one of us can predict; what we can predict is that we will undoubtedly see old myths about technologies shattered and changes beyond our current level of comprehension.

Read More...

I believe in Renewable Energy, and here’s why

Sunday, May 8th, 2011

Renewable energy (RE) is a subjective and divisive topic, one that is influenced by many factors, including corruption, greed and purposeful ignorance, scientific and technological advances, and simple entrepreneurial spirit vs. entrenched interests.

Here are some of the reasons that I believe that we will see RE replace old energy by the midpoint of this century:

* It has been estimated that an area 55 miles by 55 miles dedicated to current solar technologies could replace all the electrical generating power of coal and oil (in the US). Or an area 80x80 miles to replace oil, coal and natural gas. (Here in the US we have over 100,000 square miles of desert, so space isn’t a problem)

* Regarding storage technologies (1) for when the sun is down: consider the advances taking place in fuel cells, batteries (LI, redox flow batteries, and 1300-ton battery modules used for grid stabilization), flywheels, compressed air, ultracapacitors and the likelihood that we will also use battery powered vehicles as storage.

* Regarding “getting the power from the solar installation to the people” – consider advances in superconducting wire and other advanced materials which are very likely to enable cheap and efficient transmission of power from where ever it is generated to where ever it is needed.

* Rooftop and local solar: My solar powered home won’t have to worry about darkness; we’ll tap into the battery reserve, as will all rooftop solar installations. A small percentage of our overall use to be sure, but significant none the less.

And as for explicit subsidies: on a per-energy-unit basis, then yes, solar has received more subsidies than fossil fuels in the very recent past. However, on the amount that each of us taxpayers has spent in a recent five-year period, fossil fuels subsidies far exceed solar.

Estimates range: (2)

Coal subsidies = somewhere between $17B and $72B
Solar subsidies = somewhere between $500M and $5B

And let us not forget that coal subsidizes also include intangible (and often purposefully left out) costs for cleaning up the ecosystem, and the public health expenses associated with all of the damage that the mining and use of coal causes. (3)

In my opinion, at the end of the day it all boils down to two simple facts: 1) technological change is on a double exponential growth curve (4) and 2) simple entrepreneurial spirit.

While we certainly need to wean society off finite, dangerous, polluting resources like coal and oil, the earth can and may go to hell in a handbasket. However, I think that entrepreneurial spirit and the certain fact that there is a barrel of money to be made in renewable energy solutions suggests that we will see RE replace old energy by the midpoint of this century. (5)

(1) "Of the ten advanced energy storage technologies, eight have applications in storage for electric power utilities at some level of development, aiming to provide reliable, economic, and energy-efficient power back-up options." Technical Insights Analyst Miriam Nagel

A123 Systems currently sells 2MW to 200MW grid stabilization systems (battery systems). Being used for large-scale energy storage deployment to support wind and solar integration. Small in comparison to the overall needs, but just one of many rapidly improving technologies.

“If investments in the smart grid infrastructure continue, electric vehicles may become ubiquitous — both because of the economic and environmental sense they make for consumers, and because of the vast store of batteries that will be available to grid operators to balance out the intermittency of wind and solar resources.”

“There are several major studies and research showing how the United States could reach 100 percent renewable electricity by 2050. Over the next two decades, the continually rising costs of fossil fuels will make it prohibitive to continue burning them, so we’ll witness the overdue transition to a largely renewable system. Smart grid upgrades will feature two-way communication to consumer appliances, real-time pricing information, more efficient transmission infrastructure, and advanced battery and flywheel technologies to balance the inherent fluctuations of wind and solar resources.”

http://www.mnn.com/earth-matters/energy/blogs/quayle-hodek-a-young-ceo-running-with-the-wind?hpt=Sbin

(2) “What if solar got the same subsidies as coal?” (Oct 21, 2010)
http://cleantechnica.com/2010/10/21/what-if-solar-got-the-same-subsidies-as-coal/

Coal subsidies: The U.S. coal industry enjoyed subsidies of around $17 billion between 2002 and 2008, including tax credits for production of "nonconventional" fuels ($14.1 billion), tax breaks on coal royalties ($986 million), exploration, and development breaks ($342 million), according to a study by the Environmental Law Institute.

http://sierraclub.typepad.com/mrgreen/2010/03/does-the-coal-industry-get-subsidies.html

Solar and wind subsidies: So far, the government has handed out about $5.4 billion, according to the Energy Department.

http://money.cnn.com/2010/11/18/news/economy/renewable_energy_tax_credit/index.htm

(3) Very informative investigative article http://wonkroom.thinkprogress.org/2011/02/03/manchin-coal-subsidies/

(4) “Most long range forecasts of technical feasibility in future time periods dramatically underestimate the power of future technology because they are based on what I call the “intuitive linear” view of technological progress rather than the “historical exponential view.” To express this another way, it is not the case that we will experience a hundred years of progress in the twenty-first century; rather we will witness on the order of twenty thousand years of progress (at today’s rate of progress, that is).” Ray Kurzweil http://www.kurzweilai.net/the-law-of-accelerating-returns

(5) During the past 11 years, as the editor of the leading nanoscale technologies web portal, I read and posted over 50,000 articles about advanced and frequently mind-blowing technologies. I have closely followed the very rapid progress in our understanding and utilization of the unique properties of the nanoscale (which greatly differ from the properties that we already understand). At the very least, we are headed for a future that not one of us can predict; what we can predict is that we will undoubtedly see old myths about technologies shattered and changes beyond our current level of comprehension.

Read More...

Carla wants to know

Sunday, November 7th, 2010

In response to a question posed by one of my oldest and most perceptive friends, I posted what follows to my Facebook profile.

Her question was posed after watching this video http://vimeo.com/15979195

"Rocky, am I really ignorant and paranoid?

It seems like this technology holds they key to either really, really good stuff for us as a species, or it has the potential for really really bad stuff.

I trust the science and the scientists. I don't trust the Money that controls what's done with the science.

Einstein was a really nice guy. He had no idea his science would be used for war. I don't think any of the Manhattan Project scientists went into it knowing what they were unleashing on the world."

~ Carla Conrad

My answer: A most perspicacious observation, and right on the mark. Occam’s Razor, 21st century style, meaning that you have hit upon the simplest explanation for the potential outcome; like every technological innovation in the past, nanoscale technologies have both the potential for tremendous good and/or tremendous bad. And don’t let my seemingly cavalier use of "tremendous" lull you into a false sense of security; I mean "tremendous" as in "things that have the potential to change everything we think we know about ourselves, while enabling each of us with the power to effect and experience our surroundings in ways heretofore only imagined."

I have been actively and intensely following nanoscale technologies since the early ‘90’s. At the end of the day, my most prescient observation would be that these technologies will have an impact on our global society many times greater than ALL past technological revolutions. Let me put it another way: nanoscale technologies - and the products thereof - will enable far greater change than our discovery, development and use of fire, bronze, iron, steel, electrical power, cars, planes and space travel put together.

Any person, institution or government entity that says "Oh yeah, nanotechnology, we got that handled" is lying their ass off. Equally, any person, institution or government entity that says "Oh yeah, nanotechnology, it’s gonna kill us all in one or more horrible ways" is also lying their ass off. Anyone that fervent usually has a hidden agenda, and one which serves a higher master. You’ll notice I said "usually" – many of my colleagues in the nanospace are humanitarians in the best sense and are talking about and planning for ways in which the good things can be emphasized and the bad minimized or eliminated.

My philosophy is summed up thus:

Nanotechnology will certainly play a pivotal role in our future; now, with the introduction of lighter/stronger materials in the auto, space, and military industries, and later, with the introduction of molecular manufacturing (making items per your specifications, in your own home, for pennies on the dollar of current prices – think "replicator" and you will not be too far off).

Expect to see revolutionary changes in solar, fuel cell and hydrogen storage technologies within the next few years. And expect to see a great deal of interest in and subsequent higher funding of nanotech-enabled sensor technologies for military, homeland security and civilian applications within the next few years. Put another (albeit obvious) way: expect to see cultural tsunamis of a magnitude that rival anything we have thus far experienced.

No informed person doubts that developments at the nanoscale will be significant. We debate the time frame, the magnitude and the possibilities, but not the likelihood for large-scale change. The least-speculative views suggest that we're in for changes of an order that justifies – if not demands – our undivided attention. Will we be ready? (BTW: not kidding, not even the weensiest amount)

OK, off my high horse and back to your previously programmed station…

Read More...

Carla wants to know

Thursday, October 21st, 2010

In response to a question posed by one of my oldest and most perceptive friends, I posted what follows to my Facebook profile.

Her question was posed after watching this video http://vimeo.com/15979195

"Rocky, am I really ignorant and paranoid?

It seems like this technology holds they key to either really, really good stuff for us as a species, or it has the potential for really really bad stuff.

I trust the science and the scientists. I don't trust the Money that controls what's done with the science.

Einstein was a really nice guy. He had no idea his science would be used for war. I don't think any of the Manhattan Project scientists went into it knowing what they were unleashing on the world."

~ Carla Conrad

My answer: A most perspicacious observation, and right on the mark. Occam’s Razor, 21st century style, meaning that you have hit upon the simplest explanation for the potential outcome; like every technological innovation in the past, nanoscale technologies have both the potential for tremendous good and/or tremendous bad. And don’t let my seemingly cavalier use of "tremendous" lull you into a false sense of security; I mean "tremendous" as in "things that have the potential to change everything we think we know about ourselves, while enabling each of us with the power to effect and experience our surroundings in ways heretofore only imagined."

I have been actively and intensely following nanoscale technologies since the early ‘90’s. At the end of the day, my most prescient observation would be that these technologies will have an impact on our global society many times greater than ALL past technological revolutions. Let me put it another way: nanoscale technologies - and the products thereof - will enable far greater change than our discovery, development and use of fire, bronze, iron, steel, electrical power, cars, planes and space travel put together.

Any person, institution or government entity that says "Oh yeah, nanotechnology, we got that handled" is lying their ass off. Equally, any person, institution or government entity that says "Oh yeah, nanotechnology, it’s gonna kill us all in one or more horrible ways" is also lying their ass off. Anyone that fervent usually has a hidden agenda, and one which serves a higher master. You’ll notice I said "usually" – many of my colleagues in the nanospace are humanitarians in the best sense and are talking about and planning for ways in which the good things can be emphasized and the bad minimized or eliminated.

My philosophy is summed up thus:

Nanotechnology will certainly play a pivotal role in our future; now, with the introduction of lighter/stronger materials in the auto, space, and military industries, and later, with the introduction of molecular manufacturing (making items per your specifications, in your own home, for pennies on the dollar of current prices – think "replicator" and you will not be too far off).

Expect to see revolutionary changes in solar, fuel cell and hydrogen storage technologies within the next few years. And expect to see a great deal of interest in and subsequent higher funding of nanotech-enabled sensor technologies for military, homeland security and civilian applications within the next few years. Put another (albeit obvious) way: expect to see cultural tsunamis of a magnitude that rival anything we have thus far experienced.

No informed person doubts that developments at the nanoscale will be significant. We debate the time frame, the magnitude and the possibilities, but not the likelihood for large-scale change. The least-speculative views suggest that we're in for changes of an order that justifies – if not demands – our undivided attention. Will we be ready? (BTW: not kidding, not even the weensiest amount)

OK, off my high horse and back to your previously programmed station…

Read More...

Page 18«..10..15161718


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick