header logo image


Page 21234..10..»

Archive for the ‘Nano medicine’ Category

Nanorobots Market to close to USD 19576.43 million with CAGR of 12.23% during the forecast period to 2029 – Digital Journal

Monday, July 25th, 2022

Nanorobots Marketare also utilised in the maintenance and assembly of complex systems. Nanorobotics widespread use in the medical field is also propelling market revenue growth. In individuals with sickness or weakened immunity, nanorobots can act as antiviral or antibody agents. In addition to cancer detection and treatment, the technique is also being employed in gene therapy.

Get a Sample PDF of the report https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-nanorobots-market

A nano robot is a new technology for designing, programming, and controlling nanoscale robots. Nanorobots are capable of doing specified jobs with components that are on the nanometer size (10-9 meters). Nanorobots are capable of diagnosing certain types of cancer and serve a critical role in human pathogen protection and treatment.Biomedicalinstrumentation, pharmacokinetics, surgical procedures, diabetes monitoring, and other healthcare services can all benefit from nano robots. Data Bridge Market Research analyses that the nanorobots market was valued at USD 7739.19 in 2021 and is further estimated to reach USD 19576.43 million by 2029, and is expected to grow at a CAGR of 12.23% during the forecast period of 2022 to 2029.

Some of the major players operating in the nanorobots market are

To Gain More Insights into the Market Analysis, Browse Summary of the Research [emailprotected] https://www.databridgemarketresearch.com/reports/global-nanorobots-market

NanorobotsMarket Dynamics

Drivers

In the healthcare industry, advances in molecular robot technology are increasingly being used to execute complex tasks and eliminate human error.

Recent research in DNA nanotechnology supports the use of nanorobots inregenerative medicineon a big scale which is further anticipated to contribute to the market growth.

Nanotechnology will be used in the medical field to aid in the detection and treatment of diseases such as diabetes.

Opportunities

In addition, the growing application areas of microscopes and incorporation of microscopy with spectroscopy are further estimated to provide potential opportunities for the growth of the nanorobots market in the coming years.

GlobalNanorobotsMarket Scope and Market Size

The nanorobots market is segmented on the basis of type and application. The growth amongst these segments will help you analyze meager growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.

Type

On the basis of type, the nanorobots market is segmented into microbivore nano robots, respirocyte Nano robots, clottocyte Nano robots, cellular repair Nanorobots and others. The others segment is further sub segmented into Nano swimmers and bacteria powered robots.

Application

On the basis application, the nanorobots market is segmented into nano medicine, biomedical, mechanical and other applications.

NanorobotsMarket Regional Analysis/Insights

The nanorobots market is analysed and market size insights and trends are provided by country, type and application as referenced above. The countries covered in the nanorobots market report are U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.

North America dominates the nanorobots market due to the rise in the adoption of nano robotics technology. Furthermore, the presence of sophisticated healthcare infrastructure will further boost the growth of the nanorobots market in the region during the forecast period. Asia-Pacific is projected to observe significant amount of growth in the nanorobots market due to the rise in the attention of the manufacturers.

Browse the complete table of contents at- https://www.databridgemarketresearch.com/toc/?dbmr=global-nanorobots-market

Top Healthcare Reports:

North America Laboratory Hoods and Enclosure Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/north-america-laboratory-hoods-and-enclosure-market

North America Biosurgery Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/north-america-biosurgery-market

Europe Biosurgery Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/europe-biosurgery-market

Asia-Pacific Biosurgery Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/asia-pacific-biosurgery-market

Pressure Guidewires Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/global-pressure-guidewires-market

Nephrostomy Guidewires Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/global-nephrostomy-guidewires-market

Cardiac Guidewires Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/global-cardiac-guidewires-market

Introducer Sheaths and Guidewires Market Size, Shares, Trends and Industry Growth Outlook https://www.databridgemarketresearch.com/reports/global-introducer-sheaths-and-guidewires-market

About Data Bridge Market Research:

An absolute way to forecast what future holds is to comprehend the trend today!

Data Bridge Market Research set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavours to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process. Data Bridge is an aftermath of sheer wisdom and experience which was formulated and framed in the year 2015 in Pune.

Data Bridge Market Research has over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude. We are content with our glorious 99.9 % client satisfying rate.

Contact Us:-

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Email:-[emailprotected]

Read the rest here:
Nanorobots Market to close to USD 19576.43 million with CAGR of 12.23% during the forecast period to 2029 - Digital Journal

Read More...

Microscopic Robots Made from White Blood Cells Could Treat and Prevent Life-Threatening Illnesses – Good News Network

Monday, July 25th, 2022

An image of the neutrobot at work SWNS

White blood cells have been made into a kind of micro-robot that could treat and prevent life threatening illnesses, according to scientists in China.

The tiny, laser-guided machines are made from white blood cells called neutrophilsand are set, the scientists think, to revolutionize medicine.

Named neutrobots, they can deliver drugs to precise locations in the body after being directed by laser beams. Other devices developed to perform similar tasks contain synthetic materials which in several instances have triggered serious immune responses and biological rejection.

The neutrophil microcrafts can be remotely activated by light and then navigated to the target position along a designated route, said project leader Dr. Xianchuang Zheng, of the Institute of Nanophotonics at Jinan University, China.

In experiments on the tails of zebrafish, the Chinese team used an incredibly impressive and precise laser called a scanning optical tweezers (SOTs) to perform three potential applications with the neutrobots.

SOTs point a highly focused beam to hold and move microscopic and sub-microscopic particles in a manner similar to tweezers, and were used with the help of the neutrobots for cell therapy, targeted nanomedicine, and removal of debris or organic waste that can trigger disease.

SIMILAR: Protein Motors Can Swim Around Wounds to Kill Bacteria And Deliver Lifesaving Drugs

Additionally, the neutrobots could carry payloads directly to a tumor, blood clot, or infection.

By integrating the non-invasive manipulation of optical tweezers and innate immunologic function of neutrophils, the proposed microcraft provides new insight for the construction of native medical microdevices for precision medicine, Dr. Zheng said.The neutrophil microcraft can be activated or recovered in a controlled manner and the migration is fully steerablejust like driving a vehicle.

The zebrafish have high blood circulation to their tails, allowing the neutrophils to be clearly identified through fluorescence labelling.

Its significantly less scary than other nanobot medical applications being developed elsewhere, like these miniscule crabs theorized as agents to dispose of tumors, clear clogged arteries, or stop internal bleeding.

Ordinary neutrophils are often slow and go in the wrong direction, part of why the development of micro-robotics has steered more towards artificial solutions.

Maneuvers of the neutrobots include remote activation by SOTs at a desired time and locationprecisely navigated to achieve a designed route and speed.

Not only do medical microrobots currently in development require injections or the consumption of capsules to get them inside an animal or person, but researchers have found the objects trigger immune reactions in small animals, resulting in their removal before they can perform their jobs.

CHECK OUT: For the First Time, Researchers Use Healthy Stem Cells for Future Type 1 Diabetes Cure

The study in the journal ACS Central Science is the first time they have been guided with lasers in living animals. The light-driven microrobot could be moved up to a velocity of 1.3 microns a secondthree times faster than a neutrophil naturally moves.

In one test, a neutrobot was moved through a blood vessel wall into the surrounding tissue. Another picked up and transported a plastic nanoparticle, showing its potential for carrying medicine. When one was pushed toward red blood cell debris, it engulfed the pieces.

It seems pure science fiction, but could become standard of care.

SHARE This Medical Miracle With Your Friends On Social Media

Read more:
Microscopic Robots Made from White Blood Cells Could Treat and Prevent Life-Threatening Illnesses - Good News Network

Read More...

Nano Therapy Market 2022 Growth Is Expected To See Development Trends and Challenges to 2030 This Is Ardee – This Is Ardee

Monday, July 25th, 2022

New York, United States Report Ocean published the latest research report on the Nano Therapy market. In order to comprehend a market holistically, a variety of factors must be evaluated, including demographics, business cycles, and microeconomic requirements that pertain precisely to the market under study. In addition, the Nano Therapy market study demonstrates a detailed examination of the business state, which represents creative ways for company growth, financial factors such as production value, key regions, and growth rate.

Key Companies Covered in theNano TherapyResearch areNanosphere Inc., Cristal Therapeutics, DIM, NanoMedia Solutions Inc., Luna, Nanobiotix, Sirnaomics Inc., Selecta Biosciences Inc., NanoBioMagnetics.n.nu, Nanospectra Biosciences Inc., Tarveda Therapeutics, Parvus Therapeutics, CytImmune Science Inc., Nanoprobes Inc., NanoBio Corporation, Smith and Nephewand other key market players.

TheNano Therapymarket revenue was $$ Million USD in 2016, grew to $$ Million USD in 2022, and will reach $$ Million USD in 2030, with a CAGR of % during 2022-2030.

The Centers for Medicare and Medicaid Services data estimates that the U.S. national healthcare expenditure surpassed US$ 4.1 trillion in 2020 and is forecast to reach US$ 6.2 trillion by 2028. According to the Commonwealth Fund, the U.S. expended nearly 17% of gross domestic product (GDP) on healthcare in 2018. Switzerland was the second-highest-ranking country, expending 12.2%. In addition, New Zealand and Australia devote only 9.3%.Request To Free Sample of This Strategic Report:-https://reportocean.com/industry-verticals/sample-request?report_id=mai284010

According to the U.S. Bureau of Labor Statistics, employment in healthcare fields is forecast to grow 16% from 2020 to 2030, much quicker than the standard for all occupations, counting about 2.6 million new jobs. This estimated growth is mainly due to an elder population, showing to greater demand for healthcare services. The median annual wage for healthcare practitioners and technical fields (such as registered nurses,0020physicians and surgeons, and dental hygienists) was US$ 75,040 in May 2021, which was greater than the median annual wage for all occupations in the economy of US$ 45,760.

Market Overview

Nano therapy is a branch of nanomedicine that involves using nanoparticles to deliver a drug to a given target location in the body so as to treat the disease through a process known as targeting.

GlobalNano TherapyMarket Development Strategy Pre and Post COVID-19, by Corporate Strategy Analysis, Landscape, Type, Application, and Leading 20 Countries covers and analyzes the potential of the global Nano Therapy industry, providing statistical information about market dynamics, growth factors, major challenges, PEST analysis and market entry strategy Analysis, opportunities and forecasts. The biggest highlight of the report is to provide companies in the industry with a strategic analysis of the impact of COVID-19. At the same time, this report analyzed the market of leading 20 countries and introduce the market potential of these countries.

Most important types of Nano Therapy products covered in this report are:Nanomaterial and Biological DeviceNano Electronic BiosensorMolecular NanotechnologyImplantable Cardioverter-Defibrillators

Most widely used downstream fields of Nano Therapy market covered in this report are:Cardiovascular DiseaseCancer TherapyDiabetes TreatmentRheumatoid ArthritisOthers

Top countries data covered in this report:United StatesCanadaGermanyUKFranceItalySpainRussiaChinaJapanSouth KoreaAustraliaThailandBrazilArgentinaChileSouth AfricaEgyptUAESaudi Arabia

SPECIAL OFFER (Avail an Up-to 30% discount on this report) :-https://reportocean.com/industry-verticals/sample-request?report_id=mai284010

Chapter 1 is the basis of the entire report. In this chapter, we define the market concept and market scope of Nano Therapy, including product classification, application areas, and the entire report covered area.

Chapter 2 is the core idea of the whole report. In this chapter, we provide a detailed introduction to our research methods and data sources.

Chapter 3 focuses on analyzing the current competitive situation in the Nano Therapy market and provides basic information, market data, product introductions, etc. of leading companies in the industry. At the same time, Chapter 3 includes the highlighted analysisStrategies for Company to Deal with the Impact of COVID-19.

Chapter 4 provides breakdown data of different types of products, as well as market forecasts.

Different application fields have different usage and development prospects of products. Therefore, Chapter 5 provides subdivision data of different application fields and market forecasts.

Chapter 6 includes detailed data of major regions of the world, including detailed data of major regions of the world. North America, Asia Pacific, Europe, South America, Middle East and Africa.

Chapters 7-26 focus on the regional market. We have selected the most representative 20 countries from 197 countries in the world and conducted a detailed analysis and overview of the market development of these countries.

Chapter 27 focuses on market qualitative analysis, providing market driving factor analysis, market development constraints, PEST analysis, industry trends under COVID-19, market entry strategy analysis, etc.

Access full Report Description, TOC, Table of Figure, Chart, etc. @:-https://reportocean.com/industry-verticals/sample-request?report_id=mai284010

Key Points:Define, describe and forecast Nano Therapy product market by type, application, end user and region.Provide enterprise external environment analysis and PEST analysis.Provide strategies for company to deal with the impact of COVID-19.Provide market dynamic analysis, including market driving factors, market development constraints.Provide market entry strategy analysis for new players or players who are ready to enter the market, including market segment definition, client analysis, distribution model, product messaging and positioning, and price strategy analysis.Keep up with international market trends and provide analysis of the impact of the COVID-19 epidemic on major regions of the world.Analyze the market opportunities of stakeholders and provide market leaders with details of the competitive landscape.

Table of Content:

For More Information or Query or Customization Before Buying, Visit @:https://reportocean.com/industry-verticals/sample-request?report_id=mai284010

Key Benefits for Industry Participants & Stakeholders

Key Questions Answered in the Market Report

Request Full Report :-https://reportocean.com/industry-verticals/sample-request?report_id=mai284010

About Report Ocean:We are the best market research reports provider in the industry. Report Ocean believes in providing quality reports to clients to meet the top line and bottom line goals which will boost your market share in todays competitive environment. Report Ocean is a one-stop solution for individuals, organizations, and industries that are looking for innovative market research reports.

Get in Touch with Us:Report Ocean:Email:sales@reportocean.comAddress: 500 N Michigan Ave, Suite 600, Chicago, Illinois 60611 UNITED STATESTel:+1 888 212 3539 (US TOLL FREE)Website:https://www.reportocean.com

See the original post:
Nano Therapy Market 2022 Growth Is Expected To See Development Trends and Challenges to 2030 This Is Ardee - This Is Ardee

Read More...

Artificial Intelligence (AI), Cloud Computing, 5G, And Nanotech In Healthcare: How Organizations Are Preparing Best For The Future – Inventiva

Monday, July 25th, 2022

Artificial Intelligence (AI), cloud computing, 5G, and Nanotech in healthcare: How organizations are preparing best for the future

Automation, digitalization, and technological enablement are having a significant impact on several industries. The healthcare industry is not an exception. The healthcare delivery system in India is changing and is about to advance significantly. The pandemic has shown that healthcare organizations can become innovative, flexible, and resilient by utilizing tech-enabled business models that place data at the core.

Additionally, healthcare organizations quickly realize that no matter how technically advanced their services or products are, they will no longer be applicable. To produce not just an enhanced product or service but also a better healthcare experience, it is imperative to connect with users along the healthcare value chain, be they patients or physicians. Fortunately, technological progress has accelerated the process of change required for Indian healthcare to become digitally linked and shown promise for enhancing peoples healthcare experiences.

India has already begun developing a national digital framework to create a digital health ecosystem on a national scale. The market for digital healthcare in India was estimated to be worth INR 116.61 billion in 2018 and is projected to reach INR 485.43 billion by 2024, growing at a CAGR of 27.41 per cent. Adopting electronic health records for the whole population is one of the several steps made in that regard.

Healthcare organizations are quickly embracing innovative technology to change how care is delivered in the nation and benefit the healthcare ecosystem as a solution to address the problems that the countrys healthcare system is now facing. Here are a few new technologies that are changing things:

Artificial Intelligence (AI)

Artificial intelligence (AI), machine learning (ML), and digital representations of the human bodys physiology make it possible to anticipate the chance that chronic diseases will advance based on the decisions being made. By using these simulations, healthcare professionals can better comprehend options and therapies and their consequences on patient health outcomes and influence on related expenditures.

Additionally, AI is helping healthcare professionals manage illnesses holistically, better coordinate care plans, and help patients manage and adhere to their treatment regimens. Further, statistics indicate that administrative expenses account for 30% of healthcare expenditures. The bulk of these duties, such as keeping track of bills that need to be paid and maintaining records, may be automated with AI, considerably cutting expenses.

Cloud Computing

The collaboration between physicians, nurses, and departments has grown crucial as healthcare organizations throughout the nation transition to value-based care. Thanks to cloud computing, accessing patient information has gone from a sluggish and laborious procedure to a quick and easy process.

With cloud computing, data may be stored centrally and made accessible from any location at any time. In addition, cloud infrastructure allows users to adjust health data storage depending on the new patient volume. IoT-enabled devices are being offered to patients by a variety of healthcare providers. By connecting these devices to a healthcare providers cloud system, patient data may be swiftly delivered to the doctor. This makes for a quicker diagnosis and better treatment.

The 5G Network

Every aspect of healthcare has the potential to be improved by a 5G connection, particularly since the healthcare sector is still recovering from the ravages of the epidemic. Large data files and real-time, high-definition video may be transmitted over a fast network to handle telemedicine appointments. Patients may reach medical professionals more quickly and receive treatment more quickly thanks to the use of 5G, especially in remote places.

Nanotech

Utilizing nanotechnology has given the healthcare sector new opportunities. Researchers and scientists use this technology to improve medical imaging, target tumours, and medication delivery systems. Additionally, the technique reduces costs, speeds up DNA sequencing, and provides scaffolding for tissue regeneration or wound healing. Further, artery obstructions are being removed by nanobots or micro-scale robots, as are quick biopsies of worrisome cancerous tumours.

The healthcare sector is anticipated to strengthen in 2022, thanks to groundbreaking discoveries and technologies. Most of the significant modifications are still in the future!

This article will examine the main medical technology developments and changes anticipated for the medical industry shortly.

The focus is often on lowering the cost, increasing access to healthcare services, and identifying and treating problems sooner rather than later. The US healthcare industry is expanding quickly; by 2026, the national healthcare products value is predicted to reach USD 6 trillion. Its never too late to prepare for the many available healthcare possibilities. Make sure to use digital technology to increase revenue, and staff productivity, achieve better financial results, and improve patient care.

Artificial intelligence (AI) technology has advanced quickly in recent years, and this trend will persist in 2022. Among the various sectors that gain from AI, medicine mainly uses it for accurate illness diagnosis and detection, albeit this is not the only use. IBM Watson, for instance, is one of the AI systems already accessible for use in business and healthcare.

Computed Tomography Scan Analysis

The demand for computed diagnostic professionals (radiologists) has significantly grown since the COVID-19 epidemic struck the worlds population.

AI-powered technology could provide a solution. AI systems can quickly evaluate CT images from hundreds of patients, identifying pneumonia patterns brought on by COVID-19 and informing physicians of these. That would make up for the lack of qualified labour in this industry.

Before our eyes, innovative ideas are taking shape. For instance, a deep learning model for imaging COVID-19 was developed to recognize COVID-19 patterns in CT images automatically. The Microsoft-sponsored InnerEye research project is another promising endeavour for processing computed tomography scans. Even though accuracy has significantly increased, radiologists are still hesitant to entrust the digital mind with crucial choices. AI cannot be held responsible for a poor diagnosis or ineffective course of therapy. Instead, the expert who decided to employ AI must pay for their error and take every precaution to limit the adverse effects while maximizing this digital health trend.

Because of this, most cutting-edge clinics employ AI as an additional tool rather than a stand-alone diagnostic or therapeutic method. It is excellent for validating current diagnoses or enhancing research data that has been gathered conventionally.

Machine Learning in Biopharma and Medtech

The pharmaceutical sector will effectively capitalize on technological advancements in healthcare by utilizing AI to discover new medications. A group of British and Japanese scientists filed a patent for the first medicinal molecule created by AI in January 2020. The drug will be used to treat obsessive-compulsive disorder after it passes muster for testing on humans.

AI-enhanced lab research has also led to the discovery of other intriguing formulations since late 2021, including some potential treatments for uncommon and extremely severe ailments. Numerous cutting-edge studies, such as molecular modelling and simulation of chemical reactions in multi-factor settings, leverage AI and machine learning approaches to support chemical experiments and therapeutic medication development.

Since many tests may be carried out electronically, this method enables scientists to reduce the number of expensive onsite experiments using reagents and high-tech lab equipment. It also hastens the discovery of critical scientific innovations.

Automating Hospital Workflows using Robotics

Startups from all over the world will pour hundreds of millions of dollars into creating AI projects in 2022, including various forms of robotic systems, which may enable them to reduce the cost of recruiting trained medical personnel. The intention is to assist medical facilities that already have a severe shortage of nurses and clinicians as a result of the COVID-19 pandemic, which has put the entire healthcare system under unprecedented strain, rather than to replace people with machines, which would lead to unemployment and a decline in social standards. Learn more about creating medical HR software to assist HR professionals in addressing the U.S. medical workforce problem.

Innovative enterprises should keep in mind the medical communitys restrictions on AI-driven software, its capabilities, and its applications as they work to realize these lofty goals. Modern medicine has countless applications for robotic assistance and automated systems, including cleanliness, surgery, remote diagnostics, etc. However, the healthcare systems top goals will always be the well-being of medical personnel and the effective treatment of patients.

In light of this, robotic and AI-driven technologies will be employed to support current procedures rather than replace them, resulting in a potent fusion of the present and the future. Daring projects combined with sound regulation are a prominent trend in the digital health sector. It will enable physicians to utilize cutting-edge technology fully, learn to apply it in satisfying and secure ways, and steer clear of any pitfalls.

Symptom Checker Chatbots

Chatbots are computer programs with artificial intelligence (AI) support (often not true AI but powerful algorithms) that engage in meaningful conversations that resemble those between humans using voice, text, or option-based input.

Every area, including healthcare and medical consultancy, is seeing a rise in their use. These solutions, available around-the-clock online or via mobile devices, can provide preliminary medical diagnoses and health advice based on input and complaints from a patient. Chatbots can also be connected with unique patient portals for hospitals and clinics. When human medical assistants are unavailable, they can assist patients with their health issues and worries, even in acute situations (such as disaster-induced overloads of call centres, peak or non-operation hours, etc.)

These chatbots can aid patients in determining their subsequent actions and motivate them to seek professional medical advice when necessary. Care must be exercised, though, since it may result in inaccurate self-diagnosis and disinformation.

Globalization of AI Requirements in Healthcare

Ten recommendations that can serve as the foundation for the creation of GMLP have been developed by a powerful coalition of the U.S. FDA, Health Canada, and the United Kingdoms Medicines and Healthcare products Regulatory Agency (MHRA) (Good Machine Learning Practice). These guidelines will help programmers and AI engineers create secure medical equipment, software, and systems powered by artificial intelligence and machine learning (AI/ML) components. This shows that governments take the potential and hazards posed by AI exceptionally seriously and would want to regulate the use of AI in healthcare practices as soon as feasible.

Adoption of AI-backed Technologies

The main drawback of the advancement in artificial intelligence technology is that hackers will use it to target medical systems and steal secured healthcare information, rather than only to save human lives or help medical personnel with their everyday responsibilities. One of the growing dangers to the security of medical technology in 2022 and beyond is sophisticated malware with AI capabilities.

Which medical technology solutions are in jeopardy? Almost everything could have weak security or security flaws, such as wireless systems in hospitals, clinics, or health centres, EMR/EHR solutions, IoT, and computer-aided healthcare provider and health insurance company systems. Intricate phishing and social engineering assaults can also target clients and staff members.

Hackers may use this feature to simulate personal identities as part of next-generation super-personalized social engineering and phishing campaigns, which have the potential to be as dangerous and deceptive as ever before due to AIs growing capacity to mimic photorealistic 3D faces or organically sounding voices. This necessitates installing high-end data protection methods that can mitigate any hazards by hacker techniques aided by AI.

Despite all the technological safeguards and healthcare providers knowledge, statistics on data breaches show a sharp rise over the previous ten years, with infractions peaking in 20202021. These data breaches impact thousands of patients around the US. Hopefully, healthcare organizations will focus more on data security and their digital ecosystems in 2022. Healthcare cybersecurity is quickly emerging as a popular technological topic this decade.

How to Prevent Data Breaches in Healthcare?

The security of medical records, which is governed by HIPAA and EDI in the healthcare industry, is a top priority for the US government.

Every healthcare professional should follow a few effective procedures:

Facial Recognition With Masks

Face recognition technology, which permits approved access for medical professionals to mobile devices or workstations, rose to popularity due to its ease.

Deep learning facial recognition algorithms must be used in the COVID-19 pandemic to distinguish staff members wearing masks. Specific sources claim that some businesses have already achieved 99.9% accuracy in the face recognition of people wearing masks.

Nanotechnology may still seem like science fiction, yet it is steadily influencing our daily lives. By the end of 2021, fantastic news about the creation of tiny, organic robots that can reproduce themselves will reach every part of the globe. Therefore, it is realistic to anticipate that 2022 will bring forth several significant advancements in the nanomedicine sector. Early investments are welcome in the burgeoning nanomedicine industry.

Here is a brief explanation of what nanomedicine is: it uses nanoscale (microscopically small) materials and objects, like biocompatible nanoparticles, nanoelectronic devices, or even nanorobots, for specific medical uses and manipulations, like the diagnosis or treatment of living organisms. The injection of a group of nanorobots into a humans blood vessels might be utilized as a possible hunter for cancer cells or viruses, for instance. This method is anticipated to effectively combat a wide range of cancers, rheumatoid arthritis, and other hereditary, oncologic, or auto-immune illnesses on a cellular level (or even become an ultimate solution to them).

Even though the IoMT will not be a novel concept by 2022, this industry will experience exponential growth. Every one of the several digital health developments in this sector has excellent applications for healthcare professionals and has the potential to save billions of dollars.

Apps for remote health monitoring and wellness will continue to grow in popularity in 2022. You may discover a decent number of professional (and many other semi-professionals) mobile applications for healthcare and health in the GooglePlay or iTunes libraries.

Some mobile applications can connect to wearables like pulsometers or fitness trackers to use the information gathered by the sensors attached to your body to report or evaluate your health problems, including blood pressure, body temperature, pulse, and other metrics.

Autonomous nursing robots or self-moving smart gadgets can substantially assist by minimizing the tasks linked to supply management or sanitary maintenance that medical professionals must perform.

Different types of robots can work in various hospital-based settings and jobs, protecting human workers from infection risks or stress from the extreme burden imposed on many US hospitals by a COVID-19 patient overflow. An Italian hospital, for instance, employed robot nurses during a COVID-19 severe epidemic. These clever assistants were utilized to remotely check patients blood pressure and oxygen saturation levels because they are two critical indicators of their present state of health. Those levels might decline quickly, necessitating emergency intervention for the patient. This drastically decreased the requirement for nurses to visit patients in person.

Healthcare systems primarily concentrate on elements within their area of expertise: quality and price of medical services while generating risk assessments and accumulating illness data. However, they represent the very beginning. Before patients feel symptoms and seek the help of physicians, a host of other less apparent circumstances impact them.

Initial health problems are caused by factors other than a lack of care. Their origins are deeper; they are found in social, environmental, and demographic contexts that are rarely taken into account in the context of conventional clinical diagnoses.

Medical institutions mainly handle symptoms and offer advice on lifestyle modifications, having a minimally significant influence on treatment results (between 10% and 20%). In addition, between 80% and 90% of health outcomes are determined by non-medical variables. The term social determinants of health refers to these elements (SDOH).

In 2022, healthcare providers will approach SDOH with greater caution than ever before and carefully review patients medical histories, taking into account details that were overlooked in earlier years.

Doctors will shift from treating symptoms to prediction and prevention based on patients SDOH predisposition to particular diseases to stop the advancement of dangerous health concerns and reduce individual medical expenditures.

More implant-related options and technology will hit the global and American healthcare markets in 2022. This offers dramatically improved regenerative medicine effectiveness, patient rehabilitation, and a solution for many disabilities previously thought to be incurable.

Increasing the Use of 3D Bioprinting

By 2027, it is anticipated that the medical industrys volume of 3D printing potential will surpass $6 billion. Even if 3D printing biocompatible implants is not a novel technique in 2022, new materials and more advanced prosthetic methods will make this technology more dependable and available to a more extensive range of patients. In particular, it is anticipated that advancements in 3D bioprinting technology would improve the following areas:

Neural Implants

In 2022, effective options for brain-computer implants are anticipated to debut. Neuralink plans to begin inserting its devices into human brains at least in 2022. More businesses, groups, initiatives, and startups are preparing to market their neuro-implants for various medical requirements, including regaining functional independence in patients with multiple forms of paralysis or blindness.

For instance, it was stated that by the end of 2021, a team of scientists had implanted a microelectrode array (a penny-sized implant) into the visual brain of a blind individual, enabling her to recognize several letters and shapes. Although there is still a long way to go, brain implants potential to help people with various disabilities seems to have a genuinely fantastic and promising future.

Healthcare businesses will employ an exponentially growing number of data sources, and the volume of gathered healthcare data (including patient records, DICOM files, and medical IoT solutions) will also rapidly increase. Medical service providers will seek contemporary platforms, such as data fabrics, to combine and handle massive amounts of dispersed and structured data.

It will be among the tasks to build safe multi-cloud solutions capable of transporting significant amounts of data to manage, store, and mine it for valuable insights and to link siloed data with the healthcare systems.

Healthcare payers and providers frequently have interests that clash. The standard of their collaborative work decreases when both sides take absolutist positions. Patients, therefore, do not get the care they need. They are frequently mistreated, have to wait longer, and pay more.

Both payers and providers should embrace a value-oriented mindset and work toward group goals rather than individual success. All parties must understand that they are working for the same purposeproviding high-end healthcare to the publicand that if either suffers losses, the other will no longer support them. All organizations involved in the healthcare sector will hopefully try their utmost to learn how to collaborate in 2021. They will concentrate on delivering complete care, move from settling disagreements to cooperation, and communicate information to support successful decision-making.

The healthcare sector is already seeing the effects of the vast diversity, universality, and growth of digital communication channels. A brand-new channel for distributing medical data is telehealth. It entails delivering healthcare services remotely through the Internet, videoconferencing, streaming services, and other communication technologies. Long-distance education for patients and medical professionals is included in telehealth. Telehealth has achieved widespread acceptance and has evolved into a regular procedure in 2021. Modern clinics already counsel their patients electronically. This kind of communication will replace conventional internal dialogues and receive full regulatory permission in the upcoming years.

With the introduction of 5G wireless, telehealth will expand rapidly and be universally adopted shortly.

Here is the original post:
Artificial Intelligence (AI), Cloud Computing, 5G, And Nanotech In Healthcare: How Organizations Are Preparing Best For The Future - Inventiva

Read More...

Potassium Channels as a Target for Cancer Therapy & Research | OTT – Dove Medical Press

Monday, July 25th, 2022

IntroductionPotassium Channels Structure and Function

K+ channels are membrane proteins that facilitate the selective potassium ion flow under an electrochemical gradient. Besides the voltage-dependent gating, K+ channels are activated by several intracellular and extracellular stimuli,13 including extracellular and intracellular pH, kinases, SUMOylation, G protein-coupled receptors, stretch, and lipid regulation among others.1,2,4 These channels can be grouped into three major families according to their subunit structure: the Kv (voltage-gated K+ channel), Kir (inwardly rectifying K+ channel), and K2P (two-pore K+ channels)1,2,4 (see Figure 1AC). K+ channels need four pore-forming domains, which together, generate a functional and selective ion pathway. Thus, the Kv and Kir channels need four subunits to form a functional pore in a tetramer architecture.2,4 On the other hand, the K2P family forms a functional channel in a dimer architecture (see Figure 1C).1,5 For each K+ channel, subunit is also clearly identifiable in this pore-forming P domain, characterized by the amino-acid signature GYG that confers the high selectivity to K+ ions observed in potassium channels.6 The Kv channels present a topology model with six transmembrane domains (TM1-6) and one pore-forming domain (P) (Figure 1A). This Kv family represents the most numerous K+ channel group, with 40 genes encoding for K+ subunits in humans. The transmembrane domain (TM4) into Kv channels present positive charged amino acids (Arg and Lys) which act as voltage sensors generating the channel opening in response to changes in voltages7,8 (Figure 1A).

Figure 1 Schematic structure of potassium channels. Lateral view of monomers of a (A) voltage-gated potassium channel (Kv), (B) inward rectifier potassium channel (Kir) and (C) two-pore domain potassium channel (K2P), showing the transmembrane segments, the cap and their corresponding pore-forming loops (P-loops).

For the Kir channel family, each subunit has one P domain and two transmembrane domains (Figure 1B), and this family is integrated by 15 different genes grouped into 7 subfamilies (Kir1.x to Kir7.x), identified in mammals.24 Kir potassium channels present a gating governed by a voltage-dependent blocked process by Mg2+ and polyamines.3,4 Moreover, the gating voltage-dependence for Kir channels defines their characteristic K+ inward rectification (movement into the cell).3,4

K2P family has a two-pore forming domain and four transmembrane domains, whose subunits assemble as dimers (Figure 1C). Fifteen different genes found in mammals encode these family subunits and are grouped into 6 subfamilies according to their homology and functional properties.1,5,9,10 The K2P channels are voltage-independent and highly modulated channels, playing key roles in the maintenance of the resting membrane potential in the cells. These channels are recognized as the leak or background potassium channels.1,5

Cancer condition is a major non-infectious public health problem and affects millions of people worldwide. Cancer is also the second most common cause of death after cardiovascular disease, with 10.0 million deaths (9.9 million excluding nonmelanoma skin cancer) in 2020,11 with estimated 28.4 million cases in 2040, a 47% rise from 2020.11 The Americas accounts 20.9% of cancer incidence and 14.2% of mortality worldwide,11 and for Latin America and the Caribbean region, it has been estimated that 1.7 million cancer cases will be diagnosed by 2030, whereas more than one million of the cases will die per year.12 Currently, more than 100 types of cancer have been identified, being breast (24.5%), colorectal (9.4%), lung (8.4%), cervix (6.5%), and thyroid (4.9%) most frequent types of cancer in women.11 Meanwhile, lung cancer (14.3%), prostate (14.1%), colorectal (10.6%), stomach (7.1%) and liver (6.3%) are the most common type of cancers among men.11

In recent years, ion channels, and particularly potassium (K+) channels, have emerged as relevant molecular targets for the development of cancer treatments.1316 The association between potassium (K+) channels and cancer disease is mainly due to the participation of those proteins in the cancer progression mechanisms.13,1618 Potassium channels are complex proteins that form selective pores for K+ conduction in biological membranes, which are critical in K+ homeostasis, cell volume regulation, setting of resting membrane potentials, the neurotransmitters release, and regulating the excitability of neurons and muscle tissue.1,2,19

For instance, overexpression of different potassium channels, such as Kv, Ca2+-activated (KCa), ether go-go human (hEag), ATP-sensitive (KATP), and K2P has been reported in prostate cancer cells, colon, lung, breast, and other organs.20 It has been hypothesized that there is a relationship between K+ channel overexpression and the generation and growth of malignant tumors,14,17,18,21 being involved in cell proliferation, apoptosis, and differentiation.14,18,21 Studies performed with pharmacological drugs that specifically block K+ channels have shown antitumor effects by inhibiting tumor growth directly or enhancing the effectiveness of chemotherapeutics or cytotoxic drugs as a combined therapeutical strategy.18,22 On the other hand, several studies have exhibited the impact of Kv channels (Eag1, HERG, and Kv1.3), Kir (Kir3.1), and Ca2+-activated potassium channels (KCa1.1 and KCa3.1) in cancer cell proliferation and their association with tumorigenesis process in patients and animal models.17,18,2123

A relatively minor amount of research has focused on the relationship between K2P channels and cancer.18,24 Those studies suggested that TASK-3 is involved in tumor formation in several types of human cancer.14,18,24,25 Moreover, other investigations showed that breast cancer cells metastatic properties depend on TASK-3 expression levels.20

By contrast, the Kir channels have been related to different cancer conditions, such as lung, gastric, prostate, stomach, breast, and choroid plexus.2632

The Kv channel is the most numerous K+ channel family, playing relevant functions in various cellular and physiological processes.2 Additionally, these channels have been implicated in cancer hallmarks, such as cell proliferation, cancer progression, and migration14,15,3335 (Figure 2 and Table 1).

Table 1 Potassium Channels Associated with Cancer

Figure 2 Roles of K+ channels in cancer hallmarks. Cellular processes associated with changes in expression and increased activity of the two-pore domain K+ channel (K2P), the inward rectifier K+ channel (Kir), and the voltage-gated K+ channel (Kv) in cancer. K+ channels structure in ribbon representation were generated with the PDB 6RV2, 7s5z and 7wf4.

The Kv1.1 (KCNA1) channel is relevant for potassium transport in the central nervous system and kidney.36,37 Moreover, it is overexpressed in cervical cancer tissues and medulloblastoma.38,39 Additionally, the Kv1.1 depletion suppressed growth, proliferation, migration and invasion of HeLa cells.38

Kv1.3 channels also have been reported as overexpressed in the breast, lung, colon, prostate, pancreas, smooth muscle, skeletal muscle, and lymph node of some types of cancers.4044 However, its relevance as a therapeutic target has been evidenced in glioblastoma, melanoma, and pancreatic adenocarcinoma models,4547 where Kv1.3 suppression induces apoptosis.

Another related channel is Kv1.5. This channel shows a correlated expression pattern with glioma entities and malignancy grades, with a high expression in astrocytomas, moderate in oligodendrogliomas, and low in glioblastomas.48 For the Kv1.5 channel, an overexpression was detected in some gastric cancer cell lines.49 Furthermore, Kv1.5 plays a role in the activation and proliferation of cells in the immune system, is remodeled during carcinogenesis, and has shown an abundance that inversely correlates with clinical aggressiveness in human non-Hodgkin lymphomas.50 In the same way that Kv1.3, this channel is overexpressed in human smooth muscle tumors.40 Kv1.5 has been involved in tumor cell proliferation of gastric cancer cells, where this channel is overexpressed.49

The expression of the Kv2.1 channel recently was reported to be higher in the metastatic prostate cancer cells (PC3), and their blockade with stromatoxin-1 or siRNA significantly inhibits the migration of malignant prostate cancer cells.51 This channel as Kv1.4, Kv4.2, Kv7.1 and large-conductance Ca2+-activated K+ channel (BKCa) also showed a high expression in the CD133+ subpopulation of SH-SY5Y neuroblastoma cells.52

Increased levels of Kv3.4 channel expression were identified in OSCC (oral squamous cell carcinoma).53 In addition, the expression and clinical significance of this channel in the development and progression of head and neck squamous cell carcinomas was reported.54 The Kv3.4 and Kv3.1 are known as oxygen sensors, and their function in hypoxia has been well investigated.55 These channels, Kv3.1 and Kv3.4, are tumor hypoxia-related channels involved in cancer cell migration and invasion in A549 and MDA-MB-231 cells (lung and breast cancer models, respectively).55

Another set of experiments showed a varied expression of Kv4.1 mRNA depending on the tumor stage in human breast cancer tissues.56 Recent studies have demonstrated that Kv4.1 channels are expressed in the human gastric cancer cell lines.57 Moreover, the suppression of Kv4.1 induces a G1-S transition blockade affecting the cell cycle progression.57

Interestingly, together with the expression profile of Kv7.1 in neuroblastoma cells,52 this channel was also found to be up-regulated in human colonic cancer cells.58 Conversely, Kv7.1 and Kv7.5 expression in vascular cancers was reported to be down-regulated.59 In this case, the proposed role of Kv7 channels is related to cell proliferation rather than controlling vascular tone.59

A particular case is a Kv9.3 channel, an electronically silent subunit, which forms heterotetramers with Kv2.160. The Kv2.1/Kv9.3 heterotetramers are overexpressed in colon carcinoma, lung adenocarcinoma, and cervical adenocarcinoma cells.60,61 Moreover, the knockdown of Kv9.3 inhibits proliferation in colon carcinoma and lung adenocarcinoma models.60

The Ether go-go (Eag (hERG); Kv10.1) K+ channel expression is typically restricted to the adult brain and the heart, but it has been detected in several cancer cell lines and tumor tissues from patients,62,63 showing it to influence cell proliferation. This channel is overexpressed in 71% of tumors and cancer cell models of neuroblast, glial, liver, lung, breast, ovary, cervix, prostate, gastrointestinal tract, myeloid leukemia, and retinoblastoma.34,6368 The Kv10.1 channel suppression generates apoptosis, inhibition of cell proliferation, and decrease in cancer cell migration.63,6972 Additionally, the inhibition of Kv10.1 channels sensitizes the mitochondria of tumor cells to antimetabolic treatments, improving the efficacy of the metabolic inhibitors.73

Kv11.1 is overexpressed in leukemia, ovarian, lung, pancreatic, colorectal, and breast cancer cells, among others.7479 The Kv11.1 channels have a key role in the cell cycle, acting as regulators for apoptosis and cell proliferation in cancer cells.74,7981 However, blockers of Kv11.1 channels also retard the cardiac repolarization.80

Another subgroup of potassium channels involved in cancer corresponds to the calcium-activated potassium channels. These channels are activated by rise in cytosolic calcium ions, allowing the K+ ion to flow under an electrochemical gradient. As a member of this subgroup, the KCa1.1 channel is overexpressed in prostate, glia, breast, pancreas, and endometrium cancer cell types.8286 KCa1.1 channel regulates the proliferation and migration of prostate cancer condition.83 In breast cancer, KCa1.1 channel overexpression has been associated with advanced tumor stage, cell proliferation, and poor prognosis.87

On the other side, the KCa3.1 (intermediate conductance Ca2+-activated K+ channel) is overexpressed in 32% of glioma patients and correlates with poor patient survival.88 In addition, these channels are overexpressed in breast cancer, non-small cell lung cancer, melanoma, leukemia, renal and hepatocellular carcinoma.8994 The inhibition of KCa3.1 channel activity reduces the cancer cell motility, proliferation and induces apoptosis.91,94,95

A less associated channel to a cancer condition corresponds to KCa2.3 (SK3), with a report of overexpression in melanoma cell lines, and their knockdown led to plasma membrane depolarization and decreased cell motility.96

The Kir channel family is integrated by 15 different genes grouped into seven subfamilies. Among these channels, different subunits have been associated with cancer conditions (Kir2.1, 2.2, 3.1, 3.4, 4.1, 6.1, 6.2)26,27,2932,94 (Figure 2 and Table 1).

Kir2.1 (KCNJ2) is overexpressed in 44.23% of small-cell lung cancer (SCLC) tissues, and it correlates with the clinical stage and chemotherapy response in SCLC patients. Additionally, the Kir2.1 knockdown in H69AR and H446AR cells inhibited cell growth and was sensitized to chemotherapeutic drugs by increasing cell apoptosis and cell cycle arrest.28 Kir2.1 channel also promotes the invasion and metastasis of human gastric cancer by enhancing MEKK2-MEK1/2-ERK1/2 signaling by interaction with Stk38.97

Similarly, Kir2.2 is found in human SCLC cells.31 Kir2.2 knockdown induced growth arrest and senescence by a mechanism involving reactive oxygen species (ROS) accumulation in cell lines derived from tissues of the prostate, stomach, and breast.98 Kir2.2 plays a role as an unconventional activator of RelA and increases the expression level of NF-B targets, including cyclin D1, matrix metalloproteinase (MMP)9, and vascular endothelial growth factor (VEGF)99 in cancer cells.

Another inward potassium channel associated with cancer is the Kir3.1 which is found within lymphocytes and in resected human pancreatic ductal adenocarcinoma (PDAC), overexpressed in 80% of tumor specimens. However, no associations were found between metastasis and Kir3.1 expression.26 On the other hand, the gene encoding the Kir3.1 channel was found to be aberrantly overexpressed in invasive breast carcinomas.100 In addition, the Kir3.1 overexpression correlates with lymph node metastasis, and this overexpression is greater in tumors with more than one positive lymph node.100

Kir3.1 gene overexpression is detected in tissue specimens from patients with non-small cell lung cancers (NSCLCs).101 In addition, the expression of Kir3.1 has been shown in tissue samples from approximately 40% of primary human breast cancers and in breast cancer cell lines.102

Also, the inwardly rectifying K+ channel Kir3.4 (KCNJ5 gene) (or GIRK4 channel) have been identified in adrenal aldosterone-producing adenomas (APAs), where several ion channel gain-of-function mutants are associated with the APA condition.29,103

In human brain tumors (low- and high-grade astrocytomas and oligodendrogliomas), mislocalization (redistribution) of the Kir4.1 channel has been reported and suggests a compromised buffering capacity of glial tumor cells.32 Furthermore, in human astrocytic tumors, Kir4.1 channel expression markedly increases with the pathologic grade of cancer104 and suggests that Kir4.1 activation could promote proliferation and inhibit apoptosis in the tumors.104

The subunits of ATP-sensitive Kir potassium channels (Kir6.1, Kir6.2) are highly expressed in leiomyoma cells.30 The estrogen-induced proliferation of the leiomyoma cells is inhibited by treatment with glibenclamide (KATP-channel inhibitor).30 These two channels are expressed in MDA-MB-231 cancer cells, and the cytostatic effect of glibenclamide is mediated through KATP channels (Kir6.1 and 6.2), associated with the inhibition of the G1-S phase progression.105 In hepatocellular carcinoma (HCC), the KCNJ11 (Kir6.2) gene was identified as a key dysregulated K+ channel and is associated with a poor prognosis in HCC patients.106 In agreement, the knockdown of Kir6.2 inhibited cell proliferation, promoted cell apoptosis, and reduced cell invasive capacity.106 The Kir6.2 overexpression was observed in cervical cancer cell lines and cervical tumor tissues.107 In particular, the increased Kir6.2 channel expression was observed in high-grade, poorly differentiated and invasive human cervical cancer biopsies.107 Moreover, an inhibitory effect of glibenclamide on the proliferation of cervical cancer cell lines is associated with Kir6.2 channel.107

Kir6.2 channel activity plays a critical role in the proliferation of glioma cells where the expression is greatly increased.108 Moreover, the treatment with tolbutamide (a Kir6.2 inhibitor) suppressed the proliferation of glioma cells and blocked the cell cycle.108 The Kir6.2 knockdown obtained a similar result in glioma cell proliferation.108

Finally, a less studied channel corresponds to Kir7.1 (KCNJ13) with a high expression linked to choroid plexus epithelium or choroid plexus tumors (CPTs)27,109,110 and it has been considered a sensitive and specific diagnostic marker for choroid plexus tumors.27,109,111

The two-pore domain K+ channels (K2P), encoded by the KCNK genes, are a family of fifteen members that form the leak or background channels.1,5,9 K2P channels display K+ outward rectifying currents, constitutively open, that control the neuronal excitability. Thus, activation of K2P channels stabilizes the cell membrane potential below the firing threshold, whereas the K2P channels inhibition facilitates membrane depolarization and cell excitability.

The K2P family can be divided into six subfamilies based on structural and functional properties.1,5,9 Regarding protein structure, each K2P channel subunit has four transmembrane domains (TM1-TM4) and two pore-forming domains (P1 and P2) (Figure 1C). Moreover, two subunits are required to form a functional channel.112,113 K2P channels display an exclusive extracellular cap domain formed by the extracellular loop that connects the first transmembrane domain and the first pore-forming sequence (TM1-P1 loop) (Figure 1C). The extracellular cap covers the upper selectivity filter (SF) pore,114 and this structure is responsible for the poor sensitivity of K2P channels to classical K+ channel blockers.114

From the K2P family, seven members are confirmed to be involved in cancer (TASK-1, TASK-2, TASK-3, TREK-1, TREK-2, TWIK-1, and TWIK-2)15,115120 (Figure 2 and Table 1). Among these, TASK-1 (K2P3, encoded by KCNK3 gene) has been detected in medulloblastoma and Ehrlich ascites tumor cells.121,122 Also, in MG63 osteosarcoma cells, the overexpression of TASK-1 was reported.118 Additionally, TASK-1 is overexpressed in a subset of non-small cell lung cancers, promoting proliferation and inhibiting apoptosis. TASK-1 knockdown enhances apoptosis and reduces the proliferation of lung cancer cell-line A549.123 In these cells, A549, the overexpression of TASK-1 promoted epithelial mesenchymal transition (EMT), a pivotal event in lung cancer cell invasion and metastasis.124 Moreover, the expression of TASK-1 has been associated with aldosterone production in both aldosterone-producing adenomas and normal adrenals.125

The second K2P channel associated with cancer is TASK-2 (K2P5; encoded by KCNK5 gene), a member of the TALK subfamily. TASK-2 plays a role in the proliferation of estrogen receptor positive breast cancer cells being highly upregulated in response to 17-estradiol (E2) in MCF-7 and T47D breast cancer cell lines.126,127 In these cells, the knockdown of the TASK-2 channel reduces the estrogen-induced proliferation of breast cancer cells.127 Also, the overexpression of TASK-2 has found in HPAF cells, a human pancreatic ductal adenocarcinoma cell line, but the role in cancer progression has not been further studied.128

Among the K2P channels, the most studied in cancer correspond to TASK-3 (TWIK-related acid-sensitive K+ channel 3). This channel has been shown to localize in both the plasma membrane and mitochondrial inner membrane.117 The TASK-3 channel overexpression occurs in several types of cancer, such as melanoma, ovarian carcinoma, and breast cancer.24,117,129132

Also, TASK-3 (KCNK9, located in chromosomal region 8q24.3) gene expression is enhanced by 1044% in human breast tumors and 35% in lung tumors.24 Additionally, overexpression of KCNK9 has been reported in over 90% of ovarian tumors.130 In most cases studied, TASK-3 is associated with the acquisition of malignant characteristics, including hypoxia resistance or serum deprivation conditions.24,25 Consistently, a monoclonal antibody (Y4) against the cap domain of TASK-3 inhibits the growth of human lung cancer xenografts and breast cancer metastasis in mice.133 Further studies showed that TASK-3 gene knockdown in breast cancer cells is associated with an induction of cellular senescence and cell cycle arrest.132 Furthermore, TASK-3 is overexpressed in colorectal cancers and gastric cancers.134136 In gastric adenocarcinoma cells, the TASK-3 gene knockdown causes changes in migration and reduces cell proliferation and viability by increasing apoptosis without ffecting cell cycle checkpoints.136

TASK-3 is highly expressed in melanoma,117,129,137 being identified in the inner mitochondrial membrane of melanocytes, WM35 and B16F10, and keratinocytes.117,129,137,138 In WM35 and A2058, human melanoma cells, the knockdown of TASK-3 resulted in compromised mitochondrial function, mitochondrial membrane depolarization, and reduced cell survival inducing apoptosis.139,140

Another K2P channel related to cancer is TREK-1 (K2P2, encoded by KCNK2). This channel has been shown to play a pro-proliferative role in the human prostate cancer cell-line PC3.116 In MG63 osteosarcoma cells, overexpression of TREK-1 was reported118 and it is correlated with the proliferation of the osteoblast cells.141 TREK-1 is also overexpressed in prostate cancer tissues142 and epithelial ovarian cancer.130 For TREK-1 channel, the exact role of cancer development is still unclear. However, TREK-1 overexpression is associated with a poor prognosis for patients with prostate cancer.142 In prostate cancer, inhibition or knockdown of TREK-1 inhibits proliferation by inducing cell cycle arrest at the G1/S checkpoint.142 On the other side, the treatment with TREK-1-blocking agents, such as curcumin, has shown reduced ovarian cancer cells proliferation and increased late apoptosis processes.130

Among the TREK subfamily, the TREK-2 channel (K2P10, encoded by KCNK10) was present in bladder cancer cell lines and contributed to cell cycle-dependent growth.119 The sixth K2P channel involved in cancer is TWIK-1 (K2P1, encoded by KCNK1). The TWIK-1 was detected as an upregulated channel in pancreatic ductal adenocarcinoma (PDAC) compared to normal tissue.115 Recently, TWIK-2 (K2P6, encoded by KCNK6 gene) was reported as a significantly overexpressed channel in breast cancer.120 Moreover, the overexpression of TWIK-2 increases the capacity of proliferation, invasion, and migration of breast cancer cells.120

The rational design and development of selective blockers is a dynamic field of study that includes diverse methods such as high-throughput screening, bioengineering techniques, and chemical modification, among others.143,144 Fortunately, we count on several software and computational tools that allow us to explore innovative approaches based on the molecular interaction of potassium channels structural data from the ligands and molecules, and the physicochemical and pharmacological properties of K+ channels interacting with drugs.

Some computational tools used for the rational design of specific modulators (blockers and activators) examine the three-dimensional structure of the target (K+ channels, in this case), previously solved by X-ray crystallography, cryoelectron microscopy145 or comparative modeling. Following this, it is necessary to study the binding sites and affinity of the ligand.143 This approach has been particularly helpful for the identification of ligands, targeting membrane proteins.146,147

Additionally, the multidisciplinary work among different areas, such as biochemistry, bioinformatics, bioengineering, medical chemistry, genomics, proteomics, and metabolomics, has contributed to the development of new computational tools for the rational design of ion channel modulators.143 Thus, the combinatory strategy including docking, virtual screening, de novo drug design, molecular simulations and the experimental validation by electrophysiological measures have allowed the development and a successful search for small modulators.146,147 For the K+ channels, a three-dimensional structure of representative K+ subunits (Kv, K2P, and Kir) has been reported, providing insights into how these channels can be used to design specific modulators for cancer treatment.

Moreover, ion channels with limited background expression in normal tissues and strong overexpression in tumors due to their cell-surface accessibility constitute a preferential target for the development of antibody-based therapies.148152 Antibodies recognizing ion channels represent a strategy effective in modulation of ion channel activity. The mechanisms of action include direct block of ion permeation pathway, modulation of ion channel gating, and internalization and degradation upon surface clustering.152154 For example, systemic administration of specific mouse monoclonal antibodies generated in the human channel K2P9 (KCNK9) using its M1P1 loop fused into the Fc domain of IgG2a, effectively inhibits the growth of human lung cancer xenografts and murine breast cancer metastasis in mice.133 In addition, a specific monoclonal antibody which inhibits the function of highly oncogenic Kv10.1 potassium channel can effectively restrict cancer cell proliferation and reduce tumor growth in animal models with no significant side effects.155 However, currently, only one polyclonal antibody (BIL010t; Biosceptre) targeting a non-functional form of P2X7 (nfP2X7) has reached the level of clinical trials for the treatment of basal cell carcinoma.156,157

Other developing innovative strategies consist of the rational design of specific short peptides (less than 50 amino acid residues), which have acquired widespread interest as tools to address challenging proteinprotein interactions (PPIs).158,159 These short peptides can form complexes, and structures, mimicking critical motifs of proteins,160 which allow them to inhibit PPIs or functional activities with high specificity and affinity, emerging as a promising alternative to small molecules and biopharmaceuticals (>5000 Da). Furthermore, short peptides are easy to produce and modify161 and present low off-target side-effects given their higher specificity and reduced immunogenicity.161 All those attractive features make short peptides exceptional candidates to serve as therapeutics, even more considering that more than 100 peptide-based drugs are available in the market for AIDS, Cancer, and other medical conditions.162,163 Some examples of therapeutic drug-based peptides include oxytocin (8 aa), calcitonin (32 aa), teriparatide (34 aa), Fuzeon (36 aa, antiretroviral), corticotropin-releasing hormone (41 aa), and growth-hormone-releasing hormone (44 aa).159

Additionally, animal venoms are a natural and affluent source of peptides.164166 These peptide sources (from different animals such as cone snails, scorpions, sea anemones, snakes, spiders, among others) have been widely used as a starting point to develop toxin-based drugs, and some of them have currently reached clinical trials.165 Captopril was the first toxin-based drug approved for humans (1981). It is a nonapeptide that acts by blocking the angiotensin-converting enzyme (ACE) activity inhibiting the production of angiotensin II and was developed from Bothrops jararaca snake venom.167 Captopril is currently suitable and widely used for hypertension treatment.168 Among the different approved toxin-based drugs marketed, the ziconotide is obtained from cone snails, exenatide and lixisenatide are obtained from lizards. Bivalirudin and desirudin from leeches and Batroxobin and cobratide are purified from snake venoms.165 Desirudin, on the other hand, is a recombinant peptide derivated from snake. Other drugs (bivalirudin, enalapril, eptifibatide, exenatide, tirofiban, and ziconotide) are synthetic molecules from the same source.165

Currently, a large number of ionic channel blocking peptides (for Ca2+, K+ and Na+ channels) have been reported and obtained from different origin.166,169173 For instance, some peptides with antitumor effect are -hefutoxin 1 and analogues, APETx4, purpurealidin analogs, KAaH1 and KAaH2 among others.174177

There is no doubt that the specific short peptide blockers can inhibit the functional activity of K+ channels and show an antitumor effect, impacting the hallmark of cancer and representing a novel strategy for the rational design of new cancer drugs.

Compelling evidence indicates that the upregulation of the majority of K+ channels is associated with current cancer hallmarks (Figure 2 and Table 1). Thus, these channels have emerged as alternatives to develop new cancer treatments. K+ channel subunits are diverse and highly regulated proteins that respond to different stimuli. In different cancer conditions, where K+ channels are overexpressed, K+ channel blockers have been shown to reduce the tumorigenic properties and reverse the cancer progression in cell lines and animal models. However, K+ channels are critical regulators in several cellular and physiological processes; therefore, the search for selective K+ channel blockers becomes restrictive in developing future cancer treatments. Fortunately, the 3D structure of representative K+ channels178180 opens new possibilities for the rational design of highly selective K+ modulators.

The research for these highly selective potassium channel blockers must also include natural products (eg, plant extracts), bioinformatics search using the database (eg, Zinc181), venoms peptides, and the design of cyclic peptides (CPs) as modulators of proteinprotein interactions. Indeed, there is no doubt that rational design, search, and development might increase the therapeutic arsenal of drugs against cancer conditions associated with K+ channels. Nevertheless, the design, search, and development of selective K+ channel blockers remains a challenge that must be addressed in a multidisciplinary manner, including chemistry, bioinformatics, bioengineering, and biophysics groups.

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

This work was supported by Fondecyt 1191133 to WG and LZ, FIC-R BIP 40.027.577-0 Portafolio de servicios para la caracterizacin de blancos teraputicos para el tratamiento de cncer y enfermedades crnicas no transmisibles to WG and LZ. C.V. acknowledges the financial support of the National Fund for Science & Technology Development FONDECYT 1201147 and the BASAL Grant AFB180001 (CEDENNA) from the National Research and Development Agency (ANID), Government of Chile.

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed in the funding section and report no conflicts of interest in relation to this work.

1. Goldstein SAN, Bockenhauer D, OKelly I, Zilberberg N. Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci. 2001;2(3):175184. doi:10.1038/35058574

2. Gonzlez C, Baez-Nieto D, Valencia I, et al. K+ channels: function-structural overview. Compr Physiol. 2012;2:20872149.

3. Hibino H, Inanobe A, Furutani K, et al. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010;90(1):291366. doi:10.1152/physrev.00021.2009

4. Cui M, Cantwell L, Zorn A, Logothetis DE. Kir channel molecular physiology, pharmacology, and therapeutic implications. Handb Exp Pharmacol. 2021;267:277356. doi:10.1007/164_2021_501

5. Ziga L, Ziga R. Understanding the cap structure in K2P channels. Front Physiol. 2016;7:228. doi:10.3389/fphys.2016.00228

6. Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 resolution. Nature. 2001;414(6859):4348. doi:10.1038/35102009

7. Bezanilla F. The voltage sensor in voltage-dependent ion channels. Physiol Rev. 2000;80(2):555592. doi:10.1152/physrev.2000.80.2.555

8. Jiang Y, Lee A, Chen J, et al. X-ray structure of a voltage-dependent K+ channel. Nature. 2003;423(6935):3341. doi:10.1038/nature01580

9. Lotshaw DP. Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochem Biophys. 2007;47:209256. doi:10.1007/s12013-007-0007-8

10. Enyedi P, Czirjk G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev. 2010;90:559605. doi:10.1152/physrev.00029.2009

11. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209249. doi:10.3322/caac.21660

12. Goss PE, Lee BL, Badovinac-Crnjevic T, et al. Planning cancer control in Latin America and the Caribbean. Lancet Oncol. 2013;14(5):391436. doi:10.1016/S1470-2045(13)70048-2

13. Bates E. Ion channels in development and cancer. Annu Rev Cell Dev Biol. 2015;31(1):231247. doi:10.1146/annurev-cellbio-100814-125338

14. Huang X, Jan LY. Targeting potassium channels in cancer. J Cell Biol. 2014;206(2):151162. doi:10.1083/jcb.201404136

15. Pardo LA, Sthmer W. The roles of K+ channels in cancer. Nat Rev Cancer. 2014;14(1):3948. doi:10.1038/nrc3635

16. Prevarskaya N, Skryma R, Shuba Y. Ion channels in cancer: are cancer hallmarks oncochannelopathies? Physiol Rev. 2018;98(2):559621. doi:10.1152/physrev.00044.2016

17. Ouadid-Ahidouch H, Ahidouch A. K+ channel expression in human breast cancer cells: involvement in cell cycle regulation and carcinogenesis. J Membr Biol. 2008;221(1):16. doi:10.1007/s00232-007-9080-6

18. Shen Z, Yang Q, You Q. Researches toward potassium channels on tumor progressions. Curr Top Med Chem. 2009;9(4):322329. doi:10.2174/156802609788317874

19. Lesage F, Lazdunski M. Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol. 2000;279:F793F801. doi:10.1152/ajprenal.2000.279.5.F793

20. Lee G-W, Park HS, Kim E-J, et al. Reduction of breast cancer cell migration via up-regulation of TASK-3 two-pore domain K+ channel. Acta Physiol. 2012;204:513524. doi:10.1111/j.1748-1716.2011.02359.x

21. Kunzelmann K. Ion channels and cancer. J Membr Biol. 2005;205:159173. doi:10.1007/s00232-005-0781-4

22. Wang Z. Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflugers Arch Eur J Physiol. 2004;448:274286. doi:10.1007/s00424-004-1258-5

23. Asher V, Sowter H, Shaw R, Bali A, Khan R. Eag and HERG potassium channels as novel therapeutic targets in cancer. World J Surg Oncol. 2010;8(1):113. doi:10.1186/1477-7819-8-113

24. Mu D, Chen L, Zhang X, et al. Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell. 2003;3:297302. doi:10.1016/S1535-6108(03)00054-0

25. Pei L, Wiser O, Slavin A, et al. Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. Proc Natl Acad Sci USA. 2003;100:78037807. doi:10.1073/pnas.1232448100

26. Brevet M, Fucks D, Chatelain D, et al. Deregulation of 2 potassium channels in pancreas adenocarcinomas: implication of KV1.3 gene promoter methylation. Pancreas. 2009;38(6):649654. doi:10.1097/MPA.0b013e3181a56ebf

27. Hasselblatt M, Bhm C, Tatenhorst L, et al. Identification of novel diagnostic markers for choroid plexus tumors: a microarray-based approach. Am J Surg Pathol. 2006;30(1):6674. doi:10.1097/01.pas.0000176430.88702.e0

28. Liu H, Huang J, Peng J, et al. Upregulation of the inwardly rectifying potassium channel Kir2.1 (KCNJ2) modulates multidrug resistance of small-cell lung cancer under the regulation of miR-7 and the Ras/MAPK pathway. Mol Cancer. 2015;14:59. doi:10.1186/s12943-015-0298-0

29. Murthy M, Azizan EA, Brown MJ, OShaughnessy KM. Characterization of a novel somatic KCNJ5 mutation delI157 in an aldosterone-producing adenoma. J Hypertens. 2012;30(9):18271833. doi:10.1097/HJH.0b013e328356139f

30. Park S-H, Ramachandran S, Kwon S-H, et al. Upregulation of ATP-sensitive potassium channels for estrogen-mediated cell proliferation in human uterine leiomyoma cells. Gynecol Endocrinol. 2008;24(5):250256. doi:10.1080/09513590801893315

31. Sakai H, Shimizu T, Hori K, et al. Molecular and pharmacological properties of inwardly rectifying K+ channels of human lung cancer cells. Eur J Pharmacol. 2002;435(2):125133. doi:10.1016/S0014-2999(01)01567-9

32. Warth A, Mittelbronn M, Wolburg H. Redistribution of the water channel protein aquaporin-4 and the K+ channel protein Kir4.1 differs in low- and high-grade human brain tumors. Acta Neuropathol. 2005;109(4):418426. doi:10.1007/s00401-005-0984-x

33. Wulff H, Castle NA. Therapeutic potential of KCa3.1 blockers: an overview of recent advances, and promising trends. Expert Rev Clin Pharmacol. 2010;3(3):385396. doi:10.1586/ecp.10.11

34. Ouadid-Ahidouch H, Ahidouch A, Pardo LA. Kv10.1 K+ channel: from physiology to cancer. Pflugers Arch Eur J Physiol. 2016;468(5):751762. doi:10.1007/s00424-015-1784-3

35. Chow LW, Cheng K-S, Wong K-L, Leung Y-M. Voltage-gated K+ channels promote BT-474 breast cancer cell migration. Chin J Cancer Res. 2018;30(6):613622. doi:10.21147/j.issn.1000-9604.2018.06.06

36. Miceli F, Guerrini R, Nappi M, et al. Distinct epilepsy phenotypes and response to drugs in KCNA1 gain- and loss-of function variants. Epilepsia. 2022;63(1):e7e14. doi:10.1111/epi.17118

37. van der Wijst J, Konrad M, Verkaart SA, et al. A de novo KCNA1 mutation in a patient with tetany and hypomagnesemia. Nephron. 2018;139:359366. doi:10.1159/000488954

38. Liu L, Chen Y, Zhang Q, Li C. Silencing of KCNA1 suppresses the cervical cancer development via mitochondria damage. Channels. 2019;13(1):321330. doi:10.1080/19336950.2019.1648627

39. Taylor MD, Northcott PA, Korshunov A, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123(4):465472. doi:10.1007/s00401-011-0922-z

40. Bielanska J, Hernndez-Losa J, Moline T, et al. Differential expression of Kv1.3 and Kv1.5 voltage-dependent K+ channels in human skeletal muscle sarcomas. Cancer Invest. 2012;30(3):203208. doi:10.3109/07357907.2012.654872

41. Bielanska J, Hernndez-Losa J, Moline T, et al. Increased voltage-dependent K+ channel Kv1.3 and Kv1.5 expression correlates with leiomyosarcoma aggressiveness. Oncol Lett. 2012;4(2):227230. doi:10.3892/ol.2012.718

42. Comes N, Bielanska J, Vallejo-Gracia A, et al. The voltage-dependent K+ channels Kv1.3 and Kv1.5 in human cancer. Front Physiol. 2013;4:283. doi:10.3389/fphys.2013.00283

More here:
Potassium Channels as a Target for Cancer Therapy & Research | OTT - Dove Medical Press

Read More...

How can Nanotechnology be Used to Reverse Skin Aging? – AZoNano

Friday, May 20th, 2022

Although skin aging has not been related to many health complications, it has aesthetic issues. Some of the common symptoms of skin aging are changes in the skin texture (rough, dry, and itchy), discoloration, reduction in skin elasticity, and enhanced susceptibility to bruises.

Image Credit:Claire Adams/Shutterstock.com

Scientists have formulated various nano-based products to reverse, prevent or decelerate the process of skin aging. This article discusses some of the nanotechnology-based approaches to reverse skin aging.

The skin is the outermost cutaneous membrane that covers the bodys surface and provides protection from the external environment. It is primarily classified into three layers, i.e., the outer layer (epidermis), middle layer (dermis), and innermost layer (subcutaneous).

The outer epidermis layer predominantly contains keratinocytes without any blood vessels. The dermis layer contains cellular components and an extracellular matrix. The main components of the dermis include collagen fibers (tensile strength), elastic fibers (elasticity and resilience), glycoproteins (e.g., integrins, and fibulins), and glycosaminoglycans (hydration).

Studies have shown that both endogenous and exogenous factors are associated with the process of skin aging. Intrinsic aging occurs due to changes in the epithelial layers, while extrinsic aging is caused by the abnormal accumulation of elastic fibers in the dermis middle layer. Intrinsic aging is governed by the genetic traits of an individual, along with changes in their hormones and cellular mechanisms.

Some of the hormones related to skin functions are testosterone, estrogen, melatonin, cortisol, and thyroxine. For instance, hypoestrogenism occurs in postmenopausal women, making their skin thinner and drier. Oxidative stress, caused due to continual production of reactive oxygen species (ROS), leads to mitochondrial DNA damage and loss of skin elasticity.

Scientists have stated that mitochondrial DNA damage and shortening of telomeres are highly correlated to aging. A decrease in collagen production with aging leads to sagging of skin.

One of the factors associated with extrinsic aging is prolonged sun exposure. The UV rays change the cellular component of the skin and cause discoloration, loss of skin elasticity, deep wrinkling, and loss of hydration. Other lifestyle-related factors, such as sleep, diet, exercise, and smoking, are linked with skin aging. Scientists revealed that smoking damages the collagen and elastic fibers present in the dermis, making the skin loose and dry.

Conventionally, many skin products contain antioxidants to counterbalance the effects of ROS and make the skin look younger. Some of the disadvantages of these skin products are restricted permeability, lack of target-specific delivery, and breakdown of active ingredients with time. Recently, the cosmetic industry, which is popularly referred to as nanocosmeceuticals, has used nanotechnology for the development of various skin products.

Some of the advantages of nanocosmeceuticals include enhanced efficacy and stability of the active ingredients in the skin product. Studies have shown that nanoparticle-based cosmeceutical formulations exhibit superior skin permeability and cause minor side effects.

Scientists have developed several nanoparticle formulations for the cosmetic industry. Some of the nanocarriers developed for anti-aging applications are as follows:

This is a popularly used nanodelivery system that significantly enhances the efficacy of a drug and reduces its side effects. These nanoparticles possess an aqueous core with phospholipid bilayers surrounding them. Liposomes are regarded as an ideal nanocarrier for skincare formulations because of their excellent penetration capacity and biocompatibility. When applied, liposomes bind to the skin cell membranes and release the active ingredients into the cell, which combats wrinkles and promotes the regeneration of skin cells. Many popular high street brands have developed liposome-based anti-aging formulations.

Niosomes are vesicle-like structures, composed of non-ionic surface-active agents. A study related to entrapping rice bran components with antioxidant properties into niosomes revealed promising anti-aging properties.

Typically, ethosomes are used to transport drugs deep into the dermis. These small, malleable nanostructures are used to deliver drugs via the transdermal route. One of the most advantageous properties of this nanostructure is that it can easily penetrate smaller pores of the skin.

In a recent study, scientists loaded rosmarinic acid into ethosomes which exhibited a significant anti-aging effect. This is because ethosomes enhanced the penetration of rosmarinic acid into the skin, and this prevented the degradation of elastin and collagen.

These arepolymeric nanoparticles where active ingredients are covalently attached to the walls. Nanocapsule-based formulations containing various active compounds, for example, Vitamin E, antioxidants, retinoids, and -carotene, have been developed for effective and targeted delivery. The development of an anti-wrinkle cream by encapsulating Vitamin C offers a slow release of the active compound for a prolonged time, preserving skin health for a longer periods.

As the same suggests, these are spherical nanoparticles in which active compounds are distributed throughout the matrix. Poly D, L lactic-co-glycolic acid (PLGA) polymer is popularly used for the development of nanospheres.

Research has shown that Vitamin C-loaded PLGA nanospheres could penetrate melanocytes and fibroblasts in the skin and gradually release the compound. Vitamin C reduces skin blemishes and wrinkles by promoting the formation of collagen and its antioxidant properties reduce ROS levels. Therefore, this formulation has proved to be an effective anti-aging and anti-wrinkle agent.

Scientists have prepared nanoemulsions of grapeseed oil and studied its efficacy in preventing skin aging. They observed that the antioxidant property of grapeseed oil helped to keep the skin healthy. This technology has been used by many brands to develop an effective treatment to cure wrinkles and fine lines of the skin.

Fullerene is a carbon allotrope, composed of spherically attached carbon atoms. A recent study reported that fullerene nanocapsules containing ascorbic acid and Vitamin E exhibited a protective function against premature skin aging.

The rapid advancements in nanocosmeceuticals promise many innovative skin formulations that could effectively reverse skin aging. Researchers are set to discover new bioactive compounds and phytochemicals with excellent anti-aging and antioxidant properties in the future. Additionally, the development of novel nanocarriers will ensure targeted delivery of these compounds and protect them from degradation for a prolonged period.

Sharma, A. et al. (2022) Novel nanotechnological approaches for treatment of skin-aging. Journal of Tissue Viability. https://doi.org/10.1016/j.jtv.2022.04.010

Vaiserman, A. et al. (2021) Phyto-nanotechnology in anti-aging medicine.Aging,13(8), pp. 1081810820. https://doi.org/10.18632/aging.203026

Bhatia, E. et al. (2021) Nanoparticle platforms for dermal anti-aging technologies: Insights in cellular and molecular mechanisms. Nanomedicine and Nanobiotechnology, 14(2). https://doi.org/10.1002/wnan.1746

Dobke, M. and Hauch, A. (2020) Targeting facial aging with nano and regenerative technologies and procedures. Plastic and Aesthetic Research, 7(1). 10.20517/2347-9264.2019.65

Agostini, A. et al. (2012) Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles.Angewandte Chemie International Edition. DOI:10.1002/anie.201204663

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Read more:
How can Nanotechnology be Used to Reverse Skin Aging? - AZoNano

Read More...

Should Nanomaterial Synthesis Rely on Automation? – AZoNano

Friday, May 20th, 2022

Nanoparticles and other nanomaterials are essential components of cutting-edge science and technology, including photochemistry, energy conversion, and medicine. New research suggests that automating nanomaterial synthesis can reduce the environmental footprint of these advanced materials while at the same time improving quality and scalability.

Image Credit:Ico Maker/Shutterstock.com

The groundbreaking paper, Towards automation of the polyol process for the synthesis of silver nanoparticles makes the argument for automated synthesis to enable the manufacturing of colloids with properties that are precisely tunable and crucially for industrial nanomaterial synthesis reproducible.

The study, which was published in the journal Scientific Reports in 2022, could have a significant impact in various fields of science, as the metal nanoparticles its authors synthesized are used at the forefront in photochemistry, energy conversion, and medicine.

The interdisciplinary team behind the paper materials researchers, nanotechnology specialists, and chemical engineers from Germanys Federal Institute for Materials Research and Testing (BAM), Max Planck Institute of Colloids and Interfaces, and Humboldt-Universitt zu Berlins Department of Chemistry focused their research on silver nanoparticle synthesis.

Silver was a suitable test candidate for the automated synthesis method because, while it is one of the more commonly used nanoparticles due to its antibacterial properties and sensing and catalysis applications, it is difficult to produce in well-defined products. The obstacles to this are silvers high polydispersity: it is difficult to precisely control or tune silver nanoparticles sizes.

Responding to this challenge, the German researchers developed an automatic approach for on-demand silver nanoparticle synthesis. The method enables fabricators to synthesize silver nanoparticles between 3 and 5 nm, employing a modified polyol process.

To test their results, the team employed small-angle X-ray scattering, dynamic light scattering, and a number of other investigations. All results showed that the new automated synthesis method is suitable for yielding reproducible and tunable properties in synthetic colloids.

Synthetic nanomaterials are made with shapes or structural components that measure between 0.1 and 100 nm or 0.1 to 100 billionths of a meter. The metal nanoparticles that the present research focuses on find numerous applications in research, medicine, and technology contexts.

Synthesis methods for nanoparticles have to provide a high degree of control over the nanoparticles size, shape, and polydispersity while limiting the effects of aggregation or agglomeration (ensuring an even distribution). They also need to take into account the rheological properties of nanoparticle dispersions and the long-term stability of the solution.

Challenges with synthesizing nanoparticles include reproducibility and colloidal stability. These challenges mean there are limited nanoparticle-based references available, despite calls for such materials from environmental, health, and safety concerns for a number of years.

For example, gold nanoparticles are ubiquitous in nanotechnology due to their straightforward synthesis requirements, distinct size regulation, and ability to realize predictable nanoparticle sizes and dispersion.

But, despite a high demand due to silvers well-known antibacterial properties and use in catalysis, photochemistry, sensing, and optoelectronics, silver nanoparticles remain difficult to synthesize with available methods.

One available method is based on a polyol process. Here, silver nanoparticles are formed by reducing silver ions in the presence of polyacrylic acid in hot ethylene glycol. The ethylene glycol acts as both a reducing agent and a solvent.

This method is considered important because it stabilizes nanoparticles in a water-based solution by adjusting the solutions pH balance to 10, creating a negatively charged shell that means particles can remain unchanged in the suspension for over six months.

As a result, the nanoparticles produced make good candidates for reference materials. Reference materials are used in nanomaterial synthesis to quantify the size, distribution, and concentration of nanoparticles in doped materials.

Reference materials need to be made in bulk and able to remain stable for a long period of time in storage to be useful. The adapted polyol process described above can achieve these requirements, although it is not best suited for the task.

To develop reference materials like silver nanoparticles faster, researchers focused on developing an automated platform for rapid on-demand synthesis.

An automated platform could avoid the need for bulk quantities and long-term stability by offering required reference materials to researchers at minimal cost and without excessive lead-in times.

It would also enable targeted testing of nanomaterials physicochemical properties and a shorter development cycle before arriving at the desired properties.

To achieve this, the German scientists developed an automated silver nanoparticle synthesis method with the polyol process producing a colloidally stable silver.

They deployed the so-called Chemputer for the first time in the field of inorganic chemistry. The Chemputer is an automated platform that was developed by the Cronin group to execute multi-step, solution-based organic synthesis and purification tasks.

The Chemputer works in a batch mode with common laboratory items like heaters and glassware connected to a backbone made out of HPLC selection valves and syringe pumps. Liquid solutions are transferred across the backbone and manipulated along its various modules in different ways.

Every operation is controlled with a software script, which ensures a high rate of reproducibility. The accompanying software also makes it easy to adjust the synthesis conditions as required and documents all changes in the reaction log file.

Caldern-Jimnez, B. et al. (2017). Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Frontiers in Chemistry. doi.org/10.3389/fchem.2017.00006.

Dong, H. et al. (2015). Polyol synthesis of nanoparticles: Status and options regarding metals, oxides, chalcogenides, and non-metal elements. Green Chemistry. doi.org/10.1039/C5GC00943J.

Kaabipour, S., and S. Hemmati (2021). A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein Journal of Nanotechnology. doi.org/10.3762/bjnano.12.9.

Wolf, J.B., et al. (2022). Towards automation of the polyol process for the synthesis of silver nanoparticles. Scientific Reports. doi.org/10.1038/s41598-022-09774-w.

You, H., and J. Fang (2016). Particle-mediated nucleation and growth of solution-synthesized metal nanocrystals: A new story beyond the LaMer curve. Nano Today. doi.org/10.1016/j.nantod.2016.04.003.

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Read the original:
Should Nanomaterial Synthesis Rely on Automation? - AZoNano

Read More...

Fabrication Methods of Ceramic Nanoparticles – AZoNano

Friday, May 20th, 2022

Ceramic nanoparticles are generally composed of metals and metal oxides, silicon carbide, nitrates, and carbonates like magnesium, chromium, and silicate. Because of their beneficial qualities, including strong heat tolerance and chemical stability, they have a wide variety of uses. There are a number of techniques widely used to synthesize nanoparticles of different ceramic materials.

Image Credit:GiroScience/Shutterstock.com

Ceramics are defined as having a definite solid core, arranged by the applying heat or even both heat and pressure, and consisting of a metallicand non-metallic mixture. Ceramic nanoparticles are made up of inorganic substances like aluminosilicate and are very prone to external disturbances.

Nevertheless, the nanoparticle center is not restricted to these two substances; instead, metals, metallicoxides, and metal sulfur compounds may be employed to create nanostructures of various sizes, forms, and permeability.

Ceramic nanoparticles have many benefits, including simple fabrication with appropriate size, form, and pores, and no influence on dilatation or permeability with pH values. The production of novelceramic materials for biological applications has increased rapidly in recent years.

Controlled drug discharge is among the most explored areas of ceramic nanoparticles use in bioscience, where dosage and structure are critical. Long-term stability, relatively high loadingcapability, facile inclusion of hydrophilic and hydrophobic networks, and various delivery routes are all characteristics that make these nanostructures a promising tool in managing drug release.

Usually, ceramic nanoparticles are created via solid-state processes. Raw ingredients such as oxide, hydroxide, nitrate, sulfate, or carbonate are physically combined and then processed at elevated temperatures for extended timespansto allow the nanoparticles to form. This process produces coarse-sized,aggregated nanoparticles with a reduced specificarea.

The employment of elevated temperatures to create solid-state compoundsoften results in irregular grain development and a loss of stoichiometriccontrol. Numerous modified chemical fabrication procedures have been devised to create ceramic nanoparticles with an acceptable shape at low temperatures.

The sol-gel procedure, also termed chemical solution deposition, is one method for creating nanoceramics. This comprises a liquid solution, or sol, composed of liquid-phase nanostructures and a predecessor, often a gel or polymer composed of particles submerged in a liquid.

The sol and gel are combined to form an oxide substance, which is a sort of ceramic, and the byproductis vaporized. The majority of the nanoparticles are then warmed in a procedure termed densification to generate a quality product. This process might potentially be used to create a nanocomposite by burning the gel on top of a thin layer to build a nanoceramic coating.

Another way is two-photon lithography, which employs a laser to scrape a polymer into a three-dimensional pattern. The lasers strengthen the areas it hits but keep the remainder unhardened. The unhardened substance is then dispersed to form a "shell." The shell is then covered with ceramics, alloys, metallic crystals, and so forth. The final ceramic nanotruss may be crushed and returned to its original condition.

High-temperature sintering has also been utilized to solidify nanoceramic particles. This produced a rough substance that harmed the characteristics of ceramics and increased the duration required to produce a final product. This approach also restricts the final geometry that may be created. Microwave sintering was devised to address such issues.

A magnetron generates energy by vibrating and heating the particles with electromagnetic waves. Rather than transferring heat externally, this approach instantaneously transfers heat over the entire quantity of data.

The apparatus for the fabrication is made up of many elements. For instance, the major component of the arrangement proposed by Rasche et al. (2020) is a three-zone heated flow tube reactor positioned vertically. It has a span of 6 m and can achieve temperatures of up to 1700 degrees Celsius. As individualized energy input into the separate zones is possible, the three-zone heating configuration promotes a homogenous temperature distribution.

The reaction zone for the synthesis method is an Al2O3 tube with an internal diameter of 105 millimeters. Because of its relatively strong heat transmission and damage tolerance, Al2O3 is an excellent option. Both sides of the tubes, and the fittings, are insulated with ceramics wool to prevent heat leaks and promote a consistent temperature distribution.

It must be noted that, in addition to reducing thermal losses, insulation contributes to a prolonged tube lifespan by preventing significant axial temperature differences. The processing gas is warmed to roughly 500 degrees Celsius for the same reason. To preserve the tube's longevity, heating and cooling rates must not exceed 300 K/h, which is accomplished by careful power regulation.

Synthesis and processing are critical concerns in nanotechnology to harness the unique features of nanoparticles and realize their promising utility in research and technology. Many technical strategies for fabricating nanoparticles have been investigated.

There are some fundamental issues associated with the fabrication of ceramic nanoparticles utilizing any method or technology. These include a lack of controllability of nanoparticle size and structure, and the inability to manipulate the form of synthesized nanoparticles and particle size distribution. Moreover, the toxicity of the synthesized nanoparticles is also a key concern concerning real-world biomedical applications.

Addressing these concerns is critical in developing an optimal fabrication process for ceramic nanoparticles.

Rasche, D. B., Tigges, L., & Schmid, H.-J. (2020). An apparatus to synthesize ceramic nanoparticles with a precisely adjusted temperature history and a significant mass output. Review of Scientific Instruments. Available at: https://doi.org/10.1063/1.5133438

Singh, D., Singh, S., & Singh, M. R. (2016). Ceramic nanoparticles: Recompense, cellular uptake and toxicity concerns. Artificial Cells, Nanomedicine, and Biotechnology. Available at: https://doi.org/10.3109/21691401.2014.955106

Thomas, S. C., Harshita, Mishra, P. K., & Talegaonkar, S. (2015). Ceramic Nanoparticles: Fabrication Methods and Applications in Drug Delivery. Current Pharmaceutical Design. Available at: https://doi.org/10.2174/1381612821666151027153246

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

View original post here:
Fabrication Methods of Ceramic Nanoparticles - AZoNano

Read More...

Explained: What are nanobots and how they can be used to help clean teeth? – Firstpost

Friday, May 20th, 2022

FP ExplainersMay 17, 2022 16:48:58 IST

If all goes as planned, root canal procedures may not be as painful as before. Researchers at the Indian Institute of Science (IISc) in Bengaluru have developed tiny nanobots to help with root canal treatments.

However, what are nanobots? What role do they play? Why are they being called the future of medicine?

We provide the answer to these questions and explain how nanobots are being used to help clean teeth.

Nanobots explained

Nanobots are robots that are microscopic in nature, measured largely on the scale of nanometers. Nanobots are also known as nanomachines, nanorobots, nanomites, nanites or nanoids.

According to Techopedia, the idea behind nanobots is in having a device which can interact at the nano scale and help in understanding or manipulating structures at the nanoscale level.

Most theoreticians credit the concept of nanotechnology to physicist Richard Feynman and his speech in 1959 entitled: Theres Plenty of Room at the Bottom. In the speech, Feynman predicted the development of machines that could be miniaturised and huge amounts of information being encoded in minuscule spaces. However, it was K Eric Drexlers 1986 book, Engines of Creation: The Coming Era of Nanotechnology, which galvanised nanotechnological doctrine.

The size of nanobots has made their application most relevant in the field of medical science. Experts note that they can be used to aid in research related to cancer, AIDS and other major diseases as well as in helping brain, heart and diabetes research.

Besides medicine, nanobots can be of use are in the field of aerospace, security, defence, electronics and environmental protection.

Using nanobots for dental care

On Monday, researchers at IISc announced that they had created nanobots that can be utilised to fit through the dentinal tubules and kill bacteria.

An NDTV report said that the researchers had created nanobots, made from silicon dioxide and coated with iron which can be controlled by a device that creates a low intensity magnetic field. This new technique and study has been published by the journal Advanced Healthcare Materials.

Explaining how it worked, the researchers said that the nanobots, developed at IISc-incubated startup Theranautilus, were injected into extracted tooth samples and their movement was tracked using a microscope.

IISc said that by tweaking the frequency of the magnetic field, the researchers were able to make the nanobots move at will, and penetrate deep inside the dentinal tubules. They manipulated the magnetic field to make the surface of the nanobots generate heat, which can kill the bacteria nearby.

Hailing the success of their research, Ambarish Ghosh, professor at the Centre for Nano Science and Engineering, who led the research was quoted as telling NDTV, These studies have shown that they are safe to use in biological tissues. We are very close to deploying this technology in a clinical setting, which was considered futuristic even three years ago. It is a joy to see how a simple scientific curiosity is shaping into a medical intervention that can impact millions of people in India alone.

Other use of nanobots in medicine

Other than using nanobots in dentistry, scientists have also used nanobots to fight bacteria in a wound.

Researchers from the Institute of Bioengineering of Catalonia, in a study published in ACS, said that they had used the nanobots to deliver the necessary medicinal compounds to the wound by plunging into a liquid medium and thereby destroying pathogens.

In December 2021, Maharashtra Institute of Medical Education and Research (MIMER), Pune had developed a nano robot that is programmed to capture and isolate circulating tumor cells.

The tool was hailed as it would lead to a new rapid and accurate diagnostic method for cancer.

With inputs from agencies

Read all the Latest News, Trending News, Cricket News, Bollywood News,India News and Entertainment News here. Follow us on Facebook, Twitter and Instagram.

Continue reading here:
Explained: What are nanobots and how they can be used to help clean teeth? - Firstpost

Read More...

Understanding the Health Risks of Graphene – AZoNano

Friday, May 20th, 2022

Graphene is a two-dimensional (2D) carbon nanomaterial, which is often referred to as super material or wonder material. Due to its unique characteristics, graphene is applied in many branches of science and technology, which makes understanding its health risks a critical aspect of its use.

Image Credit:Yurchanka Siarhei/Shutterstock.com

Graphene is a carbon allotrope with a thickness of a single atom, arranged in a honeycomb-like orientation. To date, the majority of carbon nanomaterials developed are based on graphene. Some of the key advantageous features of graphene are that it can be stacked, rolled, or wrapped to form various structures, such as carbon nanotubes (CNTs), which are used in many industries.

As mentioned above, graphene is used in many innovative applications, including nanoelectronics, energy technology that has improved energy storage systems (e.g., highly effective batteries), medical utilities (e.g., antibacterial agents), and the development of composite materials and sensors.

Apart from the aforementioned applications, graphene has been widely applied in biomedical research. For instance, it is used in drug/gene delivery and the development of biocompatible scaffolds for cell culture and biological sensors to detect biomolecules.

Scientists reported that graphene oxide (GO), which is synthesized by fast oxidation of graphite, is an ideal nanocarrier for the efficient delivery of drugs/genes. Gene therapy is a novel approach utilized in the treatment of genetic disorders, such as Parkinson's disease, cystic fibrosis, and cancer.

Owing to the unique properties, such as high specific surface area, superior biocompatibility, enriched oxygen-containing groups, and stability, scientists have been able to load genes/drugs via chemical conjugation or physisorption methods. Recently, researchers have developed polyethyleneimine-modified GO for gene delivery.

Graphene derivatives, e.g., reduced GO (rGO) and doped graphene, have been utilized for the detection of biomolecules, such as amino acids, dopamine, thrombin, and oligonucleotide. GO-based biosensors are also used to identify DNA. Additionally, scientists have used GO for bioimaging of cellular uptake, of polyethylene glycol-modified GO, during drug delivery.

Scientists have performed various nanotoxicological studies to determine the risk factors associated with graphene applications and its derivatives. They determined the toxicological profile of graphene nanosheets in both Gram-positive and Gram-negative bacterial models.

These studies have shown that graphene damages bacterial cell membranes via direct contact with the sharp edges of the nanowalls. However, studies have shown that graphene has low toxicity on the luminal macrophages and epithelial cells.

Some of the key determining factors of graphene toxicity to human red blood cells and skin fibroblasts are particulate state, size of the particle, and oxygen content of graphene. Additionally, the functional groups present on the surface of GO nanostructures play a vital role in inducing cytotoxicity.

Genotoxicity and cytotoxicity in human lung fibroblasts associated with GO are due to the generation of reactive oxygen species (ROS) and apoptosis. One of the potential concerns of application GO is that it can induce DNA cleavage, which could lead to many adverse effects on humans.

Unlike CNTs, minimal research is available regarding the safety of graphene. This is partly due to the initial difficulties associated with enhancing its production. Another reason for the limited knowledge could be that graphene is still in its early developmental stage.

The introduction of carbon nanomaterials in human bodies could result in its accumulation in tissues or elimination via excretion. In the case of accumulation, it could affect the proper functioning of human organs. Additionally, it is important to determine if an individual exposed to graphene induces an immune response or causes inflammation.

One of the major concerns of nanoscopic platelets of graphene-based materials is their thin, lightweight, and tough structure, which causes a detrimental effect when inhaled. Scientists stated that the flakes of carbon might be transported deep inside lung tissues, which might either induce chronic inflammatory responses or inhibit normal cellular functions.

Scientists stated that as the skin is the first interface between the body and the surrounding, it is most exposed to graphene materials. The impact of graphene and GO on the skin depends on their size and physicochemical properties.

Several studies have indicated that exposure to a high concentration of graphene and its derivative for a prolonged period causes membrane damage, indicating low toxicity to skin cells.

Several studies have shown that toxicity related to GO can be reduced by altering the surface functional groups and masking the oxygenated functional groups with a biocompatible polymer. For instance, an in vitro study revealed that compared to GO, polyvinylpyrrolidone-modified GO exhibits lower immunogenicity.

Some of the measures undertaken to minimize health risks for workers who are directly associated with the development of graphene or graphene-based technologies include utilizing stable and individual graphene nanosheets that can be easily dispersed in water to reduce aggregation problems in the body.

Other recommendations include using graphene sheets that are small enough to be engulfed by immune cells and readily removed and biodegradable forms of graphene to prevent damages caused by chronic accumulation in tissues.

Foley, T. (2021) Graphene Flagship. [Online] Available at: https://graphene-flagship.eu/graphene/news/understanding-the-health-and-safety-of-graphene/

Arvidsson, R., et al. (2018) "Just Carbon": Ideas About Graphene Risks by Graphene Researchers and Innovation Advisors.Nanoethics,12(3), pp. 199210. https://doi.org/10.1007/s11569-018-0324-y

Awodele, M.K. et al. (2018) Graphene and its Health Effect Review Article. International Journal of Nanotechnology and Nanomedicine, 3 (2), pp. 1-5.

Seabra, B.A. et al. (2014) Nanotoxicity of Graphene and Graphene Oxide. Chemical Research in Toxicology.2014, 27, 2. pp.159168. https://doi.org/10.1021/tx400385x

Bussy, C. et al. (2013) Safety considerations for graphene: lessons learnt from carbon nanotubes. Accounts of Chemical Research, 46(3), pp. 692701. https://pubs.acs.org/doi/10.1021/ar300199e

Bradley, D. (2012) Is graphene safe? Materials Today, 15 (6), pp. 230. https://doi.org/10.1016/S1369-7021(12)70101-3

Shen, H. et al. (2012) Biomedical applications of graphene.Theranostics,2(3), pp. 283294. https://doi.org/10.7150/thno.3642

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Follow this link:
Understanding the Health Risks of Graphene - AZoNano

Read More...

Prevalence and predictors of SARS-CoV-2 | IDR – Dove Medical Press

Friday, May 20th, 2022

Introduction

In December 2019, a novel coronavirus (initially named 2019-nCov) was discovered to be responsible for outbreaks of an unusual series of viral pneumonia of unknown origin in Wuhan. It was later named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), because of the structural similarities with SARS-CoV, that caused the outbreak of SARS in 2003.13

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an enveloped, single-stranded ribonucleic acid beta coronavirus. This highly contagious pathogen is transmitted by respiratory droplets and aerosols, direct contact of mucous membranes and probably the fecaloral route.46

This viral infection primarily targets the respiratory system, and is usually presented by fever, cough, sore throat or shortness of breath as initial symptoms.7,8 Although some patients may be asymptomatic and they are likely to spread the infection, a group of them may develop symptoms and their condition may worsen.912

Pulmonary symptoms are the most frequently reported symptoms, however recent studies proved the presence of neurological and gastrointestinal manifestations among the SARS-CoV-2 infected patients.13,14

Although real-time reverse transcription-polymerase chain reaction (RT-PCR) assay is considered the first tool to make a definitive diagnosis of COVID-19, the high false negative results, low sensitivity and limited supplies might delay accurate diagnosis. Computed tomography (CT) has been reported as an important tool to identify and investigate suspected patients with COVID-19 at an early stage.15

Many patients with mild or severe SARS-CoV-2 do not make a full recovery and have a wide range of persistent symptoms for weeks or months after infection, often of a neurological, cognitive or psychiatric nature.16

A standardized case definition for post-COVID-19 syndrome is still being developed. The Centre for Disease Control (CDC) has formulated post-COVID-19 conditions to describe health issues that persist more than four weeks after being infected with COVID-19. The World Health Organization has also developed a clinical case definition of post-COVID-19 syndrome to include individuals with a history of probable or confirmed SARS-CoV-2 infection usually 3 months from the onset of infection with symptoms that last for at least 2 months and cannot be explained by an alternative diagnosis.17

The pathophysiological basis is not well understood, however immune reaction, inflammation, persistent viremia, relapse or reinfection are all suggested etiologies.16,18,19

To date physicians and researchers are still learning about the symptoms and signs of this novel virus. Many survivors may experience many morbidities and multiple manifestations requiring long-term monitoring. Hence the aim of this study was to determine the persistence of any symptoms or signs after clearance of SARS-CoV-2 in patients with COVID-19 infection during the first wave.

During the period between August 2020 and October 2020, a multicenter cross-sectional survey was done.

A list was made of all patients who had been discharged from quarantine hospitals after recovery from COVID-19 during the period from March to May 2020. Our patients fulfilled the criteria of the World Health Organization for discontinuation of quarantine which include that the patient should have no fever for 3 consecutive days, the test results should be negative for SARS-CoV-2, with improvement of other symptoms. A stratified sampling technique was used to select a random sample from this list.

The sample size was calculated by OpenEpi, Version 3, and open-source calculator. It was found to be 384 with CI 95% and error probability of 5%.

Data on specific symptoms, which may be correlated with COVID-19, were obtained using a standardized questionnaire which was adapted and administered by the researchers to the patients by visit or phone call.

The study tool included two sections, the first one was for demographic data (age, sex, governorate, and smoking), pre-existing comorbidities, medication used, date of initial diagnosis (first positive PCR test for SARS-CoV-2) and date of negative PCR for SARS-CoV-2. In addition there was a section on health-care management details (home isolation, hospital or ICU admission) including length of hospital stay, medication used, oxygen therapy and if used ventilation (invasive or non-invasive).

Patients were questioned about the presence or absence of symptoms during the acute phase of COVID-19 and if each symptom persisted at the time of the visit or phone call. Patients were asked about: sense of fever, skin rash, pruritus, bone aches, cough, dyspnea, sore throat, rhinorrhea, chest pain/tightness, palpitation, syncopal attacks, fatigue, muscle pain, joint pain/stiffness, anosmia, ageusia, headache, dizziness, numbness, diarrhea, nausea, vomiting, anorexia, abdominal pain, constipation, dyspepsia, dysphagia, jaundice, weight loss/gain, hematemesis, melena, visual changes, hearing changes, vertigo, low/high mood, poor sleep, agitation, self-harm, delusions, hallucinations, thought disorders, suicidal tendency, dysuria, hematuria, vaginal bleeding, abortion, puffy eyes, loss of libido, and erectile dysfunction. Date of appearance and date of resolution were reported. An open text field was added at the end of the symptoms collection sheet to add any other symptoms or possible complications of COVID-19 infection. Patients or the public were not involved in the design, conduct, reporting, or dissemination plans of our research.

The sample size was calculated using OpenEpi, Version 3, for proportion studies. Population size (number of reported COVID-19 patients in Egypt at the time of the study) (N): ~338,000, Hypothesized % frequency of post-COVID-19 symptoms in the population (p): 50% 5, confidence interval of 95%, and design effect (for cluster surveys-DEFF): 1.

The sample size was 384 with CI 95% and error probability of 5%. However, we included 538 cases.

To achieve proper social distancing and to decrease risk of possible transmission of COVID-19, respondents were interviewed either by a visit in a non-COVID designated area or through a phone call. Paper use for documentation was also avoided. We explained to the respondents the objectives of the study and sent them an information sheet containing all details of the study to read before the interview. A written consent to participate in the study was obtained before administration of the questionnaires. This study was approved by the Damietta Faculty of Medicine Al Azhar University Ethical committee IRB 00012367.

There was no direct patient involvement in this study.

Descriptive data analysis was performed for categorical variables including frequencies and proportions. As appropriate, inferential statistics were performed between groups with the Chi square test or KruskalWallis test. Differences within groups were evaluated with the Wilcoxon Signed Rank test. Multiple regression analysis was performed to predict the persistence of symptoms at follow-up. P value level of significance was set at 0.05. Data entry and analysis were completed using MS Excel 2017 and data analysed using SPSS Version 25.

We started with 561 subjects, 23 were excluded either due to difficult communication or refusal of the patient to participate in the study. So, our study included 538 patients with confirmed SARS-CoV-2 infections. The study flow chart is shown in Figure 1. 54.1% were male. The mean age was 41.17 (SD 14.84, range 587 years) and 18.6% were smokers. The most reported co-morbid conditions were diabetes mellitus in 17.1%, hypertension in 19.5% (5.2% were receiving ARBs and 7.6% were receiving ACEIs), COPD in 5.4%, chronic kidney disease in 1.1%, ischemic heart disease in 4.5% and immunosuppressive state in 0.4% (Table 1).

Table 1 Demographic and Clinical Characters of Studied Patients

Figure 1 Study flow chart.

Almost half of the studied patients (51.3%) were admitted to hospital with an average hospital stay of 13.58 (SD 6.40, range 437) days, 6.5% were admitted to ICU with an average ICU stay of 9.66 (SD 5.85, range 230) days. Symptoms were mild in 61.3%, moderate in 31% and severe in 7.6% of patients (Table 2).

Table 2 Severity and Hospital Stay Characterization of Studied Patients

Frequencies of medication used in treatment of the studied patients are presented in Figure 2. Most commonly reported symptoms persisting after viral cure were fatigue, cough, dyspnea, sore throat, loss of smell, anorexia, loss of taste, diarrhea, headache, low mood, abdominal pain, nausea, muscle pain, chest pain, joint pain and poor sleep (Figure 3). Although reported in the active stage of the disease, the following symptoms were not persistent after viral clearance: abortion (reported initially in 0.6%), puffy eyes (reported initially in 0.4%), hallucination (reported initially in 0.8%), thought disorders (reported initially in 0.2%), suicidal tendency (reported initially in 0.4%), self-harm (reported initially in 0.2%), facial droop (reported initially in 0.2%), photophobia (reported initially in 1%), dysarthria (reported initially in 0.6%), vomiting (reported initially in 12.3%), wheeze (reported initially in 2%), hemoptysis (reported initially in 0.4%) and rhinorrhea (reported initially in 5.8%). The symptoms reported initially and that persisted after viral cure are presented in Table 3. Factors associated with symptoms persistence were hospital admission, disease severity, treatment with hydroxychloroquine, steroid, anticoagulant, azithromycin, multivitamins and receiving oxygen therapy; the rest of the other factors were not associated with symptom persistence in univariate analysis (Table 4). Multivariate analysis showed that treatment with hydroxychloroquine, azithromycin and multivitamins were the only factors associated with symptom persistence (Table 5).

Table 3 Symptoms Persisting After Clearance of SARS-CoV-2 Infection

Table 4 Factors Associated with Persistent Symptoms Persistence

Table 5 Multivariate Analysis for Predictors of Post-Covid-19 Persisting Symptoms

Figure 2 Frequencies of medication used in treatment of the studied patients.

Figure 3 Post Covid-19 acute and persistent symptoms.

Since the start of the COVID-19 pandemic, Egypt reported 337,487 confirmed cases and 228,583 were discharged after clearance of the virus.8 Interestingly, some of those patients presented to the outpatient clinics complaining of vague symptoms resembling the acute phase symptoms that triggered the concepts of incomplete recovery or persistence of COVID-19 infection. This is an Egyptian study for assessment of the post-discharge persistent symptoms after recovery from COVID-19 and possible long-term impact of COVID19 infection.

In our study, 84.6% of patients who recovered from COVID-19 have one or more persistent symptoms. Fatigue, cough, sense of fever and dyspnea were among the most common reported symptoms followed by sore throat, anorexia, loss of taste and smell, diarrhea, headache, and low mood.

The median duration to symptom resolution among those with persistent symptoms ranged from 1 to 83 days from the negative PCR test date, with the longest duration reported for vertigo (median = 82 days; 23147 days) and numbness (median = 77 days; 1126 days).

A telephone-based report from the USA investigating 274 symptomatic COVID-19 adult outpatients, found 23 weeks are needed by about 30% of contributors to get back to their usual state. Cough, fatigue and shortness of breath at the time of testing were the most persistent symptoms. The median duration for disappearance of symptoms ranged from 48 days from the test date. The longest duration was reported for anosmia (median = 8 days; IQR = 510.5 days) and loss of taste (median = 8 days; IQR = 410 days).20

Also, a single-center study from Rome included 143 hospitalized post-COVID-19 recovered patients who were assessed 60 days following infection. Surprisingly, only about 13% were completely free of any persistent symptoms. Meanwhile, 32% had at least one or two symptoms and 55% showed three or more persistent manifestations.21

A Facebook-based survey in the Netherlands and Belgium that included a large scale of COVID-19 patients either hospitalized or non-hospitalized, confirmed or suspected, showed that only 0.7% of the respondents were symptom-free 79 days after the infection. Fatigue and dyspnea were the most common symptoms, in both hospitalized and non-hospitalized patients.22

Interestingly, 58.5% of our patients with mild COVID-19 infection have one or more persistent symptoms which is consistent with anecdotal evidence, which stated that patients with the so-called mild COVID-19 may still complain about persistent symptoms, even weeks after the onset of symptoms.23,24

In agreement with our results, Davido et al.25 reported that most of the outpatients who experienced mild symptoms attributable to COVID-19 would further present with persistent symptoms, such as sense of fever, severe fatigue, chest tightness, palpitations, muscle aches, anxiety and headaches shortly after convalescence.

In our study, fatigue persisted in about 59.1% of participants for a median of 31 days. This was in accordance with data reported from France,25 Italy21 and UK.26 Fatigue was explained by dysautonomia that was reported in the ALBA COVID registry (2.5%),27, also endocrine disturbance with hypothalamus-pituitary-adrenal axis attenuation, reactive mood disorder such as depression or anxiety could be contributing factors for pathophysiology of post-COVID-19 fatigue syndrome.28,29

Similar results also reported from a single-center study in the UK that investigated 100 post-discharge COVID-19 patients showed that fatigue was the most commonly described symptom in both ICU and ward groups (72% and 60.3%, respectively).26

Contrary to our findings, a Chinese prospective cohort study of 131 COVID-19 patients in Wuhan found that by 34 weeks post-discharge 86% of patients were asymptomatic, only 1.5% had shortness of breath and 0% had fatigue. This could be attributed to the lower case severity of these patients with few co-morbidities. Moreover, underreporting could be expected due to the nature of this study focusing on evaluation of ongoing transmissibility, and participants were asked about the quarantine situation.30

Post viral infection fatigue syndrome was first described in EpsteinBarr virus (EBV) infection.31 In the previously experienced epidemics of SARS, H1N1 and Ebola, many patients with persistent fatigue were serious enough to be diagnosed as Myalgia Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). More than 50% of patients surviving SARS experienced fatigue during their recovery: 64% reported fatigue at 3 months, 54% at 6 months and 60% at 12 months.32

Fatigue and breathlessness are not uncommonly reported as persistent symptoms following community-acquired pneumonia and ICU admission, but the duration varies substantially.33,34 Hospitalized patients with community-acquired pneumonia in several studies were found to experience breathlessness and fatigue that usually resolved in 1014 days from symptom onset.35

Among the persistent neuropsychiatric symptoms detected in our work were low mood (20.6%), poor sleep (12.6%) and poor concentration (4.8%). Our results are consistent with Garrigues et al.36 who found that after a mean of 110.9 days, the most frequently reported persistent post-COVID-19 symptoms were loss of memory, concentration and sleep disorders (34%, 28% and 30.8%, respectively). These results are in agreement with Srivastava et al. who reported that recovered COVID-19 patients suffered from a significant degree of depression and high rate of post-traumatic stress disorder (PTSD).37

Classic neurological disorder such as loss of taste, smell, headache, numbness and vertigo were present and persist in 22.9%, 21.7%, 21.4, 19% and 12%, respectively, these results were in accordance with results from a systematic review conducted in 2022 by Whittaker et al.38

These neurological disorders are attributed to endothelial injury and microangiopathy, which was described in brain biopsies of severe form of COVID-19.39 Also, severity of condition and PTSD could be co-factor in neuropsychiatric persistence symptoms,40 in children it seems similar to the late Kawasaki syndrome that was reported after COVID-19.41

In the present study, a sense of fever was detected in 250 (46.5%) patients and persisted for 20.68 30.66 days (12 patients confirmed the presence of fever by measuring temperature) in contrast with the progressive decline observed in cases of influenza.

Ng et al. studied 142 patients with COVID-19 for persistence of fever. They observed that 12.7% had fever lasting more than 7 days (prolonged fever), and 9.9% had recurrence of fever lasting less than a day after defervescence after day 7 of illness (saddleback fever) that may be correlated to decreased levels of interleukin 1 alpha and increased levels of interferon gamma-induced protein 10 in their patients with prolonged fever.42

Moreover, it was found that COVID-19 patients may complain of low-grade fever during convalescence which was attributed to the incomplete recovery of their immunity at that stage which elucidates the recurrence of SARS-CoV-2 positivity that was noticed in many patients during convalescence.43

Among the non-respiratory manifestations that are of special concern in COVID-19 patients, were the gastrointestinal tract (GIT) symptoms. They may be solitary, they may become progressive during the course of the disease and they may occur early, which is completely different from the other coronaviruses.44

The most prevalent GI symptom in our study was anorexia which was detected in 131 patients (24.3%) as a persistent symptom after cure for 197 days. Moreover, 131 patients (24.3%) had diarrhea that continued after cure for 1100 days. Diarrhea can be explained by the change in the intestinal permeability that is caused by the virus, leading to dysfunction of the enterocytes.45 That was in agreement with the Garrigues et al.36 study in which diarrhea persisted in 29 patients (24.2%).

In our study, abdominal pain was reported in 106 patients (18.7%) and 97 patients (18%) had persistent pain after cure for 1104 days. In contrast, Kecler-Pietrzyk et al. reported anorexia, diarrhea and nausea among the common persistent symptoms, but abdominal pain was rare, particularly as the initial presenting complaint.46

Neither age nor presence of co-morbid conditions were associated with persistent symptoms in our study, whereas Tenforde et al.20 found that those with older age and chronic co-morbidities were associated with much prolonged disease.

In our work, it was found that hospital admission and the use of some drugs such as chloroquine, steroids, anticoagulants, azithromycin, multivitamins and oxygen therapy during acute COVID-19 phase, and severity of the disease were associated with persistence of symptoms. However, results of multivariate logistic regression analysis revealed that the use of chloroquine, azithromycin and multivitamins only were significantly associated with persistence of symptoms (Odds ratio 8.03, 8.89 and 10.12, respectively). This is also in accordance with results of other studies on post-viral/infectious syndromes47,48 and those with critically ill ICU (non-COVID) patients, who still suffer a variety of symptoms months after their hospitalization, what is also named post-ICU syndrome.49,50

Limitations of our study include the lack of information on symptom history before acute COVID-19 illness and being based on a single phone call interview that created an obstacle of contacting certain participants, such as those with dementia and/or learning difficulties. Also, the telephone-based survey is subjected to incomplete recall errors or recall bias. So, we recommend future interviews at monthly intervals for better characterization of symptoms progression of postCOVID19 patients. Furthermore, patients who had a negative swab result and clinical-radiological criteria suggestive of COVID-19 were not included in this study. Our study had the advantage of obtaining detailed symptom severity inquiry. In addition, this is a multi-centre study with a relatively large number of patients.

The post-COVID-19 symptoms should be carefully addressed and evaluated carefully. Those patients could suddenly seek care for what might be considered a chronic fatigue syndrome. Persistent symptomatic post-COVID-19 patients should be managed by a multidisciplinary team including a psychologist, a pulmonologist, a neurologist and a specialist in physical medicine and rehabilitation in specialized post-COVID-19 clinics to optimize our health-care services.

The study was conducted in accordance with ethical guidelines of the 1975 Helsinki Declaration. This study was approved by the Damietta Faculty of Medicine Al Azhar University Ethical committee IRB 00012367. All participants were adults and all of them provided written informed consent before collection of samples. To achieve proper social distancing and to decrease risk of possible transmission of COVID-19, respondents were interviewed either by a visit in a non-COVID designated area or through a phone call. Paper use for documentation was also avoided. We explained to the respondents the objectives of the study and sent them an information sheet containing all details of the study to read before the interview. A written consent to participate in the study was obtained before administration of the questionnaires.

Informed consent was obtained from all subjects involved in the study.

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

The authors declare no conflicts of interest.

1. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270273. doi:10.1038/s41586-020-2012-7

2. Abd Ellah NH, Gad SF, Muhammad K, Batiha EG, Hetta HF. Nanomedicine as a promising approach for diagnosis, treatment and prophylaxis against COVID-19. Nanomedicine. 2020;15(21):20852102. doi:10.2217/nnm-2020-0247

3. Abid SA, Muneer AA, Al-Kadmy IM, et al. Biosensors as a future diagnostic approach for COVID-19. Life Sci. 2021;273:119117. doi:10.1016/j.lfs.2021.119117

4. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan HJG. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020;158(6):18311833. e1833. doi:10.1053/j.gastro.2020.02.055

5. Mahmood Z, Alrefai H, Hetta HF, et al. Investigating virological, immunological, and pathological avenues to identify potential targets for developing covid-19 treatment and prevention strategies. Vaccines. 2020;8(3):443. doi:10.3390/vaccines8030443

6. Moubarak M, Kasozi KI, Hetta HF, et al. The rise of SARS-CoV-2 variants and the role of convalescent plasma therapy for management of infections. Life. 2021;11(8):734. doi:10.3390/life11080734

7. Almaghaslah D, Kandasamy G, Almanasef M, Vasudevan R, Chandramohan S. Review on the coronavirus disease (COVID-19) pandemic: its outbreak and current status. Int J Clin Pract. 2020;74(11):e13637. doi:10.1111/ijcp.13637

8. Abdellatif AA, Tawfeek HM, Abdelfattah A, Batiha GE-S, Hetta HF. Recent updates in COVID-19 with emphasis on inhalation therapeutics: nanostructured and targeting systems. J Drug Deliv Sci Technol. 2021;63:102435. doi:10.1016/j.jddst.2021.102435

9. Dai W, Chen X, Xu X, et al. Clinical characteristics of asymptomatic patients with SARS-CoV-2 in Zhejiang: an imperceptible source of infection. Can Respir J. 2020;2020:2045341. doi:10.1155/2020/2045341

10. Magdy Beshbishy A, Hetta HF, Hussein DE, et al. Factors associated with increased morbidity and mortality of obese and overweight COVID-19 patients. Biology. 2020;9(9):280. doi:10.3390/biology9090280

11. Beshbishy AM, Oti VB, Hussein DE, et al. Factors behind the higher COVID-19 risk in diabetes: a critical review. Front Public Health. 2021;9:591982.

12. Koneru G, Batiha GE-S, Algammal AM, et al. BCG vaccine-induced trained immunity and COVID-19: protective or bystander? Infect Drug Resist. 2021;14:1169. doi:10.2147/IDR.S300162

13. Iltaf S Sr., Fatima M, Salman S Sr., Salam JU, Abbas S. Frequency of neurological presentations of coronavirus disease in patients presenting to a tertiary care hospital during the 2019 coronavirus disease pandemic. Cureus. 2020;12(8):e9846. doi:10.7759/cureus.9846

14. Laszkowska M, Faye AS, Kim J, et al. Disease course and outcomes of COVID-19 among hospitalized patients with gastrointestinal manifestations. Clin Gastroenterol Hepatol. 2020;19(7):14021409.

15. Alsharif W, Qurashi A. Effectiveness of COVID-19 diagnosis and management tools: a review. Radiography. 2021;27(2):682687. doi:10.1016/j.radi.2020.09.010

16. Islam MF, Cotler J, Jason LA. Post-viral fatigue and COVID-19: lessons from past epidemics. Fatigue. 2020;8(2):6169.

17. World Health Organization. A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021; 2021.

18. Dar HA, Waheed Y, Najmi MH, et al. Multiepitope subunit vaccine design against COVID-19 based on the spike protein of SARS-CoV-2: an in silico analysis. J Immunol Res. 2020;2020:8893483. doi:10.1155/2020/8893483

19. Collaborative G, Collaborative C. SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study. Br J Surg. 2021;108(9):10561063.

20. Tenforde MW, Kim SS, Lindsell CJ, et al. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems networkUnited States, MarchJune 2020. MMWR Morb Mortal Wkly Rep. 2020;69(30):993. doi:10.15585/mmwr.mm6930e1

21. Carf A, Bernabei R, Landi F; Group ftGAC-P-ACS. Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324(6):603605. doi:10.1001/jama.2020.12603

22. Gortz YMJ, Van Herck M, Delbressine JM, et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ Open Res. 2020;6(4):0054202020. doi:10.1183/23120541.00542-2020

23. Garner P. Covid-19 and fatiguea game of snakes and ladders; 2020.

24. Callard F, Perego E. How and why patients made Long Covid. Soc Sci Med. 2021;268:113426. doi:10.1016/j.socscimed.2020.113426

25. Davido B, Seang S, Tubiana R, de Truchis P. Post-COVID-19 chronic symptoms: a postinfectious entity? Clin Microbiol Infect. 2020;26(11):14481449. doi:10.1016/j.cmi.2020.07.028

26. Halpin SJ, McIvor C, Whyatt G, et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: a cross-sectional evaluation. J Med Virol. 2021;93(2):10131022.

27. Romero-Snchez CM, Daz-Maroto I, Fernndez-Daz E, et al. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. Neurology. 2020;95(8):e1060e1070. doi:10.1212/WNL.0000000000009937

28. Papadopoulos AS, Cleare A. Hypothalamicpituitaryadrenal axis dysfunction in chronic fatigue syndrome. Nature Rev Endocrinol. 2012;8(1):2232.

29. Sandler CX, Wyller VB, Moss-Morris R, et al. Long COVID and post-infective fatigue syndrome: a review. Paper presented at: Open forum infectious diseases; 2021.

30. Wang X, Xu H, Jiang H, et al. Clinical features and outcomes of discharged coronavirus disease 2019 patients: a prospective cohort study. QJM. 2020;113(9):657665. doi:10.1093/qjmed/hcaa178

31. Hotchin NA, Read R, Smith DG, Crawford DH. Active Epstein-Barr virus infection in post-viral fatigue syndrome. J Infect. 1989;18(2):143150.

32. Tansey CM, Louie M, Loeb M, et al. One-year outcomes and health care utilization in survivors of severe acute respiratory syndrome. Arch Intern Med. 2007;167(12):13121320. doi:10.1001/archinte.167.12.1312

33. Petrie JG, Cheng C, Malosh RE, et al. Illness severity and work productivity loss among working adults with medically attended acute respiratory illnesses: US influenza vaccine effectiveness network 20122013. Clin Infect Dis. 2016;62(4):448455. doi:10.1093/cid/civ952

34. Wootton DG, Dickinson L, Pertinez H, et al. A longitudinal modelling study estimates acute symptoms of community acquired pneumonia recover to baseline by 10days. Eur Respir J. 2017;49(6):1602170. doi:10.1183/13993003.02170-2016

35. Wyrwich KW, Yu H, Sato R, Powers JH. Observational longitudinal study of symptom burden and time for recovery from community-acquired pneumonia reported by older adults surveyed nationwide using the CAP Burden of Illness Questionnaire. Patient Relat Outcome Meas. 2015;6:215223. doi:10.2147/PROM.S85779

36. Garrigues E, Janvier P, Kherabi Y, et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J Infect. 2020;81(6):e4e6. doi:10.1016/j.jinf.2020.08.029

37. Srivastava A, Bala R, Devi TP, Anal L. Psychological trauma and depression in recovered COVID-19 patients: a telecommunication based observational study. Trends Psychiatry Psychother. 2021. doi:10.47626/2237-6089-2021-0381

38. Whittaker A, Anson M, Harky A. Neurological manifestations of COVID19: a systematic review and current update. Acta Neurol Scand. 2020;142(1):1422. doi:10.1111/ane.13266

View post:
Prevalence and predictors of SARS-CoV-2 | IDR - Dove Medical Press

Read More...

Patches and robotic pills may one day replace injections – Science News for Students

Friday, May 20th, 2022

Do you hate getting shots? If so, youre not alone and you may be in luck. Researchers are devising new, pain-free ways to deliver drugs. One is a robotic pill. Another is a medicine patch worn on the skin. Both are still in the early stages of development. But someday, these innovations could make delivering medicines more patient-friendly.

The new robotic pill comes out of a lab at the Massachusetts Institute of Technology in Cambridge. It holds a teeny, spring-loaded microneedle only about 3 millimeters (a tenth of an inch) long. Once swallowed, the pill injects medicine directly through the stomach wall.

Unlike a normal shot, this needle prick shouldnt hurt, says Giovanni Traverso. Hes a physician and biomedical engineer who specializes in the gut. He also helped develop the robo-pill at MIT. Stomachs can detectsome sensations, such as the deep ache of a stomach ulcer. Or the discomfort of feeling bloated. But those sensations are more related to stretch receptors, Traverso explains. The stomach lacks receptors to detect sharp pains, such as an injection.

Designing a pill that could reliably prick the stomach wall was a bit tricky. Once swallowed, the small but heavy device settles to the bottom of the stomach. In order to prick the stomach wall beneath it, the pill mustland injector-side-down. To make that happen, the MIT team borrowed an idea from the leopard tortoise.

Contrary to popular belief, most tortoisescanget back on their feet if flipped upside-down. Leopard tortoises are aided by steeply domed shells. If one of them is flipped on its back, the shape of that shell helps it roll right-side up. That same shape ensures the new pill always lands upright, too.

Robert Langer is a chemical engineer on the MIT team. Watch, he says, as he drops a chickpea-sized robotic pill onto a table. It bounces, then rolls upright. No matter how I drop it, he notes and he drops it again it always lands the same way.

But what makes the pills tiny needle pop out to do its job? Sugar glass, Langer explains. Hard and brittle, this material holds back a spring that is attached to the needle. In the stomach, that sugar starts to dissolve. All of a sudden, the thing breaks, Langer says. This releases the spring, which jabs the needle into the stomach wall to inject medicine. Its possible to control when that happens by adjusting the sugars thickness.

The MIT team unveiled its design in 2019 in Science.

In new experiments, these robotic pills have delivered an mRNA-based medicine to mini-pigs. The researchers described their success in the March 2 issue of Matter. It was an important test for showing that this new class of medicines could be delivered in this way. (Pfizers COVID-19 vaccine also relies on mRNA.)

The new robo-pills also have successfully delivered insulin in mini-pigs. Many people with diabetes must inject themselves several times a day with this hormone. Normally, insulin cannot be swallowed as a pill because it would break down in the stomach. The robo-pill gets around that problem by feeding insulin straight into the stomach wall.

This is a completely new way to deliver the drug, notes Bruno Sarmento. He works at the University of Porto in Portugal. Although he didnt work on the pill system, as a nanomedicine researcher hes interested in such projects. We know now that its possible for a robotic system to reach the stomach and deliver injections, he says. But he worries that the new pill may be too expensive for widespread use.

Langer isnt so sure. I actually dont know that itll be that expensive, he says. Mechanized pills already exist. Langer points to a class known as osmotic pills. These pills have holes in them to pump drugs out. People might think theyd be a lot more expensive than regular pills, but they really havent been, he says. When you start to make billions of these, the cost just goes way down.

Whats more, normal pills often waste medicine. A swallowed drug must pass through the stomach lining. Thats like going through a brick wall, Traverso says. Its very difficult without the help of a needle. And wasted drug is expensive sometimes more expensive than the device.

One example is a drug used to treat diabetes. Its called semaglutide. Its a giant seller for people with diabetes, Langer says. And when you give this medicine as a pill, he says, you lose 99 percent of the drug. It passes through the body before its absorbed. But the new robo-pill would ensure the drug makes it right through the stomach wall and into the bloodstream. In the end, that could save money.

After successful tests in animals, the robo-pill is now ready for human trials. The Danish pharmaceutical company Novo Nordisk, which works with the MIT team, started recruiting volunteers in April.

Researchers in France are developing a technology that skips needles altogether. The teams new patch, when applied in the mouth, delivers a drug through the inside of the cheek.

Needle-less injections its kind of the holy grail, says Karolina Dziemidowicz. She did not help create the new patch. But her work in England at University College London does focus on such new biomaterials.

Sticky, medicine-loaded patches have been around for decades, Dziemidowicz notes. This new one is different. Rather than sticking it on your arm, it goes onto the slippery, mucus-coated membrane inside your mouth. Or even your eyeball! Both are areas that let medicines quickly enter your bloodstream. Gentle heat from a laser device activates the patch to release the medicine.

Sabine Szunerits is an analytical chemist and co-developer of these tiny patches. She works at the University of Lille in France. Her team tested these patches as a way to dispense insulin. Like the MIT team, they tried their system out in mini-pigs and later, in cows. The animals absorbed the drug well, and it reduced their blood sugar as intended.

In another experiment, the researchers even applied drug-free versions of the patches inside the mouths of six volunteers. What did people think of them? Its weird to think about, two male volunteers said. But nobody found the patches uncomfortable. Nor did the patches affect the volunteers ability to talk or eat.

Szunerits and her team described their findingsin ACS Applied Bio Materials on February 21.

In its lab, the French team used a laser to make the patch release its drug. For home use, Szunerits imagines creating something like a lollipop. At its end, she says, youd have a laser. Then, when youre ready to activate a patch, youd put the laser-pop in your mouth. You could trigger just one or as many patches as you need to take the prescribed dose.

This is a very elegant study, Sarmento says. But he sees a limitation. The patches cant provide very much insulin. Each one can pack about 2.9 units of the medication. But even a 40-kilogram (90-pound) child might need about 20 units of insulin per day. Sarmento suspects the new patch might be better suited for other drugs ones given at lower doses.

The patches are small, but some people might be willing wear a bunch if it means avoiding an injection. People, especially kids, dislike shots. Because of that, Traverso says, many people reliably take their insulin only about half the time. Thats why many physicians delay starting people on insulin by almost eight years, Traverso says.

He now hopes innovations like the insulin patch and robotic pill might one day get more people to willingly take the meds they need.

This is one in a series presenting news on technology and innovation, made possible with generous support from the Lemelson Foundation.

Continued here:
Patches and robotic pills may one day replace injections - Science News for Students

Read More...

Nanotechnology in the Nutricosmetics Industry – AZoNano

Friday, May 20th, 2022

Nutricosmetics is a novel developing branch of cosmetics aiming to optimize cosmetic products as well as food supplements for the objective of skin nourishment and reduction of skin aging. This innovative branch of cosmetics is highly desirable for many, and with the world's population predicted to grow to 1.4 billion by 2030, this industry is also expected to gain rapid traction.

Image Credit:photo_gonzo/Shutterstock.com

This novel sector of cosmetics includes both cosmetic products and food supplements that have the underlying purpose of increasing the integrity of skin and maintaining youthfulness through reducing aging.

Food supplements include micronutrients, which can be described as vitamins and minerals, macronutrients, which include peptides and fatty acids, as well as botanicals, comprising herbal extracts and fruit extracts.

These products and supplements provide nutritional support to skin, nails, and hair, encompassing inner wellbeing, including activity and mood.

Nutricosmetics have become the latest trend that has rocketed through the global population. Beauty brands are developing innovative strategies to meet the demand of targeting the root cause of ubiquitous skin and health problems to provide long-term results.

The global market for this novel industry for anti-aging has been estimated by P&S Intelligence to rise from $194 billion in 2020 to $422 billion by 2030. The nutricosmetics market has been predicted to grow significantly, with reports of a compound annual growth rate of 7.07%. Beauty supplements are also estimated to achieve approximately $7 billion at the end of 2024.

The skin is the largest organ in the body as well as the primary defense against the environment; subsequently, exposure to the outside world can cause premature skin aging.

The function of this critical organ, other than protection, includes maintaining the balance of liquids, preventing water loss as well as encouraging perspiration.

Stressors of the skin can include free radicals from pollution and ultraviolet rays, causing reactive oxygen species to be activated and induce unnecessary inflammation; this can affect DNA, lipids and proteins, and destroy the integrity of biological components within the body. It can also include the breakdown of collagen, a significant element of the extracellular matrix that functions to support cells.

Proteins such as collagen and keratin provide the skin with strength and elasticity and waterproofing. The loss of these can be detrimental to the integrity and quality of skin health, resulting in wrinkles and brittle nails or hair.

Additionally, other causes of skin problems can include sportswear, resulting in dryness and irritation due to the increase of friction between the skin and the material of tight clothing.

Showering frequently and the use of detergents can also negatively impact the integrity of the skin with an alteration of hydrolipidic film and affect elasticity.

Nanocarriers are ubiquitous within nanomedicine; however, with skin quality and health in high demand for consumers, these fields have overlapped.

The use of nanotechnology and nanoformulations as delivery systems for improving the performance of active components within cosmetics and supplements can enhance the quality of products to ensure effective results.

This diverse field can be used for a range of products, from sunscreen and barrier creams that ensure the skin barrier is strengthened against ultraviolet rays and pollutants to antiacne, anti-aging, and hair products.

Nanoemulsions can be described as colloidal dispersions with a droplet radius of 10 to 100 nm in size; these nanotechnology incorporations into the nutricosmetics industry can be useful as they are used to increase the delivery of active ingredients in the skin.

An example of this includes oil/water nanoemulsions that can hold water-soluble active components such as polyphenols and emulsifiers; these can include Opuntia ficus indica(L.) extract for use within moisturizing. However, hydroalcoholic extracts ofVellozia squamataleaves are used as anti-aging agents in products, while pomegranate seed oil can be developed to protect the skin against photodamage against the ultraviolet light.

Nanoparticles have a diameter of 10 and 1000 nm and can also be used for nutricosmetics, with a range of nanoparticles including but not limited to polymeric nanoparticles, hydrogel nanoparticles, and copolymerized peptide nanoparticles.

Using these colloidal-sized particles as delivery systems can enhance the penetrative ability through the skin barrier, enabling the release of active ingredients within cosmetic products. Additionally, the use of nanoparticles can also involve surface functionalization of active elements to further the skin's targetability and improve particular areas of concern.

Metallic nanoparticles are examples of nanoparticles used within suncream and cosmetic formulations, with zinc oxide or titanium dioxide being used to create sunscreens that are more transparent. Safranal nanoparticles, which include solid and lipid nanoparticles, have been shown to increase sunscreen activity when used within a size range of 103-230 nm; this illustrates the optimization nature of nanotechnology and versatility in finding the optimum level for an application.

The administration of antioxidants, including vitamins A, C and E, significant for skin repair, can be challenging, with the biological activity level being low due to the low solubility in aqueous environments and instability as a result of pH and degradation by enzymes.

The use of nanotechnology delivery systems can increase the availability of these substances within food supplements or as a topical formulation. Using biodegradable polymer-based delivery systems including liposomes or lipid nanoparticles, active ingredients can achieve permeability as well as maintain stability in the body.

The future of nutricosmetics has been predicted to be monumental and fast-moving, and with the incorporation of nanotechnology as a delivery system for the holistic health of skin, this field may be revolutionary.

Skin integrity is a critical component of health. With the skin being the largest organ in the body, protecting its functionality against the continuous onslaught of carcinogens and stressors from the environment should be a significant priority for wellbeing.

Dini, I., 2022. Contribution of Nanoscience Research in Antioxidants Delivery Used in Nutricosmetic Sector.Antioxidants, 11(3), p.563. Available at: https://doi.org/10.3390/antiox11030563

Dini, I. and Laneri, S., 2019. Nutricosmetics: A brief overview.Phytotherapy Research, 33(12), pp.3054-3063. Available at: https://doi.org/10.1002/ptr.6494

Kaul, S., Gulati, N., Verma, D., Mukherjee, S. and Nagaich, U., 2018. Role of Nanotechnology in Cosmeceuticals: A Review of Recent Advances.Journal of Pharmaceutics, 2018, pp.1-19. Available at: https://dx.doi.org/10.1155%2F2018%2F3420204

Merchet, S., 2022.Beauty-from-within complements overall wellness strategies. [online] Natural Products INSIDER. Available at: https://www.naturalproductsinsider.com/personal-care/beauty-within-complements-overall-wellness-strategies

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

See more here:
Nanotechnology in the Nutricosmetics Industry - AZoNano

Read More...

Nanomedicine: Nanotechnology, Biology and Medicine …

Wednesday, December 22nd, 2021

The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine.

Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.

Nanomedicine: NBM journal publishes articles on artificial cells, regenerative medicine, gene therapy, infectious disease, nanotechnology, nanobiotechnology, nanomedicine, stem cell and tissue engineering.

Sub-categories include synthesis, bioavailability, and biodistribution of nanomedicines; delivery, pharmacodynamics, and pharmacokinetics of nanomedicines; imaging; diagnostics; improved therapeutics; innovative biomaterials; interactions of nanomaterials with cells, tissues, and living organisms; public health; toxicology; theranostics; point of care monitoring; nutrition; nanomedical devices; prosthetics; biomimetics; and bioinformatics.

Article formats include Rapid Communications, Original Articles, Reviews, Perspectives, Technical and Commercialization Notes, and Letters to the Editor. We invite authors to submit original manuscripts in these categories.

See the rest here:
Nanomedicine: Nanotechnology, Biology and Medicine ...

Read More...

Frontiers | Nanomedicine: Principles, Properties, and …

Wednesday, December 22nd, 2021

Introduction

Over the last years, nanotechnology has been introduced in our daily routine. This revolutionary technology has been applied in multiple fields through an integrated approach. An increasing number of applications and products containing nanomaterials or at least with nano-based claims have become available. This also happens in pharmaceutical research. The use of nanotechnology in the development of new medicines is now part of our research and in the European Union (EU) it has been recognized as a Key Enabling Technology, capable of providing new and innovative medical solution to address unmet medical needs (Bleeker et al., 2013; Ossa, 2014; Tinkle et al., 2014; Pita et al., 2016).

The application of nanotechnology for medical purposes has been termed nanomedicine and is defined as the use of nanomaterials for diagnosis, monitoring, control, prevention and treatment of diseases (Tinkle et al., 2014). However, the definition of nanomaterial has been controversial among the various scientific and international regulatory corporations. Some efforts have been made in order to find a consensual definition due to the fact that nanomaterials possess novel physicochemical properties, different from those of their conventional bulk chemical equivalents, due to their small size. These properties greatly increase a set of opportunities in the drug development; however, some concerns about safety issues have emerged. The physicochemical properties of the nanoformulation which can lead to the alteration of the pharmacokinetics, namely the absorption, distribution, elimination, and metabolism, the potential for more easily cross biological barriers, toxic properties and their persistence in the environment and human body are some examples of the concerns over the application of the nanomaterials (Bleeker et al., 2013; Tinkle et al., 2014).

To avoid any concern, it is necessary establishing an unambiguous definition to identify the presence of nanomaterials. The European Commission (EC) created a definition based on the European Commission Joint Research Center and on the Scientific Committee on Emerging and Newly Identified Health Risks. This definition is only used as a reference to determine whether a material is considered a nanomaterial or not; however, it is not classified as hazardous or safe. The EC claims that it should be used as a reference for additional regulatory and policy frameworks related to quality, safety, efficacy, and risks assessment (Bleeker et al., 2013; Boverhof et al., 2015).

According to the EC recommendation, nanomaterial refers to a natural, incidental, or manufactured material comprising particles, either in an unbound state or as an aggregate wherein one or more external dimensions is in the size range of 1100 nm for 50% of the particles, according to the number size distribution. In cases of environment, health, safety or competitiveness concern, the number size distribution threshold of 50% may be substituted by a threshold between 1 and 50%. Structures with one or more external dimensions below 1 nm, such as fullerenes, graphene flakes, and single wall carbon nanotubes, should be considered as nanomaterials. Materials with surface area by volume in excess of 60 m2/cm3 are also included (Commission Recommendation., 2011). This defines a nanomaterial in terms of legislation and policy in the European Union. Based on this definition, the regulatory bodies have released their own guidances to support drug product development.

The EMA working group introduces nanomedicines as purposely designed systems for clinical applications, with at least one component at the nanoscale, resulting in reproducible properties and characteristics, related to the specific nanotechnology application and characteristics for the intended use (route of administration, dose), associated with the expected clinical advantages of nano-engineering (e.g., preferential organ/tissue distribution; Ossa, 2014).

Food and Drug Administration (FDA) has not established its own definition for nanotechnology, nanomaterial, nanoscale, or other related terms, instead adopting the meanings commonly employed in relation to the engineering of materials that have at least one dimension in the size range of approximately 1 nanometer (nm) to 100 nm. Based on the current scientific and technical understanding of nanomaterials and their characteristics, FDA advises that evaluations of safety, effectiveness, public health impact, or regulatory status of nanotechnology products should consider any unique properties and behaviors that the application of nanotechnology may impart (Guidance for Industry, FDA, 2014).

According to the former definition, there are three fundamental aspects to identify the presence of a nanomaterial, which are size, particle size distribution (PSD) and surface area (Commission Recommendation., 2011; Bleeker et al., 2013; Boverhof et al., 2015).

The most important feature to take into account is size, because it is applicable to a huge range of materials. The conventional range is from 1 to 100 nm. However, there is no bright line to set this limit. The maximum size that a material can have to be considered nanomaterial is an arbitrary value because the psychochemical and biological characteristics of the materials do not change abruptly at 100 nm. To this extent, it is assumed that other properties should be taken in account (Lvestam et al., 2010; Commission Recommendation., 2011; Bleeker et al., 2013; Boverhof et al., 2015).

The pharmaceutical manufacturing of nanomaterials involves two different approaches: top down and bottom down. The top down process involves the breakdown of a bulk material into a smaller one or smaller pieces by mechanical or chemical energy. Conversely, the bottom down process starts with atomic or molecular species allowing the precursor particles to increase in size through chemical reaction (Luther, 2004; Oberdrster, 2010; Boverhof et al., 2015). These two processes of manufacturing are in the origin of different forms of particles termed primary particle, aggregate and agglomerate (Figure 1). The respective definition is (sic):

Figure 1. Schematic representation of the different forms of particles: primary particle, aggregate, and agglomerate (reproduced with permission from Oberdrster, 2010).

particle is a minute piece of matter with defined physical boundaries (Oberdrster, 2010; Commission Recommendation., 2011);

aggregate denotes a particle comprising strongly bound or fused particlesand the external surface can be smaller than the sum of the surface areas of the individual particles (Oberdrster, 2010; Commission Recommendation., 2011);

agglomerate means a collection of weakly bound particles or aggregates where the resulting external surface area are similar to the sum of the surface areas of the individual components (Oberdrster, 2010; Commission Recommendation., 2011).

Considering the definition, it is understandable why aggregates and agglomerates are included. They may still preserve the properties of the unbound particles and have the potential to break down in to nanoscale (Lvestam et al., 2010; Boverhof et al., 2015). The lower size limit is used to distinguish atoms and molecules from particles (Lvestam et al., 2010).

The PSD is a parameter widely used in the nanomaterial identification, reflecting the range of variation of sizes. It is important to set the PSD, because a nanomaterial is usually polydisperse, which means, it is commonly composed by particles with different sizes (Commission Recommendation., 2011; Bleeker et al., 2013; Boverhof et al., 2015).

The determination of the surface area by volume is a relational parameter, which is necessary when requested by additional legislation. The material is under the definition if the surface area by volume is larger than 60 m2/cm3, as pointed out. However, the PSD shall prevail, and for example, a material is classified as a nanomaterial based on the particle size distribution, even if the surface area by volume is lower than the specified 60 m2/cm3 (Commission Recommendation., 2011; Bleeker et al., 2013; Boverhof et al., 2015).

Nanomaterials can be applied in nanomedicine for medical purposes in three different areas: diagnosis (nanodiagnosis), controlled drug delivery (nanotherapy), and regenerative medicine. A new area which combines diagnostics and therapy termed theranostics is emerging and is a promising approach which holds in the same system both the diagnosis/imaging agent and the medicine. Nanomedicine is holding promising changes in clinical practice by the introduction of novel medicines for both diagnosis and treatment, having enabled to address unmet medical needs, by (i) integrating effective molecules that otherwise could not be used because of their high toxicity (e.g., Mepact), (ii) exploiting multiple mechanisms of action (e.g., Nanomag, multifunctional gels), (iii) maximizing efficacy (e.g., by increasing bioavailability) and reducing dose and toxicity, (iv) providing drug targeting, controlled and site specific release, favoring a preferential distribution within the body (e.g., in areas with cancer lesions) and improved transport across biological barriers (Chan, 2006; Mndez-Rojas et al., 2009; Zhang et al., 2012; Ossa, 2014).

This is a result of intrinsic properties of nanomaterials that have brought many advantages in the pharmaceutical development. Due to their small size, nanomaterials have a high specific surface area in relation to the volume. Consequently, the particle surface energy is increased, making the nanomaterials much more reactive. Nanomaterials have a tendency to adsorb biomolecules, e.g., proteins, lipids, among others, when in contact with the biological fluids. One of the most important interactions with the living matter relies on the plasma/serum biomoleculeadsorption layer, known as corona, that forms on the surface of colloidal nanoparticles (Pino et al., 2014). Its composition is dependent on the portal of entry into the body and on the particular fluid that the nanoparticles come across with (e.g., blood, lung fluid, gastro-intestinal fluid, etc.). Additional dynamic changes can influence the corona constitution as the nanoparticle crosses from one biological compartment to another one (Pearson et al., 2014; Louro, 2018).

Furthermore, optical, electrical and magnetic properties can change and be tunable through electron confinement in nanomaterials. In addition, nanomaterials can be engineered to have different size, shape, chemical composition and surface, making them able to interact with specific biological targets (Oberdrster et al., 2005; Kim et al., 2010). A successful biological outcome can only be obtained resorting to careful particle design. As such, a comprehensive knowledge of how the nanomaterials interact with biological systems are required for two main reasons.

The first one is related to the physiopathological nature of the diseases. The biological processes behind diseases occur at the nanoscale and can rely, for example, on mutated genes, misfolded proteins, infection by virus or bacteria. A better understanding of the molecular processes will provide the rational design on engineered nanomaterials to target the specific site of action desired in the body (Kim et al., 2010; Albanese et al., 2012). The other concern is the interaction between nanomaterial surface and the environment in biological fluids. In this context, characterization of the biomolecules corona is of utmost importance for understanding the mutual interaction nanoparticle-cell affects the biological responses. This interface comprises dynamic mechanisms involving the exchange between nanomaterial surfaces and the surfaces of biological components (proteins, membranes, phospholipids, vesicles, and organelles). This interaction stems from the composition of the nanomaterial and the suspending media. Size, shape, surface area, surface charge and chemistry, energy, roughness, porosity, valence and conductance states, the presence of ligands, or the hydrophobic/ hydrophilic character are some of the material characteristics that influence the respective surface properties. In turn, the presence of water molecules, acids and bases, salts and multivalent ions, surfactants are some of the factors related to the medium that will influence the interaction. All these aspects will govern the characteristics of the interface between the nanomaterial and biological components and, consequently, promote different cellular fates (Nel et al., 2009; Kim et al., 2010; Albanese et al., 2012; Monopoli et al., 2012).

A deeper knowledge about how the physicochemical properties of the biointerface influence the cellular signaling pathway, kinetics and transport will thus provide critical rules to the design of nanomaterials (Nel et al., 2009; Kim et al., 2010; Albanese et al., 2012; Monopoli et al., 2012).

The translation of nanotechnology form the bench to the market imposed several challenges. General issues to consider during the development of nanomedicine products including physicochemical characterization, biocompatibility, and nanotoxicology evaluation, pharmacokinetics and pharmacodynamics assessment, process control, and scale-reproducibility (Figure 2) are discussed in the sections that follow.

Figure 2. Schematic representation of the several barriers found throughout the development of a nanomedicine product.

The characterization of a nanomedicine is necessary to understand its behavior in the human body, and to provide guidance for the process control and safety assessment. This characterization is not consensual in the number of parameters required for a correct and complete characterization. Internationally standardized methodologies and the use of reference nanomaterials are the key to harmonize all the different opinions about this topic (Lin et al., 2014; Zhao and Chen, 2016).

Ideally, the characterization of a nanomaterial should be carried out at different stages throughout its life cycle, from the design to the evaluation of its in vitro and in vivo performance. The interaction with the biological system or even the sample preparation or extraction procedures may modify some properties and interfere with some measurements. In addition, the determination of the in vivo and in vitro physicochemical properties is important for the understanding of the potential risk of nanomaterials (Lin et al., 2014; Zhao and Chen, 2016).

The Organization for Economic Co-operation and Development started a Working Party on Manufactured Nanomaterials with the International Organization for Standardization to provide scientific advice for the safety use of nanomaterials that include the respective physicochemical characterization and the metrology. However, there is not an effective list of minimum parameters. The following characteristics should be a starting point to the characterization: particle size, shape and size distribution, aggregation and agglomeration state, crystal structure, specific surface area, porosity, chemical composition, surface chemistry, charge, photocatalytic activity, zeta potential, water solubility, dissolution rate/kinetics, and dustiness (McCall et al., 2013; Lin et al., 2014).

Concerning the chemical composition, nanomaterials can be classified as organic, inorganic, crystalline or amorphous particles and can be organized as single particles, aggregates, agglomerate powders or dispersed in a matrix which give rise to suspensions, emulsions, nanolayers, or films (Luther, 2004).

Regarding dimension, if a nanomaterial has three dimensions below 100 nm, it can be for example a particle, a quantum dot or hollow sphere. If it has two dimensions below 100 nm it can be a tube, fiber or wire and if it has one dimension below 100 nm it can be a film, a coating or a multilayer (Luther, 2004).

Different techniques are available for the analysis of these parameters. They can be grouped in different categories, involving counting, ensemble, separation and integral methods, among others (Linsinger et al., 2012; Contado, 2015).

Counting methods make possible the individualization of the different particles that compose a nanomaterial, the measurement of their different sizes and visualization of their morphology. The particles visualization is preferentially performed using microscopy methods, which include several variations of these techniques. Transmission Electron Microscopy (TEM), High-Resolution TEM, Scanning Electron Microscopy (SEM), cryo-SEM, Atomic Force Microscopy and Particle Tracking Analysis are just some of the examples. The main disadvantage of these methods is the operation under high-vacuum, although recently with the development of cryo-SEM sample dehydration has been prevented under high-vacuum conditions (Linsinger et al., 2012; Contado, 2015; Hodoroaba and Mielke, 2015).

These methods involve two steps of sample treatment: the separation of the particles into a monodisperse fraction, followed by the detection of each fraction. Field-Flow Fractionation (FFF), Analytical Centrifugation (AC) and Differential Electrical Mobility Analysis are some of the techniques that can be applied. The FFF techniques include different methods which separate the particles according to the force field applied. AC separates the particles through centrifugal sedimentation (Linsinger et al., 2012; Contado, 2015; Hodoroaba and Mielke, 2015).

Ensemble methods allow the report of intensity-weighted particle sizes. The variation of the measured signal over time give the size distribution of the particles extracted from a combined signal. Dynamic Light Scattering (DLS), Small-angle X-ray Scattering (SAXS) and X-ray Diffraction (XRD) are some of the examples. DLS and QELS are based on the Brownian motion of the sample. XRD is a good technique to obtain information about the chemical composition, crystal structure and physical properties (Linsinger et al., 2012; Contado, 2015; Hodoroaba and Mielke, 2015).

The integral methods only measure an integral property of the particle and they are mostly used to determine the specific surface area. Brunauer Emmet Teller is the principal method used and is based on the adsorption of an inert gas on the surface of the nanomaterial (Linsinger et al., 2012; Contado, 2015; Hodoroaba and Mielke, 2015).

Other relevant technique is the electrophoretic light scattering (ELS) used to determine zeta potential, which is a parameter related to the overall charge a particle acquires in a particular medium. ELS measures the electrophoretic mobility of particles in dispersion, based on the principle of electrophoresis (Linsinger et al., 2012).

The Table 1 shows some of principal methods for the characterization of the nanomaterials including the operational principle, physicochemical parameters analyzed and respective limitations.

Another challenge in the pharmaceutical development is the control of the manufacturing process by the identification of the critical parameters and technologies required to analyse them (Gaspar, 2010; Gaspar et al., 2014; Sainz et al., 2015).

New approaches have arisen from the pharmaceutical innovation and the concern about the quality and safety of new medicines by regulatory agencies (Gaspar, 2010; Gaspar et al., 2014; Sainz et al., 2015).

Quality-by-Design (QbD), supported by Process Analytical Technologies (PAT) is one of the pharmaceutical development approaches that were recognized for the systematic evaluation and control of nanomedicines (FDA, 2004; Gaspar, 2010; Gaspar et al., 2014; Sainz et al., 2015; European Medicines Agency, 2017).

Note that some of the physicochemical characteristics of nanomaterials can change during the manufacturing process, which compromises the quality and safety of the final nanomedicine. The basis of QbD relies on the identification of the Quality Attributes (QA), which refers to the chemical, physical or biological properties or another relevant characteristic of the nanomaterial. Some of them may be modified by the manufacturing and should be within a specific range for quality control purposes. In this situation, these characteristics are considered Critical Quality Attributes (CQA). The variability of the CQA can be caused by the critical material attributes and process parameters (Verma et al., 2009; Riley and Li, 2011; Bastogne, 2017; European Medicines Agency, 2017).

The quality should not be tested in nanomedicine, but built on it instead, by the understanding of the therapeutic purpose, pharmacological, pharmacokinetic, toxicological, chemical and physical properties of the medicine, process formulation, packaging, and the design of the manufacturing process. This new approach allows better focus on the relevant relationships between the characteristics, parameters of the formulation and process in order to develop effective processes to ensure the quality of the nanomedicines (FDA, 2014).

According to the FDA definition PAT is a system for designing, analzsing, and controlling manufacturing through timely measurements (i.e., during processing) of critical quality and performance attributes of raw and in-process materials and processes, with the goal of ensuring final product quality (FDA, 2014). The PAT tools analyse the critical quality and performance attributes. The main point of the PAT is to assure and enhance the understanding of the manufacturing concept (Verma et al., 2009; Riley and Li, 2011; FDA, 2014; Bastogne, 2017; European Medicines Agency, 2017).

Biocompatibility is another essential property in the design of drug delivery systems. One very general and brief definition of a biocompatible surface is that it cannot trigger an undesired' response from the organism. Biocompatibility is alternatively defined as the ability of a material to perform with an appropriate response in a specific application (Williams, 2003; Keck and Mller, 2013).

Pre-clinical assessment of nanomaterials involve a thorough biocompatibility testing program, which typically comprises in vivo studies complemented by selected in vitro assays to prove safety. If the biocompatibility of nanomaterials cannot be warranted, potentially advantageous properties of nanosystems may raise toxicological concerns.

Regulatory agencies, pharmaceutical industry, government, and academia are making efforts to accomplish specific and appropriate guidelines for risk assessment of nanomaterials (Hussain et al., 2015).

In spite of efforts to harmonize the procedures for safety evaluation, nanoscale materials are still mostly treated as conventional chemicals, thus lacking clear specific guidelines for establishing regulations and appropriate standard protocols. However, several initiatives, including scientific opinions, guidelines and specific European regulations and OECD guidelines such as those for cosmetics, food contact materials, medical devices, FDA regulations, as well as European Commission scientific projects (NanoTEST project, http://www.nanotest-fp7.eu) specifically address nanomaterials safety (Juillerat-Jeanneret et al., 2015).

In this context, it is important to identify the properties, to understand the mechanisms by which nanomaterials interact with living systems and thus to understand exposure, hazards and their possible risks.

Note that the pharmacokinetics and distribution of nanoparticles in the body depends on their surface physicochemical characteristics, shape and size. For example, nanoparticles with 10 nm in size were preferentially found in blood, liver, spleen, kidney, testis, thymus, heart, lung, and brain, while larger particles are detected only in spleen, liver, and blood (De Jong et al., 2008; Adabi et al., 2017).

In turn, the surface of nanoparticles also impacts upon their distribution in these organs, since their combination with serum proteins available in systemic circulation, influencing their cellular uptake. It should be recalled that a biocompatible material generates no immune response. One of the cause for an immune response can rely on the adsorption pattern of body proteins. An assessment of the in vivo protein profile is therefore crucial to address these interactions and to establish biocompatibility (Keck et al., 2013).

Finally, the clearance of nanoparticles is also size and surface dependent. Small nanoparticles, bellow 2030 nm, are rapidly cleared by renal excretion, while 200 nm or larger particles are more efficiently taken up by mononuclear phagocytic system (reticuloendothelial system) located in the liver, spleen, and bone marrow (Moghimi et al., 2001; Adabi et al., 2017).

Studies are required to address how nanomaterials penetrate cells and tissues, and the respective biodistribution, degradation, and excretion.

Due to all these issues, a new field in toxicology termed nanotoxicology has emerged, which aims at studying the nanomaterial effects deriving from their interaction with biological systems (Donaldson et al., 2004; Oberdrster, 2010; Fadeel, 2013).

The evaluation of possible toxic effects of the nanomaterials can be ascribed to the presence of well-known molecular responses in the cell. Nanomaterials are able to disrupt the balance of the redox systems and, consequently, lead to the production of reactive species of oxygen (ROS). ROS comprise hydroxyl radicals, superoxide anion and hydrogen peroxide. Under normal conditions, the cells produce these reactive species as a result of the metabolism. However, when exposed to nanomaterials the production of ROS increases. Cells have the capacity to defend itself through reduced glutathione, superoxide dismutase, glutathione peroxidase and catalase mechanisms. The superoxide dismutase converts superoxide anion into hydrogen peroxide and catalase, in contrast, converts it into water and molecular oxygen (Nel et al., 2006; Arora et al., 2012; Azhdarzadeh et al., 2015). Glutathione peroxidase uses glutathione to reduce some of the hydroperoxides. Under normal conditions, the glutathione is almost totally reduced. Nevertheless, an increase in ROS lead to the depletion of the glutathione and the capacity to neutralize the free radicals is decreased. The free radicals will induce oxidative stress and interact with the fatty acids in the membranes of the cell (Nel et al., 2006; Arora et al., 2012; Azhdarzadeh et al., 2015).

Consequently, the viability of the cell will be compromised by the disruption of cell membranes, inflammation responses caused by the upregulation of transcription factors like the nuclear factor kappa , activator protein, extracellular signal regulated kinases c-Jun, N-terminal kinases and others. All these biological responses can result on cell apoptosis or necrosis. Distinct physiological outcomes are possible due to the different pathways for cell injury after the interaction between nanomaterials and cells and tissues (Nel et al., 2006; Arora et al., 2012; Azhdarzadeh et al., 2015).

Over the last years, the number of scientific publications regarding toxicological effects of nanomaterials have increased exponentially. However, there is a big concern about the results of the experiments, because they were not performed following standard and harmonized protocols. The nanomaterial characterization can be considered weak once there are not standard nanomaterials to use as reference and the doses used in the experiences sometimes cannot be applied in the biological system. Therefore, the results are not comparable. For a correct comparison, it is necessary to perform a precise and thorough physicochemical characterization to define risk assessment guidelines. This is the first step for the comparison between data from biological and toxicological experiments (Warheit, 2008; Fadeel et al., 2015; Costa and Fadeel, 2016).

Although nanomaterials may have an identical composition, slight differences e.g., in the surface charge, size, or shape could impact on their respective activity and, consequently, on their cellular fate and accumulation in the human body, leading to different biological responses (Sayes and Warheit, 2009).

Sayes and Warheit (2009) proposed a three phases model for a comprehensive characterization of nanomaterials. Accordingly, the primary phase is achieved in the native state of the nanomaterial, specifically, in its dry state. The secondary characterization is performed with the nanomaterials in the wet phase, e.g., as solution or suspension. The tertiary characterization includes in vitro and in vivo interactions with biological systems. The tertiary characterization is the most difficult from the technical point of view, especially in vivo, because of all the ethical questions concerning the use of animals in experiments (Sayes and Warheit, 2009).

Traditional toxicology uses of animals to conduct tests. These types of experiments using nanomaterials can be considered impracticable and unethical. In addition, it is time-consuming, expensive and sometimes the end points achieved are not enough to correctly correlate with what happens in the biological systems of animals and the translation to the human body (Collins et al., 2017).

In vitro studies are the first assays used for the evaluation of cytotoxicity. This approach usually uses cell lines, primary cells from the tissues, and/or a mixture of different cells in a culture to assess the toxicity of the nanomaterials. Different in vitro cytotoxicity assays to the analysis of the cell viability, stress, and inflammatory responses are available. There are several cellular processes to determine the cell viability, which consequently results in different assays with distinct endpoints. The evaluation of mitochondrial activity, the lactate dehydrogenase release from the cytosol by tretazolium salts and the detection of the biological marker Caspase-3 are some of the examples that imposes experimental variability in this analysis. The stress response is another example which can be analyzed by probes in the evaluation of the inflammatory response via enzyme linked immunosorbent assay are used (Kroll et al., 2009).

As a first approach, in vitro assays can predict the interaction of the nanomaterials with the body. However, the human body possesses compensation mechanisms when exposed to toxics and a huge disadvantage of this model is not to considered them. Moreover, they are less time consuming, more cost-effective, simpler and provide an easier control of the experimental conditions (Kroll et al., 2009; Fadeel et al., 2013b).

Their main drawback is the difficulty to reproduce all the complex interactions in the human body between sub-cellular levels, cells, organs, tissues and membranes. They use specific cells to achieve specific endpoints. In addition, in vitro assays cannot predict the physiopathological response of the human body when exposed to nanomaterials (Kroll et al., 2009; Fadeel et al., 2013b).

Another issue regarding the use of this approach is the possibility of interaction between nanomaterials and the reagents of the assay. It is likely that the reagents used in the in vitro assays interfere with the nanomaterial properties. High adsorption capacity, optical and magnetic properties, catalytic activity, dissolution, and acidity or alkalinity of the nanomaterials are some of the examples of properties that may promote this interaction (Kroll et al., 2009).

Many questions have been raised by the regulators related to the lack of consistency of the data produced by cytotoxicity assays. New assays for a correct evaluation of the nanomaterial toxicity are, thus, needed. In this context, new approaches have arisen, such as the in silico nanotoxicology approach. In silico methods are the combination of toxicology with computational tools and bio-statistical methods for the evaluation and prediction of toxicity. By using computational tools is possible to analyse more nanomaterials, combine different endpoints and pathways of nanotoxicity, being less time-consuming and avoiding all the ethical questions (Warheit, 2008; Raunio, 2011).

Quantitative structure-activity relationship models (QSAR) were one the first applications of computational tools applied in toxicology. QSAR models are based on the hypothesis that the toxicity of nanomaterials and their cellular fate in the body can be predicted by their characteristics, and different biological reactions are the result of physicochemical characteristics, such as size, shape, zeta potential, or surface charge, etc., gathered as a set of descriptors. QSAR aims at identifying the physicochemical characteristics which lead to toxicity, so as to provide alterations to reduce toxicology. A mathematical model is created, which allows liking descriptors and the biological activity (Rusyn and Daston, 2010; Winkler et al., 2013; Oksel et al., 2015).

Currently, toxigenomics is a new area of nanotoxicology, which includes a combination between genomics and nanotoxicology to find alterations in the gene, protein and in the expressions of metabolites (Rusyn et al., 2012; Fadeel et al., 2013a).

Hitherto, different risk assessment approaches have been reported. One of them is the DF4nanoGrouping framework, which concerns a functionality driven scheme for grouping nanomaterials based on their intrinsic properties, system dependent properties and toxicological effects (Arts et al., 2014, 2016). Accordingly, nanomaterials are categorized in four groups, including possible subgroups. The four main groups encompass (1) soluble, (2) biopersistent high aspect ratio, (3) passive, that is, nanomaterials without obvious biological effects and (4) active nanomaterials, that is, those demonstrating surface-related specific toxic properties. The DF4nanoGrouping foresees a stepwise evaluation of nanomaterial properties and effects with increasing biological complexity. In case studies that includes carbonaceous nanomaterials, metal oxide, and metal sulfate nanomaterials, amorphous silica and organic pigments (all nanomaterials having primary particle sizes smaller than 100 nm), the usefulness of the DF4nanoGrouping for nanomaterial hazard assessment has already been established. It facilitates grouping and targeted testing of nanomaterials, also ensuring that enough data for the risk assessment of a nanomaterial are available, and fostering the use of non-animal methods (Landsiedel et al., 2017). More recently, DF4nanoGrouping developed three structure-activity relationship classification, decision tree, models by identifying structural features of nanomaterials mainly responsible for the surface activity (size, specific surface area, and the quantum-mechanical calculated property lowest unoccupied molecular orbital), based on a reduced number of descriptors: one for intrinsic oxidative potential, two for protein carbonylation, and three for no observed adverse effect concentration (Gajewicz et al., 2018)

Keck and Mller also proposed a nanotoxicological classification system (NCS) (Figure 3) that ranks the nanomaterials into four classes according to the respective size and biodegradability (Mller et al., 2011; Keck and Mller, 2013).

Due to the size effects, this parameter is assumed as truly necessary, because when nanomaterials are getting smaller and smaller there is an increase in solubility, which is more evident in poorly soluble nanomaterials than in soluble ones. The adherence to the surface of membranes increases with the decrease of the size. Another important aspect related to size that must be considered is the phagocytosis by macrophages. Above 100 nm, nanomaterials can only be internalized by macrophages, a specific cell population, while nanomaterials below 100 nm can be internalized by any cell due to endocytosis. Thus, nanomaterials below 100 nm are associated to higher toxicity risks in comparison with nanomaterials above 100 nm (Mller et al., 2011; Keck and Mller, 2013).

In turn, biodegradability was considered a required parameter in almost all pharmaceutical formulations. The term biodegradability applies to the biodegradable nature of the nanomaterial in the human body. Biodegradable nanomaterials will be eliminated from the human body. Even if they cause some inflammation or irritation the immune system will return to the regular function after elimination. Conversely, non-biodegradable nanomaterials will stay forever in the body and change the normal function of the immune system (Mller et al., 2011; Keck and Mller, 2013).

There are two more factors that must be taken into account in addition to the NCS, namely the route of administration and the biocompatibility surface. When a particle is classified by the NCS, toxicity depends on the route of administration. For example, the same nanomaterials applied dermally or intravenously can pose different risks to the immune system.

In turn, a non-biocompatibility surface (NB) can activate the immune system by adsorption to proteins like opsonins, even if the particle belongs to the class I of the NCS (Figure 3). The biocompatibility (B) is dictated by the physicochemical surface properties, irrespective of the size and/or biodegradability. This can lead to further subdivision in eight classes from I-B, I-NB, to IV-B and IV-NB (Mller et al., 2011; Keck and Mller, 2013).

NCS is a simple guide to the evaluation of the risk of nanoparticles, but there are many other parameters playing a relevant role in nanotoxicity determination (Mller et al., 2011; Keck and Mller, 2013). Other suggestions encompass more general approaches, combining elements of toxicology, risk assessment modeling, and tools developed in the field of multicriteria decision analysis (Rycroft et al., 2018).

A forthcoming challenge in the pharmaceutical development is the scale-up and reproducibility of the nanomedicines. A considerable number of nanomedicines fail these requirements and, consequently, they are not introduced on the pharmaceutical market (Agrahari and Hiremath, 2017).

The traditional manufacturing processes do not create three dimensional medicines in the nanometer scale. Nanomedicine manufacturing processes, as already mentioned above, compromise top-down and bottom-down approaches, which include multiple steps, like homogenization, sonication, milling, emulsification, and sometimes, the use of organic solvents and further evaporation. In a small-scale, it is easy to control and achieve the optimization of the formulation. However, at a large scale it becomes very challenging, because slight variations during the manufacturing process can originate critical changes in the physicochemical characteristics and compromise the quality and safety of the nanomedicines, or even the therapeutic outcomes. A detailed definition of the acceptable limits for the CQA is very important, and these parameters must be identified and analyzed at the small-scale, in order to understand how the manufacturing process can change them: this will help the implementation of the larger scale. Thus, a deep process of understanding the critical steps and the analytical tools established for the small-scale will be a greatly help for the introduction of the large scale (Desai, 2012; Kaur et al., 2014; Agrahari and Hiremath, 2017).

Another requirement for the introduction of medicines in the pharmaceutical market is the reproducibility of every batch produced. The reproducibility is achieved in terms of physicochemical characterization and therapeutic purpose. There are specific ranges for the variations between different batches. Slight changes in the manufacturing process can compromise the CQA and, therefore, they may not be within a specific range and create an inter-batch variation (Desai, 2012; Kaur et al., 2014; Agrahari and Hiremath, 2017).

Over the last decades, nanomedicines have been successfully introduced in the clinical practice and the continuous development in pharmaceutical research is creating more sophisticated ones which are entering in clinic trials. In the European Union, the nanomedicine market is composed by nanoparticles, liposomes, nanocrystals, nanoemulsions, polymeric-protein conjugates, and nanocomplexes (Hafner et al., 2014). Table 2 shows some examples of commercially available nanomedicines in the EU (Hafner et al., 2014; Choi and Han, 2018).

In the process of approval, nanomedicines were introduced under the traditional framework of the benefit/risk analysis. Another related challenge is the development of a framework for the evaluation of the follow-on nanomedicines at the time of reference medicine patent expiration (Ehmann et al., 2013; Tinkle et al., 2014).

Nanomedicine comprises both biological and non-biological medical products. The biological nanomedicines are obtained from biological sources, while non-biological are mentioned as non-biological complex drugs (NBCD), where the active principle consists of different synthetic structures (Tinkle et al., 2014; Hussaarts et al., 2017; Mhlebach, 2018).

In order to introduce a generic medicine in the pharmaceutical market, several parameters need to be demonstrated, as described elsewhere. For both biological and non-biological nanomedicines, a more complete analysis is needed, that goes beyond the plasma concentration measurement. A stepwise comparison of bioequivalence, safety, quality, and efficacy, in relation to the reference medicine, which leads to therapeutic equivalence and consequently interchangeability, is required (Astier et al., 2017).

For regulatory purposes, the biological nanomedicines are under the framework set by European Medicines Agency (EMA) This framework is a regulatory approach for the follow-on biological nanomedicines, which include recommendations for comparative quality, non-clinical and clinical studies (Mhlebach et al., 2015).

The regulatory approach for the follow-on NBCDs is still ongoing. The industry frequently asks for scientific advice and a case-by-case is analyzed by the EMA. Sometimes, the biological framework is the base for the regulation of the NBCDs, because they have some features in common: the structure cannot be fully characterized and the in vivo activity is dependent on the manufacturing process and, consequently, the comparability needs to establish throughout the life cycle, as happens to the biological nanomedicines. Moreover, for some NBCDs groups like liposomes, glatiramoids, and iron carbohydrate complexes, there are draft regulatory approaches, which help the regulatory bodies to create a final framework for the different NBCDs families (Schellekens et al., 2014).

EMA already released some reflection papers regarding nanomedicines with surface coating, intravenous liposomal, block copolymer micelle, and iron-based nano-colloidal nanomedicines (European Medicines Agency, 2011, 2013a,b,c). These papers are applied to both new nanomedicines and nanosimilars, in order to provide guidance to developers in the preparation of marketing authorization applications.The principles outlined in these documents address general issues regarding the complexity of the nanosystems and provide basic information for the pharmaceutical development, non-clinical and early clinical studies of block-copolymer micelle, liposome-like, and nanoparticle iron (NPI) medicinal products drug products created to affect pharmacokinetic, stability and distribution of incorporated or conjugated active substances in vivo. Important factors related to the exact nature of the particle characteristics, that can influence the kinetic parameters and consequently the toxicity, such as the physicochemical nature of the coating, the respective uniformity and stability (both in terms of attachment and susceptibility to degradation), the bio-distribution of the product and its intracellular fate are specifically detailed.

After a nanomedicine obtains the marketing authorization, there is a long way up to the introduction of the nanomedicine in the clinical practice in all EU countries. This occurs because the pricing and reimbursement decisions for medicines are taken at an individual level in each member state of the EU (Sainz et al., 2015).

In order to provide patient access to medicines, the multidisciplinary process of Health Technology Assessment (HTA), is being developed. Through HTA, information about medicine safety, effectiveness and cost-effectiveness is generated so as support health and political decision-makers (Sainz et al., 2015).

Currently, pharmacoeconomics studies assume a crucial role previous to the commercialization of nanomedicines. They assess both the social and economic importance through the added therapeutic value, using indicators such as quality-adjusted life expectancy years and hospitalization (Sainz et al., 2015).

The EUnetHTA was created to harmonize and enhance the entry of new medicines in the clinical practice, so as to provide patients with novel medicines. The main goal of EUnetHTA is to develop decisive, appropriate and transparent information to help the HTAs in EU countries.

Currently, EUnetHTA is developing the Joint Action 3 until 2020 and the main aim is to define and implement a sustainable model for the scientific and technical cooperation on Health Technology Assessment (HTA) in Europe.

The reformulation of pre-existing medicines or the development of new ones has been largely boosted by the increasing research in nanomedicine. Changes in toxicity, solubility and bioavailability profile are some of the modifications that nanotechnology introduces in medicines.

In the last decades, we have assisted to the translation of several applications of nanomedicine in the clinical practice, ranging from medical devices to nanopharmaceuticals. However, there is still a long way toward the complete regulation of nanomedicines, from the creation of harmonized definitions in all Europe to the development of protocols for the characterization, evaluation and process control of nanomedicines. A universally accepted definition for nanomedicines still does not exist, and may even not be feasible at all or useful. The medicinal products span a large range in terms of type and structure, and have been used in a multitude of indications for acute and chronic diseases. Also, ongoing research is rapidly leading to the emergence of more sophisticated nanostructured designs that requires careful understanding of pharmacokinetic and pharmacodynamic properties of nanomedicines, determined by the respective chemical composition and physicochemical properties, which thus poses additional challenges in regulatory terms.

EMA has recognized the importance of the establishment of recommendations for nanomedicines to guide their development and approval. In turn, the nanotechnology methods for the development of nanomedicines bring new challenges for the current regulatory framework used.

EMA have already created an expert group on nanomedicines, gathering members from academia and European regulatory network. The main goal of this group is to provide scientific information about nanomedicines in order to develop or review guidelines. The expert group also helps EMA in discussions with international partners about nanomedicines. For the developer an early advice provided from the regulators for the required data is highly recommended.

The equivalence of complex drug products is another topic that brings scientific and regulatory challenges. Evidence for sufficient similarity must be gathered using a careful stepwise, hopefully consensual, procedure. In the coming years, through all the innovation in science and technology, it is expected an increasingly higher number of medicines based on nanotechnology. For a common understanding among different stakeholders the development of guidelines for the development and evaluation of nanomedicines is mandatory, in order to approve new and innovative nanomedicines in the pharmaceutical market. This process must be also carried out along with interagency harmonization efforts, to support rational decisions pertaining to scientific and regulatory aspects, financing and market access.

CV conceived the original idea and directed the work. SS took the lead in writing the manuscript. AP and JS helped supervise the manuscript. All authors provided critical feedback and helped shape the research, analysis and revision of the manuscript.

This work was financially supported by Fundao para a Cincia e a Tecnologia (FCT) through the Research Project POCI-01-0145-FEDER-016648, the project PEst-UID/NEU/04539/2013, and COMPETE (Ref. POCI-01-0145-FEDER-007440). The Coimbra Chemistry Center is supported by FCT, through the Project PEst-OE/QUI/UI0313/2014 and POCI-01-0145-FEDER-007630. This paper was also supported by the project UID/QUI/50006/2013LAQV/REQUIMTE.

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Adabi, M., Naghibzadeh, M., Adabi, M., Zarrinfard, M. A., Esnaashari, S., Seifalian, A. M., et al. (2017). Biocompatibility and nanostructured materials: applications in nanomedicine. Artif. Cells Nanomed. Biotechnol. 45, 833842. doi: 10.1080/21691401.2016.1178134

PubMed Abstract | CrossRef Full Text | Google Scholar

Agrahari, V., and Hiremath, P. (2017). Challenges associated and approaches for successful translation of nanomedicines into commercial products. Nanomedicine 12, 819823. doi: 10.2217/nnm-2017-0039

PubMed Abstract | CrossRef Full Text | Google Scholar

Albanese, A., Tang, P. S., and Chan, W. C. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng.14, 116. doi: 10.1146/annurev-bioeng-071811-150124

See more here:
Frontiers | Nanomedicine: Principles, Properties, and ...

Read More...

Nanotechnology In Medicine: Huge Potential, But What Are …

Wednesday, December 22nd, 2021

Nanotechnology, the manipulation of matter at the atomic and molecular scale to create materials with remarkably varied and new properties, is a rapidly expanding area of research with huge potential in many sectors, ranging from healthcare to construction and electronics. In medicine, it promises to revolutionize drug delivery, gene therapy, diagnostics, and many areas of research, development and clinical application.

This article does not attempt to cover the whole field, but offers, by means of some examples, a few insights into how nanotechnology has the potential to change medicine, both in the research lab and clinically, while touching on some of the challenges and concerns that it raises.

The prefix nano stems from the ancient Greek for dwarf. In science it means one billionth (10 to the minus 9) of something, thus a nanometer (nm) is is one billionth of a meter, or 0.000000001 meters. A nanometer is about three to five atoms wide, or some 40,000 times smaller than the thickness of human hair. A virus is typically 100 nm in size.

The ability to manipulate structures and properties at the nanoscale in medicine is like having a sub-microscopic lab bench on which you can handle cell components, viruses or pieces of DNA, using a range of tiny tools, robots and tubes.

Therapies that involve the manipulation of individual genes, or the molecular pathways that influence their expression, are increasingly being investigated as an option for treating diseases. One highly sought goal in this field is the ability to tailor treatments according to the genetic make-up of individual patients.

This creates a need for tools that help scientists experiment and develop such treatments.

Imagine, for example, being able to stretch out a section of DNA like a strand of spaghetti, so you can examine or operate on it, or building nanorobots that can walk and carry out repairs inside cell components. Nanotechnology is bringing that scientific dream closer to reality.

For instance, scientists at the Australian National University have managed to attach coated latex beads to the ends of modified DNA, and then using an optical trap comprising a focused beam of light to hold the beads in place, they have stretched out the DNA strand in order to study the interactions of specific binding proteins.

Meanwhile chemists at New York University (NYU) have created a nanoscale robot from DNA fragments that walks on two legs just 10 nm long. In a 2004 paper published in the journal Nano Letters, they describe how their nanowalker, with the help of psoralen molecules attached to the ends of its feet, takes its first baby steps: two forward and two back.

One of the researchers, Ned Seeman, said he envisages it will be possible to create a molecule-scale production line, where you move a molecule along till the right location is reached, and a nanobot does a bit chemisty on it, rather like spot-welding on a car assembly line. Seemans lab at NYU is also looking to use DNA nanotechnology to make a biochip computer, and to find out how biological molecules crystallize, an area that is currently fraught with challenges.

The work that Seeman and colleagues are doing is a good example of biomimetics, where with nanotechnology they can imitate some of the biological processes in nature, such as the behavior of DNA, to engineer new methods and perhaps even improve them.

DNA-based nanobots are also being created to target cancer cells. For instance, researchers at Harvard Medical School in the US reported recently in Science how they made an origami nanorobot out of DNA to transport a molecular payload. The barrel-shaped nanobot can carry molecules containing instructions that make cells behave in a particular way. In their study, the team successfully demonstrates how it delivered molecules that trigger cell suicide in leukemia and lymphoma cells.

Nanobots made from other materials are also in development. For instance, gold is the material scientists at Northwestern University use to make nanostars, simple, specialized, star-shaped nanoparticles that can href=http://www.medicalnewstoday.com/articles/243856.php>deliver drugs directly to the nuclei of cancer cells. In a recent paper in the journal ACS Nano, they describe how drug-loaded nanostars behave like tiny hitchhikers, that after being attracted to an over-expressed protein on the surface of human cervical and ovarian cancer cells, deposit their payload right into the nuclei of those cells.

The researchers found giving their nanobot the shape of a star helped to overcome one of the challenges of using nanoparticles to deliver drugs: how to release the drugs precisely. They say the shape helps to concentrate the light pulses used to release the drugs precisely at the points of the star.

Scientists are discovering that protein-based drugs are very useful because they can be programmed to deliver specific signals to cells. But the problem with conventional delivery of such drugs is that the body breaks most of them down before they reach their destination.

But what if it were possible to produce such drugs in situ, right at the target site? Well, in a recent issue of Nano Letters, researchers at Massachusetts Institute of Technology (MIT) in the US show how it may be possible to do just that. In their proof of principle study, they demonstrate the feasibility of self-assembling nanofactories that make protein compounds, on demand, at target sites. So far they have tested the idea in mice, by creating nanoparticles programmed to produce either green fluorescent protein (GFP) or luciferase exposed to UV light.

The MIT team came up with the idea while trying to find a way to attack metastatic tumors, those that grow from cancer cells that have migrated from the original site to other parts of the body. Over 90% of cancer deaths are due to metastatic cancer. They are now working on nanoparticles that can synthesize potential cancer drugs, and also on other ways to switch them on.

Nanofibers are fibers with diameters of less than 1,000 nm. Medical applications include special materials for wound dressings and surgical textiles, materials used in implants, tissue engineering and artificial organ components.

Nanofibers made of carbon also hold promise for medical imaging and precise scientific measurement tools. But there are huge challenges to overcome, one of the main ones being how to make them consistently of the correct size. Historically, this has been costly and time-consuming.

But last year, researchers from North Carolina State University, revealed how they had developed a new method for making carbon nanofibers of specific sizes. Writing in ACS Applied Materials & Interfaces in March 2011, they describe how they managed to grow carbon nanofibers uniform in diameter, by using nickel nanoparticles coated with a shell made of ligands, small organic molecules with functional parts that bond directly to metals.

Nickel nanoparticles are particularly interesting because at high temperatures they help grow carbon nanofibers. The researchers also found there was another benefit in using these nanoparticles, they could define where the nanofibers grew and by correct placement of the nanoparticles they could grow the nanofibers in a desired specific pattern: an important feature for useful nanoscale materials.

Lead is another substance that is finding use as a nanofiber, so much so that neurosurgeon-to-be Matthew MacEwan, who is studying at Washington University School of Medicine in St. Louis, started his own nanomedicine company aimed at revolutionizing the surgical mesh that is used in operating theatres worldwide.

The lead product is a synthetic polymer comprising individual strands of nanofibers, and was developed to repair brain and spinal cord injuries, but MacEwan thinks it could also be used to mend hernias, fistulas and other injuries.

Currently, the surgical meshes used to repair the protective membrane that covers the brain and spinal cord are made of thick and stiff material, which is difficult to work with. The lead nanofiber mesh is thinner, more flexible and more likely to integrate with the bodys own tissues, says MacEwan. Every thread of the nanofiber mesh is thousands of times smaller than the diameter of a single cell. The idea is to use the nanofiber material not only to make operations easier for surgeons to carry out, but also so there are fewer post-op complications for patients, because it breaks down naturally over time.

Researchers at the Polytechnic Institute of New York University (NYU-Poly) have recently demonstrated a new way to make nanofibers out of proteins. Writing recently in the journal Advanced Functional Materials, the researchers say they came across their finding almost by chance: they were studying certain cylinder-shaped proteins derived from cartilage, when they noticed that in high concentrations, some of the proteins spontaneously came together and self-assembled into nanofibers.

They carried out further experiments, such as adding metal-recognizing amino acids and different metals, and found they could control fiber formation, alter its shape, and how it bound to small molecules. For instance, adding nickel transformed the fibers into clumped mats, which could be used to trigger the release of an attached drug molecule.

The researchers hope this new method will greatly improve the delivery of drugs to treat cancer, heart disorders and Alzheimers disease. They can also see applications in regeneration of human tissue, bone and cartilage, and even as a way to develop tinier and more powerful microprocessors for use in computers and consumer electronics.

Recent years have seen an explosion in the number of studies showing the variety of medical applications of nanotechnology and nanomaterials. In this article we have glimpsed just a small cross-section of this vast field. However, across the range, there exist considerable challenges, the greatest of which appear to be how to scale up production of materials and tools, and how to bring down costs and timescales.

But another challenge is how to quickly secure public confidence that this rapidly expanding technology is safe. And so far, it is not clear whether that is being done.

There are those who suggest concerns about nanotechnology may be over-exaggerated. They point to the fact that just because a material is nanosized, it does not mean it is dangerous, indeed nanoparticles have been around since the Earth was born, occurring naturally in volcanic ash and sea-spray, for example. As byproducts of human activity, they have been present since the Stone Age, in smoke and soot.

Of attempts to investigate the safety of nanomaterials, the National Cancer Institute in the US says there are so many nanoparticles naturally present in the environment that they are often at order-of-magnitude higher levels than the engineered particles being evaluated. In many respects, they point out, most engineered nanoparticles are far less toxic than household cleaning products, insecticides used on family pets, and over-the-counter dandruff remedies, and that for instance, in their use as carriers of chemotherapeutics in cancer treatment, they are much less toxic than the drugs they carry.

It is perhaps more in the food sector that we have seen some of the greatest expansion of nanomaterials on a commercial level. Although the number of foods that contain nanomaterials is still small, it appears set to change over the next few years as the technology develops. Nanomaterials are already used to lower levels of fat and sugar without altering taste, or to improve packaging to keep food fresher for longer, or to tell consumers if the food is spoiled. They are also being used to increase the bioavailablity of nutrients (for instance in food supplements).

But, there are also concerned parties, who highlight that while the pace of research quickens, and the market for nanomaterials expands, it appears not enough is being done to discover their toxicological consequences.

This was the view of a science and technology committee of the House of Lords of the British Parliament, who in a recent report on nanotechnology and food, raise several concerns about nanomaterials and human health, particularly the risk posed by ingested nanomaterials.

For instance, one area that concerns the committee is the size and exceptional mobility of nanoparticles: they are small enough, if ingested, to penetrate cell membranes of the lining of the gut, with the potential to access the brain and other parts of the body, and even inside the nuclei of cells.

Another is the solubility and persistence of nanomaterials. What happens, for instance, to insoluble nanoparticles? If they cant be broken down and digested or degraded, is there a danger they will accumulate and damage organs? Nanomaterials comprising inorganic metal oxides and metals are thought to be the ones most likely to pose a risk in this area.

Also, because of their high surface area to mass ratio, nanoparticles are highly reactive, and may for instance, trigger as yet unknown chemical reactions, or by bonding with toxins, allow them to enter cells that they would otherwise have no access to.

For instance, with their large surface area, reactivity and electrical charge, nanomaterials create the conditions for what is described as particle aggregation due to physical forces and particle agglomoration due to chemical forces, so that individual nanoparticles come together to form larger ones. This may lead not only to dramatically larger particles, for instance in the gut and inside cells, but could also result in disaggregation of clumps of nanoparticles, which could radically alter their physicochemical properties and chemical reactivity.

Such reversible phenomena add to the difficulty in understanding the behaviour and toxicology of nanomaterials, says the committee, whose overall conclusion is that neither Government nor the Research Councils are giving enough priority to researching the safety of nanotechnology, especially considering the timescale within which products containing nanomaterials may be developed.

They recommend much more research is needed to ensure that regulatory agencies can effectively assess the safety of products before they are allowed onto the market.

It would appear, therefore, whether actual or perceived, the potential risk that nanotechnology poses to human health must be investigated, and be seen to be investigated. Most nanomaterials, as the NCI suggests, will likely prove to be harmless.

But when a technology advances rapidly, knowledge and communication about its safety needs to keep pace in order for it to benefit, especially if it is also to secure public confidence. We only have to look at what happened, and to some extent is still happening, with genetically modified food to see how that can go badly wrong.

Written by Catharine Paddock PhD

Excerpt from:
Nanotechnology In Medicine: Huge Potential, But What Are ...

Read More...

Verseon Praised for Disruptive Approach to Physics- and AI-Based Drug Discovery – Digital Journal

Wednesday, December 22nd, 2021

Verseons groundbreaking drug discovery platform was featured in Nano Magazines article on whether AI can fundamentally change drug discovery.

Fremont, United States December 21, 2021

Fremont, CA Verseons groundbreaking drug discovery platform was featured in Nano Magazines article on whether AI can fundamentally change drug discovery.

Nano Magazine concluded that although Verseon has built and used its own AI tools for parts of its drug development long before AI was a trendy buzzword, it has avoided the AI hype-fest. With its unique approach that combines physics-based molecular modeling and AI, Verseons platform changes how completely new drugs can be discovered. Whereas other players in AI-driven pharmaceutical development can only find small variations on existing compounds, Verseons platform drives pharmaceutical innovation with rapid, systematic development of multiple previously unexplored, chemically diverse candidates for each of its drug programs, which Nano Magazine called a feat unheard of in the pharmaceutical industry.

Pfizers former SVP of R&D Strategy and Verseon advisor Robert Karr said, Everyone else has merely dabbled in the field of systematic drug discovery. Verseons disruptive platform changes how drugs can be discovered and developed, and the company is poised to make a dramatic impact on modern medicine.

Verseon currently has 14 drug candidates spanning 7 programs in the areas of cardiovascular disease, diabetes, cancer, and liver disease in various stages of development and clinical testing.

Verseons anticoagulant program is currently in Phase 1 clinical trials. This drug (VE-1902) promises to change the standard of care for tens of millions of patients at risk for stroke and heart attack. Ideal treatment for these patients would be long-term combination therapy with antiplatelet and anticoagulant drugs, but this treatment protocol poses significant risk of major bleeding events. Verseons Precision Oral Anticoagulants (PROACs) promise to significantly reduce the risk of major bleeding and would make long-term combination therapy a safe and viable treatment.

UCL Professor of Cardiology John Deanfield remarked: Verseons platelet-sparing anticoagulants with their unique mode of action and low bleeding risk look very promising. Their drugs represent an exciting precision medicine opportunity for the treatment of a large population of cardiovascular disease patients.

About Verseon

To advance global health, Verseon International Corporation (www.verseon.com) has created a better, more scalable process for designing and developing new drugs addressing currently untreatable or poorly treated conditions. The companys drug development platform incorporates fundamental advancements in molecular modeling, directed synthesis, integrated translational research and advanced AI to develop drug compounds that have never before been synthesizedand are virtually impossible to find using conventional methods. Verseon is a clinical-stage company with a growing pipeline that currently includes seven drug programs in the areas of anticoagulation, diabetic retinopathy, hereditary angioedema, oncology, and metabolic disorders.

Contact Info:Name: Walter JonesEmail: Send EmailOrganization: VerseonAddress: 47000 Warm Springs Boulevard, Fremont, CA 94539, United StatesWebsite: https://www.verseon.com

Release ID: 89057403

COMTEX_399338900/2773/2021-12-21T05:54:13

Here is the original post:
Verseon Praised for Disruptive Approach to Physics- and AI-Based Drug Discovery - Digital Journal

Read More...

Nanotech opens up job options in variety of industries – BL on Campus

Tuesday, August 17th, 2021

The word nano refers to the length scale (one nanometre is one-billionth of a metre) that is one thousand times smaller than the micro scale, the scale that was traditionally associated with the electronics industry. Viruses and DNA are examples of natural objects on the nano scale; in contrast a human cell can appear enormous.

The term nanotechnology refers to the engineering, measurement and understanding of nano-scaled materials and devices. Manipulating matter atom by atom and creating features on the atomic or nano scale is now a proven technology and there is an ever growing catalogue that utilises nanotechnology.

Nanotechnology represents an entire scientific and engineering field, broadly within Materials Science and Engineering, and not just a single product or even group of products. As a consequence of this there are several different types of nanotechnology, and many applications associated with each type. There are also several other types of nano-sized objects which exist in our environment, both natural and unnatural such as films and coatings, embedded nanotechnology, biologically natural, biological nanotechnology, natural particles, manufactured particles, nano-electrical mechanical systems.

Building on current nanotechnology-enabled applications in areas as diverse as consumer electronics, medicine, energy, water purification, aerospace, automotive, infrastructure, sporting goods, textiles, and agriculture, the nanotechnology research underway today will enable entirely new capabilities and products. Nanotechnology also underpins key industries of the future. For example, new architecture and paradigms exploiting nanotechnology are providing the foundation for artificial intelligence (AI), quantum information science (QIS), next-generation wireless communications, and advanced manufacturing.

While advances in modern electronics have long been at the nanoscale, new nanomaterials and designs will ensure the continued strength of the semiconductor industry, which powers computing, e-commerce, and national security. Nanotechnology also enables the rapid genomic sequencing and sensing required to advance medicine and biotechnology. Nanotechnology R&D has enabled early detection of emerging diseases and will lead to the treatments of the future. Past investments in nanotechnology research and development have provided a foundation to support the response to the Covid-19 pandemic. Nanotechnology-enabled applications include vaccines, sensors, masks, filters, and antimicrobial coatings.

Examples of nanotechnology innovations are: a highly sensitive wearable gas sensor; nanoparticles absorbed by plants to deliver nutrients; durable, conductive yarns made with MXene; electrodes that incorporate nanoparticles and enable the conversion of sunlight to hydrogen fuel; nano-engineered pores in a membrane for water filtration; drug-loaded nano particles carried by red blood cells; and the first programmable memristor computer, enabling low-power AI applications. Nanotechnology advances are impacting a variety of other sectors including consumer electronics, aerospace, automotive, infrastructure, sporting goods, and agriculture.

Research Infrastructure

The research infrastructure, including physical and cyber resources as well as education and workforce development efforts, is critical to support the entire funding ecosystem (National Nanotechnology Initiative), and agencies will continue to invest in these important areas. Agencies use a wide variety of mechanisms to support the research infrastructure, including Centre grants, instrumentation development or acquisition programmes, training grants, fellowships, and collaborative programmes that support workforce development.

Career opportunities

The scope and application of nanotechnology is tremendous. Indian engineering and science graduates are increasingly opting for nanotechnology. Right from medicine, pharmaceuticals, information technology, electronic, opto-electronics, energy, chemicals, advanced materials to textiles, nanotechnology has its applications. Nanotechnology provides job opportunities in health industry; pharmaceutical industry; agriculture industry; environment industry; food and beverage industry as well in government and private research institutes.

Skills

One needs to have a diehard passion for research, especially to find out new structures in the field of nanotechnology. It is important to have sound analytical skills, along with a scientific bent of mind. Analysing and interpreting skills are a necessity in this field and also to accept failures in experiments as a challenge. Other necessary skills which are required are: Good mathematical and computer programming skills; adequate laboratory training for expert handling of advanced equipment; ability to learn and adopt new techniques; have a systematic way of working; a natural propensity for research work; keep track of the latest scientific news, books and research magazines; a good background of physics, chemistry, medicine, electronics and biotechnology

Job Prospects

A lot of job opportunities and a research career exists in the areas of nano-device, nano-packaging, nano-wires, nano-tools, nano-biotechnology, nano-crystalline materials, nano-photonics and nano-porous materials to name a few. It is estimated that around three million nanotechnology skilled workforce will be required worldwide by 2021. Many government institutes and Indian industries have focused on nano-materials. It is also estimated nano-technology will create another five million jobs worldwide in support fields and industries. A professional in the field of nanotechnology can easily find lucrative jobs in most of fields.

Since nanotechnology is a special branch that essentially combines physics, chemistry, biology, engineering and technology, it is opening up job prospects for students specialising in these subjects. The career opportunities in the fields of nanoscale science and technology are expanding rapidly, as these fields have increasing impact on many aspects of our daily lives.

A professional in the field of nanotechnology can easily find viable career opportunities in various sectors. They can work in the field of nano-medicine, bio-informatics, stem cell development, pharmaceutical companies, and nano toxicology and nano power generating sectors.

The major areas for the development of applications involving nanotechnology are medical and pharmaceuticals, information technology, electronics, magnetics and opto-electronics, energy chemicals, advanced materials and textiles.

Nanotechnology has varied applications in drug delivery to treat cancer tumours (without using radiotherapy and chemotherapy), solar energy, batteries, display technologies, opto-electronic devices, semiconductor devices, biosensors, luminous paints, and many others. A major challenge in this emerging field is the training for a new generation of skilled professionals.

An abundance of job opportunities awaits candidates with an MTech in Nanotechnology from India and abroad. Indian industry has focused on nanomaterials and many scientific institutions have started research and development activities in the field. The CSIR has set up 38 laboratories, across the country, to carry out research and development work in this field. Those with a PhD in Nanotechnology will have vibrant opportunities in the R&D sectors.

It is a perfect career for those who have a scientific bent of mind and a passion for studying and experimenting with the minutest molecules. Students with a science and engineering background and even mathematics with a physics background can pursue Nanotechnology as a career. Candidates with MTech in Nanotechnology are in great demand both in India and abroad.

(The writer is Associate Professor, Department of Physics and Nanotechnology, SRM University)

Read this article:
Nanotech opens up job options in variety of industries - BL on Campus

Read More...

Homeopathic remedies that cattle farmers can use – Thats Farming

Tuesday, August 17th, 2021

Dr Chris Aukland BVSc VetMFHom MRCVS, Head of Livestock Health Programmes, Whole Health Agriculture, discusses homeopathy.

Chris leads the farmer education and support team at Whole Health Agriculture (WHAg). They offer training and support to help farmers develop skills to create resilient natural health and longevity in their livestock.

Chris has over 30 years experience in holistic veterinary practice and combines his work at WHAg with small animal surgery, ensuring he keeps up with the latest advances in alternative and conventional veterinary practice.

Dr CA: Homeopathy is an established system of medicine that supports the individuals own healing process, stimulating a state of dynamic homeostasis (or optimum balance), thereby minimising susceptibility to disease and fostering good health.

Homeopathy works by reminding the bodys natural healing mechanisms of what needs to be done to get back into a state of balance.

Often termed nano-medicine, homeopathy uses ultra-dilute substances to individualise treatment.

The symptoms presented by a sick animal or person are matched to the symptom picture of various remedies, choosing the remedy which is the closest match.

For example, caffeine can make us more alert. However, too much caffeine in some people can provoke sleeplessness, restlessness, anxiety and inability to focus.

Working on the homeopathic principle of treating like-with-like for somebody experiencing these symptoms perhaps due to worry or stress.

The best match might be the homeopathic remedy Coffea (produced from coffee), which has a symptom picture of sleeplessness, anxiety, restlessness and an inability to focus.

We have seen increasing demand for training and ongoing support from farmers, particularly over the last five years.

Our training webinars sell out. We are close to launching a membership and online learning platform developed to meet needs and support farmers no matter where they are in the world.

There appears to have been a quiet underground movement for some years. Suddenly, it is becoming more mainstream. Interest has always spread through word of mouth farmers trust farmers; if they say something is working, it creates demand.

A question to which we also wanted to know the answer!

We recently conducted a survey into the use of CAM (Complementary & Alternative Methods /Products/Medicines) among farmers to find out what they were using and why.

221 farmers, mainly from UK and Ireland, responded, the majority, 88%, of which used homeopathy. We looked at (among other things) specific markers based on figures that farmers are required to record.

Of all farmers who responded, 66% reported lower vet and medicine costs, and 65% responded that their use of CAMs has resulted in or contributed to zero, low or reduced antibiotic usage.

40% reported zero, low or reduced wormer usage and 36% reported reduced frequency or severity of lameness. One third reported increased financial profitability of the farm.

Of the 70 commercial dairy farmers who responded:

Also highly noteworthy is that 69% of dairy farmers reported fewer cases of milk withdrawal, and over half noted less frequent/severe mastitis and lower cell counts.

52% of dairy farmers have seen increased financial profitability of the farm.

Homeopathy is particularly useful because there is no risk of:a) Toxic side-effects,b) Drug residues, so no withdrawal period,c) Can help farmers reduce reliance on antibiotics

It can mitigate stress in routine events where conventional veterinary options have little to offer; events that we take for granted, such as weaning, tail ringing, castration, routine examination, separation etc. which can result in loss of condition or production.

A sick animal is an expensive animal. It can also improve herd vitality so that they are more resistant to infectious disease, parasites, etc. and animals thrive better.

Farmers also use homeopathy for infections. The following slide is taken from our survey and shows responses to the question: What conditions have you treated successfully without antibiotics? The dark blue bar shows the responses for homeopathy.

NB: The use of homeopathy should NEVER replace the vet. Our advice is always based on a holistic traffic-light triage. For any problem:

Look at the RED level first and for any serious condition, contact your vet as usual.

Then look at the GREEN level; this is your husbandry level. Can you mitigate any potential maintaining causes such as draughty barns, a change in feed, stress to the animal?

Finally, you can address the AMBER level and look at homeopathic and other natural medicine options.

In the UK, it is illegal to treat TB, which is a notifiable disease. As such, homeopathy should never be used to treat TB.

Always be aware of the local regulations. For any farm, we want all livestock to be as healthy and naturally resilient as possible.

Used well, homeopathy can improve the overall health of the farm, which will mean the farmer experiences less disease generally. A healthier, more vibrant cow is much less likely to be susceptible to TB.

Homeopathy has the potential, applied correctly, to not only treat symptoms but also to increase resilience and reduce susceptibility to disease.

TF: What should they take into account before they do so?

Seek advice and support. Do your research. Speak to other farmers using it with good results about how they integrate it into their health planning.

It is important also to get appropriate veterinary support. Contact the Irish Society of Veterinary Homeopaths.

In the UK, there are no restrictions on farmers sourcing and using remedies in the UK. There are various useful remedy kits available. In Ireland, remedies must be sourced via a homeopathic vet.

There are hundreds of homeopathic remedies but some key ones that farmers use all the time are:

Farmers tend to use liquid remedies and spray bottles for ease of administration to individuals/groups or put remedies into the troughs if dosing the whole herd/flock.

This is difficult to quantify as every farm is different, and one farm may measure success by a different set of criteria than others.

However, our survey showed that 66% of farmers/71% of dairy farmers reported lower vet and medicine costs.

Sally Wood, who is a conventional turned organic farmer in Wales, told us:

I think the mainstream assumption is always that if you use homeopathy to reduce antibiotics, your welfare will go down and your cull rate will go up, but ours proved the opposite, and our herd is so healthy that we can sell our surplus stock.

When people ask me whether homeopathy works, I tell them that our vet and med bill has halved.

Interest appears to be growing. A group of homeopathic vets and farmers have done training together via NOTS, who all support one another in their learning.

Pat Ahernes Homeopathic Dairy Farm on Facebook is great for insight into how it can be used on the farm.

Anyone can start with a few simple remedies. (Obviously, farmers need to observe the regulations in their country and stay legal!)

We know some farmers who ONLY use the remedies Aconite and Arnica and report success.

Training and support are important for best results and to transform the health of a herd/flock. This is something that WHAg is dedicated to providing, including piloting a scheme to train farmers to provide coaching to other farmers.

This is not to replace the vet but to help them integrate strategies to foster health and resilience.

I think it is inevitable. People generally are taking a more holistic view on health.

Overall, we are more planet conscious. Furthermore, farmers are exploring less toxic health options such as fermented foods, herbs and homeopathy.

Also, Antimicrobial Resistance (AMR) is not going away; farmers are under a lot of pressure to reduce antibiotics.

In the UK, we see buyers and supermarkets leading the trend for reduction in antibiotics, and some organic milk buyers expect members to achieve PWAB status (Produced Without Antibiotics).

In conclusion, homeopathy and other non-toxic inputs such as ferments, herbs etc., offer a viable alternative for farmers.

For more information on WHAgs new learning and membership platform, and to sign up to our newsletter: see http://www.wholehealthag.org

See Facebook The Farmacy at WHAg

To share your story with Thats Farming, email catherina@thatsfarming.com

View original post here:
Homeopathic remedies that cattle farmers can use - Thats Farming

Read More...

Healthcare Nanotechnology (Nanomedicine) Market Trend, Technology Innovations and Growth Prediction 2021-2027 The Manomet Current – The Manomet…

Tuesday, August 17th, 2021

The research analysis of Healthcare Nanotechnology (Nanomedicine) market offers significant information regarding the major trends that define this business landscape with regards to the regional outlook and competitive scenario. The report also highlights the limitations & challenges that could hamper the industry remuneration alongside the key opportunities that will aid in business expansion. Moreover, the document provides crucial insights regarding the effect of COVID-19 pandemic on the overall market outlook.

This report contains market size and forecasts of Healthcare Nanotechnology (Nanomedicine) in Global, including the following market information:Global Healthcare Nanotechnology (Nanomedicine) Market Revenue, 2016-2021, 2022-2027, ($ millions)Global top five companies in 2020 (%)

The global Healthcare Nanotechnology (Nanomedicine) market was valued at 200560 million in 2020 and is projected to reach US$ 285060 million by 2027, at a CAGR of 9.2% during the forecast period.Research has surveyed the Healthcare Nanotechnology (Nanomedicine) companies, and industry experts on this industry, involving the revenue, demand, product type, recent developments and plans, industry trends, drivers, challenges, obstacles, and potential risks.

Download PDF Sample of Healthcare Nanotechnology (Nanomedicine) Market report @ https://www.themarketinsights.com/request-sample/253870

Total Market by Segment:Global Healthcare Nanotechnology (Nanomedicine) Market, By Type, 2016-2021, 2022-2027 ($ millions)Global Healthcare Nanotechnology (Nanomedicine) Market Segment Percentages, By Type, 2020 (%)NanomedicineNano Medical DevicesNano DiagnosisOther

China Healthcare Nanotechnology (Nanomedicine) Market, By Application, 2016-2021, 2022-2027 ($ millions)China Healthcare Nanotechnology (Nanomedicine) Market Segment Percentages, By Application, 2020 (%)AnticancerCNS ProductAnti-infectiveOther

Global Healthcare Nanotechnology (Nanomedicine) Market, By Region and Country, 2016-2021, 2022-2027 ($ Millions)Global Healthcare Nanotechnology (Nanomedicine) Market Segment Percentages, By Region and Country, 2020 (%)North AmericaUSCanadaMexicoEuropeGermanyFranceU.K.ItalyRussiaNordic CountriesBeneluxRest of EuropeAsiaChinaJapanSouth KoreaSoutheast AsiaIndiaRest of AsiaSouth AmericaBrazilArgentinaRest of South AmericaMiddle East & AfricaTurkeyIsraelSaudi ArabiaUAERest of Middle East & Africa

Report Customization available as per requirements Request Customization@ https://www.themarketinsights.com/request-customization/253870

Competitor AnalysisThe report also provides analysis of leading market participants including:Total Healthcare Nanotechnology (Nanomedicine) Market Competitors Revenues in Global, by Players 2016-2021 (Estimated), ($ millions)Total Healthcare Nanotechnology (Nanomedicine) Market Competitors Revenues Share in Global, by Players 2020 (%)

Further, the report presents profiles of competitors in the market, including the following:AmgenTeva PharmaceuticalsAbbottUCBRocheCelgeneSanofiMerck & CoBiogenStrykerGilead SciencesPfizer3M CompanyJohnson & JohnsonSmitH& NephewLeadiant BiosciencesKyowa Hakko KirinTakedaIpsenEndo International

To Check Discount @ https://www.themarketinsights.com/check-discount/253870

Table of ContentChapter One: Introduction to Research & Analysis Reports

Chapter Two: Global Healthcare Nanotechnology (Nanomedicine) Overall Market Size

Chapter Three: Company Landscape

Chapter Four: Market Sights by Product

Chapter Five: Sights by Application

Chapter Six: Sights by Region

Chapter Seven: Players Profiles

Chapter Eight: Conclusion

Chapter Nine: Appendix9.1 Note

9.2 Examples of Clients

9.3 Disclaimer

List of Table and FigureTable 1. Healthcare Nanotechnology (Nanomedicine) Market Opportunities & Trends in Global Market

Table 2. Healthcare Nanotechnology (Nanomedicine) Market Drivers in Global Market

Table 3. Healthcare Nanotechnology (Nanomedicine) Market Restraints in Global Market

Table 4. Key Players of Healthcare Nanotechnology (Nanomedicine) in Global Market

Table 5. Top Healthcare Nanotechnology (Nanomedicine) Players in Global Market, Ranking by Revenue (2019)

Table 6. Global Healthcare Nanotechnology (Nanomedicine) Revenue by Companies, (US$, Mn), 2016-2021

Table 7. Global Healthcare Nanotechnology (Nanomedicine) Revenue Share by Companies, 2016-2021

Table 8. Global Companies Healthcare Nanotechnology (Nanomedicine) Product Type

Table 9. List of Global Tier 1 Healthcare Nanotechnology (Nanomedicine) Companies, Revenue (US$, Mn) in 2020 and Market Share

Table 10. List of Global Tier 2 and Tier 3 Healthcare Nanotechnology (Nanomedicine) Companies, Revenue (US$, Mn) in 2020 and Market Share

Table 11. By Type Global Healthcare Nanotechnology (Nanomedicine) Revenue, (US$, Mn), 2021 VS 2027

Table 12. By Type Healthcare Nanotechnology (Nanomedicine) Revenue in Global (US$, Mn), 2016-2021

Table 13. By Type Healthcare Nanotechnology (Nanomedicine) Revenue in Global (US$, Mn), 2022-2027

Table 14. By Application Global Healthcare Nanotechnology (Nanomedicine) Revenue, (US$, Mn), 2021 VS 2027

Table 15. By Application Healthcare Nanotechnology (Nanomedicine) Revenue in Global (US$, Mn), 2016-2021

Table 16. By Application Healthcare Nanotechnology (Nanomedicine) Revenue in Global (US$, Mn), 2022-2027

Table 17. By Region Global Healthcare Nanotechnology (Nanomedicine) Revenue, (US$, Mn), 2021 VS 2027

Table 18. By Region Global Healthcare Nanotechnology (Nanomedicine) Revenue (US$, Mn), 2016-2021

Table 19. By Region Global Healthcare Nanotechnology (Nanomedicine) Revenue (US$, Mn), 2022-2027

Table 20. By Country North America Healthcare Nanotechnology (Nanomedicine) Revenue, (US$, Mn), 2016-2021

Table 21. By Country North America Healthcare Nanotechnology (Nanomedicine) Revenue, (US$, Mn), 2022-2027

Table 22. By Country Europe Healthcare Nanotechnology (Nanomedicine) Revenue, (US$, Mn), 2016-2021

Table 23. By Country Europe Healthcare Nanotechnology (Nanomedicine) Revenue, (US$, Mn), 2022-2027

Table 24. By Region Asia Healthcare Nanotechnology (Nanomedicine) Revenue, (US$, Mn), 2016-2021 continued

About us.The Market Insights is a sister company to SI Market research and The Market Insights is into reselling. The Market Insights is a company that is creating cutting edge, futuristic and informative reports in many different areas. Some of the most common areas where we generate reports are industry reports, country reports, company reports and everything in between. At The Market Insights, we give our clients the best reports that can be made in the market. Our reports are not only about market statistics, but they also contain a lot of information about new and niche company profiles. The companies that feature in our reports are pre-eminent. The database of the reports on market research is constantly updated by us. This database contains a broad variety of reports from the cardinal industries. Our clients have direct access online to our databases. This is done to ensure that the client is always provided with what they need. Based on these needs, we at The Market Insights also include insights from experts about the global industries, market trends as well as the products in the market. These resources that we prepare are also available on our database for our esteemed clients to use. It is our duty at The Market Insights to ensure that our clients find success in their endeavors and we do everything that we can to help make that possible.

Direct ContactJessica Joyal+91-9284395731 | +91 9175986728sales@themarketinsights.com

See the rest here:
Healthcare Nanotechnology (Nanomedicine) Market Trend, Technology Innovations and Growth Prediction 2021-2027 The Manomet Current - The Manomet...

Read More...

Page 21234..10..»


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick