header logo image


Page 6«..5678..»

Archive for the ‘Nano medicine’ Category

How very tiny technologies are helping tackle the global pandemic – The Next Web

Tuesday, September 15th, 2020

The world-altering coronavirus behind the COVID-19 pandemic is thought to be just 60 nanometres to 120 nanometres in size. This is so mind-bogglingly small that you could fit more than 400 of these virus particles into the width of a single hair on your head. In fact, coronaviruses are so small that we cant see them with normal microscopes and require much fancier electron microscopes to study them. How can we battle a foe so minuscule that we cannot see it?

One solution is to fight tiny with tiny. Nanotechnology relates to any technology that is or contains components that are between 1nm and 100nm in size. Nanomedicine that takes advantage of such tiny technology is used in everything from plasters that contain anti-bacterial nanoparticles of silver to complex diagnostic machines.

Nanotechnology also has an impressive record against viruses and has been used since the late 1880s to separate and identify them. More recently, nanomedicine has been used to develop treatments for flu, Zika, and HIV. And now its joining the fight against the COVID-19 virus, SARS-CoV-2.

If youre suspected of having COVID, swabs from your throat or nose will be taken and tested by reverse transcription polymerase chain reaction (RT-PCR). This method checks if genetic material from the coronavirus is present in the sample.

Despite being highly accurate, the test can take up to three days to produce results, requires high-tech equipment only accessible in a lab, and can only tell if you have an active infection when the test is taken. But antibody tests, which check for the presence of coronavirus antibodies in your blood, can produce results immediately, wherever youre tested.

Antibodies are formed when your body fights back against a virus. They are tiny proteins that search for and destroy invaders by hunting for the chemical markers of germs, called antigens. This means antibody tests can not only tell if you have coronavirus but if you have previously had it.

[Read: Oxfords COVID-19 vaccine is starting to look like a winner]

Antibody tests use nanoparticles of materials such as gold to capture any antibodies from a blood sample. These then slowly travel along with a small piece of paper and stick to an antigen test line that only the coronavirus antibody will bond to. This makes the line visible and indicates that antibodies are present in the sample. These tests are more than 95% accurate and can give results within 15 minutes.

A major turning point in the battle against coronavirus will be the development of a successful vaccine. Vaccines often contain an inactive form of a virus that acts as an antigen to train your immune system and enable it to develop antibodies. That way, when it meets the real virus, your immune system is ready and able to resist infection.

But there are some limitations in that typical vaccine material can prematurely break down in the bloodstream and does not always reach the target location, reducing the efficiency of a vaccine. One solution is to enclose the vaccine material inside a nanoshell by a process called encapsulation.

These shells are made from fats called lipids and can be as thin as 5nm in diameter, which is 50,000 times thinner than an eggshell. The nanoshells protect the inner vaccine from breaking down and can also be decorated with molecules that target specific cells to make them more effective at delivering their cargo.

This can improve the immune response of elderly people to the vaccine. And critically, people typically need lower doses of these encapsulated vaccines to develop immunity, meaning you can more quickly produce enough to vaccinate an entire population.

Encapsulation can also improve viral treatments. A major contribution to the deaths of virus patients in intensive care is acute respiratory distress syndrome, which occurs when the immune system produces an excessive response. Encapsulated vaccines can target specific areas of the body to deliver immunosuppressive drugs directly to targeted organs and helping regulate our immune system response.

Its hard to exaggerate the importance of wearing face masks and washing your hands to reducing the spread of COVID-19. But typical face coverings can have trouble stopping the most penetrating particles of respiratory droplets, and many can only be used once.

New fabrics made from nanofibres 100nm thick and coated in titanium oxide can catch droplets smaller than 1,000nm and so they can be destroyed by ultraviolet (UV) radiation from sunlight. Masks, gloves, and other personal protective equipment (PPE) made from such fabrics can also be washed and reused, and are more breathable.

New fabrics made from coated nanofibres could produce better PPE. AnnaVel/Shutterstock

Another important nanomaterial is graphene, which is formed from a single honeycomb layer of carbon atoms and is 200 times stronger than steel but lighter than paper. Fabrics laced with graphene can capture viruses and block them from passing through. PPE containing graphene could be more puncture, flame, UV, and microbe-resistant while also being lightweight.

Graphene isnt reserved for fabrics either. Nanoparticles could be placed on surfaces in public places that might be particularly likely to facilitate the transmission of the virus.

These technologies are just some of the ways nanoscience is contributing to the battle against COVID-19. While there is no one answer to a global pandemic, these tiny technologies certainly have the potential to be an important part of the solution.

This article is republished from The Conversation by Josh Davies, PhD Candidate in Chemistry, Cardiff University under a Creative Commons license. Read the original article.

Read next: Schools are buying up surveillance technology to fight COVID-19

Read the original here:
How very tiny technologies are helping tackle the global pandemic - The Next Web

Read More...

AB8 Nano Sized Antibody – the Next Big Thing in Pandemic Prevention & Cure – Drew Reports News

Tuesday, September 15th, 2020

Highlights

This antibody component, which is 10 times smaller than a full-sized antibody, has been used to construct a drugknown as Ab8for potential use as a therapeutic and prophylactic against SARS-CoV-2.

The researchers report today in the journal Cellthat Ab8 is highly effective in preventing and treating SARS-CoV-2 infection in mice and hamsters.

Its tiny size not only increases its potential for diffusion in tissues to better neutralize the virus, but also makes it possible to administer the drug by alternative routes, including inhalation.

Importantly, it does not bind to human cellsa good sign that it wont have negative side-effects in people.

Ab8 was evaluated in conjunction with scientists from the University of North Carolina at Chapel Hill (UNC) and University of Texas Medical Branch (UTMB) at Galveston, as well as the University of British Columbia and University of Saskatchewan.

Ab8 not only has potential as therapy for the pandemic, but it also could be used to keep people from getting SARS-CoV-2 infections, said co-authorJohn Mellors, chief of the Division of Infectious Diseases at Pitt and UPMC. Antibodies of larger size have worked against other infectious diseases and have been well tolerated, giving us hope that it could be an effective treatment for patients with the disease and for protection of those who have never had the infection and are not immune. Xianglei Liu of Pitt is also co-lead author.

Wei Li, assistant director of Pitts Center for Therapeutic Antibodies and co-lead author of the research, sifted through antibody components and found multiple therapeutic antibody candidates in record time. (UPMC)

The tiny antibody component is the variable, heavy chain (VH) domain of an immunoglobulin, which is a type of antibody found in the blood. It was found by fishing in a pool of more than 100 billion potential candidates using the SARS-CoV-2 spike protein as bait.

Ab8 is created when the VH domain is fused to part of the immunoglobulin tail region, adding the immune functions of a full-size antibody without the bulk.

Like the Pitt and UPMC vaccine candidatePittCoVaccthat delivers an immunization through a spiky Band-Aid-like patch and overcomes the need for needles and refrigeration, the researchers are thinking outside the box when it comes to how Ab8 could be administered.

Its small size might allow it to be given as an inhaled drug or intradermally, rather than intravenously through an IV drip, like most monoclonal antibodies currently in development.

Abound Bio, a newly formed UPMC-backed company, has licensed Ab8 for worldwide development.

Dimiter Dimitrov, senior author of the Cell publication and director of PittsCenter for Antibody Therapeutics, was one of the first to discover neutralizing antibodies for the original SARS coronavirus in 2003. In the ensuing years, his team discovered potent antibodies against many other infectious diseases, including those caused by MERS-CoV, dengue, Hendra and Nipah viruses. The antibody against Hendra and Nipah viruses has been evaluated in humans and approved for clinical use on a compassionate basis in Australia.

Clinical trials are testing convalescent plasmawhich contains antibodies from people who already had the pandemicas a treatment for those battling the infection, but there isnt enough plasma for those who might need it, and it isnt proven to work.

Thats why Dimitrov and his team set out to isolate the gene for one or more antibodies that block the SARS-CoV-2 virus, which would allow for mass production.

The pandemic is a global challenge facing humanity, but biomedical science and human ingenuity are likely to overcome it, said Mellors, also Distinguished Professor of Medicine, who holds the Endowed Chair for Global Elimination of HIV and AIDS at Pitt. We hope that the antibodies we have discovered will contribute to that triumph.

This research was funded by National Institutes of Health grants, as well as UPMC; the Burroughs Wellcome Fund; a Canada Excellence Research Chair Award; Genome BC, Canada; Canadian Institutes for Health Research; and Canadian Foundation for Innovation.

To learn more about this research,watch a livestream on Sept. 15 at 2 p.m. ET.

Originally posted here:
AB8 Nano Sized Antibody - the Next Big Thing in Pandemic Prevention & Cure - Drew Reports News

Read More...

Nanomedicine – an overview | ScienceDirect Topics

Tuesday, August 25th, 2020

17.8 Commentary on Hurdles in Clinical Translation of Various Nanotechnology Products

Research regarding nanoconstructs development in the cancer treatment field has witnessed a noticeable increase after discovery of the EPR effect. However, the number of anticancer drugs that actually reached the market was considered extremely low, as out of 200,000 anticancer drugs only 15 made it by 2017 (Greish et al., 2018). The reasons why most of the nanomedicines cannot even reach the market are the hardship or inability to maintain detailed characterization of these products, unsuccessful manufacturing on large scales, and issues in their safety and efficacy. These hurdles require many developmental processes to overcome them including a precise understanding of every component and all the possible interactions between them, determination of key characteristics to understand in which possible ways they affect performance, and the extent of it. If key characteristics can be replicated under manufacturing conditions (scaling up), the efficacy of targeting at the site of action and their stability and sterility can be enhanced and/or assessed (Desai, 2012). The majority of these hurdles are summarized in Table 17.5 (Tinkle et al., 2014).

Table 17.5. Major Hurdles That Face the Commercialization of Nanomedicine

Lack of standard nano nomenclature: imprecise definition for nanomedicines

Currently used compounds/components for nanodrug synthesis often pose problems for large-scale good manufacturing (cGMP) production

Lack of precise control over nanoparticle manufacturing parameters and control assays

Lack of quality control: issues pertaining to separation of undesired nanostructures (byproducts, catalysts, starting materials) during manufacturing

Reproducibility issues: control of particle size distribution and mass

Scalability complexities: enhancing the production rate to increase yield

High fabrication costs

Lack of rational preclinical characterization strategies via multiple techniques

Biocompatibility, biodistribution and toxicity issues: lack of knowledge regarding the interaction between nanoparticles and biosurfaces/tissues

Consumer confidence: the publics general reluctance to embrace innovative medical technologies without clearer safety or regulatory guidelines

The relative scarcity of venture funds

Ethical issues and societal issues are hyped up by the media

Big Pharmas continued reluctance to seriously invest in nanomedicine

Patent review delays, patent thickets, and issuance of invalid patents by the US Patent and Trademark Office

Regulatory uncertainty and confusion due to baby steps undertaken by US Food and Drug Administration: a lack of clear regulatory/safety guidelines

One of the major concerns related to NPs is their potential incompatibility and toxicity. Studies showed that inhaling NPs can cause pulmonary inflammation as well as inducing endothelial dysfunction that might lead to further complications in the cardiovascular system. A study for evaluation of iron oxide toxicity showed that monocyte-mediated dissolution and phagocytosis of the NPs have caused severe endothelial toxicity by initiating oxidative stress. Nanomaterials used in oral DDS have been shown to accumulate in hepatic cells, which might induce the immune response and eventually cause permanent damage to the liver. The accumulation of NPs in cells has been found to cause cancer by transforming cells into the tumorous state (Jain et al., 2018; Riehemann et al., 2009). Thus, handling these nanosystems requires special equipment and caution, which increases the cost of the production process and requires further investigations of the safety of nanomaterials to have a better understanding and optimize safety during manufacturing (Hammed et al., 2016). Production of NPs in the laboratory often requires complex, multistep synthesis processes to yield the nanomaterials with the required properties. Aside from the complexity of the process, controlling conditions such as temperature and concentrations precisely is significant to achieve homogeneity of NPs in terms of desired characteristics. However, retaining temperature and concentration in large systems is harder to achieve resulting in NPs with different characteristics (Gomez et al., 2014).

NPs tend to aggregate forming clusters with several microns in size. Aggregation of NPs alters their characteristics such as reactivity, transport, toxicity, and risk in the environment. Dissolution reduces when aggregation occurs due to the decrease in available surface area that will eventually reduce the activity of NPs. For example, dechlorination rate of CT (carbon tetrachloride) by magnetite NPs has shown to decrease when aggregation of the NPs increases resulting in an inverse relationship between dechlorination rate of carbon tetrachloride and aggregation of magnetite NPs (Hotze et al., 2010; Hou and Jafvert, 2009).

All these requirements are extremely important because the majority of the nanomedicines have failed to reach the commercialization step even though their efficacy in animal models was considerably high. Due consideration must be given regarding the several difficulties such as their low targeting, low safety, low efficacy, heterogeneity of disease between individuals, inability to scale-up successfully, and unavailability in determining a convenient characterization methods (Agrahari and Agrahari, 2018; Hare et al., 2017; Kaur et al., 2014). These hurdles that face the research process of accelerated translation are summarized in Fig. 17.8 (Satalkar et al., 2016).

Figure 17.8. Major issues that face accelerated translation process of nanoparticles.

Therefore, more understanding in all aspects of nanomedicine production, characterization, and clinical processes must be fulfilled to control and improve the development processes, and increase the efficacy of the translational methods. Other significant hurdles hindering clinical translation are the insignificant incentives regarding technology transfer, as well as socioeconomic uncertainties along with the safety problems faced. In the majority of cases, consideration of commercialization aspects in early stages of development is hardly even considered thus eliminating the market-oriented development (Rsslein et al., 2017).

Nanomedicines face tough, challenging concerns when it comes to determining the applicable analytical tests in terms of chemical, physical, or biological characterization. This is mainly achieved due to their complex nature in comparison with other pharmaceutical products. Hence, there is a need for more complex and advanced levels of testing to ensure a full accurate characterization of nanomedicine products. Quantification of each component of nanomedicine is considered essential alongside the identification and evaluation of interactions between them. For more possibility in achieving successful manufacturing processes with reproducibility, these products should be investigated and understood more during the early developmental stages to identify their key characteristics. The challenges for nanomedicine during scale-up and manufacturing are considered relatively unique because other pharmaceutical manufacturing processes systems are not three-dimensional multicomponent in nature on the nanometer scale. Therefore, a certain series of obstacles in the scale-up process is required. To reach the desired safety, pharmacokinetic and pharmacodynamic parameters to produce the therapeutic effect are needed. These are further determined by the proper selections of the essential components, determination of the critical manufacturing steps, and key characteristics identification. Several methods of orthogonal analysis are essential for in-process quality controls of nanoparticle products and any deviations from key parameters could result in a significant negative impact on both the safety and efficacy of nanomedicines (Desai, 2012).

Each step in the manufacturing process of NPs must be understood extensively with the need of experienced technicians. The development process also requires more enhancements in both complexity and cost. Inadequate data regarding scaling-up processes of nanomedicine products is a major concern in the commercialization step as there are only a few reports supporting scaling-up developments. Many formulation methods have been developed for manufacturing nanomedicine products. The most common methods are nanoprecipitation and emulsion-based approaches. Generally, formulations are prepared either by precipitating the dissolved molecules (bottom-up method) or by reducing the size of larger drug particles (top-down method). Removal of the solvent in the bottom-up method is not an easy process and it cannot be controlled well either, thus explaining why this method is less often applied in industrial manufacturing (Agrahari and Agrahari, 2018; Vauthier and Bouchemal, 2009). Investments in innovative projects face several issues with the major one being the knowledge that should be obtained from the innovation. Its confidentiality is easily breached when a company uses that knowledge as it cannot prevent other companies from using it. Thus, investors are not attracted to this type of project because the total return on the investment cannot be easily appropriated (Morigi et al., 2012).

The complexities in formulating nanoproducts on large scales are due to the inability of optimization of formulation processes and achieving reproducibility. Whereas formulation steps including size reduction, homogenization, centrifugation, sonication, solvent evaporation, lyophilization, extrusion, and sterilization can be easily optimized on small-scales, its still a challenging process on large-scales. Accordingly, variations between batches cannot be controlled sufficiently thereby limiting the possibility of nanomedicine to get through commercial translation (Anselmo et al., 2017; Desai, 2012).

Another problem is that even slight changes in either the formulation or the manufacturing process can have a significant effect on the nanomedicine physiochemical properties (crystallinity, size, surface charge, release profile), which will ultimately influence the therapeutic outcome. Most of the pharmaceutical industrial facilities cannot manufacture nanomedicines because of the lack of the right equipment for the process. As nanomedicine manufacturing usually involves the use of organic solvents, the ability to correctly process and handle nanoproducts is crucial to control their safety and sterility (Anselmo et al., 2017; Desai, 2012; Kaur et al., 2014). These steps require an expensive and complicated equipment, well-trained staff, and precise control to get the required product in the right quality (Desai, 2012; Kaur et al., 2014; Ragelle et al., 2017).

To date, only 58 nanoformulations are approved based on their clinical efficacy but only a quarter of them are meant for cancer treatment. Majority of the nanoformulations could not even be reproduced successfully due to several factors including the study design, overall analysis, protocols, data collection, and the quality and purity of materials used. Besides, the poor establishment of the correlation and prediction of safety and efficacy of the nanomedicine on patients hinders the successful DDS. Targeting and drug accumulation of anticancer drugs in the site of action is considered relatively poor in mouse models. Many nanoformulations were faced with failure in different clinical trial phases. Some of them got approved but then withdrawn from the market such as peginesatide. Unfortunately, the increased failures will most probably affect the development movement in the pharmaceutical industry (Greish et al., 2018).

At the present time, regulatory agencies such as the FDA and EMEA are examining every new nanomedicine on a product-by-product basis. They are considered a unique category due to the fact that there are no true standards in their examination process (Desai, 2012). Two of the major regulatory issues that emerged at the start of nanomedicine is the lack of scientific experts in the FDA and the difficulty in classifying the product (Morigi et al., 2012). The unique characteristics of nanomedicines are directly related to their regulation hurdles, which is the same as other pharmaceutical systems such as liposomes and polymeric systems (Sainz et al., 2015).

Researchers keep investigating nanomedicines when attached to prodrugs, drugs, tracking entities, and targeting molecules. Development of robust methods and assays in quality control of nanomedicines are required for more effective monitoring and characterizations. Also, estimation of their overall performance in releasing drugs, binding to proteins, and the specificity in cellular uptake must be considered (Sainz et al., 2015; Tinkle et al., 2014).

Nanomedicine products are both complex and diverse requiring explanation of challenges to have a clear definition and an effective regulation. The lack of regulatory guidelines for these products hinders their clinical potential. Drug regulatory authorities must keep up with the rapid pace of the knowledge and technological development as they play a major role translating nanomedicines towards the market. The European Medicines Agency (EMEA) and the FDA have different requirements in evaluating new nanomedicines as well as different definitions regarding nanomedicine. Agreeing on specific regulatory procedures internationally is very important to ease the translational researches of nanomedicines. Also, better long-term monitoring of toxicity should be achieved by prolonging postmarketing surveillance especially for a patient with chronic diseases (Sainz et al., 2015; Tinkle et al., 2014).

Nanomedicines just like any other pharmaceutical formulations must offer higher value to patients to become commercially successful, and have better efficacy and safety. New nanomedicine products follow the same steps in clinical trials as other drugs. It starts with preclinical tests, then be submitted to get the IND (investigational new drug) approval and following that it enters the three stages of clinical trials, one after another to evaluate safety and efficacy of the new drug (Agrahari and Agrahari, 2018).

In recent years, toxicities caused by nanomedicines have drawn attention and been recognized to be unique to nanoparticulate systems. Hence, a minimum set of measurements for the nanoparticle like surface charge, size, and solubility are monitored so as to predict the possible toxicity of NPs. Besides, NPs can stimulate the immune system by acting as an antigen. Immunogenicity is mainly affected by the size of the nanoparticle, its surface characteristics, hydrophobicity, charge, and solubility. Hematologic safety concerns have also been observed such as hemolysis and thrombogenicity (Desai, 2012).

In vivo and in vitro studies provide the proper characterization of the interactions between the product and the biological system. The problem is that the data attained from current toxicity tests are not from clinical trials and it cannot always be extrapolated to humans. Monolayers of cell cultures are currently used to characterize immunogenicity, drug release, cellular uptake, and toxicity. However, the cellular uptake process of nanoformulations is majorly influenced by physicochemical characteristics. Thus, 3D cell systems will probably provide better outcomes (Gupta et al., 2016). More caution should be given when handling any nanosized powder due to the ability of such particles to penetrate the skin and because it can also show pulmonary toxicity (Agrahari and Hiremath, 2017; Nel et al., 2006).

Here is the original post:
Nanomedicine - an overview | ScienceDirect Topics

Read More...

Nanotechnology In Medical Applications Market To Eyewitness Massive Growth Trends Market Research 2017 to 2022 – Scientect

Tuesday, August 25th, 2020

Theglobal nanomedical marketwas valued at $134.4 billion in 2016. This market is projected to grow at a compound annual growth rate (CAGR) of 14.0% from 2017-2022, and should reach $293.1 billion by 2022 from $151.9 billion in 2017.

Request For Report[emailprotected]https://www.trendsmarketresearch.com/report/sample/12261

Report Scope:

This report discusses the implications of technology and commercial trends in the context of the current size and growth of the pharmaceutical market, both in global terms and analyzed by the most important national markets. The important technologies supporting nanomedicine are reviewed, and the nature and structure of the nanomedicine industry are discussed with profiles of the leading 60+ companies, including recent merger and acquisition (M&A) activity. Five-year sales forecasts are provided for the national markets including the major therapeutic categories of products involved. Specific product categories quantified include diagnostics, cancer, CNS, anti-infective agents, cardiovasculars and anti-inflammatories.

Report Includes:

An overview of the global markets for nanotechnology used in medical applications Analyses of global market trends, with data from 2016, estimates for 2017, and projections of compound annual growth rates (CAGRs) through 2022 A review of technologies involved, in-depth analysis of applications in practice, and evaluation of future or potential applications Information on many significant products in which the nano dimension has made a significant contribution to product effectiveness A look at the regulatory environment, healthcare policies, demographics, and other factors that directly affect nanotechnology used in medicine Analysis of the markets dynamics, specifically growth drivers, inhibitors, and opportunities Coverage of strategies employed by companies specializing in nanomedicine to meet the challenges of this highly competitive market

Get Complete TOC with Tables and [emailprotected]https://www.trendsmarketresearch.com/report/discount/12261

Summary

Nano-enabled medical products began appearing on the market over a decade ago, and some have become best-sellers in their therapeutic categories. The principal areas in which nanomedical products have made an impact are cancer, CNS diseases, cardiovascular disease and infection control. The Summary Table gives estimates of the historical and current markets for these nanomedicine areas with a forecast through 2022.

The U.S. market is by far the largest in the global nanomedicine market and is set to continue to dominate the world marketplace; however, other national markets are expected to increase their shares over the next five years.

Reasons for Doing the Study

Nanomedicine is already an established market. Unlike some other potential applications of nanotechnology, which are still largely experimental, nanomedicine has already produced some significant products in which the nano dimension has made a significant contribution to product effectiveness. Now that aspects of the nanomedicine market are established, it is appropriate to review the technology, see its practical applications so far, evaluate the participating companies and look to its future.

<<< Get COVID-19 Report Analysis >>>https://www.trendsmarketresearch.com/report/covid-19-analysis/12261

See more here:
Nanotechnology In Medical Applications Market To Eyewitness Massive Growth Trends Market Research 2017 to 2022 - Scientect

Read More...

Interview: The NDB team on its revolutionary nano-diamond batteries – New Atlas

Tuesday, August 25th, 2020

A cheap, safe, self-charging battery that delivers high power for decades without ever needing a charge? That's a game changer. California-based company NDB is making some outrageous promises with its nano-diamond battery technology, which could completely disrupt the energy generation, distribution and provision models if deployed at scale.

Each of these batteries, which can be built to fit any existing standard or shape, uses a small amount of recycled nuclear waste, reformed into a radioactive diamond structure and coated in non-radioactive lab diamonds for safety.

We explained the technology in detail in our original NDB nano-diamond battery breakdown, but we also had the opportunity to speak with members of the NDB executive team. CEO Dr. Nima Golsharifi, COO Dr. Mohammed Irfan and Chief Strategy Officer Neel Naicker joined us on a Zoom call to talk about the technology and its potential for disruptive change.

What follows is an edited transcript.

Dr Nima Golsharifi: Our battery is based on the beta decay and alpha decay of radioisotopes. The technology we have encapsulates this radioisotope in a very safe manner, which allows it to be used in basically any application that current batteries are being used for.

Loz: The particular type of carbon that you're using, where do you get that?

Nima: Basically we're using a range of different isotopes, not just one particular one, but access to these are through different methods. We have some partners in collaboration at the moment that can provide us with them.

But they're basically taken from nuclear waste. So we can recycle them and use the raw materials for our application. But we can also synthesize it in large scale in our facility. So both are possibilities.

Loz: OK. So what part of a nuclear reactor creates this waste? What's it doing before it becomes waste?

Nima: Basically, some parts of the nuclear reactor, like the moderator and the refractor, are being exposed to radiation from the fuel rods. Over time they become radioactive themselves. That's the part that they have to store as nuclear waste.

So this part could be taken away, and through some process, either gasification or some other processes we've designed, we can convert that into a useful raw material for our batteries.

Sheikh Mohammed Irfan: Dr. Nima, maybe you can also talk about how big of a waste problem that is for the nuclear industry currently.

Nima: Sure. At the moment, their expenditure is more than a hundred million dollars every year. Nuclear waste is a very large issue across the world. And beside this, there's basically no other way to re-use it in a safe solution.

So what we're doing covers two challenges in one. Converting nuclear waste into a battery that generates power in a very safe manner. Once this battery is used and it can have a very long life span it becomes a very safe byproduct that's of no harm to the environment.

Loz: Right. So I saw a number somewhere that these batteries can last for 28,000 years.

Nima: Let me correct that. It depends on the type of radioisotope you're using, and for every application the lifetime is different. But what we can say is that the battery would operate for the lifetime of the application itself, for sure. For some applications, much higher. So if you're talking about electric vehicles, our battery could run for around 90 years without the requirement of recharging.

When it comes to something like consumer electronics, it'd be more like 9 years. In some small sensor applications, it can go for up to 28,000 years.

NDB

Loz: I understand. So what sort of quantities of this waste are there around the world? Is this super common stuff, or is it reasonably finite?

Nima: Basically we're covering two different kinds of nuclear waste. One is intermediate, and the other is high level. So there will be a time where we have recycled the entire amount of nuclear waste, and we'll need new solutions for the raw material. But as I mentioned, we'll be able to produce this raw material through other methods, including transmutation.

That's a process that's currently being used, and not something we've invented ourselves. It was invented by MIT, and it involves a centrifuge to separate out the isotopes. The main ingredient is nitrogen, which is the major component of air, so it's a very cheap solution.

Loz: So you've got your nuclear waste, it's obviously dangerous for humans. How does it become safe to be used in a battery?

Nima: Basically, we can generate a high amount of cover from the radioactive substance. We're using a combination of technologies within our structure that can make it very safe to users. Mainly it comes down to the fact that we're using diamond structures.

Diamond itself has different interesting properties. It's one of the best heat sinks available at the moment, for example. That on its own covers thermal safety. When it comes to mechanical safety, diamond is one of the strongest materials in the world. 11.5 times stronger than steel. So again, that itself makes the battery tamper-proof and safe.

In addition to that, we have a combination of other technologies, including the implantation of the radioisotopes within the diamond structure, which stops the spread of the radioisotopes even if the structure is broken down which is kind of impossible without access to specific tools like lasers and others.

So in general I can say it's a combination of technologies that we've either innovated or invented that create a very safe structure as a battery.

Irfan: I'd like to add to that, that using radioisotopes as a source for energy is not new. We have nuclear medicine, where patients are treated with controlled equipment, which has always given effective results. Similarly, we have had nuclear-powered submarines and aircraft carriers. Of course, that's a completely different process, but it's been able to successfully and safely deliver power and energy without safety issues.

What Dr. Nima has highlighted is that the choice of diamond as a material is one of the strongest natural materials, and it acts as a powerful shielding and protection mechanism.

Loz: Right. Can you describe how the energy is extracted and harnessed?

Nima: Maybe I can give an example that could help you understand. Let's go to solar cells, everyone's familiar with those. These convert the energy from light radiation into electricity in photovoltaic cells.

In our case, we're converting the radiation from alpha/beta decay alpha and beta radiation directly into electricity. And the mechanism we're using is simple crystalline diamond. As I mentioned before, we have another layer, which is fully crystalline diamond, creating extra shielding and safety for this structure.

Neel Naicker: What Nima's describing is how the radioactivity produced by the body is actually more than what you get from these batteries. They're quite safe.

Loz: So in terms of evaluating batteries for use in cars, eVTOLs and things like that, the main metrics seem to be energy density, power density, safety in a crash, that sort of thing. Do you know what sort of figures you're looking at with these batteries?

Nima: When it comes to energy density, the energy density of a basic radioisotope is far beyond anything else on the market.

When it comes to power density, the solution we have will give a higher level. But compared to the way that energy density is higher, power density is not that much higher. But it's still significantly better than other batteries in the market.

And as far as crashes, no crash could break down our structure at all. Because you're using the diamond, and the specific mechanisms that make it stronger. The only way to get through the structure we have is the use of specific tools and lasers, which are quite expensive.

Neel: Another way to look at this is to think of it in an iPhone. With the same size battery, it would charge your battery from zero to full, five times an hour. Imagine that. Imagine a world where you wouldn't have to charge your battery at all for the day. Now imagine for the week, for the month How about for decades? That's what we're able to do with this technology.

Loz: It would strike at the heart of the disposable model the phone companies tend to use.

Neel: You've hit the nail on the head there. A couple of things. One is the ability for us to power things at scale. We can start at the nanoscale and go up to power satellites, locomotives Imagine that.

Secondly, we're taking something that's a big negative radioactive waste, very dangerous and turning it into something productive that provides electricity.

The third thing is that we wanna use this technology to get low-cost electricity to places that need it. We've now disrupted the whole mechanism of the creation and storage of power. There's a lot of infrastructure needed before you can flip a light switch and a light comes on.

But with what we've created, you don't need that infrastructure. You could put one of these batteries in a home, and boom, you've eliminated the whole infrastructure. Imagine the disruption that's gonna cause, for good or for bad. It'll upset a few people.

We've taken something that's really harmful to the environment, a problem, and created energy. And for places that don't have the electrical infrastructure in place, we want to provide that at a very low cost.

NDB

Loz: Let's talk about cost a little. Obviously lithium batteries cost a lot, they're a primary component of the cost of electric vehicles. Do you guys have a sense for what these things could cost in a commercial environment?

Nima: Yes, we've done financial modelling around this. A lot of applications have been considered. What we can say is it'll depend on the application, but it should be at a good competition level with current lithium-ion batteries.

In some cases, you're a little bit higher in price for production, and in others, when it goes to scale, we're a cheaper solution. Let me give you an example. Take the battery for a Tesla car, it costs somewhere in the region of US$9-10K. Our battery will cost something in the region of US$7-8K. But it's different in different applications.

Loz: So, cheaper and it never needs charging, and it lasts for vastly longer than any lithium cell.

Irfan: Not only is it a few thousand cheaper for the battery pack, but ours recharges itself. So on a Tesla, you need to recharge, stop, over time the battery wears itself out. Ours lasts for a long time.

We'll probably have them available under some sort of subscription model, pay as you go, but it'll be substantially cheaper than what the mechanism is today for a Tesla car.

Loz: Extraordinary. How far along is this technology? How far are we off mass production? Where are you at with prototyping and testing?

Nima: We're in the prototyping stage at the moment. We've completed the proof of concept, and we're about to start the commercial prototype. However, the pandemic has happened, and the lab has been shut down for some time.

But basically once the laboratories are open, we do require around 6-9 months to complete our commercial prototype, and following that to go through the regulatory process, to bring the first few applications for the battery into the market in less than two years' time.

Loz: So it's not far off.

Neel: Just to give you an example, we'll take Google, which has data centers all across the world. Amazon, Facebook, all of these companies. In confidential conversations we've had with some of these parties, we've spoken about how they use and dispose of more Uninterruptible Power Supplies (UPS) than anyone on the planet. Google always has to be on. And those UPS units have a use by date, they have to discard them.

Our product will be able to support that, while reducing the carbon footprint, and lasting far, far longer. That's a game changer when you consider how big an operation something like AWS is. It'll be a huge product for that.

A secondary product will be for the satellite market, where there'll be no regard for whether it's radioactive or not. Low-power satellites, we'll be able to power those for a long, long time without having any regard to whether they're facing the Sun, or getting any Sun on their solar panels, or whatever.

It changes the whole dynamic. Not only have we disrupted the whole energy infrastructure for creating and delivering power, we can also make big changes to the business model for a lot of companies. Big concerns can just become negligible.

This will change a lot of industries. In the future, we could look at using these to power nanorobots moving inside the body. It works from the nanoscale up to large scale. We think it'll be very impressive.

Loz: So the limits on this technology will be what, availability of the raw materials? Regulations? Do you see any regulatory barriers?

Irfan: It's a good question. We've done a comprehensive study on the regulatory and compliance aspects of our technology. Fortunately there are other devices already on the market that use radioisotopes and radioactive material inside them. Some are in the medical industry, like pacemakers. There are already different types of regulations in place.

So the matter here would be our design complying to those regulations, and we've been doing that over time.

Neel: In your home, you'll have smoke detectors, right? All of those have the same radioactivity as well. That's one point.

When it comes to availability, there's enough raw materials out there that we can develop for a long time. That's not the issue. Also, on the regulatory side there are some markets we can go into immediately without any concerns there. Aerospace, military, many others where there aren't the same requirements for compliance.

For a car, it may be different. For a hearing aid, it may be different, or a consumer product. But there are some applications where it won't be a problem at all.

Loz: Right. This is perhaps a bit of a crass question to ask, but do you guys have to pay for this nuclear waste, or are people paying you to take it away?

Irfan: (Laughs) I'm glad you brought that up! We've got a few places that have offered to pay us to take it away. It's a nuisance for them. They have to store it, and you can imagine the regulations around that. In many cases, they have to keep the public a certain distance away. They'll actually pay us to take this stuff away.

So it's a secondary opportunity for us from a revenue standpoint, and we've discussed this with several partners.

Loz: What a wonderful business to be in, where you're paid to take your own raw materials.

Neel. I wanna drive one thing home. If you take a look at the map of energy use in the world, and the map of wealth in the world, they're very similar. One thing we're trying to do with our application is trying to get some of these devices out to places where kids don't have electricity to do their homework, or to power clean water technology.

We're very adamant that this be a component of our business. And while we can't mention too many names, we've spoken with several big partners who would support this effort. Some of these companies feel they need to do good in the world, and providing electricity to places across the world that don't have it is a great opportunity for them.

Again, they don't have the huge infrastructure in place. But we don't need the infrastructure. We don't need power stations, or power lines, or any of that, to provide power. We're adamant as a team that we will give back in a major way that today's infrastructure won't allow.

Loz: In terms of the IP around this, how much do you guys own, and how much competition do you expect?

Irfan: Right now, we have patents pending around our technology. I think we're quite ahead of the competition that exists in the market, we started much earlier than the others and our technology is more advanced.

We thank the NDB team members for their time and look forward to learning more as development progresses.

Source: NDB

Read the rest here:
Interview: The NDB team on its revolutionary nano-diamond batteries - New Atlas

Read More...

Nanorobots Market Incredible Possibilities, Growth with Industry Study, Detailed Analysis and Forecast To 2026 – Scientect

Tuesday, August 25th, 2020

The latest research on the Global Nanorobots Market that covers growth factor, future trends, and focuses on overall knowledge that can help to make decisions on the current market situation. Nanorobots report provides information on Size, Type, Service, Output, Revenue, Growth Rate, Gross Margin, and opportunities with potential risk analysis. The Nanorobots research study defines top company profiles with trends around the world present in the market. The report also discusses financial developments with the effect of COVID-19 on the market of Nanorobots across years. TheNanorobots research executes financial adjustments that occur on the market year after year, with details on future opportunities and risks to keep you ahead of the competitors.Nanorobots market research has driven you to expand your company.

Major Players Covered in this Report are:

Bruker, Jeol, Thermo Fisher, Ginkgo Bioworks, Oxford Instruments, Ev Group, Imina Technologies, Toronto Nano Instrumentation, Klocke Nanotechnik, Kleindiek Nanotechnik, Xidex, Synthace, Park Systems, Smaract, Nanonics Imaging, Novascan Technologies, Angstrom Advanced, Hummingbird Scientific, Nt-Mdt Spectrum Instruments, Witec

To Request an Exclusive Sample Report for Nanorobots Market @ https://www.marketgrowthinsight.com/sample/132933

Scope of the Nanorobots Market Report:

The demand for Nanorobots is projected to expand, during the forecast period, from USD million in 2020 to USD million by 2025. The global market report is a systematic study that focuses on the overall demand structure, development trends, business models and business of top countries in the global market for Nanorobots. The study focuses on well-known global Nanorobots suppliers, market segments, competition and the macro market.

The Nanorobots study focuses on the prospects for growth, constraints, and market analysis. The research offers Porters five-force Nanorobots industry analysis to understand the effect of various factors such as supplier power bargaining, competitor competition, new entrant challenge, competitor risk, and buyer bargaining power on the market.

Market Segmentation:

A brief overview of the global Nanorobots market has been presented according to the most recent report. TheNanorobots evaluation notes the concept of service/product in many end-user sectors along with other implementations of these goods or services. The Global Nanorobots Market Report presented a thorough assessment of the latest industry developments, extensive regional analysis, and competitive analysis for the 2020-2025 review period.

Geographically, the detailed analysis of consumption, revenue, Nanorobots market share and growth rate, historic and forecast (2015-2025) of the following regions are covered:

North America (United States, Canada, Mexico)Europe (Germany, UK, France, Italy, Spain, Russia, Others)Asia-Pacific (China, Australia,South Korea,Japan, India, Southeast Asia, Others)Middle East and Africa (UAE, Saudi Arabia, Egypt, South Africa, Nigeria, Others)South America (Brazil, Argentina, Columbia, Chile, Others)

Ask for Discount on this Premium Report @ https://www.marketgrowthinsight.com/discount/132933

In this study, the years considered to estimate the market size of Nanorobots are as follows:

KEY QUESTIONS ANSWERED:

For More Details On this Report: https://www.marketgrowthinsight.com/inquiry/132933

About Us-

Market Growth Insight 100% Subsidiary of Exltech Solutions India, is a one stop solution for market research reports in various business categories. We are serving 100+ clients with 30000+ diverse industry reports and our reports are developed to simplify strategic decision making, on the basis of comprehensive and in-depth significant information, established through wide-ranging analysis and latest industry trends.

Contact Us:

Direct Line: +1 3477675477 (US)Email: [emailprotected]Web:https://www.marketgrowthinsight.com

Read the original post:
Nanorobots Market Incredible Possibilities, Growth with Industry Study, Detailed Analysis and Forecast To 2026 - Scientect

Read More...

Book Review: What Can India’s Embrace of Nanotech Tell Us About India’s Science? – The Wire Science

Friday, August 21st, 2020

A glass nanoparticle suspended in an optical cavity. Photo: uclmaps/Flickr, CC BY 2.0.

Nanotechnology may not be a familiar term to many although nanotechnology-based products are available in the market and many consumers use them. Thanks to Nano Mission, an initiative funded by the Government of India through the Department of Science and Technology from May 2007, India has made great strides in nanosciences and engineering.

In this regard, Nanoscale, a new book by Pankaj Sekhsaria, a policy researcher at the Centre for Technology Alternatives for Rural Areas, IIT Bombay, doesnt eulogise the technology and its achievements nor does it criticise them and their deployment and risks.

Instead, Sekhsaria takes an atypical tack to set out what is possible, offering us new ways to conceive of and evaluate research. Through four case studies, he attempts to understand the links between science, technology and society at different sites and at different scales as if to ensure we are aware of what all is possible before we embark on our respective critical journeys. They are:

1. Developing a cutting-edge microscope at a university in Pune, despite severe constraints

2. Using nanotechnology to validate some components of a traditional Ayurvedic preparation

3. The failure of an innovative product a nano-silver-coated ceramic candle used to purify water in households

4. Nanotechnology-based treatment protocols for retinoblastoma, a cancer that affects children

The first case study concerns the construction of a scanning tunnelling microscope by C.V. Dharmadhikari at the University of Pune, using a variety of materials, including nanoparticles. Sekhsaria describes how Dharmadhikari built this sophisticated device from scratch, indigenously, and which he and his team now use for their research.

With this in mind, Sekhsaria invokes the concept of jugaad and the culture of innovation in laboratories around India. However, Eric von Hippels user innovation theory offers a better explanation: that more innovation is driven by intermediate or end users, at the site of consumption, which is then integrated by suppliers. In this case, Dharmadhikari is both a user and an innovator: he first developed the instrument and then, in the course of using it, continued to make minor modifications to better suit his and his peers purposes.

In fact, this would be true of most scientific instruments which are constantly attended to by a community of user-innovators of PhD students, postdoctoral researchers and investigators. As a result, in an ecosystem where resources are scarce and grants and funds are constantly shadowed by uncertainty, such DIY endeavours contribute more innovation and help adapt sophisticated technologies for more local conditions including nanotechnology.

Sekhsaria subsequently describes the fate of Dharmadhikari et als scanning tunnelling microscope, and compares it to that of similar innovations elsewhere in India. However, he stops short of discussing the range, utility and novelty of such instruments and how they have enabled Indian scientists to pursue science despite their constraints. Nor is there mention of how common such solutions are common across disciplines and institutions. Of course, user innovation can occur even when new instruments are acquired but if building instruments from scratch is very widely practised, it deserves a fuller study, as an important dimension of doing science in India.

The second case study concerns the use of nanotechnological tools to validate the components of a traditional Ayurvedic preparation, called bhasmas, and related work at the Centre for Nanobioscience, Agharkar Research Institute, Pune. Using the studies of Rinku D. Umrani, Sekhsaria highlights how the dialog between modern science (nanotechnology) and traditional medicine (Ayurveda) is necessary, although there are skeptics on both sides.

While the usefulness of traditional medicine is well known and accepted, it is often debunked as unscientific or considered to be scientifically unprovable. But a dialog could help better understand each system from the other systems perspective, paving the way for potentially fruitful collaborations.

With the specific example of bhasmas, Sekhsaria focuses the discussion onto the challenge of checking if Ayurveda can provide an alternative way to manage diabetes. Umranis work suggests that the mechanisms of action of some Ayurvedic preparations, including bhasmas, involve reactions involving nanoparticles. But instead of limiting himself to a yes/no answer, Sekhsaria argues that validation is necessary but a dialog as equals is more important to facilitate further research that, by extension, the introduction of radical new technologies brings with it radical new opportunities to improve the way we organise and conduct research.

Also read: Why Elon Musk Isnt Right About Nanotechnology Being BS

The third case study highlights how an innovation perceived to be locally useful to provide good quality drinking water at the household level using nanosilver-coated candles failed in the market. Researchers at the International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, had developed these devices, essentially ceramic candles coated with nanoparticles of silver that could filter out some bacterial species from water.

But for the fact that they were simple to use, required less maintenance and were locally produced, they flopped at the market because they rested on the products uniqueness instead of adjusting for consumer behaviour and aspirations. The ceramic candle platform itself was becoming obsolete as a water purification technology, and newer entrants, ranging from advanced filters to ultraviolet and reverse-osmosis systems, all of which trapped more than bacteria, heightened buyers expectations.

Nonetheless, the candles were still useful, especially in low-cost settings. So Sekhsaria contends that such products shouldnt have been left at the mercy of market forces and that the government should have stepped in with subsidies. In fact, he challenges the idea that nanosilver-coated candles are obsolete per se, and argues that obsolescence is linked to infinite demands and consumption and that ARCI might have had more success if it had involved end-users during the product development process. According to him, there is also scope to recalibrate, renegotiate and revive the product, especially if were willing to learn from our mistakes.

The fourth case study is on treating retinoblastoma in female children. While nanotechnology is expected to offer better solutions like using gold-based nanoparticles to destroy cancer cells in a photothermal process the grim reality is that in some cases, parents prefer not to treat the child and let her die. This is because when children afflicted with retinoblastoma are not treated on time, they may lose eyesight and sometimes even their lives. In this regard, Sekhsaria spotlights how clinicians often talk to these childrens parents as if they are activists, and attempt to educate parents.

There is hardly any categorised data on retinoblastoma in India and how different sections of society have responded to it. It is true that technology is no panacea and the social complexities have to be taken into account but the complexity cant be reduced to that of only discrimination.

Sekhsaria discusses how girls and women are discriminated against, and how some parents choose to ignore new technologies that offer better treatment in favour of letting them die. However, his foundation is almost entirely anecdotal, based on discussions he had in two institutions in Hyderabad and Chennai. His analysis would have been enriched by including examples from more institutions, even if only in these cities, and could have fortified Sekhsarias arguments.

As such, the reader is unable to generalise from his examples as to the fraction of parents in the country who decide thus and why, nor whether the parents of male children behave the same way. Moreover, Sekhsaria discusses only those cases where parents didnt treat the child even if they had the option to do so, or accessed treatment when the retinoblastoma had entered the later stages.

Instead, the discussion could have covered the class and access to treatment dimensions. Unless we know how different sections of society respond to all the options available to them, the books view remains one-dimensional and unable to help us understand the technology-society interface. Nanotechnological solutions are not yet in vogue and are years away from widespread adoption. And even if nanotechnology has to have a positive impact, its success depends on the solutions affordability, accessibility and the decisions of parents who need to decide what is best for their children and themselves.

In fact, overall, Nanoscale often doesnt go far enough to flesh out the stories it uses to make its point about the unique prevalence of nanotechnologies across four very different slices of society, as if the book is attempting to anticipate the nanos outsized impact on society, and even social relations, in future.

Currently, India publishes the third-highest number of research papers on nanotechnology in the world. Nanotechnologies themselves have applications in sectors ranging from agriculture to textiles, from medicine to construction materials. For example, nano-fertilisers can help increase the efficiency with which plants use nutrients in the soil and help reduce nutrient run-off. Researchers have also used precepts of nanotechnology to improve hydrogen-based renewable energy technologies.

Also read: Why India Needs Nanotechnology Regulation Before it is Too Late

In this regard, Nanoscale provides a new perspective on nanotechnology in India and asks important questions about the corresponding science, technology and policies of innovation. Sekhsaria also successfully subverts conventional wisdom on innovation and attempts to link jugaad with sophistication, calls for dialog between modern science and traditional medicine, and highlights how the market can destroy innovations even as it patronises more expensive technology.

As such, Sekhsarias reluctance to pronounce verdicts works to the books advantage because, by highlighting the gap between traditional ideas of innovation in laboratories and the ground reality, he is able to contend that we can utilise nanotechnologies to a fuller extent by applying them to areas where there is a contest of paradigms or worldviews.

Krishna Ravi Srinivas works at Research and Information Systems for Developing Countries, a policy research think-tank. The views expressed here are the authors own.

See the article here:
Book Review: What Can India's Embrace of Nanotech Tell Us About India's Science? - The Wire Science

Read More...

Healthcare Nanotechnology (Nanomedicine) Market Analysis, Key Players, Industry Segments And Forecast To 2026 – The News Brok

Friday, August 21st, 2020

The Healthcare Nanotechnology (Nanomedicine) market report 2020-2026 provides in-depth study of market competitive situation, product scope, market overview, opportunities, driving force and market risks. Profile the Top Key Players of Healthcare Nanotechnology (Nanomedicine), with sales, revenue and global market share of Healthcare Nanotechnology (Nanomedicine) are analyzed emphatically by landscape contrast and speak to info. Upstream raw materials and instrumentation and downstream demand analysis is additionally administrated. The Healthcare Nanotechnology (Nanomedicine) market business development trends and selling channels square measure analyzed. From a global perspective, It also represents overall industry size by analyzing qualitative insights and historical data.

Key players operating in the global Healthcare Nanotechnology (Nanomedicine) market includes : Amgen, Teva Pharmaceuticals, Abbott, UCB, Roche, Celgene, Sanofi, Merck & Co, Biogen, Stryker, Gilead Sciences, Pfizer, 3M Company, Johnson & Johnson, Smith&Nephew, Leadiant Biosciences, Kyowa Hakko Kirin, Shire, Ipsen, Endo International, and among others.

Get Free Sample PDF (including COVID19 Impact Analysis, full TOC, Tables and Figures) of Healthcare Nanotechnology (Nanomedicine) Market @https://www.researchmoz.us/enquiry.php?type=S&repid2041239

Key Target Audience of the Healthcare Nanotechnology (Nanomedicine) market:

Scope of Healthcare Nanotechnology (Nanomedicine) Market:

The global Healthcare Nanotechnology (Nanomedicine) market is valued at million US$ in 2019 and will reach million US$ by the end of 2026, growing at a CAGR of during 2020-2026. The objectives of this study are to define, segment, and project the size of the Healthcare Nanotechnology (Nanomedicine) market based on company, product type, application and key regions.

On the whole, the report proves to be an effective tool that players can use to gain a competitive edge over their competitors and ensure lasting success in the global Healthcare Nanotechnology (Nanomedicine) market. All of the findings, data, and information provided in the report are validated and revalidated with the help of trustworthy sources. The analysts who have authored the report took a unique and industry-best research and analysis approach for an in-depth study of the global Healthcare Nanotechnology (Nanomedicine) market.

The report offers an exhaustive geographical analysis of the global Healthcare Nanotechnology (Nanomedicine) market, covering important regions, viz, North America, Europe, China, Japan, Southeast Asia, India and Central & South America. It also covers key countries (regions), viz, U.S., Canada, Germany, France, U.K., Italy, Russia, China, Japan, South Korea, India, Australia, Taiwan, Indonesia, Thailand, Malaysia, Philippines, Vietnam, Mexico, Brazil, Turkey, Saudi Arabia, U.A.E, etc.

The end users/applications and product categories analysis:

On the basis on the end users/applications,this report focuses on the status and outlook for major applications/end users, sales volume, market share and growth rate foreach application.

On the basis of product,this report displays the sales volume, revenue (Million USD), product price, market share and growth rate ofeach type.

Do You Have Any Query Or Specific Requirement? Ask to Our Industry [emailprotected]https://www.researchmoz.us/enquiry.php?type=E&repid2041239

Healthcare Nanotechnology (Nanomedicine) Market The Regional analysis covers:

Key Findings & Data Available in Healthcare Nanotechnology (Nanomedicine) Market Report:

And Many More.

Get Discount on Healthcare Nanotechnology (Nanomedicine) Market Report :https://www.researchmoz.us/enquiry.php?type=D&repid2041239

Contact Us:

ResearchMozMr. Rohit Bhisey,Tel: +1-518-621-2074USA-Canada Toll Free: 866-997-4948Email: [emailprotected]Follow us on LinkedIn @ http://bit.ly/2RtaFUo

Follow me on : https://marketnews-24.blogspot.com/

Read more:
Healthcare Nanotechnology (Nanomedicine) Market Analysis, Key Players, Industry Segments And Forecast To 2026 - The News Brok

Read More...

Global Nanotechnology Drug Delivery Market : Industry Analysis and Forecast (2019-2026): By Technology, Application and Region. – Good Night, Good…

Friday, August 21st, 2020

Global Nanotechnology Drug Delivery Marketwas valued US$ XX Bn in 2018 and is expected to reach US$ 98.2 Bn by 2026, at a XX% CAGR of around during a forecast period.

Various novel technologies for developing effective drug delivery systems came into existence among which nanotechnology platforms for achieving targeted drug delivery are gaining prominence nowadays. Research in the medical field includes the development of drug nanoparticles, polymeric and inorganic biodegradable nano-carriers for drug delivery, and surface engineering of carrier molecules.

The report contains a detailed list of factors that will drive and restrain the growth of the Nanotechnology Drug Delivery Market. Such as, rapidly expanding areas of research and development to develop novel nano-medicine are expected to drive the nanotechnology drug delivery market growth in the future. Additionally, one of the major factors assisting market growth is the growing prevalence of infectious diseases and cancer, developing nanotechnology research, and increasing demand for novel drug delivery systems. However, high cost coupled with stringent regulatory scenario hinders the market growth to some extent.

Nanoparticles are expected to account for the largest XX% market share by 2026. The segment dominated the market as key nanoparticles like gold nanoparticles, dendrimers, and fullerenes are used in pharmaceutical drug delivery.The report offers a brief analysis of the major regions in the global nanotechnology drug delivery market, namely, APAC, Europe, North America, South America, and the Middle East & Africa. North America dominated the nanotechnology drug delivery market in 2018, because of high medical reimbursement facilities, and technological advancement. The APAC is projected to have the fastest growth, owing to a rapidly increasing population, an increase in consumer awareness, favorable government policies, modernization of healthcare infrastructure, and growing medical tourism industry in developing economies such as China, and India in this region.

Nanotechnology drug delivery market report gives a competitive analysis of the individual standing of the companies against the global landscape of the medical industry. The forecast also provides the estimated trends in demand for the global market and their impact on the sizes of these companies to help the reader curate profitable business strategies. Such as Pfizer, Inc., AstraZeneca and Amgen signed agreements to collaborate with BIND Therapeutics to develop nano-medicines. These initiatives are expected to fuel the growth of the nanotechnology drug delivery market in the upcoming future.

The objective of the report is to present comprehensive analysis of Global Nanotechnology Drug Delivery Market including all the stakeholders of the industry. The past and current status of the industry with forecasted market size and trends are presented in the report with the analysis of complicated data in simple language. The report covers the all the aspects of industry with dedicated study of key players that includes market leaders, followers and new entrants by region. PORTER, SVOR, PESTEL analysis with the potential impact of micro-economic factors by region on the market have been presented in the report. External as well as internal factors that are supposed to affect the business positively or negatively have been analyzed, which will give clear futuristic view of the industry to the decision makers.

The report also helps in understanding Global Nanotechnology Drug Delivery Market dynamics, structure by analyzing the market segments, and project the Global Nanotechnology Drug Delivery Market size. Clear representation of competitive analysis of key players by type, price, financial position, product portfolio, growth strategies, and regional presence in the Global Nanotechnology Drug Delivery Market make the report investors guide.

The report study has analyzed revenue impact of covid-19 pandemic on the sales revenue of market leaders, market followers and disrupters in the report and same is reflected in our analysis.Scope of the Global Nanotechnology Drug Delivery Market

Global Nanotechnology Drug Delivery Market, by Technology

Nanocrystals Nanoparticleso Dendrimerso Gold Nanoparticleso Dendrimerso Fullereneso Others Liposomes Micelles Nanotubes OthersGlobal Nanotechnology Drug Delivery Market, by Application

Neurology Oncology Cardiovascular/Physiology Anti-inflammatory/Immunology Anti-infective OthersGlobal Nanotechnology Drug Delivery Market, by Region

North America Asia Pacific Europe Middle East & Africa South AmericaKey players operating in the Global Nanotechnology Drug Delivery Market

Johnson & Johnson Merck & Co Roche Bayer Novartis Pharmaceuticals Pfizer AstraZeneca Amgen Celgene Corporation Angiotech Pharmaceuticals Capsulution Pharma AlphaRx Inc. Calando Pharmaceuticals Copernicus Therapeutics Elan Corporation Nanotherapeutics PAR Pharmaceutica Taiwan Liposome Co. AbbVie, Inc Amgen, Inc

Global Nanotechnology Drug Delivery Market Request For View Sample Report Page : @https://www.maximizemarketresearch.com/request-sample/39035About Us:

Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.

Contact info:Name: Vikas GodageOrganization: MAXIMIZE MARKET RESEARCH PVT. LTD.Email: sales@maximizemarketresearch.comWebsite:www.maximizemarketresearch.com

See more here:
Global Nanotechnology Drug Delivery Market : Industry Analysis and Forecast (2019-2026): By Technology, Application and Region. - Good Night, Good...

Read More...

Nanotechnology in Medical Market 2020 Explain What is the current size of the market? And key players analysis: Roche, Mitsui Chemicals, Camurus,…

Friday, August 21st, 2020

A complete research offering of comprehensive analysis of the market share, size, recent developments, and trends can be availed in this latest report by Big Market Research.

As per the report, theGlobal Nanotechnology in Medical Marketis anticipated to witness significant growth during the forecast period from 2020to 2025.

The report provides brief summary and detailed insights of the market by collecting data from the industry experts and several prevalent in the market. Besides this, the report offers a detailed analysis of geographical areas and describes the competitive scenario to assist investor, prominent players, and new entrants to obtain a major share of the global Nanotechnology in Medical market.

Our analysis involves the study of the market taking into consideration the impact of the COVID-19 pandemic. Please get in touch with us to get your hands on an exhaustive coverage of the impact of the current situation on the market. Our expert team of analysts will provide as per report customized to your requirement. For more connect with us at [emailprotected] or call toll free: +1-800-910-6452

Request a sample of this premium research:https://www.bigmarketresearch.com/request-sample/3962053?utm_source=PF&utm_medium=ANIL

The report presents a summary of each market segment such as type, end-user, applications, and region. With the help of pie charts, graphs, comparison tables, and progress charts a complete overview of the market share, size, and revenue, and growth patterns areaccessible in the report.

Additionally, an outline of each market segments such as end user, product type, application, and region are offered in the report.The market across various regions is analyzed in the report which includes North America, Europe, Asia-Pacific, and LAMEA.The report explains future trends and growth opportunities in every region. These insights help in understanding the global trends in the market and form strategies to be implemented in the future. Moreover, the research report profiles some of the leading companies in the global Nanotechnology in Medical industry. It mentions their strategic initiatives and offers a brief about their business. Some of the players profiled in the global Nanotechnology in Medical market include:

Key players in the Nanotechnology in Medical covers :RocheMitsui ChemicalsCamurusMerckCelgeneCytimmuneAmgenAccessPfizerSmith and NephewNovartisDentsply International3M

Analysts have also stated the research and development activities of these companies and provided complete information about their existing products and services. Additionally, the report offers a superior view over different factors driving or constraining the development of the market.

The Nanotechnology in Medical can be split based on product types, major applications, and important countries as follows:

The basis of applications, the Nanotechnology in Medical from 2015 to 2025 covers:HospitalsClinicsOthers

The basis of types, the Nanotechnology in Medical from 2015 to 2025 is primarily split into:Nano MedicineNano DiagnosisOther

Request a discount on standard prices of this premium research:https://www.bigmarketresearch.com/request-for-discount/3962053?utm_source=PF&utm_medium=ANIL

The report clearly shows that the Nanotechnology in Medical industry has achieved remarkable progress since 2025 with numerous significant developments boosting the growth of the market. This report is prepared based on a detailed assessment of the industry by experts. To conclude, stakeholders, investors, product managers, marketing executives, and other experts in search of factual data on supply, demand, and future predictions would find the report valuable.

The report constitutes:Chapter 1 provides an overview of Nanotechnology in Medical market, containing global revenue, global production, sales, and CAGR. The forecast and analysis of Nanotechnology in Medical market by type, application, and region are also presented in this chapter.Chapter 2 is about the market landscape and major players. It provides competitive situation and market concentration status along with the basic information of these players.Chapter 3 provides a full-scale analysis of major players in Nanotechnology in Medical industry. The basic information, as well as the profiles, applications and specifications of products market performance along with Business Overview are offered.Chapter 4 gives a worldwide view of Nanotechnology in Medical market. It includes production, market share revenue, price, and the growth rate by type.Chapter 5 focuses on the application of Nanotechnology in Medical, by analyzing the consumption and its growth rate of each application.Chapter 6 is about production, consumption, export, and import of Nanotechnology in Medical in each region.Chapter 7 pays attention to the production, revenue, price and gross margin of Nanotechnology in Medical in markets of different regions. The analysis on production, revenue, price and gross margin of the global market is covered in this part.Chapter 8 concentrates on manufacturing analysis, including key raw material analysis, cost structure analysis and process analysis, making up a comprehensive analysis of manufacturing cost.Chapter 9 introduces the industrial chain of Nanotechnology in Medical. Industrial chain analysis, raw material sources and downstream buyers are analyzed in this chapter.Chapter 10 provides clear insights into market dynamics.Chapter 11 prospects the whole Nanotechnology in Medical market, including the global production and revenue forecast, regional forecast. It also foresees the Nanotechnology in Medical market by type and application.Chapter 12 concludes the research findings and refines all the highlights of the study.Chapter 13 introduces the research methodology and sources of research data for your understanding.

Years considered for this report:Historical Years: 2015-2019Base Year: 2019Estimated Year: 2020Forecast Period: 2020-2025

About Us:Big Market Research has a range of research reports from various publishers across the world. Our database of reports of various market categories and sub-categories would help to find the exact report you may be looking for.We are instrumental in providing quantitative and qualitative insights on your area of interest by bringing reports from various publishers at one place to save your time and money. A lot of organizations across the world are gaining profits and great benefits from information gained through reports sourced by us.

Contact us:Mr. Abhishek Paliwal5933 NE Win Sivers Drive, #205, Portland,OR 97220 United StatesDirect: +1-971-202-1575Toll Free: +1-800-910-6452E-mail:[emailprotected]

See more here:
Nanotechnology in Medical Market 2020 Explain What is the current size of the market? And key players analysis: Roche, Mitsui Chemicals, Camurus,...

Read More...

Nanomedicine Market: Industry Analysis and forecast 2026: By Modality, Diseases, Application and Region – Good Night, Good Hockey

Friday, August 21st, 2020

Nanomedicine Marketwas valued US$ XX Bn in 2018 and is expected to reach US$ XX Bn by 2026, at CAGR of XX% during forecast period of 2019 to 2026.

REQUEST FOR FREE SAMPLE REPORT:https://www.maximizemarketresearch.com/request-sample/39223

Nanomedicine is an application of nanotechnology, which are used in diagnosis, treatment, monitoring, and control of biological systems. Nanomedicine usages nanoscale manipulation of materials to improve medicine delivery. Therefore, nanomedicine has facilitated the treatment against various diseases. The nanomedicine market includes products that are nanoformulations of the existing drugs and new drugs or are nanobiomaterials. The research and development of new devices as well as the diagnostics will become, more effective, enabling faster response and the ability to treat new diseases are likely to boost the market growth.

The nanomedicine markets are driven by factors such as developing new technologies for drug delivery, increase acceptance of nanomedicine across varied applications, rise in government support and funding, the growing need for therapies that have fewer side effects and cost-effective. However, long approval process and risks associated with nanomedicine (environmental impacts) are hampering the market growth at the global level. An increase in the out-licensing of nanodrugs and growth of healthcare facilities in emerging economies are likely to create lucrative opportunities in the nanomedicine market.

The report study has analyzed revenue impact of covid-19 pandemic on the sales revenue of market leaders, market followers and disrupters in the report and same is reflected in our analysis.

Nanomedicine Market Segmentation Analysis:Based on the application, the nanomedicine market has been segmented into cardiovascular, neurology, anti-infective, anti-inflammatory, and oncology. The oncology segment held the dominant market share in 2018 and is projected to maintain its leading position throughout the forecast period owing to the rising availability of patient information and technological advancements. However, the cardiovascular and neurology segment is projected to grow at the highest CAGR of XX% during the forecast period due to presence of opportunities such as demand for specific therapeutic nanovectors, nanostructured stents, and implants for tissue regeneration.

Nanomedicine Market Regional Analysis:Geographically, the Nanomedicine market has been segmented into North America, the Europe, Asia Pacific, Latin America, and Middle East & Africa. North America held the largest share of the Nanomedicine market in 2018 due to the rising presence of patented nanomedicine products, the availability of advanced healthcare infrastructure and the rapid acceptance of nanomedicine. The market in Asia Pacific is expected to expand at a high CAGR of XX% during the forecast period thanks to rise in number of research grants and increase in demand for prophylaxis of life-threatening diseases. Moreover, the rising investments in research and development activities for the introduction of advanced therapies and drugs are predicted to accelerate the growth of this region in the near future.

Nanomedicine Market Competitive landscapeMajor Key players operating in this market are Abbott Laboratories, CombiMatrix Corporation, General Electric Company, Sigma-Tau Pharmaceuticals, Inc, and Johnson & Johnson. Manufacturers in the nanomedicine are focusing on competitive pricing as the strategy to capture significant market share. Moreover, strategic mergers and acquisitions and technological innovations are also the key focus areas of the manufacturers.

The objective of the report is to present a comprehensive analysis of Nanomedicine Market including all the stakeholders of the industry. The past and current status of the industry with forecasted market size and trends are presented in the report with the analysis of complicated data in simple language. The report covers all aspects of the industry with a dedicated study of key players that includes market leaders, followers and new entrants by region. PORTER, SVOR, PESTEL analysis with the potential impact of micro-economic factors by region on the market are presented in the report. External as well as internal factors that are supposed to affect the business positively or negatively have been analyzed, which will give a clear futuristic view of the industry to the decision-makers. The report also helps in understanding Nanomedicine Market dynamics, structure by analyzing the market segments and project the Nanomedicine Market size. Clear representation of competitive analysis of key players By Type, Price, Financial position, Product portfolio, Growth strategies, and regional presence in the Nanomedicine Market make the report investors guide.Scope of the Nanomedicine Market:

Nanomedicine Market by Modality:

Diagnostics TreatmentsNanomedicine Market by Diseases:

Oncological Diseases Infectious Diseases Cardiovascular Diseases Orthopedic Disorders Neurological Diseases Urological Diseases Ophthalmological Diseases Immunological DiseasesNanomedicine Market by Application:

Neurology Cardiovascular Anti-Inflammatory Anti-Infectives OncologyNanomedicine Market by Region:

Asia Pacific North America Europe Latin America Middle East AfricaNanomedicine Market Major Players:

Abbott Laboratories CombiMatrix Corporation General Electric Company Sigma-Tau Pharmaceuticals, Inc Johnson & Johnson Mallinckrodt plc. Merck & Company, Inc. Nanosphere, Inc. Pfizer, Inc. Teva Pharmaceutical Industries Ltd. Celgene Corporation UCB (Union Chimique Belge) S.A. AMAG Pharmaceuticals Nanospectra Biosciences, Inc. Arrowhead Pharmaceuticals, Inc. Leadiant Biosciences, Inc. Epeius Biotechnologies Corporation Cytimmune Sciences, Inc.

Browse Full Report with Facts and Figures Report at:https://www.maximizemarketresearch.com/market-report/nanomedicine-market/39223/

About Us:

Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.

Contact info:

Name: Vikas Godage

Organization: MAXIMIZE MARKET RESEARCH PVT. LTD.

Email: sales@maximizemarketresearch.com

Contact: +919607065656/ +919607195908

Website:www.maximizemarketresearch.com

Read the original here:
Nanomedicine Market: Industry Analysis and forecast 2026: By Modality, Diseases, Application and Region - Good Night, Good Hockey

Read More...

New ‘molecular computers’ find the right cells – UW Medicine Newsroom

Friday, August 21st, 2020

Scientists have demonstrated a new way to precisely target cells by distinguishing them from neighboring cells that look quite similar.

Even cells that become cancerous may differ from their healthy neighbors in only a few subtle ways. A central challenge in the treatment of cancer and many other diseases is being able to spot the right cells while sparing all others.

In a paper published 20 August inScience FirstReleasea team of researchers at the University of Washington School of Medicine and theFred Hutchinson Cancer Research Centerin Seattle describe the design of new nanoscale devices made of synthetic proteins. These target a therapeutic agent only to cells with specific, predetermined combinations of cell surface markers.

Remarkably, these 'molecular computers' operate all on their own and can search out the cells that they were programmed to find.

"We were trying to solve a key problem in medicine, which is how to target specific cells in a complex environment," said Marc Lajoie, a lead author of the study and recent postdoctoral scholar at the UW MedicineInstitute for Protein Design. "Unfortunately, most cells lack a single surface marker that is unique to just them. So, to improve cell targeting, we created a way to direct almost any biological function to any cell by going after combinations of cell surface markers."

The tool they created is called Co-LOCKR, or Colocalization-dependant Latching Orthogonal Cage/Key pRoteins. It consists of multiple synthetic proteins that, when separated, do nothing. But when the pieces come together on the surface of a targeted cell, they change shape, thereby activating a sort of molecular beacon.

The presence of these beacons on a cell surface can guide a predetermined biological activity -- like cell killing -- to a specific, targeted cell.

The researchers demonstrated that Co-LOCKR can focus the cell-killing activity of CAR T cells. In the lab, they mixed Co-LOCKR proteins, CAR T cells, and a soup of potential target cells. Some of these had just one marker, others had two or three. Only the cells with the predetermined marker combination were killed by the T cells. If a cell also had a predetermined "healthy marker," then that cell was spared.

"T cells are extremely efficient killers, so the fact that we can limit their activity on cells with the wrong combination of antigens yet still rapidly eliminate cells with the correct combination is game-changing," said Alexander Salter, another lead author of the study and an M.D./Ph.D. student in the medical scientist program at the UW School of Medicine. He is training in Stanley Riddell's lab at the Fred Hutchinson Cancer Research Center.

This cell-targeting strategy relies entirely on proteins. This approach sets it apart from most other methods that rely on engineered cells and operate on slower timescales.

"We believe Co-LOCKR will be useful in many areas where precise cell targeting is needed, including immunotherapy and gene therapy," said David Baker, professor of biochemistry at the UW School of Medicine and director of the Institute for Protein Design.

Theresearch was conducted at the Institute for Protein Design, the Immunotherapy Integrated Research Center at the Fred Hutchinson Cancer Research Center, and the UW Department of Bioengineering.

The co-lead authors of this work are Marc J. Lajoie (supported by a Washington Research Foundation Innovation Postdoctoral Fellowship and a Cancer Research Institute Irvington Fellowship from the Cancer Research Institute), Scott E. Boyken (supported by the Burroughs Wellcome Fund Career Award at the Scientific Interface), and Alexander I. Salter (supported by the Hearst Foundation and Fred Hutchinson Cancer Research Center Interdisciplinary Training Grant in Cancer Research).

This work was also supported by the National Institutes of Health, National Science Foundation, the Defense Threat Reduction Agency, Nordstrom Barrier Institute for Protein Design Directors Fund, Hearst Foundation, Washington Research Foundation and Translational Research Fund, Howard Hughes Medical Institute, Open Philanthropy Project, and The Audacious Project organized by TED.

Several authors are inventors on patents related to this work. Some hold equity in Lyell Immunopharma. Some authors are now employees or consultants of Lyell Immunopharma.

This news release was written by Ian Haydon of the Institute for Protein Design.

Read the original here:
New 'molecular computers' find the right cells - UW Medicine Newsroom

Read More...

Global Nanotechnology in Medical Market 2020: Remarking Enormous Growth with Recent Trends ,Leading Vendors,By Types and Application, By End Users and…

Wednesday, August 19th, 2020

A comprehensive research report namelyGlobal Nanotechnology in Medical Market which discloses an all-encompassing breakdown of the global industry by delivering detailed information about Forthcoming Trends. The Nanotechnology in Medical Market report delivers an exhaustive analysis of global market size, segmentation market growth, market share, competitive Landscape also an in-depth study of the market enlightening key forecast to 2027, recent developments, opportunities analysis, strategic market growth analysis, and technological innovations.

Get Free Exclusive Sample of this Premium Report at:

https://www.reportspedia.com/report/others/2015-2027-global-nanotechnology-in-medical-industry-market-research-report,-segment-by-player,-type,-application,-marketing-channel,-and-region/64313#request_sample

Major Companies Profiled in This Nanotechnology in Medical Market Report:

3MCytimmuneNovartisCamurusMerckAmgenAccessRocheCelgeneMitsui ChemicalsSmith and NephewPfizerDentsply International

Nanotechnology in Medical Market report Segmentation: North America, Europe, Asia Pacific, Latin America, and the Middle East and Africa. This report similarly reduces the current, past, and upcoming market business strategies, estimation analysis having a place with the forecast conditions.

Grab Your Report at an Impressive Discount! Please click here:

https://www.reportspedia.com/discount_inquiry/discount/64313

This all-inclusive study covers an overview of various aspects of the industry including outlook, current Nanotechnology in Medical Market trends, and advance during the forecast period. Along with this, an in-depth analysis of each section of the report is also provided in the report that consists of the strategies adopted by the key players, challenges, and threats as well as advancements in the industry.

Nanotechnology in Medical Market Segmentation by Type:

Nano MedicineNano DiagnosisOther

Based on End Users/Application, the Nanotechnology in Medical Market has been segmented into:

HospitalsClinicsOthers

Years Considered to Estimate the Nanotechnology in Medical Market Size:

History Year: 2015-2019

Base Year: 2019

Estimated Year: 2020

Forecast Year: 2020-2027

Do Make an inquiry of Nanotechnology in Medical Market Research [emailprotected]https://www.reportspedia.com/report/others/2015-2027-global-nanotechnology-in-medical-industry-market-research-report,-segment-by-player,-type,-application,-marketing-channel,-and-region/64313#inquiry_before_buying

Report Answers Following Questions:

Major Point of TOC:

Get a Full Table of [emailprotected]https://www.reportspedia.com/report/others/2015-2027-global-nanotechnology-in-medical-industry-market-research-report,-segment-by-player,-type,-application,-marketing-channel,-and-region/64313#table_of_contents

Read more:
Global Nanotechnology in Medical Market 2020: Remarking Enormous Growth with Recent Trends ,Leading Vendors,By Types and Application, By End Users and...

Read More...

Diagnostics and Sensing: minature sensors and cameras are helping revolutionize patient treatment – CTech

Wednesday, August 19th, 2020

"Multi-disciplinary applications that combine biological and medical knowledge, together with engineering capabilities of data processing and the development of algorithmics, enable a diverse range of innovative (disease) diagnostic and treatment solutions for different ailments. Medical solutions do not always offer a complete cure but thanks to early diagnosis, patients can enjoy a better life," says Prof. Zeev Zalevsky, Dean of the Engineering Faculty at Bar Ilan University and one of the leading Israeli figures in the field of nano-technology.

"We are currently working on monitoring the development of Alzheimer. In the advanced stages of the disease, a change occurs in the relation of concentration between two proteins Amyloid beta and Tau secreted to the spinal fluid. The most common test today is complex, invasive and requires hospitalization. A lumbar puncture (spinal tap) procedure takes place in order to assess the Alzheimer's progress, in which the proteins are extracted from the spinal cord with a needle and examined in a lab to assess their concentration. This allows doctors to see whether a new experimental drug improves the patient's condition and if a change in lifestyle delays or expedites the disease. Lumbar puncture is an expensive, lengthy, and unpleasant procedure that is performed at a medical center. As a result, it is generally performed only once every six months at most. This low frequency does not always help in locating the reason for the deterioration in the Alzheimer patient's condition," Zalevsky explains.

Zalevsky has developed two different technologies in the lab, combining them both to help solve the problem. One of the technologies enables optical sampling behind a scattering medium (behind the tissue during lumbar puncture) while the second technology allows the identification and measurement of chemicals and other substances inside the area under examination. "The concept we developed combines both technologies," he explains. "The non-invasive treatment takes place in the clinic and without extracting spinal fluid. The patient sits on a chair and the light from the device behind him scans the relevant area inside the spinal fluid behind the tissue. The information received from the light's distribution is analyzed with a Raman spectroscope a sensitive device with enhanced resolution that is capable of checking for the existence of the relevant proteins. This technology is in its initial phases of commercial development and we are presently in the final stages prior to finalizing an investment in the incentive Incubator. We have been fortunate to receive support from the Israel Innovation Authority on this project."

Prof. Zalevsky is already responsible for dozens of innovative ideas and revolutionary studies leading to unique technological developments which have been commercialized into useful products in the fields of electro-optics and bio-medical applications. Today, he is focusing on research in the fields of bio-medical sensing, super-resolution, and nano-photonics. "My goal is not just to conduct research but also to bring to fruition technologies that will benefit the end user and I am happy to collaborate with the Innovation Authority to achieve this goal. The Authority offers special programs for initiatives in their early phases, exactly at the complex stage at which they need to recruit investors in order to evolve into a startup with a mature product. In certain cases, some of the mature technologies I took part in developing have already progressed to the Authority's advanced programs such as the startup incubators and commercialization," he elaborates.

The Innovation Authority supported another of Zalevsky's unique initiatives an addition to the CT system that can supply a CT image with enhanced resolution and less radiation. This technology was commercialized to a startup company called LensFree. The main beneficiaries are the doctors who are exposed to radiation throughout the day, despite the protective lead vests they wear. As he explains "Behind this CT system is a special hardware that, combined together with a smart algorithm, enhance the resolution of the picture and allows to take a picture with less radiation. The system is also being currently checked by doctors who perform mammography."

A Thin Endoscope with Unique Algorithmics

Another project combining algorithmics and hardware in bio-medical applications is a development connected to the field of micro-endoscopy. Sometimes, a need arises for internal medical treatment that necessitates a close-up look at the area to be treated. The two most common endoscopic technologies are 'chip-on-the-tip' a camera that enters the body, sees an image and transmits it via electric cables; and fiber endoscope an optic fiber inserted into the body with a sensor (or camera) that remains outside the patient's body.

These technologies have several significant drawbacks. First, the need for sterilization after each treatment; second, the small diameter of the optic fiber or camera that prevents a higher-resolution picture; third, the amount of blood in the body that may distort the transmitted picture. "The endoscope that we developed addresses these problems. It is very thin with a small diameter but its algorithmics enable a resolution-enhanced image despite the blood. The part of the endoscope entering the patient's body is disposable so there is no problem of sterilization. This technology was commercialized seven years ago from my lab and the startup company Zsquare is currently in advanced stages. The product is subject to medical regulation procedures and I hope that it will be released soon," Zalevsky says.

Laser Light and Vibrations for Remote Diagnosis

Five years ago, one of the oldest projects occupying Zalevsky's time over the last 15 years became a startup company by the name of ContinUse Biometrics. The technology, developed in the laboratory at Bar Ilan in collaboration with a colleague from Valencia in Spain, is capable of remote medical diagnosis by means of laser light and a camera with special optics. "The patient positions himself in front of the sensor and is illuminated by a laser light. The light diffusing from the tissue is absorbed by the special-optics camera and processed algorithmically. The algorithm analyzes the changes in the time and space of the vibrations in the tissue and diagnoses the patient's condition according to the pattern of the light diffusion. The sensor is extremely sensitive and can absorb the tempo and nature of the vibrations with nanometric precision. The vibrations characterize the human body because we are made of vibrating molecules, blood flow, and vibrations connected to basic vitality parameters such as breathing and heartbeats," Zalevsky explains.

This technology may also prove useful with Corona. It can be used for sensing the onset of pneumonia, respiratory problems, rhonchus, rapid pulse, high blood pressure, rising temperature, oxygen saturation in the blood etc., all from another location and without proximity to the sensor or the presence of a physician. Such a device can be placed at the entrance to a shopping mall for example, to check if shoppers are developing similar symptoms.

As part of the research, Zalevsky also attempted to read thoughts. "When we use our brain, blood flows to a specific area according to the type of action we initiate. Blood flow is related to nano-vibrations which we can detect from a distance and is the base of the technology we developed. Science needs a multi-disciplinary approach to ensure sufficient depth and applications that will benefit mankind," he summarizes. "There is such a large scope of knowledge and abundance of diverse fields of expertise that it's impossible to specialize in everything, and the correct way to advance a scientific development with high scientific and practical impact is to combine forces and knowledge from different fields."

Reducing the Use of Antibiotics

A recent revolutionary scientific development is a 15-minute blood test that can translate and decode the complex signals of our immune system to identify what is causing an infection. The test, developed by MeMed, addresses a prevalent and major clinical dilemma with far-reaching consequences is the infection bacterial and therefore in need of antibiotic treatment or viral? Because the clinical symptoms of viral and bacterial infections are very similar, the patient is frequently prescribed antibiotics even when they are unnecessary.

The impact of such a test is dramatic not merely because the patient receives the appropriate treatment, but also because it prevents unnecessary prescription of antibiotics, helping to reduce the creation of bacteria that are resistant to antibiotics. "Bacteria that are resistant to antibiotics is one of the major health challenges of the 21st century," says Dr. Eran Eden, the company's CEO and founding partner. "MeMed's existing solution overcomes the limitations of the diagnostics available today which either supply an answer only after a few days, require access to the pathogen, cannot identify new species, or cannot distinguish between colonizers and the disease-causing agent."

A major milestone was recently achieved when the company received regulatory clearance to market the second generation rapid-result test in Europe and Israel. According to Eden "The innovation of the MeMed test is that it is not based on sampling the cause of the infection but rather, decodes the individual's immune response to the disease-causing agent. We have developed a small device to measure the levels of three proteins in the blood and algorithmically combine the measurements to differentiate whether the infection is bacterial or viral."

Technology that Combines Different Disciplines

MeMed was founded about a decade ago by Dr. Eran Eden (CEO) and Dr. Kfir Oved (CTO). "We are backed by several of the leading venture capital funds in the US and Asia and have also established a subsidiary company in the US," Eden says. "The company has raised approximately 100 million dollars so far and received grants of 35 million dollars from the American Department of Defense and from the EU. The company is capable of manufacturing medical devices according to the highest standards. Our product has the potential to impact the lives of so many people around the world."

"The process of developing an advanced technology is a lengthy one, especially when it integrates several different disciplines. MeMed's diagnostic system encompasses in-depth know-how and expertise across four different dimensions: clinical medicine; molecular immunology; artificial intelligence; and machine engineering. The Innovation Authority is promoting this Bio-convergence approach, as it leads to significant breakthroughs. The synthesis of different disciplines, which is not at all trivial, poses an imposing hurdle at the beginning of the process but later constitutes a huge advantage."

Thanks to grants from the European Union and the American Department of Defense, MeMed did not require direct financing from the Innovation Authority however the ISERD (the Israel-Europe Research & Innovation Directorate), operating at the Israel Innovation Authority, has contributed to MeMed's success in various areas. According to Eden, "We are extremely grateful to ISERD for their assistance during the initial stages and their continued support. We are presently in contact with the Authority to advance future Bio-convergence projects."

Over 90% Successful Identification

As Eden explains, the development process was highly complex. "It took four years of gathering, measuring, and analyzing clinical samples to discover the basis of the test. During our research we scanned the protein space of the human body and checked how it responds to different viruses and bacteria. One challenge, for example, was for the test to be applicable to people of all ages. In the end, we identified 3 proteins that we named after ice-cream flavors: toffee, cherry, and pecan."

"After the discovery study of more than 1000 patients, we conducted a validation study of 777 children together with one of Europe's leading pediatricians", Eden explains. "The results reproduced sensitive and specific detection (>90%) with very low probability of missing bacterial infections. We have continued performing additional large-scale studies thanks to financing that we received from the EU with the goal of creating a tremendous mass of clinical data to support the quality and reliability of the test."

The first generation of the test provided an answer after 2 hours. However, we realized that a quicker answer of only minutes was needed to increase the test's usefulness. "My partner Kfir had a revolutionary idea to miniaturize a large machine that is capable of measuring the three proteins accurately and rapidly," says Eden. "As a result, we embarked on a lengthy engineering process that was accelerated by an award from the American Department of Defense, won with the help of Dr. Tanya Gottlieb who oversaw the liaison with them.

"The resultant platform that we developed is capable of measuring multiple proteins simultaneously. In the future, it can be applied not only in our test that differentiates between bacterial and viral infection but also in any test involving proteins," he concludes.

Dr. Itai Kela, Scientific Director of the Bio-Convergence Program:

"The coronavirus crisis has accentuated the challenges we are encountering in the field of medicine and the growing significant need for new innovative solutions. One of the fundamental problems with the Corona virus is the lack of efficient and rapid diagnostic tools. It presently takes 3 days to receive test results and about 5 days until people are notified that they were exposed to Covid-19 patients. This is too long and prevents the efficient severance of the chain of infection. We would be in a much better situation if results could be received in 15 minutes. Bio-convergence is the means that will enable the development of innovative diagnostics which facilitate better and faster identification."

The article was written in collaboration with the Israel Innovation Authority, responsible for the countrys innovation policy. Its role is to nurture and develop Israeli innovation resources, while creating and strengthening the infrastructure and framework needed to support the entire knowledge industry.

Read the rest here:
Diagnostics and Sensing: minature sensors and cameras are helping revolutionize patient treatment - CTech

Read More...

Bringing Peer Review To Early COVID-19 Research, More News – Bio-IT World

Tuesday, August 18th, 2020

August 18, 2020| New insights into the SARS-CoV-2 spike protein, a daily aerosol protectant, a look a death rates in 1918 and now, and a journal dedicated to publishing COVID-19 research with visible peer review. Plus new funding from NIH and the American Heart Association to enable further research on SARS-CoV-2 and COVID-19.

Research Updates

Using nanometer-level simulations, Northwestern Universityresearchers have discovered a positively charged site (known as the polybasic cleavage site) located 10 nanometers from the actual binding site on the SARS-CoV-2 spike protein. The positively charged site allows strong bonding between the virus protein and the negatively charged human-cell receptors. Leveraging this discovery, the researchers designed a negatively charged molecule to bind to the positively charged cleavage site. Blocking this site inhibits the virus from bonding to the host cell. The work was published in ACS Nano. DOI: 10.1021/acsnano.0c04798

UC San Franciscoscientists have devised a novel approach to halting the spread of SARS-CoV-2: a completely synthetic, production-ready molecule that straitjackets the crucial SARS-CoV-2 machinery that allows the virus to infect our cells. As reported in a new paper, now available on the preprint server bioRxiv, experiments using live virus show that the molecule is among the most potent SARS-CoV-2 antivirals yet discovered. In an aerosol formulation they tested, dubbed AeroNabs by the researchers, these molecules could be self-administered with a nasal spray or inhaler. Used once a day, AeroNabs could provide powerful, reliable protection against SARS-CoV-2 until a vaccine becomes available, they say. The research team is in active discussions with commercial partners to ramp up manufacturing and clinical testing of AeroNabs. If these tests are successful, the scientists aim to make AeroNabs widely available as an inexpensive, over-the-counter medication to prevent and treat COVID-19. Preprint DOI: 10.1101/2020.08.08.238469

Researchers from Harvard, Yale, and Emorycompared the estimated excess deaths in New York during the peak of the 1918 influenza pandemic with above-average deaths during the early period of the COVID-19 outbreak in a new research letter published in JAMA Network Open. During the peak of the 1918 H1N1 influenza outbreak in New York City, a total of 31,589 all-cause deaths occurred among 5,500,000 residents, yielding an incident rate of 287.17 deaths per 100,000 person-months. During the early period of the COVID-19 outbreak in New York City, 33,465 all-cause deaths occurred among 8,280,000 residents, yielding an incident rate of 202.08 deaths per 100,000 person-months. These findings suggest that the mortality associated with COVID-19 during the early phase of the New York City outbreak was comparable to the peak mortality observed during the 1918 H1N1 influenza pandemic, the authors write. DOI: 10.1001/jamanetworkopen.2020.17527

A preliminary analysis of an ongoing study of more than 300 COVID-19 patients treated with convalescent plasma therapyat Houston Methodist suggests the treatment is safe and effective. The results appear in The American Journal of Pathology. The study compared 316 transfused patients to controls and preliminary analysis showed a significant reduction in mortality within 28 days, specifically in patients transfused within 72 h of admission with plasma with an anti-spike protein receptor binding domain titer of 1:1350. DOI: 10.1016/j.ajpath.2020.08.001

A team from Yale conducted a retrospective cohort study of 1827 patients with confirmed COVID19 who were hospitalized within the YaleNew Haven Health System (YNHHS) between March 14, 2020 and April 23, 2020 and published their findings in Hepatology. They analyzed liver tests at three time points (preinfection baseline, admission, peak hospitalization), and hospitalization outcomes (severe COVID19, ICU admission, mechanical ventilation, death). Abnormal liver testswere commonly observed in hospitalized patients with COVID19, both at admission and peak hospitalization. A significant proportion of these patients had abnormal liver tests prehospitalization. Multivariate analysis revealed an association between abnormal liver tests and severe COVID19, including ICU admission, mechanical ventilation, and death. DOI: 10.1002/hep.31487

An online national survey of 4, 351 adolescents and young adults aged 1324 years was conducted in May 2020 and used to assess relationships among COVID-19 and e-cigarettes and cigarettes. Researchers from Stanford found that COVID-19 was five times more likely among ever-users of e-cigarettes only, seven times more likely among ever-dual-users, and 6.8 times more likely among past 30-day dual-users. The team published their findings in the Journal of Adolescent Health and concluded that COVID-19 is associated with youth use of e-cigarettes only and dual use of e-cigarettes and cigarettes, suggesting the need for screening and education. DOI: 10.1016/j.jadohealth.2020.07.002

Researchers from Harvard and Washington Universityhave constructed chimeric forms of vesicular stomatitis virus (VSV) bearing the fusion proteins of Zaire ebolavirus (ZEBOV) or SARS coronavirus 2 (SARS-CoV-2) and shown that two small-molecule inhibitors of an endosomal lipid kinase (PIKfyve) inhibit viral infection by preventing release of the viral contents from endosomes. The findings suggest the potential for targeting PIKfyve kinase when developing small-molecule antivirals against SARS-CoV-2. The results were published in PNAS. DOI: 10.1073/pnas.2007837117

By applying the renewal theory in probability to reduce recall bias in initial case reports, scientists from NIH, Peking University, and the Chinese Center for Disease Controland Prevention have come up with a new estimate for the incubation periodof COVID-19. Their mean estimate of 7.76 days, longer than previous estimates of 4 to 5 days, is based on 1,084 confirmed cases of COVID-19 that had known histories of travel or residency in Wuhan, China. The results were published in Science Advances, and the authors caution that their approach relies on several assumptions and may not apply to later cases where the virus may have mutated. DOI: 10.1126/sciadv.abc1202

Last month, a team from McMaster University analyzed gene expression datasets from airway epithelial cells of 515 healthy subjects, gene promoter activity analysis using the FANTOM5 dataset containing 120 distinct sample types, single cell RNA sequencing (scRNAseq) of 10 healthy subjects, proteomic datasets, immunoblots on multiple airway epithelial cell types, and immunohistochemistry on 98 human lung samples. Their findings, published in the European Respiratory Journal, suggest the presence of a mechanism dynamically regulating ACE2 expression in human lung, perhaps in periods of SARS-CoV-2 infection, and also suggest that alternate receptors for SARS-CoV-2 exist to facilitate initial host cell infection. DOI: 10.1183/13993003.01123-2020Later in July, a group from Uppsala University came to a similar conclusion in a paper published in Molecular Systems Biology. In the respiratory system, the expression of ACE2 was limited, with no or only low expression in a subset of cells in a few individuals, observed by one antibody only, the Swedish group writes. DOI: 10.15252/msb.20209610

To compare disease trends in adults and childrenduring the first wave of the coronavirus pandemic in England between January and May 2020, UK researchers reviewed COVID-19 test result data for this period. The data included NHS and Public Health England (PHE) test results plus those carried out by family doctors at 300 general practices contributing to the Royal College of General Practitioners monitoring system for flu-like illness35,200 children under the age of 16. Around 24% of all those tested had the virus, and children accounted for 1% of the total. 4% of the 35,200 tests carried out on children were positive compared to 19%-35% of adults. Their findings are published in BJM. DOI: 10.1136/archdischild-2020-320042.

Evidence has revealed that SARS-CoV-2 infection caused taste lossat a rate higher than that of influenza. ACE2, the entry receptor of SARS-CoV-2, has been identified in the oral epithelium; however, it is unclear at what developmental stage ACE2 expression emerges and whether ACE2 is expressed in taste buds. To identify the specific developmental stage, researchers from the University of Georga analyzed RNA-Seq data from embryonic, newborn, and adult mouse oral tissue. They found that when applied across species, nongustatory papilla epithelial cells are the prime targets for SARS-CoV-2 infection in the tongue; thus, taste loss in COVID-19 patients is likely not caused by a direct infection of SARS-CoV-2 to taste bud cells. Additionally, fetuses at different stages of development may have distinct susceptibility to SARS-CoV-2 infection. Their results are published in ACS Pharmacology and Translational Science. DOI: 10.1021/acsptsci.0c00062

In Annals of Internal Medicine, researchers from Garibaldi Hospital in Italy describe what they believe are the first 3 reported cases of AChR antibodypositive myasthenia gravis after COVID-19. Their observations are consistent with reports of other infections that induce autoimmune disorders, they say, as well as with the growing evidence of other neurologic disorders with presumed autoimmune mechanisms after COVID-19 onset. The team notes that symptoms of myasthenia gravis appeared within 5 to 7 days after fever onset in all 3 patients, and the time from presumed infection with SARS-CoV-2 to the beginning of myasthenia gravis symptoms is consistent with the time from infection to symptoms in other neurologic disorders triggered by infections. DOI: 10.7326/L20-0845

Industry Updates

MIT Press and the University California, Berkeley have launched an open access journalRapid Reviews: COVID-19 (RR:C19)in an effort to reduce misinformation and to elevate noteworthy and useful research for scientists, public health officials, journalists, and the public. The first issue posted peer reviews of eight COVID-19 preprint studies. More than 20,000 preprints have been made available on preprint servers, including medRxiv, bioRxiv, and SSRN. The RR:C19 editorial team believes there is an urgent need for scholarly peer review to validateor debunkinformation before it is widely circulated. Press release.

The American Heart Associationhas awarded an additional $400,000 in research grants focused on the cardiovascular impact of COVID-19. The awards go to four more teams who submitted proposals for the COVID-19 and Its Cardiovascular Impact Rapid Response Grants during the original submission process in March. The winning teams come from Cleveland Clinic, Johns Hopkins University, Cedars-Sinai Medical Center, and New York-Presbyterian/Columbia University Irving Medical Center. Press release.

The National Institutes of Health has awarded a grant of $1.2 million to the Mouse Biology Programat the University of California, Davis, to create mice that are susceptible to the COVID-19 virus, and to distribute them to researchers. Mice and rats are not naturally infected by SARS-CoV-2, the virus that causes COVID-19. The virus enters human cells by attaching to a protein called ACE2. Lloyd's team plans to create "humanized" laboratory mice by using CRISPR-Cas9 technology to precisely replace the genetic code for the mouse equivalent of ACE2 with the code for human ACE2. Press release.

Continued here:
Bringing Peer Review To Early COVID-19 Research, More News - Bio-IT World

Read More...

Jennifer.grey The Daily Chronicle – The Daily Chronicle

Tuesday, August 18th, 2020

The global Agricultural Balers market focuses on encompassing major statistical evidence for the Agricultural Balers industry as it offers our readers a value addition on guiding them in encountering the obstacles surrounding the market. A comprehensive addition of several factors such as global distribution, manufacturers, market size, and market factors that affect the global contributions are reported in the study. In addition the Agricultural Balers study also shifts its attention with an in-depth competitive landscape, defined growth opportunities, market share coupled with product type and applications, key companies responsible for the production, and utilized strategies are also marked.

This intelligence and 2026 forecasts Agricultural Balers industry report further exhibits a pattern of analyzing previous data sources gathered from reliable sources and sets a precedented growth trajectory for the Agricultural Balers market. The report also focuses on a comprehensive market revenue streams along with growth patterns, analytics focused on market trends, and the overall volume of the market.

Moreover, the Agricultural Balers report describes the market division based on various parameters and attributes that are based on geographical distribution, product types, applications, etc. The market segmentation clarifies further regional distribution for the Agricultural Balers market, business trends, potential revenue sources, and upcoming market opportunities.

Download PDF Sample of Agricultural Balers Market report @ https://hongchunresearch.com/request-a-sample/40306

Key players in the global Agricultural Balers market covered in Chapter 4:, Shen Yang Fang Ke, John Deere, Foton Lovol, An Yang Yu Gong, New Holland, Abbriata, Claas, Yulong Machinery, Kuhn, Krone, Case IH, Shanghai Star, Vermeer, Massey Ferguson, Minos

In Chapter 11 and 13.3, on the basis of types, the Agricultural Balers market from 2015 to 2026 is primarily split into:, Round Balers, Square Balers

In Chapter 12 and 13.4, on the basis of applications, the Agricultural Balers market from 2015 to 2026 covers:, Hay, Cotton, Straw, Silage, Other

Geographically, the detailed analysis of consumption, revenue, market share and growth rate, historic and forecast (2015-2026) of the following regions are covered in Chapter 5, 6, 7, 8, 9, 10, 13:, North America (Covered in Chapter 6 and 13), United States, Canada, Mexico, Europe (Covered in Chapter 7 and 13), Germany, UK, France, Italy, Spain, Russia, Others, Asia-Pacific (Covered in Chapter 8 and 13), China, Japan, South Korea, Australia, India, Southeast Asia, Others, Middle East and Africa (Covered in Chapter 9 and 13), Saudi Arabia, UAE, Egypt, Nigeria, South Africa, Others, South America (Covered in Chapter 10 and 13), Brazil, Argentina, Columbia, Chile, Others

The Agricultural Balers market study further highlights the segmentation of the Agricultural Balers industry on a global distribution. The report focuses on regions of North America, Europe, Asia, and the Rest of the World in terms of developing business trends, preferred market channels, investment feasibility, long term investments, and environmental analysis. The Agricultural Balers report also calls attention to investigate product capacity, product price, profit streams, supply to demand ratio, production and market growth rate, and a projected growth forecast.

In addition, the Agricultural Balers market study also covers several factors such as market status, key market trends, growth forecast, and growth opportunities. Furthermore, we analyze the challenges faced by the Agricultural Balers market in terms of global and regional basis. The study also encompasses a number of opportunities and emerging trends which are considered by considering their impact on the global scale in acquiring a majority of the market share.

The study encompasses a variety of analytical resources such as SWOT analysis and Porters Five Forces analysis coupled with primary and secondary research methodologies. It covers all the bases surrounding the Agricultural Balers industry as it explores the competitive nature of the market complete with a regional analysis.

Brief about Agricultural Balers Market Report with [emailprotected] https://hongchunresearch.com/report/agricultural-balers-market-40306

Some Point of Table of Content:

Chapter One: Report Overview

Chapter Two: Global Market Growth Trends

Chapter Three: Value Chain of Agricultural Balers Market

Chapter Four: Players Profiles

Chapter Five: Global Agricultural Balers Market Analysis by Regions

Chapter Six: North America Agricultural Balers Market Analysis by Countries

Chapter Seven: Europe Agricultural Balers Market Analysis by Countries

Chapter Eight: Asia-Pacific Agricultural Balers Market Analysis by Countries

Chapter Nine: Middle East and Africa Agricultural Balers Market Analysis by Countries

Chapter Ten: South America Agricultural Balers Market Analysis by Countries

Chapter Eleven: Global Agricultural Balers Market Segment by Types

Chapter Twelve: Global Agricultural Balers Market Segment by Applications12.1 Global Agricultural Balers Sales, Revenue and Market Share by Applications (2015-2020)12.1.1 Global Agricultural Balers Sales and Market Share by Applications (2015-2020)12.1.2 Global Agricultural Balers Revenue and Market Share by Applications (2015-2020)12.2 Hay Sales, Revenue and Growth Rate (2015-2020)12.3 Cotton Sales, Revenue and Growth Rate (2015-2020)12.4 Straw Sales, Revenue and Growth Rate (2015-2020)12.5 Silage Sales, Revenue and Growth Rate (2015-2020)12.6 Other Sales, Revenue and Growth Rate (2015-2020)

Chapter Thirteen: Agricultural Balers Market Forecast by Regions (2020-2026) continued

Check [emailprotected] https://hongchunresearch.com/check-discount/40306

List of tablesList of Tables and FiguresTable Global Agricultural Balers Market Size Growth Rate by Type (2020-2026)Figure Global Agricultural Balers Market Share by Type in 2019 & 2026Figure Round Balers FeaturesFigure Square Balers FeaturesTable Global Agricultural Balers Market Size Growth by Application (2020-2026)Figure Global Agricultural Balers Market Share by Application in 2019 & 2026Figure Hay DescriptionFigure Cotton DescriptionFigure Straw DescriptionFigure Silage DescriptionFigure Other DescriptionFigure Global COVID-19 Status OverviewTable Influence of COVID-19 Outbreak on Agricultural Balers Industry DevelopmentTable SWOT AnalysisFigure Porters Five Forces AnalysisFigure Global Agricultural Balers Market Size and Growth Rate 2015-2026Table Industry NewsTable Industry PoliciesFigure Value Chain Status of Agricultural BalersFigure Production Process of Agricultural BalersFigure Manufacturing Cost Structure of Agricultural BalersFigure Major Company Analysis (by Business Distribution Base, by Product Type)Table Downstream Major Customer Analysis (by Region)Table Shen Yang Fang Ke ProfileTable Shen Yang Fang Ke Production, Value, Price, Gross Margin 2015-2020Table John Deere ProfileTable John Deere Production, Value, Price, Gross Margin 2015-2020Table Foton Lovol ProfileTable Foton Lovol Production, Value, Price, Gross Margin 2015-2020Table An Yang Yu Gong ProfileTable An Yang Yu Gong Production, Value, Price, Gross Margin 2015-2020Table New Holland ProfileTable New Holland Production, Value, Price, Gross Margin 2015-2020Table Abbriata ProfileTable Abbriata Production, Value, Price, Gross Margin 2015-2020Table Claas ProfileTable Claas Production, Value, Price, Gross Margin 2015-2020Table Yulong Machinery ProfileTable Yulong Machinery Production, Value, Price, Gross Margin 2015-2020Table Kuhn ProfileTable Kuhn Production, Value, Price, Gross Margin 2015-2020Table Krone ProfileTable Krone Production, Value, Price, Gross Margin 2015-2020Table Case IH ProfileTable Case IH Production, Value, Price, Gross Margin 2015-2020Table Shanghai Star ProfileTable Shanghai Star Production, Value, Price, Gross Margin 2015-2020Table Vermeer ProfileTable Vermeer Production, Value, Price, Gross Margin 2015-2020Table Massey Ferguson ProfileTable Massey Ferguson Production, Value, Price, Gross Margin 2015-2020Table Minos ProfileTable Minos Production, Value, Price, Gross Margin 2015-2020Figure Global Agricultural Balers Sales and Growth Rate (2015-2020)Figure Global Agricultural Balers Revenue ($) and Growth (2015-2020)Table Global Agricultural Balers Sales by Regions (2015-2020)Table Global Agricultural Balers Sales Market Share by Regions (2015-2020)Table Global Agricultural Balers Revenue ($) by Regions (2015-2020)Table Global Agricultural Balers Revenue Market Share by Regions (2015-2020)Table Global Agricultural Balers Revenue Market Share by Regions in 2015Table Global Agricultural Balers Revenue Market Share by Regions in 2019Figure North America Agricultural Balers Sales and Growth Rate (2015-2020)Figure Europe Agricultural Balers Sales and Growth Rate (2015-2020)Figure Asia-Pacific Agricultural Balers Sales and Growth Rate (2015-2020)Figure Middle East and Africa Agricultural Balers Sales and Growth Rate (2015-2020)Figure South America Agricultural Balers Sales and Growth Rate (2015-2020)Figure North America Agricultural Balers Revenue ($) and Growth (2015-2020)Table North America Agricultural Balers Sales by Countries (2015-2020)Table North America Agricultural Balers Sales Market Share by Countries (2015-2020)Figure North America Agricultural Balers Sales Market Share by Countries in 2015Figure North America Agricultural Balers Sales Market Share by Countries in 2019Table North America Agricultural Balers Revenue ($) by Countries (2015-2020)Table North America Agricultural Balers Revenue Market Share by Countries (2015-2020)Figure North America Agricultural Balers Revenue Market Share by Countries in 2015Figure North America Agricultural Balers Revenue Market Share by Countries in 2019Figure United States Agricultural Balers Sales and Growth Rate (2015-2020)Figure Canada Agricultural Balers Sales and Growth Rate (2015-2020)Figure Mexico Agricultural Balers Sales and Growth (2015-2020)Figure Europe Agricultural Balers Revenue ($) Growth (2015-2020)Table Europe Agricultural Balers Sales by Countries (2015-2020)Table Europe Agricultural Balers Sales Market Share by Countries (2015-2020)Figure Europe Agricultural Balers Sales Market Share by Countries in 2015Figure Europe Agricultural Balers Sales Market Share by Countries in 2019Table Europe Agricultural Balers Revenue ($) by Countries (2015-2020)Table Europe Agricultural Balers Revenue Market Share by Countries (2015-2020)Figure Europe Agricultural Balers Revenue Market Share by Countries in 2015Figure Europe Agricultural Balers Revenue Market Share by Countries in 2019Figure Germany Agricultural Balers Sales and Growth Rate (2015-2020)Figure UK Agricultural Balers Sales and Growth Rate (2015-2020)Figure France Agricultural Balers Sales and Growth Rate (2015-2020)Figure Italy Agricultural Balers Sales and Growth Rate (2015-2020)Figure Spain Agricultural Balers Sales and Growth Rate (2015-2020)Figure Russia Agricultural Balers Sales and Growth Rate (2015-2020)Figure Asia-Pacific Agricultural Balers Revenue ($) and Growth (2015-2020)Table Asia-Pacific Agricultural Balers Sales by Countries (2015-2020)Table Asia-Pacific Agricultural Balers Sales Market Share by Countries (2015-2020)Figure Asia-Pacific Agricultural Balers Sales Market Share by Countries in 2015Figure Asia-Pacific Agricultural Balers Sales Market Share by Countries in 2019Table Asia-Pacific Agricultural Balers Revenue ($) by Countries (2015-2020)Table Asia-Pacific Agricultural Balers Revenue Market Share by Countries (2015-2020)Figure Asia-Pacific Agricultural Balers Revenue Market Share by Countries in 2015Figure Asia-Pacific Agricultural Balers Revenue Market Share by Countries in 2019Figure China Agricultural Balers Sales and Growth Rate (2015-2020)Figure Japan Agricultural Balers Sales and Growth Rate (2015-2020)Figure South Korea Agricultural Balers Sales and Growth Rate (2015-2020)Figure Australia Agricultural Balers Sales and Growth Rate (2015-2020)Figure India Agricultural Balers Sales and Growth Rate (2015-2020)Figure Southeast Asia Agricultural Balers Sales and Growth Rate (2015-2020)Figure Middle East and Africa Agricultural Balers Revenue ($) and Growth (2015-2020) continued

About HongChun Research:HongChun Research main aim is to assist our clients in order to give a detailed perspective on the current market trends and build long-lasting connections with our clientele. Our studies are designed to provide solid quantitative facts combined with strategic industrial insights that are acquired from proprietary sources and an in-house model.

Contact Details:Jennifer GrayManager Global Sales+ 852 8170 0792[emailprotected]

NOTE: Our report does take into account the impact of coronavirus pandemic and dedicates qualitative as well as quantitative sections of information within the report that emphasizes the impact of COVID-19.

As this pandemic is ongoing and leading to dynamic shifts in stocks and businesses worldwide, we take into account the current condition and forecast the market data taking into consideration the micro and macroeconomic factors that will be affected by the pandemic.

See original here:
Jennifer.grey The Daily Chronicle - The Daily Chronicle

Read More...

Latest News: Nanorobotics Market Is Taking Foot Back Due to Covid-19! is it? Check out with Analysis of Leading Players in the Globe- Bruker, JEOL,…

Tuesday, August 18th, 2020

Los Angles United States, August 2020: The Nanorobotics Market steadily escalating demand due to improving purchasing power is projected to bode well for the global market. WMRlatest publication, Titled Nanorobotics Market Research Report 2020, offers an insightful take on the drivers and restraints present in the market. It assesses the historical data pertaining to the Nanorobotics market and compares it to the current market trends to give the readers a detailed analysis of the trajectory of the market. A team subject-matter experts have provided the readers a qualitative and quantitative data about the market and the various elements associated with it.

The new report offers a powerful combination of latest, in-depth research studies on the Nanorobotics market. The authors of the report are highly experienced analysts and possess deep market knowledge. Some of the key players operating in this Report are:Bruker, JEOL, Thermo Fisher Scientific, Ginkgo Bioworks, Oxford Instruments, etc

Get Free Sample of the Report to understand the structure of the complete report (Including Full TOC, Table & Figures):https://www.worldwidemarketreports.com/sample/356091

Nanorobotics Players/Suppliers Profiles and Sales Data:Company, Company Basic Information, Manufacturing Base and Competitors, Product Category, Application and Specification with Sales, Revenue, Price and Gross Margin, Main Business/Business Overview.

The Best part of this report is, this analyses the current state where all are fighting with the covid-19, The report also provides the market impact and new opportunities created due to the Covid19 catastrophe.

Get the Impact Analysis of Covid-19 on Nanorobotics Industry at:https://www.worldwidemarketreports.com/covidimpact/356091

Key Benefits for Stakeholders

The study provides an in-depth analysis of the Nanorobotics market size along with the current trends and future estimations to elucidate the imminent investment pockets.Information about key drivers, restraints, and opportunities and their impact analysis on the market size is provided.Porters five forces analysis illustrates the potency of buyers and suppliers operating in the portable gaming industry.The quantitative analysis of the Nanorobotics industry from 2020 to 2026 is provided to determine the Nanorobotics market potential.

The research report is broken down into chapters, which are introduced by the executive summary. Its the introductory part of the chapter, which includes details about global market figures, both historical and estimates. The executive summary also provides a brief about the segments and the reasons for the progress or decline during the forecast period. The insightful research report on the Nanorobotics market includes Porters five forces analysis and SWOT analysis to understand the factors impacting consumer and supplier behavior.

Market Segment Analysis

The research report includes specific segments by Type and by Application. Each type provides information about the production during the forecast period of 2015 to 2026. Application segment also provides consumption during the forecast period of 2015 to 2026. Understanding the segments helps in identifying the importance of different factors that aid the market growth.

Segment by TypeNanomanipulator, Bio-Nanorobotics, Magnetically Guided, Bacteria-Based

Segment by ApplicationNanomedicine, Biomedical, Mechanical

Nanorobotics Market: Competitive Landscape

This section of the report identifies various key manufacturers of the market. It helps the reader understand the strategies and collaborations that players are focusing on combat competition in the market. The comprehensive report provides a significant microscopic look at the market. The reader can identify the footprints of the manufacturers by knowing about the global revenue of manufacturers, the global price of manufacturers, and production by manufacturers during the forecast period of 2015 to 2019.

Nanorobotics Market: Regional Analysis

The report offers in-depth assessment of the growth and other aspects of the Nanorobotics market in important regions, including the U.S., Canada, Germany, France, U.K., Italy, Russia, China, Japan, South Korea, Taiwan, Southeast Asia, Mexico, and Brazil, etc. Key regions covered in the report are North America, Europe, Asia-Pacific and Latin America.

The report has been curated after observing and studying various factors that determine regional growth such as economic, environmental, social, technological, and political status of the particular region. Analysts have studied the data of revenue, production, and manufacturers of each region. This section analyses region-wise revenue and volume for the forecast period of 2015 to 2025. These analyses will help the reader to understand the potential worth of investment in a particular region.

Table Of Content

Market Overview: Scope & Product Overview, Classification of Nanorobotics by Product Category (Market Size (Sales), Market Share Comparison by Type (Product Category)), Nanorobotics Market by Application/End Users (Sales (Volume) and Market Share Comparison by Application), Market by Region (Market Size (Value) Comparison by Region, Status and ProspectNanorobotics Market by Manufacturing Cost Analysis:Key Raw Materials Analysis, Price Trend of Key Raw Materials, Key Suppliers of Raw Materials, Market Concentration Rate of Raw Materials, Proportion of Manufacturing Cost Structure (Raw Materials, Labor Cost), Manufacturing Process Analysis

Key Strategic Developments: The study also includes the key strategic developments of the Nanorobotics market, comprising R&D, new product launch, M&A, agreements, collaborations, partnerships, joint ventures, and regional growth of the leading competitors operating in the market on a global and regional scale.

Key Market Features: The report evaluated key market features, including revenue, price, capacity, capacity utilization rate, gross, production, production rate, consumption, market share, CAGR, and gross margin.

Analytical Tools: The Nanorobotics Market report includes the precisely studied and weighed data of the key industry players and their scope in the Nanorobotics market by means of several analytical tools.

Get the Customization of the Report within 24 Hours at:https://www.worldwidemarketreports.com/quiry/356091

Original post:
Latest News: Nanorobotics Market Is Taking Foot Back Due to Covid-19! is it? Check out with Analysis of Leading Players in the Globe- Bruker, JEOL,...

Read More...

COVID-19 Impact on Global and Regional Nanomedicine Industry Production, Sales and Consumption Status and Prospects Professional Market Research…

Sunday, August 16th, 2020

The global Nanomedicine market focuses on encompassing major statistical evidence for the Nanomedicine industry as it offers our readers a value addition on guiding them in encountering the obstacles surrounding the market. A comprehensive addition of several factors such as global distribution, manufacturers, market size, and market factors that affect the global contributions are reported in the study. In addition the Nanomedicine study also shifts its attention with an in-depth competitive landscape, defined growth opportunities, market share coupled with product type and applications, key companies responsible for the production, and utilized strategies are also marked.

This intelligence and 2026 forecasts Nanomedicine industry report further exhibits a pattern of analyzing previous data sources gathered from reliable sources and sets a precedented growth trajectory for the Nanomedicine market. The report also focuses on a comprehensive market revenue streams along with growth patterns, analytics focused on market trends, and the overall volume of the market.

Moreover, the Nanomedicine report describes the market division based on various parameters and attributes that are based on geographical distribution, product types, applications, etc. The market segmentation clarifies further regional distribution for the Nanomedicine market, business trends, potential revenue sources, and upcoming market opportunities.

Download PDF Sample of Nanomedicine Market report @ https://hongchunresearch.com/request-a-sample/2923

Major Players in Nanomedicine market are:, Fraunhofer ICT-IMM, Tecnalia, Bergmannstrost, CIC biomaGUNE, Bracco, Affilogic, LTFN, GIMAC, Endomagnetics, Materials Research Centre, VITO NV, CIBER-BBN, Istec CNR, Carlina technologies, Cristal Therapeutics, ChemConnection, IMDEA, SwedNanoTech, Grupo Praxis, Vicomtech, DTI, Tekniker, Biotechrabbit, Contipro, , Major Regions that plays a vital role in Nanomedicine market are:, North America, Europe, China, Japan, Middle East & Africa, India, South America, Others

Most important types of Nanomedicine products covered in this report are:, Type 1, Type 2, Type 3, Type 4, Type 5

Brief about Nanomedicine Market Report with [emailprotected] https://hongchunresearch.com/report/Nanomedicine-market-2923

Most widely used downstream fields of Nanomedicine market covered in this report are:, Application 1, Application 2, Application 3, Application 4, Application 5

The Nanomedicine market study further highlights the segmentation of the Nanomedicine industry on a global distribution. The report focuses on regions of North America, Europe, Asia, and the Rest of the World in terms of developing business trends, preferred market channels, investment feasibility, long term investments, and environmental analysis. The Nanomedicine report also calls attention to investigate product capacity, product price, profit streams, supply to demand ratio, production and market growth rate, and a projected growth forecast.

In addition, the Nanomedicine market study also covers several factors such as market status, key market trends, growth forecast, and growth opportunities. Furthermore, we analyze the challenges faced by the Nanomedicine market in terms of global and regional basis. The study also encompasses a number of opportunities and emerging trends which are considered by considering their impact on the global scale in acquiring a majority of the market share.

The study encompasses a variety of analytical resources such as SWOT analysis and Porters Five Forces analysis coupled with primary and secondary research methodologies. It covers all the bases surrounding the Nanomedicine industry as it explores the competitive nature of the market complete with a regional analysis.

Some Point of Table of Content:

Chapter One: Nanomedicine Introduction and Market Overview

Chapter Two: Industry Chain Analysis

Chapter Three: Global Nanomedicine Market, by Type

Chapter Four: Nanomedicine Market, by Application

Chapter Five: Global Nanomedicine Production, Value ($) by Region (2014-2019)

Chapter Six: Global Nanomedicine Production, Consumption, Export, Import by Regions (2014-2019)

Chapter Seven: Global Nanomedicine Market Status and SWOT Analysis by Regions

Chapter Eight: Competitive Landscape

Chapter Nine: Global Nanomedicine Market Analysis and Forecast by Type and Application

Chapter Ten: Nanomedicine Market Analysis and Forecast by Region

Chapter Eleven: New Project Feasibility Analysis

Chapter Twelve: Research Finding and Conclusion

Chapter Thirteen: Appendix continued

List of tablesList of Tables and Figures

Figure Product Picture of Nanomedicine

Table Product Specification of Nanomedicine

Figure Market Concentration Ratio and Market Maturity Analysis of Nanomedicine

Figure Global Nanomedicine Value ($) and Growth Rate from 2014-2024

Table Different Types of Nanomedicine

Figure Global Nanomedicine Value ($) Segment by Type from 2014-2019

Figure Nanomedicine Type 1 Picture

Figure Nanomedicine Type 2 Picture

Figure Nanomedicine Type 3 Picture

Figure Nanomedicine Type 4 Picture

Figure Nanomedicine Type 5 Picture

Table Different Applications of Nanomedicine

Figure Global Nanomedicine Value ($) Segment by Applications from 2014-2019

Figure Application 1 Picture

Figure Application 2 Picture

Figure Application 3 Picture

Figure Application 4 Picture

Figure Application 5 Picture

Table Research Regions of Nanomedicine

Figure North America Nanomedicine Production Value ($) and Growth Rate (2014-2019)

Figure Europe Nanomedicine Production Value ($) and Growth Rate (2014-2019)

Table China Nanomedicine Production Value ($) and Growth Rate (2014-2019)

Table Japan Nanomedicine Production Value ($) and Growth Rate (2014-2019)continued

About HongChun Research:HongChun Research main aim is to assist our clients in order to give a detailed perspective on the current market trends and build long-lasting connections with our clientele. Our studies are designed to provide solid quantitative facts combined with strategic industrial insights that are acquired from proprietary sources and an in-house model.

Contact Details:Jennifer GrayManager Global Sales+ 852 8170 0792[emailprotected]

NOTE: Our report does take into account the impact of coronavirus pandemic and dedicates qualitative as well as quantitative sections of information within the report that emphasizes the impact of COVID-19.

As this pandemic is ongoing and leading to dynamic shifts in stocks and businesses worldwide, we take into account the current condition and forecast the market data taking into consideration the micro and macroeconomic factors that will be affected by the pandemic.

More:
COVID-19 Impact on Global and Regional Nanomedicine Industry Production, Sales and Consumption Status and Prospects Professional Market Research...

Read More...

Nanomedicine Market 2020 Size by Product Analysis, Application, End-Users, Regional Outlook, Competitive Strategies and Forecast to 2027 – Owned

Sunday, August 16th, 2020

New Jersey, United States,- The most recent Nanomedicine Market Research study includes some significant activities of the current market size for the worldwide Nanomedicine market. It presents a point by point analysis dependent on the exhaustive research of the market elements like market size, development situation, potential opportunities, and operation landscape and trend analysis. This report centers around the Nanomedicine business status, presents volume and worth, key market, product type, consumers, regions, and key players.

The COVID-19 pandemic has disrupted lives and is challenging the business landscape globally. Pre and Post COVID-19 market outlook is covered in this report. This is the most recent report, covering the current economic situation after the COVID-19 outbreak.

Key highlights from COVID-19 impact analysis:

Unveiling a brief about the Nanomedicine market competitive scope:

The report includes pivotal details about the manufactured products, and in-depth company profile, remuneration, and other production patterns.

The research study encompasses information pertaining to the market share that every company holds, in tandem with the price pattern graph and the gross margins.

Nanomedicine Market, By Type

Nanomedicine Market, By Application

Other important inclusions in the Nanomedicine market report:

A brief overview of the regional landscape:

Reasons To Buy:

About Us:

Market Research Intellect provides syndicated and customized research reports to clients from various industries and organizations with the aim of delivering functional expertise. We provide reports for all industries including Energy, Technology, Manufacturing and Construction, Chemicals and Materials, Food and Beverage, and more. These reports deliver an in-depth study of the market with industry analysis, the market value for regions and countries, and trends that are pertinent to the industry.

Contact Us:

Mr. Steven Fernandes

Market Research Intellect

New Jersey ( USA )

Tel: +1-650-781-4080

Our Trending Reports

Surgical Robots Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Hypoallergenic Infant Formula (CMPA) Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Industrial Vision Systems Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Water Quality Monitoring Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Crystal Oscillators Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

See the rest here:
Nanomedicine Market 2020 Size by Product Analysis, Application, End-Users, Regional Outlook, Competitive Strategies and Forecast to 2027 - Owned

Read More...

Value of Healthcare Nanotechnology (Nanomedicine) Market Predicted to Surpass US$ by the of 2075 2015 2021 Bulletin Line – Bulletin Line

Saturday, July 11th, 2020

Global Healthcare Nanotechnology (Nanomedicine) market Research presents a Comprehensive scenario Which can be segmented according to producers, product type, applications, and areas. This segmentation will provide deep-dive analysis of the Healthcare Nanotechnology (Nanomedicine) business for identifying the growth opportunities, development tendencies and factors limiting the development of the marketplace. This report features forecast market information based on previous and present Healthcare Nanotechnology (Nanomedicine) industry scenarios and growth facets. Each of the Essential regions coated in Healthcare Nanotechnology (Nanomedicine) report are North America, Europe, Asia-Pacific, South America, Middle East and Africa. The Healthcare Nanotechnology (Nanomedicine) market share and market prognosis of every region from 2020-2027 are presented within this report. A deep study of Healthcare Nanotechnology (Nanomedicine) marketplace dynamics will help the market aspirants in identifying the business opportunities that will lead to accumulation of earnings. This segment can efficiently determine the Healthcare Nanotechnology (Nanomedicine) hazard and key market driving forces.

Request Sample Report @ https://www.persistencemarketresearch.co/samples/6370

The Healthcare Nanotechnology (Nanomedicine) report is segmented to provide a clear and Precise view of this international Healthcare Nanotechnology (Nanomedicine) market statistics and market quotes. Healthcare Nanotechnology (Nanomedicine) report Information represented in the form of graphs, charts, and statistics will show the Healthcare Nanotechnology (Nanomedicine) growth rate, volume, goal customer analysis. This report presents the significant data to all Healthcare Nanotechnology (Nanomedicine) business aspirants which will facilitate useful business decisions.

Key players in the global nanomedicine market include: Abbott Laboratories, CombiMatrix Corporation, GE Healthcare, Sigma-Tau Pharmaceuticals, Inc., Johnson & Johnson, Mallinckrodt plc, Merck & Company, Inc., Nanosphere, Inc., Pfizer, Inc., Celgene Corporation, Teva Pharmaceutical Industries Ltd., and UCB (Union chimique belge) S.A.

Key geographies evaluated in this report are:

Key features of this report

Request Report Methodology @ https://www.persistencemarketresearch.co/methodology/6370

The Healthcare Nanotechnology (Nanomedicine) report cover following data points:

Part 1: This part enlists the global Healthcare Nanotechnology (Nanomedicine) marketplace Overview, covering the simple market debut, market analysis by kind, applications, and areas. Healthcare Nanotechnology (Nanomedicine) industry states and prognosis (2020-2027) is presented in this part. Additionally, Healthcare Nanotechnology (Nanomedicine) market dynamics saying the chances, market risk, and key driving forces are studied.

Part 2: This part covers Healthcare Nanotechnology (Nanomedicine) manufacturers profile based On their small business overview, product type, and application. Additionally, the sales volume, Healthcare Nanotechnology (Nanomedicine) product price, gross margin analysis, and Healthcare Nanotechnology (Nanomedicine) market share of every player is profiled in this report.

Part 3 and Part 4: This part presents the Healthcare Nanotechnology (Nanomedicine) competition Based on earnings, earnings, and market share of each producer. Part 4 covers the Healthcare Nanotechnology (Nanomedicine) market scenario based on regions. Region-wise Healthcare Nanotechnology (Nanomedicine) sales and growth (2015-2019) is studied in this report.

America and Europes Healthcare Nanotechnology (Nanomedicine) industry by countries. Under this Healthcare Nanotechnology (Nanomedicine) revenue, market share of those nations like USA, Canada, and Mexico is provided. Under Europe Healthcare Nanotechnology (Nanomedicine) report contains, the countries such as Germany, UK, France, Russia, Italy, Russia and their sales and growth is coated.

Part 7, Part 8 and Part 9: These 3 sections covers Healthcare Nanotechnology (Nanomedicine) The earnings and expansion in these regions are presented in this Healthcare Nanotechnology (Nanomedicine) industry report.

For any queries get in touch with Industry Expert @ https://www.persistencemarketresearch.co/ask-an-expert/6370

Part 10 and Part 11: This component depicts the Healthcare Nanotechnology (Nanomedicine) marketplace Share, earnings, sales by product type and application. The Healthcare Nanotechnology (Nanomedicine) sales growth seen during 2012-2020 is covered in this report.

Related to Healthcare Nanotechnology (Nanomedicine) market (2020-2027) for every region. The sales channels including indirect and direct Healthcare Nanotechnology (Nanomedicine) advertising, traders, distributors, and future trends are presented in this report.

Part 14 and Part 15: These components present Healthcare Nanotechnology (Nanomedicine) market key Research findings and judgment, research methodology, and data sources are covered.

Therefore, Global Healthcare Nanotechnology (Nanomedicine) report is a complete blend covering all The very important market aspects.

See the original post here:
Value of Healthcare Nanotechnology (Nanomedicine) Market Predicted to Surpass US$ by the of 2075 2015 2021 Bulletin Line - Bulletin Line

Read More...

Page 6«..5678..»


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick