header logo image


Page 14«..10..13141516..20..»

Archive for the ‘Stem Cell Negative’ Category

A direct heterotypic interaction between the DIX domains of Dishevelled and Axin mediates signaling to -catenin – Science

Wednesday, December 11th, 2019

DIX domains drive Wnt-catenin signaling

Dishevelled (Dvl) stimulates Wnt-catenin signaling by recruiting Axin, a component of the -catenin destruction complex, to the Wnt signalosome, thus stabilizing -catenin. Both Dvl-mediated activation and Axin-mediated repression of signaling require homopolymerization through the DIX domains of each protein. Through structural analysis and biochemical assays with the DIX domain of human Dvl and the DIX domain of human Axin (DAX), Yamanishi et al. found that the heterotypic interface between DIX and DAX resembled the interfaces observed in the individual homopolymers and that DIX-DAX heteropolymerization was favored over DAX-DAX homopolymerization. These findings support a model in which Dvl-Axin heterodimerization, mediated by DIX domains, drives the recruitment of Axin to the Wnt signalosome and disruption of the -catenin destruction complex.

The Wnt-catenin signaling pathway regulates embryonic development and tissue homeostasis throughout the animal kingdom. Signaling through this pathway crucially depends on the opposing activities of two cytoplasmic multiprotein complexes: the Axin destruction complex, which destabilizes the downstream effector -catenin, and the Dishevelled signalosome, which inactivates the Axin complex and thus enables -catenin to accumulate and operate a transcriptional switch in the nucleus. These complexes are assembled by dynamic head-to-tail polymerization of the DIX domains of Axin or Dishevelled, respectively, which increases their avidity for signaling effectors. Axin also binds to Dishevelled through its DIX domain. Here, we report the crystal structure of the heterodimeric complex between the two DIX domains of Axin and Dishevelled. This heterotypic interface resembles the interfaces observed in the individual homopolymers, albeit exhibiting a slight rearrangement of electrostatic interactions and hydrogen bonds, consistent with the heterotypic interaction being favored over the homotypic Axin DIX interaction. Last, cell-based signaling assays showed that heterologous polymerizing domains functionally substituted for the DIX domain of Dishevelled provided that these Dishevelled chimeras retained a DIX head or tail surface capable of binding to Axin. These findings indicate that the interaction between Dishevelled and Axin through their DIX domains is crucial for signaling to -catenin.

Excerpt from:
A direct heterotypic interaction between the DIX domains of Dishevelled and Axin mediates signaling to -catenin - Science

Read More...

Dosage analysis of the 7q11.23 Williams region identifies BAZ1B as a major human gene patterning the modern human face and underlying…

Wednesday, December 11th, 2019

INTRODUCTION

Anatomically modern humans (AMHs) exhibit a suite of craniofacial and prosocial characteristics that are reminiscent of traits distinguishing domesticated species from their wild counterparts (13). This has led to the formulation of a self-domestication hypothesis according to which modern humans (3) went through a domestication process in the course of their evolution. Recent evidence, along with the well-warranted distinction between domestication and selective breeding (4), is also extending this notion to other species that might have undergone a self-domestication phase, such as cats, dogs, and bonobos (3). Thus, as self-domestication represents a special case of domestication, the most parsimonious hypothesis must posit the same core mechanisms to underlie both. For this reason, the self-domestication hypothesis also entails the prediction that key aspects of modern humans anatomy and cognition can be illuminated by studies of the so-called domestication syndrome, the core set of domestication-related traits that was recently proposed to result from mild neural crest (NC) deficits (5). However, both the neurocristopathic basis of domestication and its extension to the evolution of AMHs remain to be tested experimentally.

Williams-Beuren syndrome [WBS; OMIM (Online Mendelian Inheritance in Man) 194050] and Williams-Beuren region duplication syndrome (7dupASD; OMIM 609757), caused respectively by the hemideletion or hemiduplication of 28 genes at the 7q11.23 region [WBS critical region (WBSCR)], represent a paradigmatic pair of neurodevelopmental conditions whose NC-related craniofacial dysmorphisms and cognitive/behavioral traits (6, 7) bear directly on domestication-related traits relevant for AMHs (facial reduction and retraction, pronounced friendliness, and reduced reactive aggression) (fig. S1A). Structural variants in WBS genes, for example in the case of GTF2I and its paralogs, have been shown to underlie stereotypical hypersociability in domestic dogs and foxes (8, 9).

Among the WBSCR genes, we focus here on the chromatin regulator BAZ1B (also known as Williams syndrome transcription factor, WSTF), on the basis of the following lines of evidence that implicate it in domestication-relevant craniofacial features: (i) its established role in NC maintenance and migration in Xenopus laevis and the craniofacial defects observed in knockout mice (10, 11); (ii) the observation that its expression is affected by domestication-related events in canids (12); (iii) the first formulation of the neurocristopathic hypothesis of domestication, which included BAZ1B among the genes influencing NC development (5); (iv) the most comprehensive studies focusing on regions of the modern human genome associated with selective sweep signals compared to Neanderthals/Denisovans (hereafter archaics) (13, 14), one of which specifically included BAZ1B within the detected portions of the WBSCR; and (v) the thus far most detailed study systematically exploring high-frequency (HF) (>90%) changes in modern humans for which archaic humans carry the ancestral state, which found BAZ1B enriched for mutations in modern humans (most of which fall in the regulatory regions of the gene) (15).

Our previous work had established the largest cohort of 7q11.23 patient-derived induced pluripotent stem cell (iPSC) lines and revealed major disease-relevant transcriptional dysregulation that was already apparent at the pluripotent state and became further exacerbated upon differentiation (16). Here, we first harness this resource to dissect the impact of BAZ1B dosage on the NC of patients with WBS and 7dupASD, both in terms of function (i.e., NC migration and induction) and of transcriptional and chromatin dysregulation, thereby defining the BAZ1B dosagedependent circuits controlling the NC. Next, we apply these experimentally determined BAZ1B-dependent circuits underlying craniofacial morphogenesis to interrogate the evidence from paleogenomic analyses, which were thus far only of a correlative nature. We find major convergence between the BAZ1B control and the genes harboring regulatory changes in the modern human lineage. Together, the definition of the role of BAZ1B dosage in craniofacial neurocristopathy and its application to domestication-relevant paleogenomics demonstrate a major contribution of BAZ1B to the modern human face and offer experimental validation for the prediction at the heart of NC-based accounts of (self-) domestication: that the modern human face acquired its shape as an instance of mild neurocristopathy.

To dissect the role of BAZ1B in the craniofacial dysmorphisms that characterize WBS and 7dupASD, we started from our previous characterization of WBS patient and 7dupASD patientspecific iPSC lines and differentiated derivatives (16) and selected a cohort of 11 NC stem cell (NCSC) lines (four from patients with WBS, three from patients with 7dupASD, and four from control individuals), which also represent the largest cohort of patient-specific NCSCs described so far. Given the centrality of the cranial NC for the development of the face, we first validated the cranial identity of our NCSC cohort by transcriptomic profiling through a manually curated gene expression signature (fig. S2A), confirming their suitability for the study of craniofacial dysregulations. We then knocked down BAZ1B via RNA interference in all lines across the three genetic conditions, including also NCSCs derived from a particularly informative patient with atypical WBS (hereafter atWBS) bearing a partial deletion of the region that spares BAZ1B and six additional genes (Fig. 1A) (17). To establish a high-resolution gradient of BAZ1B dosages, we selected two distinct short hairpin RNA (shRNA) against BAZ1B (i.e., sh1 and sh2) along with a scrambled shRNA sequence (hereafter scr) as negative control, for a total of 32 NCSC lines. Knockdown (KD) efficiency was evaluated at the RNA level by quantitative polymerase chain reaction (qPCR) (Fig. 1B and fig. S1C), confirming the attainment of the desired gradient with an overall reduction of about 40% for sh1 and 70% for sh2, as well as reduction at the protein level, as detected by Western blot (fig. S1E).

(A) Schematic representation of the KD strategy on our iPSC-derived NCSC cohort. (B) BAZ1B mRNA levels in all the interfered lines (scr, sh1, and sh2) as measured by qPCR. Data represent aggregates of samples with the same number of BAZ1B copies (7dup, CTL + atWBS, and WBS). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is used as a normalizer. (C) Eight- and 16-hour time points from the wound-healing assay analyses performed on a 7dupASD and a WBS NCSC line upon BAZ1B KD. Cells from the same line infected with the scr sh were used as references for the migration (n = 2). (D) Days 7, 10, and 12 of NC differentiation from embryoid bodies (EBs) of an scr-interfered iPSC line and its respective BAZ1B KD (n = 3). (E) mRNA levels of NC markers at day 12 of differentiation in three individual experimental replicates [bright-field images are reported in (D)]. An iPSC line is included as a negative control. Students t test was used (ns, not significant; *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0. 0001).

NCSCs need to migrate to reach specific target regions in the developing embryo and give rise to distinct cell types and tissues, including craniofacial structures that are major areas of change in human evolution. Since BAZ1B KD was shown to affect the migration of the NC in X. laevis and to promote cancer cell invasion in different lung cancer cell lines (10, 18), we hypothesized that the BAZ1B dosage imbalances entailed in the 7q11.23 syndromes could result in a defective regulation of NCSC migration and might underlie the NC-related alterations typical of patients with WBS and 7dupASD. To test this, we compared the migration properties of patient-specific BAZ1B KD NCSC lines (sh2) to their respective control NCSC line (scr) by the well-established wound-healing assay. The 7dupASD NCSC KD lines took longer to fill the wound when compared to the respective control lines (scr), as indicated by images taken at 8 and 16 hours after a gap was created on the plate surface (Fig. 1C and fig. S1F). We instead observed an opposite behavior for the WBS BAZ1B KD lines, which were faster than the respective scr lines in closing the gap (Fig. 1C and fig. S1F). In contrast to the previous observations from X. laevis (10), we also observed a minor delay in NC induction as a consequence of BAZ1B KD (Fig. 1D and fig. S1D), by means of a differentiation protocol based on NC delamination from adherent embryoid bodies (EBs), which recapitulates the initial steps of NC generation (19). In particular, starting from 2 to 3 days after attachment of EBs, we observed a lower number of outgrowing cells in the KD line (Fig. 1D, days 7 and 10), coupled with an evidently higher cell mortality. Cells were eventually able to acquire the typical NC morphology, although lower differentiation efficiency was evident, as shown by images taken at day 12. In addition, the delay in NC formation was associated with a down-regulation of well-established critical regulators of NC migration and maintenance, including NR2F1, NR2F2, TFAP2A, and SOX9 (Fig. 1E). These results show that BAZ1B regulates the developing NC starting from its earliest migratory stages and that the symmetrically opposite 7q11.23 dosages alterations prime NCSCs to symmetrically opposite deficits upon BAZ1B interference. In turn, the central role of the NC in the development of facial morphology allows relating such findings to the symmetrically opposite craniofacial dysmorphisms of the two 7q11.23 syndromes.

Having defined the functional impact of BAZ1B dosage on NC function, we predicted that a main molecular readout of its dosage imbalances would be at the level of transcriptional regulation, given its critical role as transcriptional regulator in different cell and animal models (2022). To test this hypothesis and gain mechanistic insights into the specific BAZ1B dosagedependent downstream circuits, we subjected 32 interfered NCSC lines to high-coverage RNA sequencing (RNA-seq) analysis. As shown in fig. S2A, a manually curated signature from an extensive literature review (2328) validated the cranial identity of our NCSC lines, while clustering by Pearson correlation excluded the presence of any genotype- or hairpin-specific expression change. Confirming our previous observations in the two largest cohorts of iPSC lines (29), a principal component analysis (PCA) corroborated the significant impact of individual genetic backgrounds on transcriptional variability, with most KD lines clustering with their respective control scr line. This was consistent with the narrow range of experimentally interfered BAZ1B dosages and pointed to a selective BAZ1B dosagedependent transcriptional vulnerability (fig. S2B).

To dissect it, we thus resorted to a combination of classical pairwise comparative analysis, contrasting shBAZ1B-interfered NCSC lines (sh1 + sh2) with their respective controls (scr), with a complementary regression analysis using BAZ1B expression levels as independent variables, subtracting the contribution of individual genetic backgrounds. This design increases robustness and sensitivity in the identification of genes that, across multiple genetic backgrounds and target gene dosages, might have a different baseline (scr) across individuals while still being robustly dysregulated upon BAZ1B interference.

The two analyses identified a total of 448 genes with false discovery rate (FDR) < 0.1 (1192 with P < 0.01 and FDR < 0.25) whose transcriptional levels followed BAZ1B dosage, in either a direct (202; 539 with P < 0.01 and FDR < 0.25) or an inverse (246; 653 with P < 0.01 and FDR < 0.25) fashion. In addition, genes identified in the regression analysis included around 90% of the differentially expressed genes (DEGs) (27 of 29, FDR < 0.1) found in the comparative analysis (Fig. 2A). Consistent with the differential efficiency of the two short hairpins, we found a globally stronger transcriptional impact for the group of samples targeted by sh2 (fig. S2C) and a milder but nevertheless clearly distinguishable effect of sh1, resulting in particularly informative gradient of dosages over the scr control lines.

(A) Overlap between genes directly or inversely following BAZ1B levels identified in the pairwise comparative analysis (scr versus shBAZ1B) and in the regression analysis on BAZ1B-level sensitive genes on iPSC-derived NCSCs (FDR < 0.1). (B) Volcano plot reporting DEGs identified in the RNA-seq analysis on iPSC-derived NCSCs [fold change (FC) > 1.25; FDR < 0.1]. (C) Top most specific enrichments for GO biological processes among the DEGs in the RNA-seq analysis on iPSC-derived NCSCs. (D) Heat map representing DEGs that are dysregulated in genetic disorders involving mental retardation (Mental), intellectual disability (Intellectual), and/or facial dysmorphisms (Face) according to OMIM database classification. cnv, copy number variant. (E) Putative regulators of genes that follow BAZ1B levels identified by a master regulator analysis. Regulators were divided in four different groups based on their main functions.

Particularly noteworthy among the genes that we found correlated with BAZ1B levels were (i) crucial regulators of cranial NC, further highlighting a convergent BAZ1B dosagedependent dysregulation of the foundational CUL3-centered regulatory axis orchestrating NC-mediated craniofacial morphogenesis (30), and (ii) genes associated with variation of human facial shape or causative of dysmorphic facial features and mild intellectual disability when mutated (Fig. 2B and table S1).

Gene Ontology (GO) analysis performed on genes directly following BAZ1B levels suggested specific enrichments in biological processes such as histone phosphorylation, chromosome localization, RNA processing, and splicing. Genes inversely following BAZ1B levels were instead enriched in categories particularly relevant for NC and NC-derivative functions, such as cell migration and cardiovascular and skeletal development (Fig. 2C). By querying the OMIM database, we found that several DEGs were associated with genetic disorders whose phenotypes include mental retardation, intellectual disability, and/or facial dysmorphisms (Fig. 2D), underscoring the pertinence of BAZ1B-dependent dysregulation across both the neurocristopathic and cognitive axes.

Last, a master regulator analysis identified candidate regulators of BAZ1B DEGs, including factors involved in enhancer marking [CEBPB, p300, RBBP5, HDAC2 (histone deacetylase 2), KDM1A, and TCF12], promoter activation [TBP (TATA boxbinding protein), TAF1 (TBP-associated factor 1), and POL2 (polymerase 2)], and chromatin remodeling (CTCF, RAD21, and YY1) (Fig. 2E and fig. S2D), several of which are themselves causative genes of intellectual disability syndromes with neurocristopathic involvement, as in the case of our recently identified Gabrielede Vries syndrome caused by YY1 haploinsufficiency (31, 32). Chromatin remodeling was indeed the most prominently enriched group within the overall domain of transcriptional regulation. Two master regulators are particularly noteworthy, as they are themselves regulated by BAZ1B dosage. The first is EGR1 (FDR < 0.1), which is itself among the genes inversely correlated with BAZ1B levels, which is implicated in cranial development (in animal models) (33, 34) and whose promoter has been recently shown to feature a bivalent state in human embryonic cranial NC (23, 35). The second is MXI1, identified as master regulator of genes directly following BAZ1B levels (FDR < 0.001), which is itself found among the genes inversely correlated with BAZ1B and is itself a regulator of BAZ1B, pointing to a cross-talk between the two (fig. S2C). Notably, two differentially expressed targets of MXI1, TGFB2 and NFIB, are also involved in intellectual disability and craniofacial defects (30, 36, 37).

The transcriptional readout and functional impact of BAZ1B dosage (at the level of NC induction and migration) established its role as a master controller of the NC. We thus predicted, on the basis of its molecular function, that BAZ1B would directly bind to key NC target genes and that for some of these, the binding would be dosage sensitive. These genes would be, in turn, the most likely direct targets to mediate the dosage-dependent transcriptional and functional phenotypes described above. To test this prediction, we set out to both identify BAZ1B direct targets and characterize their promoter and enhancer states, so as to mechanistically link their transcriptional dysregulation with BAZ1B dosagedependent chromatin binding. Given the absence of chromatin immunoprecipitation (ChIP)grade BAZ1B antibodies, to carry out our ChIP coupled with sequencing (ChIP-seq) on scr and KD lines, we first designed a tagging strategy to establish, by CRISPR-Cas9 editing, a series of in-frame 3xFLAG endogenously tagged BAZ1B alleles in representative iPSCs of the four genotypes (Fig. 3A and fig. S3, A and B). These were then differentiated to NCSCs (fig. S3C) and subjected to ChIP-seq with anti-FLAG antibody, enabling a faithful characterization of BAZ1B genome-wide occupancy across dosages (one tagged allele in WBS, two tagged alleles in atWBS and CTL, and two tagged alleles in the context of 1.5-fold dosages in 7dupASD).

(A) Schematic representation of the strategy for CRISPR-Cas9mediated tagging of endogenous BAZ1B. Briefly, iPSCs from the four genotypes were electroporated with the donor plasmid and the Cas9/single-guide RNA ribonucleoprotein complex; clones were selected via hygromycin and PCR, differentiated to NCSCs, and then subjected to ChIP-seq. (B) PCA showing the distribution of the four BAZ1B-tagged NCSC lines according to their chromatin profiles. (C) Overlap between genes expressed in our NCSC lines (purple) and genes bound by BAZ1B at their enhancer (red) or promoter (blue) regions. (D) Top most specific enrichments for GO biological processes among the genes that are bound by BAZ1B and expressed in our NCSC cohort. (E) Most represented BAZ1B DNA binding motifs identified by HOMER show high similarity to neural and NCSC-specific transcription factors motifs. (F) BAZ1B differentially bound regions according to its copy number (FDR < 0.1; n = 2). (G) Overlap between genes that are differentially expressed have their enhancers differentially marked concordantly (H3K27ac, H3K4me1, and H3K27me3) and are bound by BAZ1B at enhancers.

PCA shows a clear separation of the samples by BAZ1B copy number, with CTL and atWBS samples clustering more closely and WBS and 7dupASD samples clustering at opposing positions (Fig. 3B). To call NC-specific enhancer regions and promoter-enhancer associations, we exploited for chromatin annotation the unprecedented resolution afforded by the patients cohort with its underlying variability and proceeded to (i) select chromosomal regions featuring H3K4me1 and H3K27ac in at least two individuals; (ii) exclude regions marked with H3K4me3 in at least two individuals;(iii) eliminate regions bearing a transcription start site (TSS); and (iv) associate each putative enhancer to the closest TSS, identifying a total of 30,8470 putative enhancer regions. Notably, BAZ1B binds 75% of its targets at their enhancer regions (6747 genes), with the remaining 2297 targets bound at promoters (Fig. 3C). In addition, 40% of genes expressed in NC are bound by BAZ1B, either exclusively at enhancers (27.4%) or exclusively at promoters (3.5%) or at both regions (9%). This highlights its pervasiveness within the NC epigenome (Fig. 3C) and is also reflected in the key functional enrichments observed for the BAZ1B direct targets that are also expressed and that include axon guidance, tube development, dendrite development, outflow tract morphogenesis, odontogenesis, wound healing, and endochondral bone morphogenesis (Fig. 3D). Many of the phenomena captured by these GO categories (e.g., odontogenesis and endochondral bone morphogenesis) are linked to recent changes in the bone structure of modern (versus archaic) humans, with Homo sapiens having characteristically smaller teeth than its extinct relatives.

Last and consistent with the enrichments in NC-defining categories uncovered above, the analysis of BAZ1B bound regions revealed major convergence with the binding motifs of critical NC regulators, including two motifs similar to those of TFAP2A and NEUROG2, and one equally associated to TAL1, TCF12, AP4, and ASCL1 (Fig. 3E and text S1A). Thus, BAZ1B binding regions are enriched for target sites of major regulators of NC and its neural derivatives (38, 39), among which TFAP2A stands out given its core role in neural border formation and NC induction and differentiation (40) through the binding and stabilization of NC-specific enhancers, in concert with NR2F1, NR2F2, and EP300 (41).

Last, we identified 81 regions that are quantitatively bound by BAZ1B depending on its copy number (FDR < 0.1) (Fig. 3F), 153 regions differentially bound concordantly in WBS and 7dupASD compared to control and atWBS samples (FDR < 0.1) (fig. S4A), and 176 and 25 regions differentially bound preferentially in WBS (fig. S4B) and 7dupASD (FDR < 0.1) (fig. S4C), respectively.

Given the prominence of its binding to distal regulatory regions, we then set out to define the BAZ1B dosagedependent impact on NCSC-specific enhancers by integrating H3K27ac, H3K4me1, H3K27me3, and H3K4me3 profiles. We thus performed a regression analysis on BAZ1B levels for the distribution of the three histone marks in the aforementioned regions and found H3K27ac to be the most affected, with 7254 genes differentially acetylated at their enhancers, followed by a differential distribution of the H3K4me1 (4048) and H3K27me3 (2136) marks (fig. S4D). This enabled the overlay of epigenomic and transcriptomic profiles, uncovering that among the 1192 DEGs identified in the regression RNA-seq analysis, 21.3% (257 of 1192) are associated to enhancers that are both bound by BAZ1B and differentially H3K27-acetylated in a manner concordant with BAZ1B levels (fig. S4E), with a stronger overlap for genes whose expression is inversely correlated with BAZ1B levels (160 versus 97). The same held for DEGs that have a concordant differential distribution of H3K4me1 mark at enhancers (123 versus 55), underscoring the consistency of the impact of BAZ1B dosage on distal regulation (fig. S4F). In contrast, a lower number of genes (36) showed a concordant differential distribution of the H3K27me3 mark and, at the same time, were bound by BAZ1B at enhancers (fig. S4G), indicating that BAZ1B preferentially affects active chromatin. From this integrative analysis, we could thus lastly identify a core set of 30 bona fide direct targets of BAZ1B, which are genes whose expression tightly follows BAZ1B levels and whose enhancers are bound by BAZ1B and clearly differentially modified (Fig. 3G, fig. S4H, and text S1B). Together, this first dosage-faithful analysis of BAZ1B occupancy in a diverse cohort of human NCSCs establishes its pervasive and mostly distal targeting of the NC-specific epigenome, with a preferential activator role on the critical transcriptional circuits that define NC fate and function.

Mild NC deficits have been put forth as a unifying explanatory framework for the defining features of the so-called domestication syndrome, with BAZ1B listed among the putative underlying genes because of its previously reported role in the NC of model organisms (5, 10, 11). The recent observation that its expression is affected by domestication-related mobile element insertion methylation in gray wolves (12) further supported its role in domestication, offering an intriguing parallel to the paleogenomic results that had detected BAZ1B within the regions of the modern genome reflective of selective sweeps and found it enriched for putatively regulatory mutations in AMHs (15).

Having defined the molecular circuits through which BAZ1B regulates NC, and since NC changes have been implicated in the domestication syndrome (5), since craniofacial differences correlate with self-domestication (1), and since 7q11.23 dosage-related craniofacial differences in humans relate to the H. sapiens versus Neanderthal comparison (fig. S1A), we set out to test the role of BAZ1B dosage in the differences between modern and archaic humans. For this, we carried out a systematic integrative analysis of the overlaps between our empirically defined BAZ1B dosagesensitive genes (blue Venn in Fig. 4B) and a combination of uniquely informative datasets highlighting differences between modern humans and archaics (Neanderthals/Denisovans) (represented in Fig. 4A by skulls illustrating the more gracile and juvenile profile in AMH relative to Neanderthals visible in the overall shape of the neurocranium, reduced prognathism, brow ridges, and nasal projections) (1, 1315). Specifically, as shown in Fig. 4B, these datasets include (i) genes associated with signals of positive selection in the modern branch compared to archaic lineages (purple Venn) (13, 14); (ii) genes harboring (nearly) fixed mutations in moderns versus archaics (pink Venn); and (iii) genes associated with signals of positive selection in the four paradigmatic domesticated species dog, cat, cattle, and horse (1) (orange Venn), to reveal statistically significant overlaps between them and genes associated with signals of positive selection in the modern branch compared to archaic lineages. In turn, the list of genes harboring (nearly) fixed mutations in moderns versus archaics contains three classes: (i) genes harboring high-frequency changes (15), (ii) genes harboring high-frequency missense mutations (red barplot), and (iii) genes enriched for high-frequency mutations in regulatory regions (green barplot) [data based on (15)] (Fig. 4C). As shown in the barplots, the obviously very limited number of high-quality coverage archaic genomes available results in a much higher number of nearly fixed changes identified in archaics (left/negative side of the plot) versus modern humans (right side) (Fig. 4C), setting a comparatively much higher threshold for the identification of nearly fixed modern changes.

(A) Archaic (Neanderthal) and modern skulls, illustrating the target domesticated phenotype that was captured by our analysis. Skull images were derived from work under a CC BY-SA 2.0 license (https://creativecommons.org/licenses/by-sa/2.0/deed.en) by hairymuseummatt. (B) Overlap between BAZ1B levelsensitive genes and datasets, which bring out differences between AMHs and archaics, as well as genes under positive selection in modern humans and domesticates. (C) Barplots showing the occurrence of high-frequency changes, missense mutations, and mutations in regulatory regions in genes from the AMH (nearly) fixed mutation dataset (pink Venn in B). (D) Heat map representing the amount of overlaps for each list selected from (B). Gene overlaps and detailed list descriptions are reported in table S2. (E) Rendering of a typical WBS face (left) against the background of a typical modern face (right). Red segments indicate areas of the lower face where the two faces most sharply depart (nose, philtrum, and lower front of the mandible). The lower midface region is most often associated with mutations in genes figuring prominently in our intersections, as discussed in the text and table S3.

These analyses are visualized in Fig. 4D (and detailed in tables S2 and S3) through a matrix that intersects all BAZ1B dosagedependent genes (partitioned in the two categories of directly and inversely correlated and ordered across the full range of biological significance and regulatory proximity, from simply DEGs to bona fide direct targets) with the evolutionary changes underlying domestication and self-domestication, yielding the following key insights (color coded for degree of overlap and marked for significance in hypergeometric tests). First, the most significant pattern was obtains at the intersection with the top 10% genes showing an excess of (nearly) fixed mutations in the regulatory regions of modern humans compared to archaics, across both directly and inversely BAZ1B leveldependent genes (table S2). This same category of nearly fixed modern regulatory changes is also the only one that returns a statistically significant overlap with the most stringent core of BAZ1B dosagedependent targets (i.e., DEGs whose enhancers are both directly bound by BAZ1B and differentially marked upon its decrease), demonstrating that BAZ1B directly controls, in an exquisitely dosage-dependent manner, this coherent and particularly relevant set of genes that underwent regulatory changes in human evolution. Second, the overall strongest overlaps map to the class of genes that are inversely correlated to BAZ1B levels, which we found to be strongly and specifically enriched for head morphogenesis and NC categories (Fig. 2C), thereby confirming craniofacial morphogenesis as the key domain of functionally relevant overlap between BAZ1B dosage and (self-) domestication changes relevant to the evolution of AMHs. Third, despite the spuriously inflated number of apparently fixed mutations in archaics (15), the overall extent of overlap between genes affected by BAZ1B dosage and our modern and archaic sets does not reveal significantly more hits for archaics. Globally, we found consistently more overlapping genes between the BAZ1B targets and the modern human data and even no statistically significant overlap for any list of the archaic-specific mutations when crossed against genes directly correlated to BAZ1B level. We find this noteworthy, given the evidence that the Neanderthal face also displays derived characteristics (42) that could be the result of modifications of genes that could overlap with those highlighted in this work. Last, the (lower) midface emerges as a particularly salient area of functionally relevant overlap (as illustrated in Fig. 4E and detailed in table S3), given the specific genes that our analysis unearthed: (i) COL11A1, one of the few craniofacial genes highlighted across domestication studies (dog, house sparrow, and pig breeds), which lies in a region of the human genome that resisted archaic introgression (13) and is associated with Marshall syndrome; (ii) XYLT1, one of the five genes (along with ACAN, SOX9, COL2A1, and NFIX) that affect lower and midfacial protrusion, are among the top differentially methylated genes compared to archaics and were also highlighted in a recent study on regulatory changes that shaped the modern human facial and vocal anatomy (tables S1 and S3) (43); and (iii) NFIB, which belongs to the same gene family as NFIX and shares some of its functions. In sum, the direct and dosage-sensitive control by BAZ1B of genes that underwent regulatory changes in human evolution and whose altered expression underlies neurocristopathic facial dysmorphisms is consistent with the hypothesis of mild neurocristopathy as the mechanistic core selected in the self-domestication of the modern human face.

As recently reconstructed (3), the idea of human self-domestication dates back, at least in terms of scientific record, to Johann Friedrich Blumenbach at the onset of the 19th century. Following on his seminal account of domestication systematized in Variations of Animals and Plants under Domestication (44), Charles Darwin also considered the analogy between modern humans and domesticated species in The Descent of Man (45), yet his emphasis on controlled breeding as a key aspect of domestication led him to frame domestication and self-domestication as distinct phenomena and thereby leave Blumenbachs intuition largely undeveloped (46). Since then, the possibility that the anatomical and cognitive-behavioral hallmarks of AMHs could result from an evolutionary process bearing such significant similarities to the domestication of animals as to share the same underlying cause has been refined into the full-fledged self-domestication hypothesis (1, 2). As recently argued (1, 3), convergent lines of evidence also indicate that self-domestication is temporally aligned with the emergence of AMH, although the process may have acquired further momentum with the gradual expansion of our species (1, 3). However, despite spurring considerable interest, the self-domestication hypothesis has thus far failed to marshal conclusive evidence largely because of two factors: (i) the lack of a coherent explanation, even at a theoretical level, of what developmental and genetic mechanisms could underlie domestication in general and (ii) the absence of suitable experimental systems in which those mechanisms could be specifically tested in the case of human self-domestication. The first problem was tackled by the recent proposition of mild NC deficits as a central and unifying functional layer underlying domestication (5). This constituted a major conceptual advance, particularly because it generated the testable hypothesis of an altered NC gene expression program in domesticated species relative to their wild-type ancestors. For humans, given the obvious lack of gene expression data from archaic hominins, we reasoned that this hypothesis could be verified by examining the genetic changes between archaic and modern humans in light of the gene regulatory networks directly inferred from human neurocristopathies. We thus set out to test whether specific human neurodevelopmental disorders, carefully selected on the basis of both craniofacial and cognitive-behavioral traits relevant to domestication, could illuminate the regulatory circuits shaping the modern human face and hence be harnessed for an empirical validation of the self-domestication hypothesis. Specifically, we reasoned that WBS and 7dupASD, through their uniquely informative set of symmetrically opposite phenotypes at the level of face morphology (fig. S1A) and sociality, constituted a paradigmatic test case to probe the heuristic potential of neurodevelopmental disease modeling for the experimental understanding of human evolution. The following key insights confirm the validity of this approach.

First, we identified the 7q11.23 region BAZ1B gene as a master regulator of the modern human face on the basis of a molecular and functional dissection in the thus far largest cohort of WBS patient and 7dupASD patientspecific NCSCs and across an exhaustive range of BAZ1B dosages. Notably, our cohort also included NCSCs from a patient with rare WBS featuring a much milder WBS gestalt and harboring an atypical, BAZ1B-sparing deletion that served as a particularly informative control, as confirmed by the clustering of atypical NCSC lines with controls when probed for BAZ1B occupancy. In particular, exploiting the fine-grained resolution of BAZ1B dosages recapitulated in our cohort, we could couple classical pairwise comparisons with a more sophisticated regression analysis on BAZ1B levels, thereby revealing major BAZ1B dosagedependent transcriptional alterations pivoting around clusters of pathways that are crucial for NC development and maintenance, as well as for its downstream skeletal and cardiac outputs.

Second, we repurposed the versatility of CRISPR-Cas9 to generate an allelic series of endogenously tagged BAZ1B across 7q11.23 dosages (including the BAZ1B-sparing atypical patient as uniquely relevant control) to define its dosage-dependent genome-wide occupancy. Taking advantage of previous extensive work on the NCSC chromatin landscape (41, 4749), we were able to define a pivotal role for BAZ1B in NCSC enhancer regulation, consistent with its preferential binding of distal regulatory regions, and to partition its dosage-dependent regulation into bona fide direct and indirect targets. The overall balance between the numbers of genes up- or down-regulated upon BAZ1B KDtogether with the greater overlap, sheer size, and significance of enrichments in chromatin remodeling categories over other domains of transcription regulationfurther corroborates the inclusion of BAZ1B among the factors acting upstream of enhancer and promoter modulations to enable or reinforce rather than specify their net outcome. Last, this molecular readout was translated to the functional level with the definition of an impairment in both NCSC migration and outgrowth from EBs upon decrease in BAZ1B, providing the first validation of BAZ1B involvement in key functions of the developing human NC.

Third, our investigation provides the first experimental evidence for the neurocristopathic hypothesis that had been put forth to explain the domestication syndrome and had pointed to BAZ1B as one of the candidates underlying this syndrome (5). Among the key NC hubs affected by BAZ1B dosage, we uncovered three additional critical genesEDN3, MAGOH, and ZEB2that had also been predicted in the same model because they are associated with behavioral changes found in domesticates, thereby defining a regulatory hierarchy for this coherent set of genes underlying domestication.

Last, the empirical determination of BAZ1B dosagesensitive genes in NC models from AMHs with accentuated domestication-relevant traits allowed us to expose, in a functionally relevant manner, the genetic differences between modern versus archaic. This brought to the fore the significant convergence between BAZ1B-dependent circuits and genes harboring regulatory changes in the human lineage, reinforcing the notion that regulatory regions contain some of the most significant changes relevant for the modern lineage. This is also reinforced by the recent identification of AMH-specific hypermethylation in the regulatory region of BAZ1B itself (43).

Last, it is noteworthy that genes implicated in NC development also play significant roles in the establishment of brain circuits that are critical for cognitive processes like language or theory of mind prominently affected in 7q11.23 syndromes. Among the genes downstream of BAZ1B that we uncovered in this study, FOXP2, ROBO1, and ROBO2 have long been implicated in brain wiring processes critical for vocal learning in several species (50, 51), including humans, and will warrant further mechanistic dissection in light of the distinctive linguistic profile of WBS individuals. In conclusion, our findings establish the heuristic power of neurodevelopmental disease modeling for the study of human evolution.

Ethics approvals were reported in the study that established the original iPSC cohort (16) and also apply to the additional samples included in this study (7dupASD3 and CTL4R).

WBS1, WBS2, WBS3, WBS4, 7dupASD1, atWBS1, and CTL2 fibroblasts were reprogrammed using the mRNA Reprogramming Kit (Stemgent), while the 7dupASD2 and CTL1R lines were reprogrammed with the microRNA Booster Kit (Stemgent). The CTL3 line was reprogrammed by transfection with the STEMCCA polycistronic lentiviral vector followed by Cre-mediated excision of the integrated polycistron. 7dupASD3 and CTL4R fibroblasts were reprogrammed using the Simplicon RNA Reprogramming Kit (Millipore).

Before differentiation, iPSC lines were cultured on Matrigel hESC-qualified Matrix (BD Biosciences)coated plates, diluted 1:40 in Dulbeccos minimum essential medium/F-12, and grown in mTeSR 1 medium (STEMCELL Technologies). They were passaged upon treatment with Accutase (Sigma-Aldrich) and then plated in mTeSR 1 medium supplemented with 5 M Y-27632 (Sigma-Aldrich).

Differentiation into NCSCs was performed as previously described (52), with the exception of NCSCs used in the experiment reported in Fig. 1 (D and E) (19).

NCSCs were detached using Accutase and counted, and 1 106 cells per experimental condition were fixed in 4% paraformaldehyde and then blocked in 10% bovine serum albumin. Cells were incubated for 1 hour with primary antibodies conjugated to fluorophores (HNK1fluorescein isothiocyanate and nerve growth factor receptorAlex Fluor 647; BD Biosciences). Analyses were performed on a FACSCalibur instrument (BD Biosciences), and data were analyzed with FCS express software (Tree Star). Fluorescence-activated cell sorting characterization for 7dupASD3 and CTL4R lines is reported in fig. S1B; for all the other lines, see (16).

BAZ1B KD was performed using validated pLKO.1 TRC vector TRCN0000013338 (referred to as sh1) and TRCN0000013341 (referred to as sh2). A pLKO.1 TRC vector containing a scrambled short hairpin sequence was used as a negative control.

Second generation lentiviral vectors were produced through calcium phosphate transfection of human embryonic kidney 293T cells and ultracentrifugation (2 hours, 20C, 20,000 rpm).

NCSCs (3 to 4 105) were infected upon splitting and then selected by adding puromycin (1 g/ml) to the medium.

RNA was extracted using the RNeasy Micro Plus Kit (QIAGEN) according to the manufacturers instructions. Retrotranscribed cDNA was obtained from 0.5 to 1 g of total RNA using the SuperScript VILO retrotranscription kit (Thermo Fisher Scientific).

Real-time qPCR was performed on a 7500 Fast Real-Time PCR system (Applied Biosystems) using SYBR Green Master Mix (Applied Biosystems) as the detecting reagent. A total cDNA amount corresponding to 15 ng of starting RNA was used for each reaction. Each sample was analyzed in triplicate and normalized to GAPDH. Relative mRNA quantity was calculated by the comparative cycle threshold (Ct) method using the formula 2Ct [BAZ1B, CCTCGCAGTAAGAAAGCAAAC (forward) and ACTCATCCAGCTCCTTTTGAC (reverse); GAPDH, GCACCGTCAAGGCTGAGAAC (forward) and AGGGATCTCGCTCCTGGAA (reverse); NR2F1, AGAAGCTCAAGGCGCTACAC (forward) and GGGTACTGGCTCCTCACGTA (reverse); NR2F2, GCAAGTGGAGAAGCTCAAGG (forward) and GCTTTCCACATGGGCTACAT (reverse); TFAP2A, GCCTCTCGCTCCTCAGCTCC (forward) and CGTTGGCAGCTTTACGTCTCCC (reverse); and SOX9, AGTACCCGCACTTGCACAAC (forward) and GTAATCCGGGTGGTCCTTCT (reverse)].

Library preparation for RNA-seq was performed according to the TruSeq Total RNA sample preparation protocol (Illumina), starting from 250 ng to 1 g of total RNA. cDNA library quality was assessed in an Agilent 2100 Bioanalyzer using the High Sensitivity DNA Kit. Libraries were sequenced with the Illumina HiSeq machine at a read length of 50base pair (bp) paired end and a coverage of 35 million of reads per sample.

NCSCs were lysed in radioimmunoprecipitation assay buffer [10 mM tris (pH 8.0), 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, 140 mM NaCl, and 1 mM EDTA] supplemented with protease inhibitor cocktail (Sigma-Aldrich) and 0.5 mM phenylmethylsulfonyl fluoride (Sigma-Aldrich) for 1 hour at 4C.

Protein extracts (30 to 50 g per sample) were supplemented with NuPAGE LDS sample buffer (Thermo Fisher Scientific) and 50 mM dithiothreitol (Thermo Fisher Scientific) and denatured at 95C for 3 min. Then, extracts were run on a precast NuPAGE 4 to 12% bis-tris Gel (Thermo Fisher Scientific) in NuPAGE MOPS SDS Running Buffer (Thermo Fisher Scientific) and transferred to a 0.45-m nitrocellulose membrane (GE Healthcare) for 1 hour at 100 V in a buffer containing 20% absolute ethanol and 10% 0.25 M tris base and 1.9 M glycine. The membranes were blocked in TBST [50 mM tris (pH 7.5), 150 mM NaCl, and 0.1% Tween 20] and 5% milk for 1 hour, incubated with primary antibodies overnight at 4C and with secondary antibodies for 1 hour at room temperature. Primary [BAZ1B (Abcam) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Millipore)] and secondary antibodies were diluted in TBST and 5% milk. Blots were detected with the ECL Prime Western Blotting Detection Reagents (Sigma-Aldrich) and scanned using the ChemiDoc system (Bio-Rad).

Cells (5 104 to 7 104) were plated in each of the two Matrigel-coated wells of silicone culture-inserts (Ibidi) attached to six-well culture plates. After 24 hours, the insert was removed, medium was changed to remove dead cells, and time lapse was performed for 24 hours at the rate of one image every 10 min at 10 magnification; each condition was analyzed in duplicate. Images were acquired with the BX61 upright microscope equipped with a motorized stage from Olympus or the Nikon Eclipse Ti inverted microscope equipped with a motorized stage from Nikon and analyzed with ImageJ.

iPSCs were pretreated with 10 M rho kinase inhibitor for 4 hours, and then 2 106 cells were electroporated using the Neon system with the Cas9/single-guide RNA ribonucleoprotein complex and the donor plasmid (synthesized by GeneArt). The donor plasmid contained three FLAG tags followed by a self-cleaving peptide (P2A) and a hygromycin resistance (HygroR). The 3xFLAG-P2A-HygroR cassette was flanked by BAZ1B-specific homology arms (5 HA and 3 HA) to promote homologous recombination and then subcloned into a bacterial backbone (Fig. 3A).

After 48 hours, iPSC medium was supplemented with hygromycin B (50 g/l), and selection medium was maintained for 15 days. Fifteen to 20 clones per iPSC line were then subjected to PCR to (i) evaluate the presence of the cassette and the insertion in the correct genomic locus and (ii) distinguish heterozygously tagged from homozygously tagged clones (fig. S3A). We could isolate a clone with a homozygous integration from the CTL, the atWBS, and the typical WBS but not from the 7dupASD line. In the 7dupASD clone, the FLAG tag was present in two of three copies, as shown by a digital PCR analysis (fig. S3B).

DNA (60 ng) was amplified in a reaction volume containing the following reagents: QuantStudio 3D Digital PCR Master Mix v2 (Thermo Fisher Scientific), Custom TaqMan Copy Number Assays SM 20 FAM labeled (Thermo Fisher Scientific), and TaqMan Copy Number Reference Assay 20 (Thermo Fisher Scientific) VIC labeled (Thermo Fisher Scientific). The mix was loaded on a chip using the QuantStudio 3D Digital PCR Chip Loader. The chips were then loaded on the ProFlex PCR System (Thermo Fisher Scientific), and data were analyzed using the QuantStudio 3D AnalysisSuite Cloud Software. The entire process was performed by the qPCR Service at Cogentech, Milano [Custom (FLAG) TaqMan Copy Number Assays: forward primer, TGGACAGTCCAGAGGACGAA; reverse primer, CACCCTTGTCGTCATCGTCTT; and probe, FAMACAGAAGAAGGACTACAAAGACG and TaqMan Copy Number Reference Assay: TERT (VIC) (catalog number 4403316)].

Approximately 2 105 cells were used (~100 g of chromatin) for histone mark IP, and 1 mg of chromatin was used for BAZ1B-FLAG IP. Cells were fixed with phosphate-buffered saline, containing 1% formaldehyde (Sigma-Aldrich), for 10 min to cross-link proteins and DNA, when the reaction was then stopped by adding 125 mM glycine for 5 min. Cells were lysed with SDS buffer containing 100 mM NaCl, 50 mM tris-HCl (pH 8.0), 5 mM EDTA (pH 8.0), and 10% SDS, at which point chromatin pellets were resuspended in IP buffer containing 1 volume of SDS buffer and 0.5 volume of Triton dilution buffer [100 mM tris-HCl (pH 8.5), 5 mM EDTA (pH 8.0), and 5% Triton X-100]. Chromatin was then sonicated using the S220 Focused-ultrasonicator (Covaris) to generate <300 bp DNA fragments (for histone mark IPs) or the Branson Digital Sonifier to generate 500 to 800 bp DNA fragments (for BAZ1B-FLAG IP).

Sonicated chromatin was incubated overnight at 4C with primary antibodies [H3K27ac (Abcam), H3K4me1 (Abcam), H3K4me3 (Abcam), H3K27me3 (Cell Signaling Technology), and FLAG (Sigma-Aldrich)] and then for 3 hours with Dynabeads Protein G (Thermo Fisher Scientific). Beads were washed three times with low-salt wash buffer [0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM tris-HCl (pH 8.0), and 150 mM NaCl] and once with high-salt wash buffer [0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM tris-HCl (pH 8.0), and 500 mM NaCl]. Immunocomplexes were eluted in decross-linking buffer (1% SDS and 100 mM NaHCO3) at 65C for 2 hours. DNA was purified using QIAquick PCR columns (QIAGEN) and quantified with a Qubit dsDNA HS assay kit (Thermo Fisher Scientific). DNA libraries were prepared by the sequencing facility at European Institute of Oncology according to the protocol described by Blecher-Gonen and colleagues (53), and DNA was sequenced on the Illumina HiSeq 2000 platform. For the FLAG ChIP, samples were run in duplicate.

RNA-seq data were quantified using Salmon 0.91 to calculate read counts and transcripts per million in a transcript- and gene-wise fashion, using the quasi-mapping offline algorithm (54) on the GRCh38 (National Center for Biotechnology Information) database. edgeR was used for differential gene expression analysis (DEA), using generalized linear regression methods, to identify pattern of differential expression following two different schemes:

1) A factorial analysis based on the definition of one group of scrambled and one group of KD samples to identify genes dysregulated similarly across short hairpins characterized by different efficiencies.

2) A numerical analysis in which log-normalized [Trimmed Mean of M-values (TMM)] BAZ1B levels, as quantified by RNA-seq, was used as independent variable.

All analyses were performed dropping individual variations (~individual+KD or ~individual+BAZ1B) to account for the genetic background of each individual. In particular, this design is expected to permit the identification of genes, which change expression level upon KD even in situations in which genotype-specific makeups would lead BAZ1B-dependent genes to have unique expression levels in scramble lines. In the factorial analysis, DEGs were identified and characterized by filtering for fold change (FC) > 1.25 and FDR < 0.05 unless explicitly indicated.

To our knowledge, performing a regression analysis at a gene-specific level has never been performed. We were able to do this because of the availability of a large set of samples (11 individuals) and because of the two short hairpins robustly respectively reducing BAZ1B expression levels, respectively by ~40 and ~70% in all individuals lines. To validate the quality of our numerical differential expression analysis, we took advantage of HipSci data (55, 56) and iPSCpoweR tools (29). We took 50 of 105 possible combinations of 13 random individual RNA-seq data from the healthy HipSci cohort, representing both sexes and having at least two technical replicates per individual. Unfortunately, HipSci does not contain at least 13 individuals with three clones per individual. Thus, we performed four alternative DEAs with edgeR (table S4) on the 50 different random combinations of 13 individuals identified (200 DEAs in total, on 22 samples, two clones per individual), using the same model matrix used for the regression analysis (~individual+BAZ1B) and using BAZ1B levels of scramble and sh2 lines. All analyses identified very low number of spurious DEGs (fig. S2E). Thus, we used the Edg2 pipeline (table S4) because it does not discard genes with higher variability (Edg2 and Edg4 versus Edg1 and Edg3), and it is based on a better suited algorithm (Edg2 versus Edg4). With our model matrix, filtering by P < 0.01 (and FDR < 0.25), using Edg2 on a random HipSci data, we obtained an average of 93.32 DEGs (on average) with a median equal to 43 (table S5). GO enrichments were performed using topGO R package version 2.28.0.

Master regulatory analysis was performed via hypergeometric test by measuring gene set enrichments in lists of transcription factor targets provided by the TFBS tools database (57). Both GO and transcription factor enrichment analyses were performed considering background genes expressed in at least two samples in our NCSC cohort.

ChIP-seq experiments were analyzed both qualitatively and quantitatively. Reads were trimmed with the FASTX-Toolkit (-Q33 -t 20 -l 22), aligned with Bowtie 1.0 (-v 2 -m 1) on the Human hg38 reference genome, and peaks were called using MACS 2.1.1. H3K4me1, H3K27ac, H3K4me3, and H3K27me3 peaks were called with --broad using default parameters and q < 0.05.

Qualitative analysis, including intersection and comparison of bed files, was performed using BedTools version 2.23.

To define enhancer regions, we intersected those marked by H3K4me1 and H3K27ac in at least two samples, discarded regions with H3K4me3 in at least two samples, and discarded regions overlapping with TSS. Motif enrichment was performed by using HOMER v4.10.

Quantification of reads per region was performed with DeepTools 3.0.2. Differential mark deposition was conducted by means of edgeR 3.24.1 inside R 3.3.3. To define mark deposition following BAZ1B levels, we used the same design as for RNA-seq data (~individual+BAZ1B).

To identify BAZ1B bound regions and to avoid losing identification of lowly covered regions, we resorted to (i) aggregation of all sample aligned reads and (ii) peak calling with MACS2 using extsize 800 and q < 0.25. BAZ1B binding coverage was calculated with DeepTools, with the same parameters used for histone marks, on the identified peak regions. Differentially bound regions were identified with edgeR.

The archaic/modern lists were generated from the material presented in (15). We used high-coverage genotypes for three archaic individuals: one Denisovan (58), one Neanderthal from the Denisova cave in Altai mountains (59), and another Neanderthal from Vindija cave, Croatia (60). The data are publicly available at http://cdna.eva.mpg.de/neandertal/Vindija/VCF/, with the human genome version hg19 as reference. High-frequency (HF) differences were defined as positions where more than 90% of present-day humans carry a derived allele, while at least the Denisovan and one Neanderthal carry the ancestral allele. High-frequency changes in archaics were defined as occurring at less than 1% in present-day humans, while at least two archaic individuals carry the derived allele. The HF lists used here were examined as presented in (15), with the exception of the HF lists in regulatory regions, which were extracted from the same dataset but not presented as such in the original paper.

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/5/12/eaaw7908/DC1

Fig. S1. BAZ1B KD validation in iPSC-derived NCSCs and evaluation of its impact on NCSC migration.

Fig. S2. BAZ1B KD affects the transcriptome of iPSC-derived NCSCs.

Fig. S3. Generation of BAZ1B-FLAG iPSC lines and differentiation to NCSCs.

Fig. S4. BAZ1B KD induces a significant chromatin remodeling at distal regions.

Text S1A. Detailed description of HOMER motif enrichments performed on BAZ1B ChIP-seq data.

Text S1B. List of key direct targets of BAZ1B involved in neural- and NC-related development and relevant associated literature.

Table S1. Genes relevant for NC and NC-derived features whose expression follows BAZ1B levels.

Table S2A. Significant genes in human evolution.

Table S2B. Regulatory excess in archaic humans, overlap with BAZ1B targets.

Table S2C. Mutation excess in archaic humans, overlap with BAZ1B targets.

Table S2D. Regulatory changes (exclusive) in archaic humans, overlap with BAZ1B targets.

Table S2E. Missense mutations in archaic humans, overlap with BAZ1B targets.

Table S2F. Mutation excess in archaic humans corrected for length, overlap with BAZ1B targets.

Table S2G. Regulatory excess in modern humans, overlap with BAZ1B targets.

Table S2H. Mutation excess in modern humans, overlap with BAZ1B targets.

Table S2I. Regulatory changes (exclusive) in modern humans, overlap with BAZ1B targets.

Table S2J. Missense mutations in modern humans, overlap with BAZ1B targets.

Table S2K. Mutation excess in modern humans corrected for length, overlap with BAZ1B targets.

Table S2L. Genes under positive selection in domesticated animals, overlap with BAZ1B targets.

Table S2M. Genes under positive selection from Peyrgne et al. (13) in modern humans, overlap with BAZ1B targets.

Table S2N. Genes under positive selection from Racimo (14) in modern humans, overlap with BAZ1B targets.

Table S3. Crucial genes identified in the overlap between BAZ1B datasets and archaic versus modern human datasets reported in this study.

Table S4. Alternative differential expression analysis functions tested with iPSCpower to assess the efficacy of our design matrix (~individual+BAZ1B). R code provided.

Table S5. Number of genes differentially expressed following BAZ1B data in our numerical analysis compared to an analysis conducted on randomized HipSci data, using Edg2 function (see table S4).

References (6189)

View original post here:
Dosage analysis of the 7q11.23 Williams region identifies BAZ1B as a major human gene patterning the modern human face and underlying...

Read More...

CAR-T therapies shine at ASH – PharmaTimes

Wednesday, December 11th, 2019

CAR-T therapies being developed by Bristol Myers Squibb and Janssen have all hit targets in early-mid-stage trials, raising hopes of new treatment options for difficult to treat blood cancers.

First up, Johnson & Johnsons Janssen unveiled initial results from the Phase Ib/II CARTITUDE-1 study assessing the efficacy and safety of JNJ-68284528 (JNJ-4528) an investigational B cell maturation antigen (BCMA)-directed chimeric antigen receptor T cell (CAR-T) therapy in treating relapsed or refractory multiple myeloma.

The study enrolled patients who have received at least three prior lines of therapy or are double refractory to a proteasome inhibitor (PI) and an immunomodulatory drug (IMiD); have received a PI, IMiD and an anti-CD38 antibody; and who progressed on or within 12 months of their last line of therapy.

Results from the Phase Ib portion of the CARTITUDE-1 study showed early and deep responses among patients (n=29) with a median of five prior multiple myeloma treatment regimens treated with JNJ-4528, with 100 percent of patients achieving a response at a median six-month follow-up, the firm said.

The overall response rate (ORR) included 69% of patients achieving a complete response (CR) or better; 86% of patients achieving a very good partial response (VGPR) or better; and 14% of patients achieving a partial response (PR).

Also key, 100% of evaluable patients achieved early minimal residual disease (MRD)-negative disease status at day 28 post-infusion, while at the six-month follow-up, 27 of 29 patients were progression-free.

The results highlight a compelling clinical profile for the treatment in this setting, said Deepu Madduri, assistant professor of Medicine, Haematology and Medical Oncology, Tisch Cancer Institute at Mount Sinai, New York, and principal study investigator.

US regulators have granted JNJ-4528 a breakthrough designation in the US based on the data.

Liso-cel also on target

Elsewhere, Bristol-Myers Squibb's CAR-T cell therapy liso-cel (lisocabtagene maraleucel) showed promise across two trials involving patients with blood cancers.

The studies included an evaluation of liso-cel in patients with relapsed or refractory chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) (TRANSCEND CLL 004); and a study in second-line patients with relapsed or refractory large B-cell non-Hodgkins lymphoma (NHL) patients who were ineligible for high-dose chemotherapy and hematopoietic stem cell transplant (PILOT).

The Phase II PILOT assessed the CAR-T therapy in patients with relapsed/refractory large B-cell NHL who had received only one prior line of immunochemotherapy and were deemed ineligible for HSCT due to patient factors including age, comorbidities or performance status.

All patients eligible for evaluation achieved a response with six (50%) patients achieving a CR. Seven of 12 (58%) patients maintained response levels at three months following liso-cel infusion.

Of the 13 patients, 61.5% had at least one treatment related side effect of grade 3 or higher and these were primarily cytopenias. Four patients had prolonged grade 3 or higher cytopenias.

The Phase I/II TRANSCEND CLL 004 study included patients who had a median of five prior lines of therapy. All (23/23) had received prior ibrutinib and most (21/23) were refractory to or had relapsed on the BTK inhibitor. There were nine patients (39%) that had failed both a BTK inhibitor and venetoclax, and most (83%) were considered to high-risk features.

The overall response rate (ORR) after median follow-up of 11 months for patients receiving liso-cel was 81.5%, with 45.5% achieving a complete response (CR). In patients that had failed a BTK inhibitor and venetoclax, the ORR was 89% with 67 achieving a CR.

Among 20 patients evaluable for minimal residual disease (MRD), the majority achieved undetectable MRD in the blood (75%) and bone marrow (65%) by next-generation sequencing, the firms noted.

On the safety side, treatment-emergent adverse events (TEAE) of any grade occurred in all patients, with 96% experiencing one classed as a grade 3 or higher, including anemia (78%), thrombocytopenia (70%), neutropenia (56.5%), leukopenia (43.5%), febrile neutropenia (26%), lymphopenia (26%) and cytokine release syndrome (9%).

Also, 74% of patients had cytokine release syndrome (CRS) of any grade with 9% of patients experiencing grade 3 CRS. Thirty-nine percent had neurological events of any grade, while 22% had grade 3 or higher.

As we continue to evaluate liso-cel in important new disease settings and areas of unmet medical need, we are encouraged to see the early results from these studies, said Stanley Frankel, senior vice president, Cellular Therapy Development for BMS.

Data from all studies were presented at the American Society of Hematology (ASH) Annual Meeting in Orlando, Florida.

The rest is here:
CAR-T therapies shine at ASH - PharmaTimes

Read More...

CytoDyn Reports Early Results from First Patient in its Phase 1b/2 CCR5+ Metastatic Triple-Negative Breast Cancer Trial – Stock Day Media

Tuesday, December 3rd, 2019

First metastatic triple-negative breast cancer patient showed no detectable circulating tumor cells (CTC) or putative metastatic tumor cells (EMTs) in the peripheral blood. Further, a significant reduction in CCR5 expression was demonstrated on cancer-associated cells after eight weeks of treatment with leronlimab

A second patient with metastatic breast cancer has been enrolled under an emergency use investigational new drug

VANCOUVER, Washington, Dec. 03, 2019 (GLOBE NEWSWIRE) CytoDyn Inc. (OTC.QB: CYDY), (CytoDyn or the Company), a late-stage biotechnology company developing leronlimab (PRO 140), a CCR5 antagonist with the potential for multiple therapeutic indications, announced today additional early Phase 1b/2 clinical trial results evaluating leronlimab (PRO 140) patients with CCR5+ metastatic triple-negative breast cancer (mTNBC). Data from the first patient enrolled show no detectable circulating tumor cells (CTC) or EMTs in the peripheral blood and additional reductions in CCR5 expression on cancer-associated cells at eight weeks. A second patient with metastatic breast cancer has been enrolled in the trial under an emergency use investigational new drug (IND).

The first patient in the open label study was given a weekly injection of leronlimab at 700mg along with carboplatin. The patient was enrolled in the trial with CCR5-positive, mTNBC and nave to chemotherapy in metastatic setting. The patient was previously exposed to anthracyclines and taxane in neoadjuvant and adjuvant settings.

The fourth blood sample from the mTNBC patient, drawn following eight weeks of treatment, demonstrates a notably sustained response to leronlimab, said Bruce Patterson, M.D., chief executive officer of IncellDx. Other cancer-associated macrophage-like (CAML) cells in the blood sample were found at the lower limits of detection and were also decreased in size. Most importantly, the CAML cells had reduced CCR5 staining compared to samples taken from the patient three weeks earlier, reflecting an ongoing blockade of the CCR5 receptor by leronlimab.

Nader Pourhassan, Ph.D., president and chief executive officer of CytoDyn, stated: It is very exciting to see additional preliminary results that demonstrate leronlimabs potential as a therapeutic option to treat mTNBC. We are also pleased to have enrolled a second patient with metastatic breast cancer under an emergency IND. If the results of the second patient are similarly impressive, we plan to file for Breakthrough Therapy designation before the end of January 2020. We have had many patients contact us for treatment under our expanded access protocol and another hospital has opened enrollment for our mTNBC trial. We look forward continuing our research in furtherance of this clinical development plan.

About Triple-Negative Breast CancerTriple-negative breast cancer (TNBC) is a type of breast cancer characterized by the absence of the three most common types of receptors in the cancer tumor known to fuel most breast cancer growthestrogen receptors (ER), progesterone receptors (PR) and the hormone epidermal growth factor receptor 2 (HER-2) gene.1 TNBC cancer occurs in about 10 to 20 percent of diagnosed breast cancers and can be more aggressive and more likely to spread and recur.2,3 Since the triple negative tumor cells lack these receptors, common treatments for breast cancer such as hormone therapy and drugs that target estrogen, progesterone, and HER-2 are ineffective.4 Currently, there are no targeted therapies approved to treat triple negative breast cancer.5

About Leronlimab (PRO 140)The U.S. Food and Drug Administration (FDA) has granted a Fast Track designation to CytoDyn for two potential indications of leronlimab for deadly diseases. The first as a combination therapy with HAART for HIV-infected patients, and the second is for metastatic triple-negative breast cancer (mTNBC). Leronlimab is an investigational humanized IgG4 mAb that blocks CCR5, a cellular receptor that is important in HIV infection, tumor metastases, and other diseases, including NASH. Leronlimab has successfully completed nine clinical trials in over 800 people, including meeting its primary endpoints in a pivotal Phase 3 trial (leronlimab in combination with standard anti-retroviral therapies in HIV-infected treatment-experienced patients).

In the setting of HIV/AIDS, leronlimab is a viral-entry inhibitor; it masks CCR5, thus protecting healthy T cells from viral infection by blocking the predominant HIV (R5) subtype from entering those cells. Leronlimab has been the subject of nine clinical trials, each of which demonstrated that leronlimab can significantly reduce or control HIV viral load in humans. The leronlimab antibody appears to be a powerful antiviral agent leading to potentially fewer side effects and less frequent dosing requirements compared with daily drug therapies currently in use.

In the setting of cancer, research has shown that CCR5 plays an important role in tumor invasion and metastasis. Increased CCR5 expression is an indicator of disease status in several cancers. Published studies have shown that blocking CCR5 can reduce tumor metastases in laboratory and animal models of aggressive breast and prostate cancer. Leronlimab reduced human breast cancer metastasis by more than 98 percent in a murine xenograft model. CytoDyn is, therefore, conducting a Phase 2 human clinical trial in metastatic triple-negative breast cancer and was granted Fast Track designation in May 2019. Additional research is being conducted with leronlimab in the setting of cancer and NASH with plans to conduct additional clinical studies when appropriate.

The CCR5 receptor appears to play a central role in modulating immune cell trafficking to sites of inflammation and may be important in the development of acute graft-versus-host disease (GvHD) and other inflammatory conditions. Clinical studies by others further support the concept that blocking CCR5 using a chemical inhibitor can reduce the clinical impact of acute GvHD without significantly affecting the engraftment of transplanted bone marrow stem cells.

CytoDyn is currently conducting a Phase 2 clinical study with leronlimab to further support the concept that the CCR5 receptor on engrafted cells is critical for the development of acute GvHD and that blocking this receptor from recognizing certain immune signaling molecules is a viable approach to mitigating acute GvHD. The FDA has granted orphan drug designation to leronlimab for the prevention of graft-versus-host disease (GvHD).

About CytoDynCytoDyn is a biotechnology company developing innovative treatments for multiple therapeutic indications based on leronlimab, a novel humanized monoclonal antibody targeting the CCR5 receptor. CCR5 appears to play a key role in the ability of HIV to enter and infect healthy T-cells. The CCR5 receptor also appears to be implicated in tumor metastasis and immune-mediated illnesses, such as graft-vs-host disease (GvHD) and NASH. CytoDyn has successfully completed a Phase 3 pivotal trial with leronlimab in combination with standard anti-retroviral therapies in HIV-infected treatment-experienced patients. CytoDyn plans to seek FDA approval for leronlimab in combination therapy and plans to complete the filing of a Biologics License Application (BLA) in 2019 for that indication. CytoDyn is also conducting a Phase 3 investigative trial with leronlimab (PRO 140) as a once-weekly monotherapy for HIV-infected patients and, plans to initiate a registration-directed study of leronlimab monotherapy indication, which if successful, could support a label extension. Clinical results to date from multiple trials have shown that leronlimab (PRO 140) can significantly reduce viral burden in people infected with HIV with no reported drug-related serious adverse events (SAEs). Moreover, results from a Phase 2b clinical trial demonstrated that leronlimab monotherapy can prevent viral escape in HIV-infected patients, with some patients on leronlimab monotherapy remaining virally suppressed for more than four years. CytoDyn is also conducting a Phase 2 trial to evaluate leronlimab for the prevention of GvHD and has received clearance to initiate a clinical trial with leronlimab in metastatic triple-negative breast cancer. More information is atwww.cytodyn.com.

Forward-Looking StatementsThis press release contains certain forward-looking statements that involve risks, uncertainties, and assumptions that are difficult to predict. Words and expressions reflecting optimism, satisfaction or disappointment with current prospects, as well as words such as believes, hopes, intends, estimates, expects, projects, plans, anticipates and variations thereof, or the use of future tense, identify forward-looking statements, but their absence does not mean that a statement is not forward-looking. The Companys forward-looking statements are not guarantees of performance, and actual results could vary materially from those contained in or expressed by such statements due to risks and uncertainties including: (i) the sufficiency of the Companys cash position, (ii) the Companys ability to raise additional capital to fund its operations, (iii) the Companys ability to meet its debt obligations, if any, (iv) the Companys ability to enter into partnership or licensing arrangements with third parties, (v) the Companys ability to identify patients to enroll in its clinical trials in a timely fashion, (vi) the Companys ability to achieve approval of a marketable product, (vii) the design, implementation and conduct of the Companys clinical trials, (viii) the results of the Companys clinical trials, including the possibility of unfavorable clinical trial results, (ix) the market for, and marketability of, any product that is approved, (x) the existence or development of vaccines, drugs, or other treatments that are viewed by medical professionals or patients as superior to the Companys products, (xi) regulatory initiatives, compliance with governmental regulations and the regulatory approval process, (xii) general economic and business conditions, (xiii) changes in foreign, political, and social conditions, and (xiv) various other matters, many of which are beyond the Companys control. The Company urges investors to consider specifically the various risk factors identified in its most recent Form 10-K, and any risk factors or cautionary statements included in any subsequent Form 10-Q or Form 8-K, filed with the Securities and Exchange Commission. Except as required by law, the Company does not undertake any responsibility to update any forward-looking statements to take into account events or circumstances that occur after the date of this press release.

CONTACTSFor more information, visitwww.cytodyn.comor contact:

Media:Grace FotiadesLifeSci Public Relationsgfotiades@lifescipublicrelations.com(646) 876-5026

Investors:Nader Pourhassan, Ph.D.President & CEOnpourhassan@cytodyn.com

Source: CytoDyn, Inc.

Read the rest here:
CytoDyn Reports Early Results from First Patient in its Phase 1b/2 CCR5+ Metastatic Triple-Negative Breast Cancer Trial - Stock Day Media

Read More...

Stem Cell Therapy May Improve Heart Health In New Ways – TheHealthMania

Tuesday, December 3rd, 2019

Recently, a new study that appears in the journal Nature, focuses on stem cell therapy and shows unexpected ways in which it may be helpful in recovering the health of the heart. Stem cell therapy has become popular in the past few years due to its benefits for a big number of health conditions.

Currently, there is major ongoing research on stem cells since they are responsible for the regeneration of new cells and may play a fundamental role in understanding the development of a variety of different diseases as well as their potential treatments.

Some of the recent discoveries of medical science include using stem cells as regenerative medicine as they can be turned into particular types of cells that may be able to replace tissues damaged as a result of health issues and thereby control the disease.

Read also:New Study Reveals Hydromethylthionine Slows Cognitive Decline and Brain Atrophy

The therapy can be specifically useful for people with conditions such as type 1 diabetes, spinal cord injuries, Alzheimers disease, Parkinsons disease, stroke, cancer, burns, amyotrophic lateral sclerosis, heart disease, and osteoarthritis.

At the moment, the most successful procedure that involves stem cell therapy is performing a bone marrow transplant. This surgical operation replaces the cells which have been damaged during chemotherapy by programmed stem cells. People are usually able to maintain and live a normal life after recovery from the surgery.

Furthermore, stem cell usage in clinical trials designed for testing the effectiveness, safety, and potential negative impact of new drugs. To do so, the stem cells can be programmed into becoming the type of cells that the drug aims to target.

The new study, which was led by Jeffery Molkentin who is a professor of the Howard Hughes Medical Institute (HHMI) and the director of Molecular Cardiovascular Microbiology a Cincinnati Childrens Hospital Medical Center, takes data from a study from the same journal, Nature, from the years 2014 which was conducted by the same medical team.

In the new paper, the team with Molkentin as the principal investigator found some unexpected results. There were two types of stem cells in the clinical trial cardiac progenitor cells and bone marrow mononuclear cells.

The main objective of the new trial was to re-evaluate the results of the 2014 study, which showed that injecting c-kit positive heart stem in the heart does not help in the regeneration of cardiomyocytes, to see how the cell therapy can be made to be effective.

It was instead discovered that injecting an inert chemical called zymosan, which is designed particularly for inducing an innate immune response, or dead stem cells can also be beneficial for the recovery of heart as they may speed up the healing procedure.

Injecting either dead stem cells or zymosan led to a reduction in the development of cellular matrix connective tissue in the areas which had been damaged in the heart. In addition, the mechanical properties of the targeted scar also improved.

Another important finding was that chemical substances such as zymosan are required to be injected directly into the heart for optimum results. In previous clinical trials, direct injections were avoided for safety reasons.

Molkentin and the team state that follow-up studies and trials on this new discovery are imminent as they may be important for developing therapies in the future.

Read more here:
Stem Cell Therapy May Improve Heart Health In New Ways - TheHealthMania

Read More...

Transfection Technologies Market Survey by Industry Trends, Growth Rate with CAGR Analysis 2026 By Top Key Players Lonza., Promega Corporation.,…

Tuesday, December 3rd, 2019

Latest Study on Industrial Growth of Transfection Technologies 2026 By-Data Bridge Market Research

A detailed study accumulated to offer Latest insights about acute features of Transfection Technologies . The report contains different market predictions related to market size, revenue, production, CAGR, Consumption, gross margin, price, and other substantial factors. It also examines the role of the leading market players involved in the industry including their corporate overview, financial summary and SWOT analysis. Some are the key players taken under coverage for this study are Lonza., Promega Corporation., Sigma-Aldrich Co. , Thermo Fisher Scientific Inc., Bio-Rad Laboratories, Inc. , Roche Molecular Systems, Inc., QIAGEN, Inovio Pharmaceuticals, Inc., POLYPLUS TRANSFECTION, Mirus Bio LLC, Takara Bio Inc., SignaGen Laboratories, MaxCyte, Inc., Genlantis Inc., Techulon, BioAstrum Corporation., Altogen Biosystems, OZ Biosciences, Boca Scientific, Inc., Biontex Laboratories GmbH. , and others.

Download Transfection Technologies Research Report in PDF Brochure at: https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-transfection-technologies-market

Market Affecting Factors:

This section involves the list of various factors which have huge impact on the overall Transfection Technologies growth.

Global transfection technologies market is registering a substantial CAGR of 9.74% in the forecast period of 2019-2026.

Key Assessments:

There are various types of assessments carried out in Transfection Technologies report to analyze the crucial market details and evaluate market opportunities. These assessments are-

Primary and Secondary assessment- These are collected through industry journals, government bodies and stakeholders. And for secondary research, industry experts are consulted.

Qualitative and quantitative assessment

Feasibility analysis, Porters Five Forces analysis

SWOT Analysis which highlights strength, weakness, opportunities and threats of Transfection Technologies .

Market Drivers

Market Restraints

Crucial Market Segment Details:

Global Transfection Technologies Market By Transfection Method (Cotransfection, Electroporation, Cationic Lipid Transfection, In Vivo Transfection), By Applications (Virus production, Protein production, Gene silencing, Stem cell reprogramming & differentiation, Stable cell line generation)

Inquiry Before Buying at: https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-transfection-technologies-market

Each point covered in the Transfection Technologies report is examined to get clear thought regarding every variable and factor that is affecting the market development. Transfection Technologies report comprises of various segments linked to industry and market with comprehensive research and analysis. The Transfection Technologies report includes all the company profiles of the major players and brands.

Table of Content

1 Introduction

2 Research Methodology

3 Executive Summary

4 Premium Insights

5 Market Overview and Industry Trends

6 Product Stewardship Market, By Type

7 Product Stewardship Market, By Organization Size

8 Product Stewardship Market Analysis, By Region

9 Competitive Landscape

10 Company Profiles

New Business Strategies, Challenges & Policies are mentioned in Table of Content, Request Detailed TOC: https://www.databridgemarketresearch.com/toc/?dbmr=global-transfection-technologies-market

Significant Point Mentioned in the Research report

Purpose of This Report:

The purpose of Transfection Technologies report is to give organized market solutions to market players for smart decision marking. The report incorporates market size, patterns, details of business research and significantly more. It likewise offers investigation of worldwide and local insight, a 360-degree perspective available that incorporates factual figures, focused scene, comprehensive division, key patterns and key proposals.

Primary Respondents

Demand Side: Doctors, Surgeons, Medical Consultants, Nurses, Hospital Buyers, Group Purchasing Organizations, Associations, Insurers, Medical Payers, Healthcare Authorities, Universities, Technological Writers, Scientists, Promoters, and Investors among others.

Supply Side: Product Managers, Marketing Managers, C-Level Executives, Distributors, Market Intelligence, and Regulatory Affairs Managers among others.

About Data Bridge Market Research:

An absolute way to forecast what future holds is to comprehend the trend today!Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market.

Contact:

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Corporatesales@databridgemarketresearch.com

Go here to read the rest:
Transfection Technologies Market Survey by Industry Trends, Growth Rate with CAGR Analysis 2026 By Top Key Players Lonza., Promega Corporation.,...

Read More...

BidaskScore Ups Gamida Cell (GMDA); Shorts at Axt (AXTI) Lowered By 0.34% – The Broch Herald

Tuesday, December 3rd, 2019

In a analysts note revealed to clients and investors on Friday, 29 November, equity research analysts at BidaskScores research division upgraded Gamida Cell (NASDAQ:GMDA)s stock to a Hold.

Axt Inc (NASDAQ:AXTI) had a decrease of 0.34% in short interest. AXTIs SI was 1.63M shares in December as released by FINRA. Its down 0.34% from 1.64M shares previously. With 349,800 avg volume, 5 days are for Axt Inc (NASDAQ:AXTI)s short sellers to cover AXTIs short positions. The SI to Axt Incs float is 4.63%. It closed at $3.16 lastly. It is up 43.44% since December 2, 2018 and is downtrending. It has underperformed by 43.44% the S&P500. Some Historical AXTI News: 14/05/2018 Eam Investors LLC Exits Position in AXT; 25/04/2018 AXT 1Q EPS 7c; 24/04/2018 AXT Short-Interest Ratio Rises 33% to 7 Days; 21/04/2018 DJ AXT Inc, Inst Holders, 1Q 2018 (AXTI); 11/04/2018 AXT: Demand Remains Soli; 14/03/2018 AXT Closes Below 200-Day Moving Average: Technicals; 24/05/2018 AXT Short-Interest Ratio Rises 63% to 10 Days; 11/04/2018 AXT INC COMPLETED FIRST PHASE OF FACILITIZATION OF ITS NEW MANUFACTURING FACILITY IN DINGXING, CHINA; 11/04/2018 AXT Inc. Lowers 1Q Guidance; 11/04/2018 AXT Completes First Phase of New Factory in Dingxing, China

Gamida Cell Ltd., a clinical stage biopharmaceutical company, focuses on developing cell therapies to cure cancer, and rare and serious hematologic diseases in the United States, the European Union, and internationally. The company has market cap of $182.65 million. The company's lead product candidate is NiCord, a nicotinamide -expanded cord blood cell therapy that is in Phase 3 clinical trials for use as a curative stem cell graft for patients in hematopoietic stem cell transplant. It currently has negative earnings. It is also developing NAM-NK, an innate immunotherapy of expanded natural killer cells, which is in Phase 1 clinical trials for the treatment of refractory non-Hodgkin lymphoma and multiple myeloma.

Analysts await Gamida Cell Ltd. (NASDAQ:GMDA) to report earnings on February, 24. After $-0.30 actual earnings per share reported by Gamida Cell Ltd. for the previous quarter, Wall Street now forecasts 30.00% negative EPS growth.

The stock increased 5.96% or $0.31 during the last trading session, reaching $5.43. About 92,358 shares traded or 204.50% up from the average. Gamida Cell Ltd. (NASDAQ:GMDA) has 0.00% since December 2, 2018 and is . It has by 0.00% the S&P500.

More notable recent Gamida Cell Ltd. (NASDAQ:GMDA) news were published by: Finance.Yahoo.com which released: Will Gamida Cell (NASDAQ:GMDA) Spend Its Cash Wisely? Yahoo Finance on November 19, 2019, also Seekingalpha.com with their article: Gamida Cell Ltd. (GMDA) CEO Julian Adams on Q3 2019 Results Earnings Call Transcript Seeking Alpha published on November 13, 2019, Businesswire.com published: Gamida Cell Announces the Date of Its Third Quarter 2019 Financial Results and Webcast Business Wire on November 05, 2019. More interesting news about Gamida Cell Ltd. (NASDAQ:GMDA) were released by: Businesswire.com and their article: Gamida Cell to Present at the 31st Annual Piper Jaffray Healthcare Conference Business Wire published on November 21, 2019 as well as Businesswire.coms news article titled: Gamida Cell Announces Data to be Presented at ASH 2019 Annual Meeting Business Wire with publication date: November 06, 2019.

AXT, Inc. designs, develops, manufactures, and distributes compound and single element semiconductor substrates. The company has market cap of $127.10 million. The firm makes its semiconductor substrates using its proprietary vertical gradient freeze technology. It currently has negative earnings. It offers semi-insulating gallium with arsenic substrates, which are used for applications in power amplifiers for wireless devices, and transistors and solar cells for drones.

Receive News & Ratings Via Email - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings with our FREE daily email newsletter.

Follow this link:
BidaskScore Ups Gamida Cell (GMDA); Shorts at Axt (AXTI) Lowered By 0.34% - The Broch Herald

Read More...

Syros to Present on Core Drivers of Metastasis in Triple Negative Breast Cancer at San Antonio Breast Cancer Symposium – Business Wire

Thursday, November 21st, 2019

CAMBRIDGE, Mass.--(BUSINESS WIRE)--Syros Pharmaceuticals (NASDAQ:SYRS), a leader in the development of medicines that control the expression of genes, today announced that the company and its collaborators from the Whitehead Institute for Biomedical Research will present on the identification of core drivers of metastasis in triple-negative breast cancer (TNBC) in a poster presentation at the 2019 San Antonio Breast Cancer Symposium (SABCS), taking place December 10-14 in San Antonio, Texas.

The abstract for this presentation is now available online on the SABCS website at https://www.sabcs.org.

Details of the presentation are as follows:

Presentation Title: Epigenomic analysis of cancer stem cells (CSCs) from triple-negative breast cancer (TNBC) reveals p63 and p73 as core metastasis driversSession Date & Time: Friday, December 13, 7:00 a.m. 9:00 a.m. CT (8:00 a.m. 10:00 a.m. ET)Session Title: Poster Session 4Presenter: Matthew G. Guenther, Ph.D., SyrosAbstract Number: 2254Program Number: P4-04-02Location: Henry B. Gonzalez Convention Center, Hall 1

About Syros Pharmaceuticals:Syros is redefining the power of small molecules to control the expression of genes. Based on its unique ability to elucidate regulatory regions of the genome, Syros aims to develop medicines that provide a profound benefit for patients with diseases that have eluded other genomics-based approaches. Syros is advancing a robust pipeline of development candidates, including SY-1425, a first-in-class oral selective RAR agonist in a Phase 2 trial in a genomically defined subset of acute myeloid leukemia patients, and SY-5609, a highly selective and potent oral CDK7 inhibitor in investigational new drug application-enabling studies in cancer. Syros also has multiple preclinical and discovery programs in oncology and monogenic diseases, including sickle cell disease. For more information, visit http://www.syros.com and follow us on Twitter (@SyrosPharma) and LinkedIn.

Here is the original post:
Syros to Present on Core Drivers of Metastasis in Triple Negative Breast Cancer at San Antonio Breast Cancer Symposium - Business Wire

Read More...

Incysus Therapeutics to Present at the 2019 Society for Neuro-Oncology (SNO) Annual Meeting – Yahoo Finance

Thursday, November 21st, 2019

NEW YORK, Nov. 21, 2019 (GLOBE NEWSWIRE) -- Incysus Therapeutics, Inc. (Incysus), a biopharmaceutical company focused on delivering an innovative gamma-delta () T cell immunotherapy for the treatment of cancers, today announced that data related to the preclinical characterization of its therapeutic agent will be presented during the 24th Annual Scientific Meeting and Education Day of the Society for Neuro-Oncology (SNO) in Phoenix, Arizona. The promising preclinical results indicate significant improvement in long-term survival in models of glioblastoma (GBM) and will form the basis of the Companys upcoming clinical Phase 1 clinical trial.

A poster entitled, Phase 1 trial of drug resistant immunotherapy (NCT04165941): a first-in-class combination of MGMT-modified T cells and Temozolomide chemotherapy in newly diagnosed glioblastoma multiforme will be presented on Friday, November 22, at 7:30 p.m. Mountain Standard Time (GMT-07:00) in the Ballroom Lawn Room at the JW Marriott Desert Ridge Hotel. Dr. Burt Nabors, the study Principal Investigator and Director of the Neuro-Oncology program for the ONeal Comprehensive Cancer Center at the University of Alabama at Birmingham (UAB) will present the data. The poster abstract is available online: https://doi.org/10.1093/neuonc/noz175.021.

In addition to the study design, the presentation details preclinical testing of the therapeutic agent against human GBM in specific animal models. These preclinical data indicate a significant improvement in the long-term survival of animals implanted with patient derived GBM tumors. GBM is a significant unmet medical need that has seen very little progress in the past 14 years. As a result of these encouraging data, Incysus and our partners at UAB look forward toward the launch of this Phase 1 trial, an important milestone in our research to deliver an innovative T cell based immunotherapy for the treatment of cancers, said William Ho, President and Chief Executive Officer of Incysus. In addition to newly diagnosed glioblastoma, we are also leveraging our technology to target leukemia and lymphoma patients undergoing allogeneic stem cell transplantation. Phase 1 studies in both programs have been cleared by the U.S. Food and Drug Administration (FDA) and are expected to initiate patient enrollment shortly.

About the Society for Neuro-OncologyThe Society for Neuro-Oncology is a multidisciplinary organization dedicated to promoting advances in neuro-oncology through research and education.

Now in its twenty fourth year, the Society continues to grow and mature as the premier North American organization for clinicians, basic scientists, nurses and other health care professionals whose focus is central nervous system tumors in children and adults.

About Incysus Therapeutics, Inc.Incysus is focused on delivering a novel off-the-shelf cell therapy for the treatment of cancer. By using genetically modified gamma-delta () T cells, the Companys technology addresses the challenges that immunotherapies face targeting cold, low mutation cancers. Incysus immuno-oncology programs include activated and gene-modified adoptive cellular therapies that protect cells from chemotherapy and allow novel combinations to disrupt the tumor microenvironment and more selectively target cancer cells. Since the Companys inception in early 2016, Incysus has received FDA clearance of two Investigational New Drug applications (INDs) and has initiated several cancer programs in early pre-clinical stages, including a checkpoint combination program. The Companys first program is targeted to leukemia and lymphoma and its second program is targeted for the treatment of newly diagnosed glioblastoma (GBM). In collaboration with our academic partners, including UAB, Incysus has advanced its technology and expects to begin both Phase 1 trials shortly. Information about the Companys clinical trial in GBM (NCT04165941) can be found here: http://bit.ly/2Xx5MN6 and for leukemia and lymphoma (NCT03533816) can be found here: http://bit.ly/2pyYFHq. For more information about the Company and its programs, visitwww.incysus.com.

Forward Looking StatementsCertain statements herein concerning the Companys future expectations, plans and prospects, including without limitation, the Companys current expectations regarding its business strategy, product candidates, and clinical development process and timing, constitute forward-looking statements. The use of words such as may, might, will, should, expect, plan, anticipate, believe, estimate, project, intend, future, potential, or continue, the negative of these and other similar expressions are intended to identify such forward looking statements. Such statements, based as they are on the current expectations of management, inherently involve numerous risks and uncertainties, known and unknown, many of which are beyond the Companys control. Consequently, actual future results may differ materially from the anticipated results expressed in such statements. In the case of forward-looking statements regarding investigational product candidates and continuing further development efforts, specific risks which could cause actual results to differ materially from the Companys current expectations include: scientific, regulatory and technical developments; failure to demonstrate safety, tolerability and efficacy; final and quality controlled verification of data and the related analyses; expense and uncertainty of obtaining regulatory approval, including from the U.S. Food and Drug Administration; and the Companys reliance on third parties, including licensors and clinical research organizations. Do not place undue reliance on any forward-looking statements included herein, which speak only as of the date hereof and which the Company is under no obligation to update or revise as a result of any event, circumstances or otherwise, unless required by applicable law.

Story continues

See the original post here:
Incysus Therapeutics to Present at the 2019 Society for Neuro-Oncology (SNO) Annual Meeting - Yahoo Finance

Read More...

Rational discovery of antimetastatic agents targeting the intrinsically disordered region of MBD2 – Science Advances

Thursday, November 21st, 2019

Abstract

Although intrinsically disordered protein regions (IDPRs) are commonly engaged in promiscuous protein-protein interactions (PPIs), using them as drug targets is challenging due to their extreme structural flexibility. We report a rational discovery of inhibitors targeting an IDPR of MBD2 that undergoes disorder-to-order transition upon PPI and is critical for the regulation of the Mi-2/NuRD chromatin remodeling complex (CRC). Computational biology was essential for identifying target site, searching for promising leads, and assessing their binding feasibility and off-target probability. Molecular action of selected leads inhibiting the targeted PPI of MBD2 was validated in vitro and in cell, followed by confirming their inhibitory effects on the epithelial-mesenchymal transition of various cancer cells. Identified lead compounds appeared to potently inhibit cancer metastasis in a murine xenograft tumor model. These results constitute a pioneering example of rationally discovered IDPR-targeting agents and suggest Mi-2/NuRD CRC and/or MBD2 as a promising target for treating cancer metastasis.

Although at least 650,000 protein-protein interactions (PPIs) might occur in humans, only one PPI inhibitor has been approved for clinical use to treat cancers (1), suggesting that the field of PPI inhibitors remains largely unexplored. A variety of proteins and their PPIs have emerged as prospective drug targets to treat tumors because of the extreme heterogeneity and plasticity of cancer (2, 3). Ligands with the potential of binding to a specific site of a target protein with known structure can be efficiently identified by virtual screening. However, the structural plasticity of target proteins usually works against yielding an effective drug candidate. For example, selected compound treatment of cells/organisms often fails to elicit the anticipated effects due to in vivo structural alterations of the target protein caused by various posttranslational modifications (PTMs) and/or unanticipated interactions of the compound and/or its target protein with other molecules (4, 5). Furthermore, many critical proteins regulating various biological processes do not have unique structures as a whole or in some functionally important regions (6, 7). Structures of these intrinsically disordered proteins (IDPs) or IDP regions (IDPRs) are extremely dynamic, depending on the environment, and might change during function (4, 8). Many signaling IDPs/IDPRs undergo characteristic disorder-to-order transitions (DOTs) upon interactions with specific binding partners and/or through PTMs (9, 10). Targeting the IDPs/IDPRs capable of DOT is generally considered an attractive but challenging task for developing anti-PPI inhibitors. In this regard, a recently identified small-molecule compound, 10058-F4, serves as a pioneering success of anti-PPI inhibitor that binds to an IDPR of c-Myc undergoing a DOT upon binding to its partner Max (11, 12). 10058-F4 was discovered by a random screening using a yeast two-hybrid system (11), followed by experimental identification of its specific binding site (residues 402 to 412 of c-Myc) as an IDPR. Drug leads like 10058-F4 targeting IDPs/IDPRs cannot be found by conventional computational methods that rely on fixed conformations, such as crystallographic structures of target proteins. No computer-aided drug discovery platform is currently available for the systematic exploration of IDPRs as potential drug-target sites (3).

To fill this gap, we developed a novel platform for the discovery of drug leads based on molecular docking and molecular dynamics (MD) simulations of the DOT-associated IDPRs of target proteins. Figure 1A describes this protocol. First, intrinsic disorder predispositions of drug-target proteins are analyzed, and potential disorder-based binding regions that can undergo DOTs are evaluated. A search of the protein structure database [Protein Data Bank (PDB)] is also performed to identify known PPIs and DOTs. Once the potential drug-target sites (DOT-based PPI regions) are determined, the corresponding structures retrieved from the PDB are used for molecular docking with druggable compounds from the ZINC compound library (13). Together with the docking scores, off-target probabilities assessed by the similarity ensemble approach (SEA) (1416) analysis are also considered for selection of lead compounds from the molecular-docked hit compounds. Last, prospected candidate compounds are suggested via MD simulations that evaluate the mode and efficiency of the compound binding.

(A) Flow chart describing the computational process of ligand discovery. (B) Evaluation of the intrinsic disorder propensity of MBD2 (left) and c-Myc (right); disorder scores 1 and 0 mean fully disordered and fully ordered residues, respectively. Pink bars show positions of the determined DOT sites embedded in residues 360 to 393 for MBD2 and 395 to 430 for c-Myc. (C) Chemical structures of the top 10 compounds showing the most favorable binding to the MBD2 target site in the molecular docking screening of ZINC chemical library. (D) Representative structures of protein-ligand complexes obtained from the molecular docking results (original data file 1 for PDB coordinates): 10058-F4:c-Myc402 (top; control experiment), ABA:MBD2369 (middle), and APC:MBD2369 (bottom).

The feasibility of the proposed approach was validated in this study by targeting an IDPR of MBD2 that undergoes a DOT upon association with its binding partner p66 for the integration of the Mi-2/NuRD chromatin remodeling complex (CRC). The integrated Mi-2/NuRD CRC includes one CHD (either CHD3 or CHD4), one HDAC (HDAC1 or HDAC2), two DOC1, three MTA (MTA1, MTA2, and MTA3), six RbAp46/48, two p66 (p66 or p66), and one MBD (MBD2 or MBD3) molecules (17, 18), where the molecular interaction of MBD2 with p66 critically mediates the proper assembly of CRC (17, 19). This CRC performs an important epigenetic function in normal development and differentiation by suppressing gene expression by binding directly to the DNA methylation sites and to the DNA methyltransferases (20, 21).

CRC also contributes to the development of human diseases, including cancer (22, 23); for example, the epigenetic regulation by Mi-2/NuRD CRC includes multiple tumor suppressor genes (23, 24), and several CRC components, including MBD2, were also observed to be oncogenic and/or closely correlated with the aggressiveness of several cancers (23, 25, 26). In particular, the function of Mi-2/NuRD CRC is known to be associated with the cellular process of epithelial-mesenchymal transition (EMT; the conversion of adhesive epithelial cells into migratory, invasive mesenchymal cells) that drives wound healing and cell migration and invasion (27, 28). In cancer, EMT necessarily mediates the metastasis of cancers and thus also enables carcinoma cells to acquire cancer stem cell (CSC) properties, malignancy-associated traits, and drug resistance (2931). Given that the metastasis is responsible for more than 90% of contemporary cancer deaths and yet no marketed antimetastatic drug is currently available (32), developing these drugs to target the cancer spreading is an essential and urgent task for oncological therapy. In this context, functional inhibition of CRC or modulation of its individual components might serve as a novel strategy for effective anticancer therapy to prevent the progression of cancer to metastatic stage. In particular, it has been observed that down-regulation of MBD2 and/or p66, which triggered derepression of epithelial regulators via epigenetic reprogramming of the Mi-2/NuRD CRC into the MBD2-free or disentangled CRC, resulted in promoted epithelial differentiation and loss of tumor-initiating ability. Therefore, targeting MBD2 specifically at its IDPR would be a promising approach to the development of antimetastatic agents by inhibiting its DOT-based PPI with p66 that is essential for the integration of CRC and thus for its critical function in EMT. In addition, no noticeable adverse effects displayed by MBD2 inhibitors can be expected from the fact that down-regulation of MBD2 expression is essential for normal cell differentiation (33), and yet, MBD2 knockout (MBD2/) mice exhibit normal survival and reproduction (34).

Hence, in this study, the MBD2 IDPR and its DOT-based interaction with p66 for the CRC integration were selected as a highly promising target system to evaluate the efficiency of our platform for rational drug discovery. Using this novel approach, we identified two small-molecule compounds capable of inhibiting the PPI of MBD2 and thereby efficiently suppressing the cancer metastatic potentials. In vivo efficacy of both leads in inhibiting cancer metastasis was also evident in a murine xenograft tumor model. Therefore, our novel method renders IDPRs available for rational discovery of anticancer drugs targeting DOT-based PPIs. In particular, the identified compounds provide a basis for the development of previously unidentified inhibitors capable of controlling metastasis of various carcinomas.

As our study was inspired by the discovery of 10058-F4, which binds to the c-Myc IDPR to inhibit its DOT for interaction with Max (11, 12), we compared the PPI site of MBD2 with that of c-Myc using our computational platform. Sequence analysis (see fig. S1 for sequence and structure information) revealed that disorder profiles of the PPI site of MBD2 (residues 360 to 393 for p66 interaction) (17, 35) closely resembled that of c-Myc (residues 400 to 434 for Max interaction) (36, 37) (Fig. 1B), characterized by a positive slope in its disorder profile. As both MBD2 and c-Myc are folded in complexes with their cognate partners (p66 and Max, respectively) (17, 35, 37), this analysis suggests that the PPI sites of MBD2 and c-Myc could undergo a similar type of DOT upon complex formation.

Subsequently, a nuclear magnetic resonance (NMR) ensemble structure of MBD2360393 in its complex with p66138178 (PDB ID: 2L2L) was retrieved, and the lowest-energy conformation of the ensemble was extracted for molecular docking analysis using the four residues (D366, I369, V376, and L383) of MBD2360393 engaged in the coiled-coil interaction, with p66 (35) as the initial target site in the molecular docking. From the molecular dockingbased virtual screening of 2 106 chemical compounds in the ZINC library, 10 promising compounds (compounds #1 to #10 in Fig. 1C) capable of interaction with MBD2 at the designated target site were selected. As a control, the Y402-targeted molecular docking of 10058-F4 to c-Myc395430 (Fig. 1D; note that the key residue for the c-Myc interaction with 10058-F4 is Y402) (35) was compared with the MBD2360393 docking of the 10 selected hit compounds (table S1). The MBD2369-targeted docking of two compounds {compounds #2 and #3 in Fig. 1D named herein ABA [2-amino-N-(2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl)-acetamide] and APC [3-(2-amino-acetylamino)-pyrrolidine-1-carboxylic acid tert-butyl ester], respectively} was found as the most favorable. In ABA:MBD2369 and APC:MBD2369 dockings, these compounds formed three intermolecular hydrogen bonds and had relatively low DOCK scores (35.2 and 33.3 kcal mol1, respectively) of the DOCK binding. These binding features could be compared favorably with those of the 10058-F4:c-Myc402 docking, which showed the DOCK score of 6.77 kcal mol1 and just one intermolecular hydrogen bond (table S1).

Concerning the potential side effects of the selected hit compounds, their off-target probabilities were assessed by the SEA analysis (14, 16), which has served as an eminent bioinformatics resource aiding in target identification for drug development by profiling multiple protein targets of chemical compounds as probes (15). For this analysis, the c-Myc inhibitor 10058-F4 and two anticancer drugs, imatinib (Gleevec) and sorafenib (Nexavar), were also compared as controls, and 2060 human proteins in the database were searched as potential targets. Given that a significant binding is feasible when both the Max Tc value more than 0.5 and E value lower than 1010 are relevant, no suggestible off-target was predicted for 7 of the 10 hit compounds including both ABA and APC, whereas four proteins were found as the probable 10058-F4 targets (Fig. 2A and table S2). Two of the other compounds also showed a small number of putative off-target proteins (six and two proteins for compounds #4 and #10, respectively), whereas 35 and 26 targets were suggested for imatinib and sorafenib, respectively (fig. S2A and table S2). Therefore, we screened nine compounds with low off-target probability for cellular activity dysregulating MBD2. In particular, the cell migration assay was used for this preliminary test of the compounds on the basis of the previous observation that knockdown of MBD2 in cancer cell lines resulted in decreased migration of the cells. The result implicated most of the hit compounds in actual suppression of the migration of breast adenocarcinoma MDA-MB-231 (LM1) and colorectal carcinoma HCT116 cells (Fig. 2B and fig. S2B). In particular, ABA (compound #2) and APC (compound #3), which accomplished the most favorable target binding in the aforementioned molecular docking experiments, also showed the least MI50 (concentration for half-inhibition of cell migration) values. Therefore, these two molecules were selected as lead compounds for subsequent evaluation in detail.

(A) Computational analysis for off-target probabilities of the 10058-F4 (control experiment) and two selected lead compounds (ABA and APC). Max Tc and E value of the predicted binding are plotted for the n (number of potential targets predicted) off-target candidates yielded from SEA using 2060 human proteins in the database. See fig. S2 for the other hit compounds. (B) Cell migration inhibition by the hit compounds. The LM1 and HCT116 cancer cells were fixed and stained after 48 hours of Transwell migration in the presence of indicated concentrations of individual compounds, followed by counting the number of migrated cells (n = 2) to yield MI50 value.

To assess target-binding feasibility and mode of binding of the two selected leads, we conducted MD simulation using the structures resulting from the ABA:MBD2369, APC:MBD2369, and 10058-F4:c-Myc402 docking (Fig. 1D) as starting points. In 50-ns MD trajectories, the number of the compound-protein contacts (Fig. 3A) and the compound-protein interaction energies (fig. S3A) over time were steady for 10058-F4:c-Myc402 but showed noticeable fluctuations for ABA:MBD2369 and APC:MBD2369, particularly during the first half of the simulation period, suggesting that the binding of ABA or APC to MBD2360393 might be less persistent than the 10058-F4c-Myc395430 interaction. However, heatmaps representing intermolecular contacts for individual residues (Fig. 3B) indicated frequent contacts of the ABA/APCMBD2360393 interaction comparable to that of the 10058-F4c-Myc395430 interaction. In particular, the highest contact density value at the most contacted residue (D368 contact) in the ABA:MBD2369 trajectory was higher than that (L404 contact) in the 10058-F4:c-Myc402 trajectory, suggesting stronger binding. Next, MD simulations for the ligand:MBD2360393 complex were extended to include D366-, V376-, and L383-targeted docking (Fig. 3C). Consistent with the ABA:MBD2369 trajectory, D368 was the most contacted residue in the heatmaps for heavy atom contacts of the ABA:MBD2376 trajectory, although no preferential contact was found in the other ABA:MBD2360393 trajectories and in the APC:MBD2360393 MD simulation sets. Collectively, the MD simulation indicated that the actual binding of ABA and APC to MBD2360393 would be as promising as the 10058-F4 binding to c-Myc395430, although detailed interaction modes can be different between the two compounds. Therefore, it was subsequently examined whether the targeted binding of the compounds to MBD2 would influence specific PPI of the protein.

(A) Time-course alterations of the number of intermolecular contacts within 3 cutoff in MD simulations. (B) Heatmap describing the number of simulated compound-protein contacts during 50-ns trajectory for individual residues. Each value of a number of contacts was normalized by dividing it by the total number of contacts in each simulation. The already-known critical residues for PPI are shown in darker red. (C) Heatmap of the intermolecular heavy atom contacts between the lead compounds and target proteins during 50-ns trajectory. Number of contacts was normalized by the total number of contacts in each simulation. MBD2 N-terminal two residues, G and S, were from the NMR structure (PDB ID: 2L2L). MBD2 sequence starts from K360, after G, and S.

It has been suggested that 10058-F4 evokes a local conformational change (36) or conformational equilibrium shift (38, 39) of the c-Myc IDPR at its binding sites, and this small but significant alteration is critically involved in the functional inhibition of the DOT-mediated PPI of c-Myc with Max. Detailed inspection of the MD simulation results suggested that the MBD2 IDPR could also undergo a local conformational perturbation upon the binding of ABA and APC. For instance, in the ABA:MBD2369 and APC:MBD2369 trajectories, both and backbone torsion angles of the most contacted residue (D368) in the compound-contacting states were significantly (t test, P < 0.05) different from those in the noncontacting states (fig. S3B). The compound-bound conformation also appeared to be different between ABA and APC, as the D368 angles in the compound-contacting states were significantly different in between ABA:MBD2369 and APC:MBD2369 trajectories, although angle differences were not significant (t test, P = 0.574). Therefore, to further analyze the possible conformational perturbation, we compared the compound-bound ABA:MBD2369 and APC:MBD2369 trajectories with the apo-MBD2 and p66-MBD2 trajectories (fig. S3C). The backbone root mean square fluctuation values of individual residues (fig. S3D) showed that apo-MBD2 underwent stronger backbone fluctuations than compound- or p66138178-bound MBD2360393. This reflects the structural instability of MBD2360393 in the absence of bound molecules (or, conversely, DOT upon complex formation). Notably, the backbone fluctuation was also different between compound- and p66138178-bound MBD2360393, especially at the p66138178-contacting D366 and I369 residues, reflecting the compound-specific local conformational perturbation in MBD2360393. The presence of this compound-specific perturbation was also obvious from torsion angle distributions of the p66138178-interacting D366, I369, V376, and L383 residues (fig. S3E), as the backbone / torsion angles in both ABA:MBD2369 and APC:MBD2369 trajectories were different from those in apo-MBD2 and MBD2-p66 (tables S3 and S4). In addition, comparison between ABA:MBD2369 and APC:MBD2369 MD trajectories revealed that the two compounds likely evoked different local conformational changes at the p66138178-interacting residues of MBD2. In particular, significant difference in of I369 and / of V376 and L383 (table S4), which is distinguished from the similarity in / of D366 and of I369, suggested that I369 served as a turning point for the observed torsion angle differences more evident in its C-terminal region from I369. Collectively, comparative MD simulations of MBD2360393 in different states (apo-, compound-, and p66138178-bound) suggested the compound-specific induction of local conformational perturbation of MBD2, especially at its p66-interacting site, which would most likely interfere with the MBD2-p66 interaction. Therefore, we next examined whether these leads can actually inhibit the PPI of MBD2, with p66 both in vitro and in cell, by fluorescence resonance energy transfer (FRET) and co-immunoprecipitation (co-IP) assay.

As the coiled-coil interaction between MBD2 and p66 occurs in an antiparallel fashion (17), MBD2 was fused with a FRET acceptor protein dTomato at its N terminus, whereas the FRET donor enhanced yellow fluorescent protein (eYFP) was C-terminally fused to p661206 (33) for in vitro FRET. Unfortunately, the full-length p66 was not available for the in vitro FRET studies due to the inclusion body formation in the Escherichia coli system for the recombinant production. The in vitro FRET result evidenced that both ABA and APC efficiently interfere with the MBD2-p66 interaction by provoking significant reduction of FRET, which, at 1 to 1.5 equimolar concentrations of the compounds, reached half of the value recorded for the MBD2-p661206 complex (Fig. 4A and fig. S4A). The FRET analysis in 293T cells by transient cotransfection of eYFP-MBD2 and mCherry-p66 expression constructs also showed the noticeable FRET reduction, which was dependent on the concentrations of the compounds used for the treatment (Fig. 4B and fig. S4B). Furthermore, the half maximal inhibitory concentration (IC50) values determined in this in-cell FRET experiments (1.93 and 1.75 M for ABA and APC, respectively; see Fig. 4B) were in good agreement with the MI50 values determined in the migration assay (2.03 and 2.24 M for ABA and APC, respectively; Fig. 2B). Last, the results of the co-IP assay to capture the endogenous MBD2-p66 complex corroborated the fact that ABA and APC inhibit the MBD2-p66 association with the submicromolar IC50 (Fig. 4C). Therefore, as the interruption of the MBD2-p66 interaction is anticipated to result in the prevention of the proper assembly of Mi-2/NuRD CRC, we subjected the compounds to an in-depth evaluation of biological activities targeting the function of Mi-2/NuRD CRC in cellular EMT and thereby in cancer metastasis.

(A) Inhibition of in vitro FRET dynamics of MBD2 interaction with p66 by ABA and APC. Relative mean FRET values for the corresponding ratios of chemical concentration over MBD2::p661206 were plotted. See fig. S4A for the original data. n = 3. (B) Inhibition of FRET dynamics of MBD2 interaction with p66 by ABA and APC in cells. Quantified FRET activities of mock- and compound-treated samples were obtained, and the relative FRET ratios for compounds were calculated by FRETcomp/FRETmock (see Materials and Methods). See also fig. S4B for representative immunofluorescence microscopic photos of cells. n = 2. (C) Dose-dependent suppression of the endogenous MBD2-p66 association by the ABA and APC compounds revealed by in vivo co-IP. Relative fold changes of MBD2 interaction with p66 (right) were obtained by the quantification of immunoblots (left). Data (means SD) in (A) and (B) were analyzed using Students t test. Ab, antibody; IgG, immunoglobulin G.

The cellular EMT process that drives cell migration and invasion is critical not only for wound healing but also for cancer metastasis, including promotion of CSC and drug-resistant properties of cancer cells (2931). As we have previously observed that the MBD2 and/or p66 down-regulation in cancer cell lines resulted in the depressed EMT and conversely promoted epithelial differentiation, we reasoned that disrupted PPI between MBD2 and p66 by the ABA and APC compounds could result in suppression of metastatic potentials of cancer cells by regulating the Mi-2/NuRD CRCmediated EMT. In agreement with these hypotheses, in mesenchymal type of cancer cells (triple-negative and basal-type breast cancers and aggressive colon cancers) treated with ABA or APC, the increased levels of epithelial markers (CDH1 and CTNNB1) were appreciable, whereas the mesenchymal marker (VIM, SNAIL, SLUG, and CDH2) expressions were suppressed. On the other hand, such an alteration indicative of mesenchymal-epithelial transition (MET) was not apparent in the epithelial cancer cells (luminal breast cancers and less aggressive colon cancer) (Fig. 5, A and B, and fig. S5A). Subsequent analyses confirmed that the compounds suppressed wound healing and migration/invasion abilities of the cancer cells (Fig. 5, C and D, and fig. S5B). In addition, flow cytometric measurements of the cell surface markers CD44 and CD24 indicated that the LM1 cells of the stem-like phenotype (CD44hi/CD24lo) were switched over to the nonstem phenotype (CD44lo/CD24lo) by the compound treatments (Fig. 5E), although the compounds did not induce significant alterations in the proliferation rates and cell cycle progression of the cells tested (Fig. 5, F and G, and fig. S5, C and D). Furthermore, the compound-treated cancer cells showed reduced capability of mammosphere formation (Fig. 5H and fig. S5E), thereby resulting in enhanced susceptibility of the cells to chemotherapeutic drugs including doxorubicin and cisplatin (Fig. 5I and fig. S5F). Last, mRNA sequencing (mRNA-Seq) results showed that global gene expression profiles of the ABA- or APC-treated cells were highly comparable to those of MBD2- or p66-knockdown cells but markedly discriminated from the profiles of nontreated wild-type cells (Fig. 5J), supporting no significant off-target effects as initially predicted by SEA (Fig. 2A). Together, these observations established antimetastatic activity of the lead compounds, ABA and APC, by demonstrating that the compounds actioned so specifically on the MBD2-p66 PPI system that the EMT process was efficiently modulated to induce transition of CSC-like cells from a mesenchymal-like state to a bona fide epithelial state.

(A) Representative images showing immunofluorescent signals for VIM or CDH1 (red) and 4,6-diamidino-2-phenylindole (DAPI) (blue) in LM1 (left) and HCT116 (right) cells treated with 10 M ABA or APC. Photo credit: S.H.S., Hanyang University. (B) Immunoblots showing the expression levels of EMT markers 48 hours after compound (10 M) treatment. ACTB was used as a loading control. A.U., arbitrary units. (C) Effects on wound healing, estimated by the recovered surface areas of scraped cell monolayers, 48 hours after treatment with 10 M ABA or APC. n = 4. (D) ABA and APC (10 M) impact on cell migration (left) and invasion (right) represented by the number of migrated and Matrigel-invaded cells in Transwell plates 48 hours following compound treatments. n = 3. (E) Relative proliferation rates quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay after 2 days. Cells were treated with 10 M ABA or APC. n = 2. (F) Cell cycle analysis by fluorescence-activated cell sorter (FACS). Cells were treated with 10 M ABA or APC. n = 2. (G) Number of spheres counted by the naked eye after 5 days. Cells were treated with 10 M ABA or APC. n = 3. (H) Representative cell population images for the stem-like CD44hi profile of the ABA- or APC-treated LM1 cells analyzed by FACS. Data from one experiment are shown as averages of two technical replicates. (I) Sensitivity to doxorubicin (left) and cisplatin (right) of the 10 M ABA- or APC-treated cells quantified by MTT assay. n = 2. (J) Heatmap of mRNA-Seq data, which demonstrates similarity in gene expression between ABA- or APC-treated cells and MBD2 or p66 knockdown LM1 cells. Data (means SD) in (E) to (I) were analyzed using Students t test. **P < 0.01 and *P < 0.05.

Antimetastatic efficacy of the two selected lead compounds in vivo was analyzed using xenograft mice transplanted with the LM1 cells, which were chosen for its potent ability to readily metastasize to lung in mice (40). Here, ABA (10 g kg1) and APC (20 g kg1) compounds were administered by intravenous injection six times every 3 days from day 10 after the subcutaneous injection of the green fluorescent protein (GFP)tagged LM1 cells, followed by sacrifice of the mice (after 4 days of the last administration) for subsequent analysis of tumors (Fig. 6, A and B). Notably, although growth inhibition of original tumor was not significant (Fig. 6, A, C, and D), both ABA and APC compounds exhibited a potent inhibition of the cancer metastasis to lung (represented by the number of nodules developed in lung; Fig. 6C), with no significant effects on body weight of the xenograft mice (Fig. 6B). It was also confirmed by immunohistochemistry that the injected LM1 cells were responsible for the origination of tumor and the metastasized tumor nodules in lung (Fig. 6D). In contrast, histological properties of major organs (Fig. 6E) and complete blood count (CBC) result (Fig. 6F) of the compound-administered mice remained normal. Thus, both ABA and APC appear to be promising antimetastatic agents that are unlikely to cause adverse effects in normal tissues.

(A) Estimated volume (means SEM; P value for significance test by ANOVA) of original tumor developed during the experimental period with and without the drug administration. n = 8 for each group. (B) Body weights of mice monitored at the starting and ending point of experiment. (C) Effects of the compound administration on the xenograft tumor and its metastasis. Estimated tumor weights are presented for the original tumors, whereas the number of nodules developed by lung metastasis is plotted. (D) Representative photographs for lung nodules acquired 29 days after injection of the LM1 cells. Images of metastasized lung tissue sections illustrated by hematoxylin and eosin (H&E) staining and GFP immunohistochemistry (IHC). Yellow arrowhead represents the tumor nodule, and red dotted area indicates the tumor region. Numbers below the H&E-stained tissue sections indicate the average number of tumor nodules in all mice of the same group. Photo credit: M.Y.K. and S.C., Hanyang University. (E) Representative images of H&E-stained tissue sections for the major organs derived from the xenograft NOD-Prkdcscid IL2rg/ (NPG) mice after completion of the metastasis inhibition tests with the ABA and APC administration (top). Histological scoring (tumor-bearing mice/total mice) for the H&E-stained major organs of the xenograft mice (bottom). Scale bars, 500 m. Photo credit: M.Y.K. and S.C., Hanyang University. (F) CBC analysis of the ABA- and APC-treated xenograft mice. WBC, white blood cell count; RBC, red blood cell count; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; RDW, red cell distribution width; PLT, platelet count; N.S., not significant. Data (means SD) in (B) to (D) and (G) were analyzed using Students t test.

IDPs/IDPRs are important not only for normal cellular processes but also for the development of various human diseases. In particular, proteins validated as potential drug targets have been increasingly identified to contain IDPRs crucial for PPI mediation. However, the dynamic structure of IDPs/IDPRs limits their use in rational structure-based drug discovery. There are some successful examples of finding of compounds that can bind to and regulate the IDPR-containing proteins (e.g., the c-Myc IDPR-targeting compound 10058-F4). However, most of the current approaches to discover compounds targeting functional IDPR are based on random screening. Meanwhile, because many IDPRs undergo characteristic DOTs upon specific PPIs (9, 10), related structural information can be retrieved from their complexed structures. This, together with the in-depth insights into the compound binding modes (38) and the rapidly accumulating knowledge of the IDPR structural properties (6, 7), suggests the possibility for utilization of the structure-based rational approach as a feasible route for efficient discovery of drug leads targeting specific IDPRs engaged in DOT-based PPIs.

The present novel approach to an antimetastatic agent development provides a prime example of a collaborative work of in silico, in vitro, in cell, and in vivo analyses to discover the drug candidates targeting a pharmacologically important IDPR. In particular, we propose here a three-step computational platform for finding these drug leads. First, IDPRs with DOT potential are selected as potential drug-target sites. We speculate that these regions can be identified based on the characteristic features of their intrinsic disorder predisposition profiles similar to those observed in the known DOT-based PPI regions of MBD2 (residues 360 to 393) and c-Myc (residues 395 to 430) (Fig. 1B). Second, for virtual screening, ordered conformation is taken from the structure of selected IDPR complexed with binding partner. Third, MD simulation is conducted for the selected drug leads targeting IDPRs. Because the structure of target IDPR is dynamic (6, 7) and because the presumably entropy-driven compound binding also occurs in a dynamic fashion (38), MD simulations of the compound-target complex structures are essential for detailed evaluation of the binding feasibility. In this study, MD simulation indicated the compound bindingspecific conformational perturbations of MBD2, particularly at its critical PPI site with p66, which could provide a structural basis for the molecular inhibition of the DOT-based PPI of MBD2. In general, specific molecular interactions of IDPs/IDPRs are known to be accomplished in distinctive ways such as DOT, avidity, allovalency, and fuzzy binding; the last three involves multivalent binding sites, whereas the first represents a simple two-state binding involving a single binding site (41, 42). The present MD simulation result suggests that the ABA and APC binding of the MBD2 IDPR resembled a dynamic, multivalent interaction at low entropic cost, rather than the DOT-based interaction relevant to its p66 binding. The entropy-driven compound binding and structural multiplicity of the compound-bound IDPR have been identified earlier in the case of 10058-F4 binding to c-Myc402412, which also requires just a few stable atomic interactions (38, 39). In this regard, increased fuzziness of the MBD2 IDPR by the compound binding may conversely lead to decreased propensity for DOT for its p66 interaction, although the exact mode of binding of our compounds to the MBD2 IDPR, which can ultimately underlie their PPI inhibition mechanism, remains to be characterized in detail.

Our computational platform also contains an additional in silico study using the SEA, which was practical to assess off-target probability of the suggested compounds that is potentially associated with adverse effects in actual usage. In subsequent studies, mRNA-Seq results in cells (Fig. 5J) were consistent with the SEA result (Fig. 2A) that predicted no significant off-target probability, and in vivo administration of the suggested compounds raised no significant toxicity in normal tissues (Fig. 6, E and F).

It is generally appreciated that identifying and understanding molecular regulation and signaling network involved in the EMT process are essential to provide a molecular basis for antimetastatic drug development (43, 44). Concerning this study, we have recently identified the MBD2-p66 molecular system in Mi-2/NuRD CRC as a promising target for EMT modulation by observing the induction of MET (conversed process of EMT) by knockdown of MBD2 and/or p66 in cancer cells. Together with this parallel effort, the present discovery of novel antimetastatic agents targeting a component of Mi-2/NuRD CRC validates that this epigenetic machinery can serve as an emerging target system for efficient antimetastatic drug developments. Both ABA and APC disrupting the specific PPI of MBD2 were able to suppress cellular EMT processes, thereby inducing epithelial differentiation of the more aggressive CSCs. Last, our compounds potently inhibited the cancer metastasis in vivo. Furthermore, considering that they raised no noticeable adverse effects on blood and normal tissues, the present results provide a basis for a novel safe control of cancer metastasis. Hence, found in this study, lowmolecular weight (<250 g mol1) compounds constitute a pioneering example of antimetastatic agents acting on a specific Mi-2/NuRD CRC component. In addition, the present observation that the compound treatments rendered the cancer cells more sensitive to anticancer drugs (Fig. 5I) provides important implications in combination therapy for cancer.

In conclusion, this study successfully used a rational approach to search for the novel antimetastatic agents acting via inhibition of the DOT-based PPI in an IDPR. As IDPs/IDPRs play crucial roles in diverse cellular processes (6, 7), we believe that this platform can be applied for the discovery of innovative drug leads targeting DOT-based PPI regions in proteins associated with various cancers and other diseases.

This study was designed to develop a novel platform for the discovery of drug leads based on molecular docking and MD simulations of the DOT-associated IDPRs of target proteins and, as a proof of concept, to identify candidate drugs, suppressing metastatic potentials of cancer cells in vitro and in vivo, by targeting an IDPR of MBD2 that undergoes a DOT upon association with its binding partner p66 for the integration of the Mi-2/NuRD CRC. These objectives were addressed by (i) analyzing intrinsic disorder predispositions of drug-target proteins and evaluating potential disorder-based binding regions (45), (ii) doing molecular docking with druggable compounds from the ZINC compound library to the potential drug-target sites, (iii) selecting two lead compounds based on the docking scores and off-target probabilities and experimental validation of target binding, (iv) evaluating the mode and efficiency of the compound binding via MD simulations, (v) assessing the identified leads for biological effects suppressing metastatic potentials of cancer cells, and (vi) verifying antimetastatic efficacy in a murine xenograft tumor model.

In animal studies, mice were randomly assigned to treatment and control groups. Numbers of tested mice were specified in each figure. Outliers were removed only if mice died at an early stage of the treatment according to the Hanyang University Institutional Animal Care and Use Committee (IACUC) dimension guideline. The primary end points were tumor size and cancer metastasis to lung. Mice were euthanized when moribund or at the end of the prespecified treatment period. All procedures were performed in accordance with institutional protocols approved by the IACUC of the Hanyang University. Pathology analysis was performed in a blinded fashion.

Data were presented as means SE. The sample size for each experiment, n, was included in Results and the associated figure legend. Everywhere in the text, the difference between two subsets of data was considered statistically significant if the one-tailed Students t test gave a significance level P (P value) less than 0.05. Multiple comparisons, more than two means, were performed using a univariate analysis of variance (ANOVA), where a Scheffe posttest was performed in some cases or Kruskal-Wallis test. GraphPad Prism was used to generate MI50 curves for cell lines treated with ABA and APC in vitro. In addition, IC50 curves for FRET assay were also generated by GraphPad Prism. Statistical analyses were performed using IBM SPSS statistics 23.

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/5/11/eaav9810/DC1

Supplementary Materials and Methods

Fig. S1. Structural information on MBD2 and c-Myc.

Fig. S2. SEA and cell migration analysis for the nine selected hit compounds targeting MBD2.

Fig. S3. MD simulations of the selected compound-docked structures of MBD2 and c-Myc.

Fig. S4. FRET dynamics of ABA and APC to the MBD2-p66 interaction.

Fig. S5. Effects of ABA and APC on the expression of EMT markers and CSC properties in various breast and colon cancer cells.

Table S1. Molecular docking result (H-bond, hydrogen bond; N/A, not available).

Table S2. Selection of compound by in silico assessment of off-target probability by SEA analysis.

Table S3. Backbone torsion angle variations (95% confidence interval) of the four key residues in the four different MD simulations of MBD2.

Table S4. T test and P values on the backbone torsion angle summarized in table S3.

Table S5. Primer sets for vector construction.

Original data file S1. Figure 1D PDB files.

References (4669)

This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Read the rest here:
Rational discovery of antimetastatic agents targeting the intrinsically disordered region of MBD2 - Science Advances

Read More...

End of blood donor clinics in Timmins – Timmins Press

Thursday, November 21st, 2019

Clifford LeBrun is seen here on Tuesday donating blood for the 269th time in his life. Wednesday marks the last day the Canadian Blood Services will be holding donor clinics in Timmins.Elena De Luigi/The Daily Pressjpg, TD

For Clifford LeBrun, donating blood is personal.

On Tuesday, he donated for the 269th time at the last Canadian Blood Services donor clinic being held in Timmins.

His goal is to reach 300 though its not likely to happen at a clinic held in Timmins.

LeBrun has been giving the gift of life since he was 18. He said he remembers the first time he ever donated blood.

I had a little friend that got hit by a truck coming out in front of the bus and he died because there was a blood shortage. So I started then.

Since that first time, LeBrun always keeps his little friend in mind.

Its the gift of life. So look at it that way. Its easy. My little friend wouldnt have passed away if there would have been enough blood at St. Marys Hospital at that time.

Its rewarding. Its self-rewarding.

Jenny Fortin, territory manager in Northeastern Ontario for Canadian Blood Services, said the organization is transitioning out of whole-blood collections in the region. Residents will be able to continue to donate plasma in Sudbury once the transition is complete.

Were really thankful for the communitys support that weve received all these years and just wanted to celebrate that support and say thank you to the community, she said, adding it will be bittersweet for regular donors.

Fortin said she encourages people to donate plasma when they are in the Sudbury area, and to also visit the organizations website for more ways to contribute.

Theres a lot of ways to still be a part of Canadas lifeline moving forward, she said, adding people can join the Organs and Tissues Registry, or the Stem Cell Registry.

Fortin said the organization is hoping to collect 120 units of blood each day from residents in Timmins during the last two days of the donor clinic.

When asked if he will travel to Sudbury to donate plasma, LeBrun said he would make the trip.

Im Type O (negative). Its universal. I believe Ive helped over 600 people. I will continue.

Fortin said it is especially important to donate blood during holidays.

Typically we do see a decline in people walking through our doors, just because people are out and about a little bit more and theyre buying presents and visiting family so donating blood is not necessarily top of mind. But with an increase in the amount of people on the roads, we do see an increase in the amount of accidents (and) the need for blood actually goes up, she said, adding it can take up to 50 units of blood to help one accident victim.

One unit is equivalent to one donor, so thats 50 donors.

LeBrun, who was also a volunteer for Canadian Blood Services for 10 years, said he was on list to donate if there ever was major accident, but he has not had that chance.

It just never happened, he said.

Asked about its decision to discontinue blood donor clinics in Timmins, Canadian Blood Services offered this explanation to The Daily Press, Canadian Blood Services will be opening a proof-of-concept plasma donation centre in Sudbury in the summer of 2020. In preparation for the opening of this centre, the Sudbury whole blood donation centre will be closing in January. We are discontinuing the mobile blood donation events in the surrounding Northern Ontario communities.

While we understand this is a change for the generous blood donors in communities in Northern Ontario, we are taking steps to increase the amount of plasma collected in Canada to meet rising patient demand.

This change will not impact the availability of blood products for hospitals or patients. We operate a national inventory which ensures the quality and safety of our products and services while working efficiently to help hospitals get the right treatment to patients where and when they need them.

We are grateful for the many blood donors in Timmins, and their commitment to saving lives. There are other ways to support Canadas Lifeline, including but not limited to joining the national stem cell registry, registering your intent to become an organ and tissue donor, or making a financial donation.

With the mobile units being discontinued, the nearest location from Timmins for residents to donate blood will be Parry Sound.

We appreciate that it may be too difficult to travel a great distance to donate blood, the organization stated. When possible, many people opt to include blood donation in their travel plans in Canada.

Today is the final day of the last blood donor clinic being held in Timmins. It is being held at Paroisse St. Dominique Hall from 12:30 to 5:30 p.m.

Here is the original post:
End of blood donor clinics in Timmins - Timmins Press

Read More...

Ten brands blurring boundaries in personal care and beyond – The Drum

Thursday, November 21st, 2019

They always say time changes things, but you actually have to change them yourself. Andy Warhol

As the early adopter mindset filters out into mainstream thinking and behaviors, brands need no longer target their innovations towards a small group of consumers the floor is open and the consumer demand growing across all demographics for brand innovation.

The boundaries of what we might have traditionally considered as personal care are shifting with brands exploring new territories and opportunities to take care of the body and mind from a more holistic perspective.

Here we take a look at a selection of ten current and emerging trends from brands leading notable movements of change.

New occasions

Brands developing targeted personal care solutions for the more active amongst us are on the rise. Natural luxury spa brand Espa have launched a new body care collection designed for use post workout, and include a Muscle Rescue Balm and Fitness Shower Oil specially formulated to sooth tired muscles.

Mantastic expressions

Practical and affordable male grooming brand Harrys questions conventional definitions of what it means to be a man, celebrating the messiness of masculinity and championing social causes that challenge outdated stereotypes. The subtle and playful illustration of a Mammoth on the pack calls attention to the brand's message that extinct perceptions of masculinity need to be abolished.

Sustainable living

Born from a belief that small changes can have a big impact, Eco + Amour has collaborated with some of the trendiest eco-conscious brands to offer a refillable, more sustainable, beauty, personal care and home care shopping experience. No doubt Im not the only one with at least three different moisturizers and deodorants in the bathroom at any one time - refreshingly, Eco + Amour encourages consumers to only buy what they need.

Eco-friendly packaging

Netherlands based designer Don Yaw Kwaning is exploring sustainable innovation using the soft rush plant. Through a process of separating the pith from the fibers, you are left with a foam which has lightweight, shock-resistant and insulating properties all without the need for bonding agents. The fibers can be developed into materials such as paper and corrugated cardboard, a fantastic new eco-packaging solution.

Clean living, clean design

The broader trend towards clean living (both in terms of health and sustainability) and clean beauty has been broadly adopted across the personal care category particularly by more agile brands. For the most part, the fragrance category has been slow to respond, continuing to follow traditional premium colours, codes and cues. Minimalism is the new luxury and Le Labo is a great benchmark - a sight for sore eyes and indeed has clear stand out on shelf against the swathe of rose gold and metallic designs of other fragrance super brands. Taking cues from the premium spirits category with the bottles heavy foot, the label design also mimics tasting notes as though from a distillery. A fantastic example of the value in looking cross-category for design inspiration.

Leveraging health and wellness

In support of the ever-popular self-care movement, personal care brands have an opportunity to incorporate health and wellness solutions into their product functionality and design. Japanese haircare brand Feather Aqua explores holistic health and wellness for the scalp founded on the premise that taking care of your head takes care of your hair. The brand uses amino acids and natural plant extracts coupled with aromatherapy fragrances to also elevate the state of mind and mood of the consumer.

New wave supplements

Wellness start-up Hello.me has recently launched a special natural supplement designed to combat the negative effects of using contraceptive pills. The Top Up Tonic reportedly relives symptoms such as bloating, mood swings and breast tenderness.

Harnessing advances in technology

World leader in regenerative medicine, Professor Augustinus Bader has utilized the restorative power of stem-cell technology to provide consumers with the ultimate solution in high-end anti-ageing skincare. The TFC8 patented technology activates the bodys stem cells to biologically repair damage to the skin caused by lifestyle and environmental factors mobilizing our bodys natural abilities to renew.

Delicious derrires

Never has Sir Mix-A-Lot been more relevant. Products aimed at targeting elasticity, firmness, dry skin and sagging of the bottom have flooded the market over the last year. Masks in particular are on the rise. Niche Los Angeles brand Anese brings us Down with the thickness, a collagen mask that detoxes, plumps and softens your bottom.

A sculpting revolution

The onslaught of easily accessible fitness solutions across social media and personalized app technologies has begun to filter out into the personal care market. Be for Beauty brings us a BOD range (Body on Demand), a ritual of products designed to tighten and sculpt the body through the reduction of water retention. The range includes bath salts which are designed to tone the body, clear out excess toxins and can supposedly eliminate up to 3lbs of excess water retention weight all within a 20-minute soak.

Kirsty Cole, head of growth at Anthem Amsterdam & Brussels.

// Featured in this article

Anthem Amsterdam & Brussels

Wed love to hear from you!

Read the original here:
Ten brands blurring boundaries in personal care and beyond - The Drum

Read More...

European Commission Approves Two New Regimens of Merck’s KEYTRUDA (pembrolizumab) as First-Line Treatment for Metastatic or Unresectable Recurrent…

Thursday, November 21st, 2019

KENILWORTH, N.J.--(BUSINESS WIRE)--Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced that the European Commission has approved KEYTRUDA, Mercks anti-PD-1 therapy, as monotherapy or in combination with platinum and 5-fluorouracil (5-FU) chemotherapy, for the first-line treatment of patients with metastatic or unresectable recurrent head and neck squamous cell carcinoma (HNSCC) whose tumors express PD-L1 (combined positive score [CPS] 1). This approval is based on findings from the pivotal Phase 3 KEYNOTE-048 trial, in which KEYTRUDA, compared with standard treatment (cetuximab with carboplatin or cisplatin plus 5-FU), demonstrated a significant improvement in overall survival (OS) as monotherapy (HR = 0.74 [95% CI, (0.61-0.90); p=0.00133] and in combination with chemotherapy (HR=0.65 [95% CI, 0.53-0.80]; p=0.00002), in patients whose tumors expressed PD-L1 (CPS 1).

This disease is especially debilitating since it can be highly visible and affect a patients appearance and their daily functions, such as eating and speaking, said Professor Kevin Harrington, investigator for KEYNOTE-048, professor of biological cancer therapies at The Institute of Cancer Research, London, and consultant clinical oncologist at The Royal Marsden NHS Foundation Trust. Considering the great need for new treatment options, we are encouraged by todays KEYTRUDA approval in Europe, which will allow certain patients to be treated with immunotherapy earlier in the course of their treatment.

This approval allows marketing of the KEYTRUDA monotherapy and combination regimen in all 28 EU member states plus Iceland, Lichtenstein and Norway.

KEYTRUDA is now the first anti-PD-1 treatment option in the first-line setting for metastatic or unresectable recurrent head and neck cancer, a disease that has been treated the same way in the EU for more than a decade, said Dr. Jonathan Cheng, vice president, clinical research, Merck Research Laboratories. The European Commission approval underscores our commitment to transforming the way cancer is treated around the world.

Data Supporting the European Approval

This approval is based on data from the Phase 3 KEYNOTE-048 trial, a multi-center, randomized, open-label, active-controlled trial conducted in 882 patients with histologically confirmed metastatic or recurrent HNSCC of the oral cavity, pharynx or larynx, who had not previously received systemic therapy for recurrent or metastatic disease and who were considered incurable by local therapies. Randomization was stratified by tumor PD-L1 expression (Tumor Proportion Score [TPS] 50% or <50%), HPV status (positive or negative), and ECOG Performance Status (PS) (0 vs. 1). The dual primary endpoints were OS and progression-free survival (PFS). Patients were randomized 1:1:1 to one of the following treatment arms:

Treatment with KEYTRUDA continued until RECIST v1.1-defined progression of disease as determined by the investigator, unacceptable toxicity or a maximum of 24 months.

Efficacy Results for KEYTRUDA as Monotherapy in KEYNOTE-048 with PD-L1 Expression(CPS 1)

Endpoint

KEYTRUDA

n=257

Standard

Treatment*

n=255

OS

Number (%) of patients with event

197 (77%)

229 (90%)

Median in months (95% CI)

12.3 (10.8, 14.3)

10.3 (9.0, 11.5)

Hazard ratio (95% CI)

0.74 (0.61, 0.90)

p-Value

0.00133

PFS

Number (%) of patients with event

228 (89%)

237 (93%)

Median in months (95% CI)

3.2 (2.2, 3.4)

5.0 (4.8, 6.0)

Hazard ratio (95% CI)

1.13 (0.94, 1.36)

p-Value

0.89580

ORR

Objective response rate (95% CI)

19.1% (14.5, 24.4)

35% (29.1, 41.1)

Complete response

5%

3%

Partial response

14%

32%

p-Value

1.0000

Duration of Response

Median in months (range)

23.4 (1.5+, 43.0+)

4.5 (1.2+, 38.7+)

% with duration 6 months

81%

36%

*

Cetuximab, platinum, and 5-FU

Based on the stratified Cox proportional hazard model

Based on stratified log-rank test

Response: Best objective response as confirmed complete response or partial response

Based on Miettinen and Nurminen method stratified by ECOG (0 vs. 1), HPV status (positive vs. negative) and PD-L1 status (strongly positive vs. not strongly positive)

Efficacy Results for KEYTRUDA plus Chemotherapy in KEYNOTE-048 with PD-L1 Expression(CPS 1)

Endpoint

KEYTRUDA +

Platinum Chemotherapy +

5-FU

n=242

Standard

Treatment*

n=235

OS

Number (%) of patients with event

177 (73%)

213 (91%)

Median in months (95% CI)

13.6 (10.7, 15.5)

10.4 (9.1, 11.7)

Hazard ratio (95% CI)

0.65 (0.53, 0.80)

p-Value

0.00002

PFS

Number (%) of patients with event

212 (88%)

221 (94%)

Median in months (95% CI)

5.1 (4.7, 6.2)

5.0 (4.8, 6.0)

Hazard ratio (95% CI)

0.84 (0.69, 1.02)

p-Value

0.03697

ORR

Objective response rate (95% CI)

36% (30.3, 42.8)

36% (29.6, 42.2)

More here:
European Commission Approves Two New Regimens of Merck's KEYTRUDA (pembrolizumab) as First-Line Treatment for Metastatic or Unresectable Recurrent...

Read More...

After Touching 52-Week Low, Is Seneca Biopharma, Inc. (SNCA)’s Near-Term Analysis Negative? – FinanceRecorder

Monday, November 18th, 2019

The stock of Seneca Biopharma, Inc. (NASDAQ:SNCA) hit a new 52-week low and has $0.79 target or 4.00 % below todays $0.83 share price. The 7 months bearish chart indicates high risk for the $3.19 million company. The 1-year low was reported on Nov, 18 by Barchart.com. If the $0.79 price target is reached, the company will be worth $127,600 less.The 52-week low event is an important milestone for every stock because it shows very negative momentum and is time when sellers come in. During such technical setups, fundamental investors usually stay away and are careful buying the stock.

The stock decreased 10.91% or $0.101 during the last trading session, reaching $0.825. About 143,863 shares traded. Seneca Biopharma, Inc. (NASDAQ:SNCA) has 0.00% since November 18, 2018 and is . It has by 0.00% the S&P500.

More notable recent Seneca Biopharma, Inc. (NASDAQ:SNCA) news were published by: Seekingalpha.com which released: 32 Stem Cell Companies to Watch Seeking Alpha on February 04, 2009, also Seekingalpha.com with their article: An Early Valuation Of Neuralstems NSI-189 For MDD Seeking Alpha published on June 25, 2014, Seekingalpha.com published: 15 Biotech Names For 2015 Seeking Alpha on January 05, 2015. More interesting news about Seneca Biopharma, Inc. (NASDAQ:SNCA) were released by: Finance.Yahoo.com and their article: The Daily Biotech Pulse: Therapix Calls Off Merger, Alimeras Reverse Split, 2 Biotechs To Debut Yahoo Finance published on November 08, 2019 as well as Seekingalpha.coms news article titled: Is It Time To Invest In Stem Cell Biotechs? Seeking Alpha with publication date: June 03, 2016.

Seneca Biopharma, Inc., a clinical stage biopharmaceutical company, focuses on the research and development of nervous system therapies based on its proprietary human neuronal stem cells and small molecule compounds. The company has market cap of $3.19 million. The company's stem cell based technology enables the isolation and expansion of human neural stem cells from various areas of the developing human brain and spinal cord enabling the generation of physiologically relevant human neurons of various types. It currently has negative earnings. The Companys lead product candidate is NSI-189, a chemical entity, which has been completed Phase II clinical trial for the treatment of major depressive disorder, as well as is in preclinical study for the treatment-refractory depression, Angelman Syndrome, Alzheimer's disease, ischemic stroke, diabetic neuropathy, irradiation-induced cognitive deficit, and long-term potentiation enhancement.

Receive News & Ratings Via Email - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings with our FREE daily email newsletter.

See the original post here:
After Touching 52-Week Low, Is Seneca Biopharma, Inc. (SNCA)'s Near-Term Analysis Negative? - FinanceRecorder

Read More...

Circulating Tumor Cells (CTC) Market To Reach USD 27.80 billion by 2028 : Thermo Fisher Scientific Inc., STEMCELL Technologies Inc, SRI International,…

Monday, November 18th, 2019

The circulating tumor cell (CTC) market report analytically evaluates the most important issues that may appear on the market in relation to sales, exports / imports or imports. The circulating tumor cell (CTC) market analysis described in this report provides a mixed test of segments to witness the fastest development of predicted prediction frames. This report not only displays market segmentation in the most granular pattern, but also thoroughly analyzes patents and key market players to provide a competitive advantage. In this circulating tumor cell (CTC) market report, we collected data using a large sample size data collection module and ran a baseline year analysis.

The major players in the global circulating tumor cells (CTC) market are Thermo Fisher Scientific Inc., STEMCELL Technologies Inc, SRI International, QIAGEN, NanoString Technologies, Inc., Miltenyi Biotec Gmbh, Menarini Silicon Biosystems., Ikonisys Inc., Greiner Bio One International GmbH, General Electric, F. Hoffmann-La Roche Ltd, BioCep Ltd., Precision Medicine Group, Creatv MicroTech, Inc., Aviva Biosciences and Advanced Cell Diagnostics, Inc.

Get Sample PDF Illustration Here at: https://www.researchformarkets.com/sample/circulating-tumor-cells-ctc-market-617963

Circulating Tumor Cells (CTC) Market is expected to grow globally with an estimated CAGR of 15.45% to reach USD 27.80 billion by 2028.Market growth is growing due to the expansion of cluster chip technology. Another major factor driving the market is the increasing need for cancer diagnostic treatment.

This circulating tumor cell (CTC) market report is used as an excellent market report because it is generated by several important factors. The circulating tumor cell (CTC) market research report also provides company profile, product specifications, production value, manufacturer contact information and company market share. The circulating tumor cell (CTC) market report conducts analysis and discussion of important market trends, market size, sales volume and market share in the semiconductor and electronics industry. The Circulating Tumor Cell (CTC) Market Report provides a description of market definition, market segmentation, industry-specific research on key developments and competitive analysis of the circulating tumor cell (CTC) market. Research methodology with exceptional tools and skills.

The Circulating Tumor Cells (CTC) Market is segmented based on Technology

o Immunocytochemical Technologies

o Molecular (RNA)-Based Technologies

o Functional In vitro Cell Invasion Assay

o Xenotransplantation Models

o Ex Vivo Positive Selection

o In Vivo Positive Selection

o Negative Selection

o Microchips

o Single Spiral Microchannel

The Circulating Tumor Cells (CTC) Market is segmented based on Application

The Circulating Tumor Cells (CTC) Market is segmented based on End User

Geologically, this report is divided into a few key regions:

Chapter 1: Circulating Tumor Cells (CTC) Market Methodology & Scope

Definition and forecast parameters

Methodology and forecast parameters

Data Sources

Chapter 2: Circulating Tumor Cells (CTC) Market Executive Summary

Business trends

Regional trends

Product trends

End-use trends

Chapter 3: Circulating Tumor Cells (CTC) Market Industry Insights

Industry segmentation

Industry landscape

Vendor matrix

Technological and innovation landscape

Chapter 4: Circulating Tumor Cells (CTC) Market, By Region

Chapter 5: Circulating Tumor Cells (CTC) Market Company Profile

Business Overview

Financial Data

Product Landscape

Strategic Outlook

SWOT Analysis

Key advantage of Circulating Tumor Cells (CTC) Market -:

Note: If you have any special requirements, please let us know and we will offer you the report as you want.

About Research for Markets:

Research for Markets indulges in detailed and diligent research on different markets, trends and emerging opportunities in the successive direction to cater to your business needs. We have established the pillars of our flourishing institute on the grounds of Credibility and Reliability. RFM delve into the markets across Asia Pacific, North America, South America, Europe, Middle East and Africa.

Contact:

Mr. A Naidu

Research for Markets

Tel: +44 8000-4182-37 (UK)

Email: alan.naidu@researchformarkets.com

The rest is here:
Circulating Tumor Cells (CTC) Market To Reach USD 27.80 billion by 2028 : Thermo Fisher Scientific Inc., STEMCELL Technologies Inc, SRI International,...

Read More...

Lineage Cell Therapeutics Provides Update on SCiStar Clinical Study and OPC1 Spinal Cord Injury Program – Business Wire

Sunday, November 17th, 2019

CARLSBAD, Calif.--(BUSINESS WIRE)--Lineage Cell Therapeutics, Inc. (NYSE American and TASE: LCTX), a clinical-stage biotechnology company developing novel cellular therapies for unmet medical needs, today provided an update on OPC1, the Companys oligodendrocyte progenitor cell (OPC) therapy currently being tested in a Phase I/IIa clinical trial, the SCiStar Study, for the treatment of acute spinal cord injury (SCI). Lineage reported positive results from the ongoing SCiStar study of OPC1, where the overall safety profile of OPC1 has remained excellent with robust motor recovery in upper extremities maintained through Year 2 patient follow-ups available to date. Additionally, OPC1 manufacturing has been completely transferred to the Companys cGMP manufacturing facility in Israel and manufacturing process improvements are planned to continue throughout 2020. Moreover, Lineage intends to meet with the U.S. Food and Drug Administration (FDA) to discuss further development of the OPC1 program around the middle of 2020.

We remain extremely excited about the potential for OPC1 to provide enhanced motor recovery to patients with spinal cord injuries. We are not aware of any other investigative therapy for SCI which has reported as encouraging clinical outcomes as OPC1, particularly with continued improvement beyond 1 year, stated Brian M. Culley, CEO of Lineage Cell Therapeutics. Overall gains in motor function for the population assessed to date have continued, with Year 2 assessments measuring the same or higher than at Year 1. For example, 5 out of 6 Cohort 2 patients have recovered two or more motor levels on at least one side as of their Year 2 visit whereas 4 of 6 patients in this group had recovered two motor levels as of their Year 1 visit. To put these improvements into perspective, a one motor level gain means the ability to move ones arm, which contributes to the ability to feed and clothe oneself or lift and transfer oneself from a wheelchair. These are tremendously meaningful improvements to quality of life and independence. Just as importantly, the overall safety of OPC1 has remained excellent and has been maintained 2 years following administration, as measured by MRIs in patients who have had their Year 2 follow-up visits to date. We look forward to providing further updates on clinical data from SCiStar as patients continue to come in for their scheduled follow up visits.

SCiStar Study Clinical Update

- Overall safety profile of OPC1 to date is excellent for Year 2 follow-ups available to date (21 patients)

- Motor level improvements

- Upper Extremity Motor Score (UEMS)

OPC1 Clinical Program Update

About the SCiStar Clinical Study

The SCiStar Study is an open-label, single-arm trial testing three sequential escalating doses of OPC1 which was administered 21 to 42 days post-injury, at up to 20 million OPC1 cells in 25 patients with subacute motor complete (AIS-A or AIS-B) cervical (C-4 to C-7) acute spinal cord injuries (SCI). These individuals had essentially lost all movement below their injury site and experienced severe paralysis of the upper and lower limbs. AIS-A patients had lost all motor and sensory function below their injury site, while AIS-B patients had lost all motor function but may have retained some minimal sensory function below their injury site. The primary endpoint in the SCiStar study was safety as assessed by the frequency and severity of adverse events related to OPC1, the injection procedure, and immunosuppression with short-term, low-dose tacrolimus. Secondary outcome measures included neurological functions as measured by upper extremity motor scores and motor level on International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) examinations at 30, 60, 90, 180, 270, and 365 days after injection of OPC1.

About OPC1

OPC1 is an oligodendrocyte progenitor cell (OPC) therapy currently being tested in a Phase I/IIa clinical trial known as SCiStar for the treatment of acute spinal cord injuries. OPCs are naturally-occurring precursors to the cells which provide electrical insulation for nerve axons in the form of a myelin sheath. SCI occurs when the spinal cord is subjected to a severe crush or contusion injury and typically results in severe functional impairment, including limb paralysis, aberrant pain signaling, and loss of bladder control and other body functions. The clinical development of the OPC1 program has been partially funded by a $14.3 million grant from the California Institute for Regenerative Medicine. OPC1 has received Regenerative Medicine Advanced Therapy (RMAT) designation for the treatment of acute SCI and has been granted Orphan Drug designation from the U.S. Food and Drug Administration (FDA).

About Lineage Cell Therapeutics, Inc.

Lineage Cell Therapeutics is a clinical-stage biotechnology company developing novel cell therapies for unmet medical needs. Lineages programs are based on its proprietary cell-based therapy platform and associated development and manufacturing capabilities. With this platform Lineage develops and manufactures specialized, terminally-differentiated human cells from its pluripotent and progenitor cell starting materials. These differentiated cells are developed either to replace or support cells that are dysfunctional or absent due to degenerative disease or traumatic injury or administered as a means of helping the body mount an effective immune response to cancer. Lineages clinical assets include (i) OpRegen, a retinal pigment epithelium transplant therapy in Phase I/IIa development for the treatment of dry age-related macular degeneration, a leading cause of blindness in the developed world; (ii) OPC1, an oligodendrocyte progenitor cell therapy in Phase I/IIa development for the treatment of acute spinal cord injuries; and (iii) VAC2, an allogeneic cancer immunotherapy of antigen-presenting dendritic cells currently in Phase I development for the treatment of non-small cell lung cancer. Lineage is also evaluating potential partnership opportunities for Renevia, a facial aesthetics product that was recently granted a Conformit Europenne (CE) Mark. For more information, please visit http://www.lineagecell.com or follow the Company on Twitter @LineageCell.

Forward-Looking Statements

Lineage cautions you that all statements, other than statements of historical facts, contained in this press release, are forward-looking statements. Forward-looking statements, in some cases, can be identified by terms such as believe, may, will, estimate, continue, anticipate, design, intend, expect, could, plan, potential, predict, seek, should, would, contemplate, project, target, tend to, or the negative version of these words and similar expressions. Such statements include, but are not limited to, statements relating to planned manufacturing process improvements and meetings with regulatory agencies. Forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause Lineages actual results, performance or achievements to be materially different from future results, performance or achievements expressed or implied by the forward-looking statements in this press release, including risks and uncertainties inherent in Lineages business and other risks in Lineages filings with the Securities and Exchange Commission (the SEC). Lineages forward-looking statements are based upon its current expectations and involve assumptions that may never materialize or may prove to be incorrect. All forward-looking statements are expressly qualified in their entirety by these cautionary statements. Further information regarding these and other risks is included under the heading Risk Factors in Lineages periodic reports with the SEC, including Lineages Annual Report on Form 10-K filed with the SEC on March 14, 2019 and its other reports, which are available from the SECs website. You are cautioned not to place undue reliance on forward-looking statements, which speak only as of the date on which they were made. Lineage undertakes no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made, except as required by law.

Here is the original post:
Lineage Cell Therapeutics Provides Update on SCiStar Clinical Study and OPC1 Spinal Cord Injury Program - Business Wire

Read More...

Celgene Receives CHMP Positive Opinion for REVLIMID (lenalidomide) in Combination With Rituximab for the Treatment of Adult Patients With Previously…

Sunday, November 17th, 2019

SUMMIT, N.J.--(BUSINESS WIRE)--Celgene Corporation (NASDAQ:CELG) today announced that the European Medicines Agency's (EMA) Committee for Medicinal Products for Human Use (CHMP) has adopted a positive opinion, recommending the approval of REVLIMID (lenalidomide) in combination with rituximab (anti-CD20 antibody) (R) for the treatment of adult patients with previously treated follicular lymphoma (FL) (Grade 1-3a). If approved by the European Commission (EC), R2 will be the first combination treatment regimen for patients with FL that does not include chemotherapy.

Since its initial approval in 2007, REVLIMID has continued to demonstrate its benefits across a range of serious blood disorders in Europe and a CHMP positive opinion for this combination with rituximab is very good news for patients with follicular lymphoma. We look forward to the European Commission decision, said Tuomo Ptsi, President of Hematology/Oncology for Celgene Worldwide Markets.

In FL, a subtype of indolent NHL, the immune system is not functioning optimally.1,2 When this dysfunction occurs, the immune system either fails to detect or attack cancerous cells.1,2 Rituximab is a monoclonal antibody that targets the CD 20 antigen on the surface of pre-B and mature B-lymphocytes. Upon binding to CD20, rituximab causes B-cell lysis. Lenalidomide is an immunomodulator that increases the number and activation of T and natural killer (NK) cells, resulting in the lysis of tumor cells. The R2 combination regimen acts by complementary mechanisms to help the patients immune system to find and destroy the cancer cells.3

Given the incurable nature of FL2, a high unmet medical need exists for the development of novel treatment options with new mechanisms of action and a tolerable safety profile to help improve progression-free survival (PFS) especially in the setting of previously treated FL.

The estimated incidence of NHL in Europe was 100,055 cases in 2018; FL accounts for approximately 25% of all NHL cases and is the most common form of indolent NHL.3,4,5

Chemotherapy is a standard of care for indolent forms of NHL, but most patients will relapse or become refractory to their current treatment, said Prof. John Gribben, President of EHA and Centre for Haemato-Oncology, Barts Cancer Institute, in England The combination of REVLIMID and rituximab could represent a new, chemotherapy-free treatment option for patients with previously treated follicular lymphoma.

The CHMP positive opinion is based primarily on results from the randomized, multi-center, double-blind, Phase 3 AUGMENT study, which evaluated the efficacy and safety of the R combination versus rituximab plus placebo in patients with previously treated FL (n=295).6,7 Additionally, findings from the MAGNIFY study were included as support for the safety and the efficacy of lenalidomide plus rituximab in patients with relapsed or refractory FL, including rituximab refractory FL patients.8

The CHMP reviews applications for all member states of the European Union (EU), as well as Norway, Liechtenstein, and Iceland. The European Commission, which generally follows the recommendation of the CHMP, is expected to make its final decision in approximately two months. If approval is granted, detailed conditions for the use of this product will be described in the REVLIMID Summary of Product Characteristics (SmPC), which will be published in the revised European Public Assessment Report (EPAR).

About Follicular Lymphoma

Lymphoma is a blood cancer that develops in lymphocytes, a type of white blood cell in the immune system that helps protect the body from infection.9 There are two classes of lymphoma Hodgkins lymphoma and non-Hodgkins lymphoma (NHL) each with specific subtypes that determine how the cancer behaves, spreads and should be treated.3,10,11 Other differentiating factors of lymphomas are what type of lymphocyte is affected (T cell or B cell) and how mature the cells are when they become cancerous.11

Follicular lymphoma is the most common indolent (slow-growing) form of NHL, accounting for approximately 25% of all Non-Hodgkin lymphoma (NHL) patients.5,12 Most patients present with advanced disease usually when lymphoma-related symptoms appear (e.g., nodal disease, B symptoms, cytopenia) and receive systemic chemoimmunotherapy.5 While follicular lymphoma patients are generally responsive to initial treatment, the disease course is characterized by recurrent relapses over time with shorter remission periods.13

About AUGMENT

AUGMENT is a Phase 3, randomized, double-blind clinical trial evaluating the efficacy and safety of REVLIMID (lenalidomide) in combination with rituximab (R) versus rituximab plus placebo in patients with previously treated follicular lymphoma (FL). AUGMENT included patients diagnosed with Grade 1, 2 or 3a FL, who were previously treated with at least 1 prior systemic therapy and two previous doses of rituximab. Patients were documented relapsed, refractory or progressive disease following systemic therapy, but were not rituximab-refractory.6,7

The primary endpoint was progression-free survival, defined as the time from date of randomization to the first observation of disease progression or death due to any cause. Secondary and exploratory endpoints included overall response rate, durable complete response rate, complete response rate, duration of response, duration of complete response, overall survival, event-free survival and time to next anti-lymphoma therapy.6,7

About REVLIMID

REVLIMID is approved in Europe and the United States as monotherapy, indicated for the maintenance treatment of adult patients with newly diagnosed multiple myeloma (MM) who have undergone autologous stem cell transplantation. REVLIMID as combination therapy is approved in Europe, in the United States, in Japan and in around 25 other countries for the treatment of adult patients with previously untreated MM who are not eligible for transplant. REVLIMID is also approved in combination with dexamethasone for the treatment of patients with MM who have received at least one prior therapy in nearly 70 countries, encompassing Europe, the Americas, the Middle-East and Asia, and in combination with dexamethasone for the treatment of patients whose disease has progressed after one therapy in Australia and New Zealand.

REVLIMID is also approved in the United States, Canada, Switzerland, Australia, New Zealand and several Latin American countries, as well as Malaysia and Israel, for transfusion-dependent anaemia due to low- or intermediate-1-risk myelodysplastic syndromes (MDS) associated with a deletion 5q cytogenetic abnormality with or without additional cytogenetic abnormalities and in Europe for the treatment of patients with transfusion-dependent anemia due to low- or intermediate-1-risk MDS associated with an isolated deletion 5q cytogenetic abnormality when other therapeutic options are insufficient or inadequate.

In addition, REVLIMID is approved in Europe for the treatment of patients with mantle cell lymphoma (MCL) and in the United States for the treatment of patients with MCL whose disease has relapsed or progressed after two prior therapies, one of which included bortezomib. In Switzerland, REVLIMID is indicated for the treatment of patients with relapsed or refractory MCL after prior therapy that included bortezomib and chemotherapy/rituximab.

REVLIMID is not indicated and is not recommended for the treatment of patients with chronic lymphocytic leukemia (CLL) outside of controlled clinical trials.

Important Safety Information

WARNING: EMBRYO-FETAL TOXICITY, HEMATOLOGIC TOXICITY, and VENOUS and ARTERIAL THROMBOEMBOLISM

Embryo-Fetal Toxicity

Do not use REVLIMID during pregnancy. Lenalidomide, a thalidomide analogue, caused limb abnormalities in a developmental monkey study. Thalidomide is a known human teratogen that causes severe life-threatening human birth defects. If lenalidomide is used during pregnancy, it may cause birth defects or embryo-fetal death. In females of reproductive potential, obtain 2 negative pregnancy tests before starting REVLIMID treatment. Females of reproductive potential must use 2 forms of contraception or continuously abstain from heterosexual sex during and for 4 weeks after REVLIMID treatment. To avoid embryo-fetal exposure to lenalidomide, REVLIMID is only available through a restricted distribution program, the REVLIMID REMS program.

Information about the REVLIMID REMS program is available at http://www.celgeneriskmanagement.com or by calling the manufacturers toll-free number 1-888-423-5436.

Hematologic Toxicity (Neutropenia and Thrombocytopenia)

REVLIMID can cause significant neutropenia and thrombocytopenia. Eighty percent of patients with del 5q MDS had to have a dose delay/reduction during the major study. Thirty-four percent of patients had to have a second dose delay/reduction. Grade 3 or 4 hematologic toxicity was seen in 80% of patients enrolled in the study. Patients on therapy for del 5q MDS should have their complete blood counts monitored weekly for the first 8 weeks of therapy and at least monthly thereafter. Patients may require dose interruption and/or reduction. Patients may require use of blood product support and/or growth factors.

Venous and Arterial Thromboembolism

REVLIMID has demonstrated a significantly increased risk of deep vein thrombosis (DVT) and pulmonary embolism (PE), as well as risk of myocardial infarction and stroke in patients with MM who were treated with REVLIMID and dexamethasone therapy. Monitor for and advise patients about signs and symptoms of thromboembolism. Advise patients to seek immediate medical care if they develop symptoms such as shortness of breath, chest pain, or arm or leg swelling. Thromboprophylaxis is recommended and the choice of regimen should be based on an assessment of the patients underlying risks.

CONTRAINDICATIONS

Pregnancy: REVLIMID can cause fetal harm when administered to a pregnant female and is contraindicated in females who are pregnant. If this drug is used during pregnancy or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential risk to the fetus

Severe Hypersensitivity Reactions: REVLIMID is contraindicated in patients who have demonstrated severe hypersensitivity (e.g., angioedema, Stevens-Johnson syndrome, toxic epidermal necrolysis) to lenalidomide

WARNINGS AND PRECAUTIONS

Embryo-Fetal Toxicity: See Boxed WARNINGS

REVLIMID REMS Program: See Boxed WARNINGS: Prescribers and pharmacies must be certified with the REVLIMID REMS program by enrolling and complying with the REMS requirements; pharmacies must only dispense to patients who are authorized to receive REVLIMID. Patients must sign a Patient-Physician Agreement Form and comply with REMS requirements; female patients of reproductive potential who are not pregnant must comply with the pregnancy testing and contraception requirements and males must comply with contraception requirements

Hematologic Toxicity: REVLIMID can cause significant neutropenia and thrombocytopenia. Monitor patients with neutropenia for signs of infection. Advise patients to observe for bleeding or bruising, especially with use of concomitant medications that may increase risk of bleeding. MM: Patients taking REVLIMID/dex or REVLIMID as maintenance therapy should have their complete blood counts (CBC) assessed every 7 days for the first 2 cycles, on days 1 and 15 of cycle 3, and every 28 days thereafter. MDS: Patients on therapy for del 5q MDS should have their complete blood counts monitored weekly for the first 8 weeks of therapy and at least monthly thereafter. Patients may require dose interruption and/or dose reduction. Please see the Black Box WARNINGS for further information. MCL: Patients taking REVLIMID for MCL should have their CBCs monitored weekly for the first cycle (28 days), every 2 weeks during cycles 2-4, and then monthly thereafter. Patients may require dose interruption and/or dose reduction

Venous and Arterial Thromboembolism: See Boxed WARNINGS: Venous thromboembolic events (DVT and PE) and arterial thromboses (MI and CVA) are increased in patients treated with REVLIMID. Patients with known risk factors, including prior thrombosis, may be at greater risk and actions should be taken to try to minimize all modifiable factors (e.g., hyperlipidemia, hypertension, smoking). Thromboprophylaxis is recommended and the regimen should be based on patients underlying risks. ESAs and estrogens may further increase the risk of thrombosis and their use should be based on a benefit-risk decision

Increased Mortality in Patients with CLL: In a clinical trial in the first-line treatment of patients with CLL, single agent REVLIMID therapy increased the risk of death as compared to single agent chlorambucil. Serious adverse cardiovascular reactions, including atrial fibrillation, myocardial infarction, and cardiac failure, occurred more frequently in the REVLIMID arm. REVLIMID is not indicated and not recommended for use in CLL outside of controlled clinical trials

Second Primary Malignancies (SPM): In clinical trials in patients with MM receiving REVLIMID, an increase of hematologic plus solid tumor SPM, notably AML and MDS, have been observed. Monitor patients for the development of SPM. Take into account both the potential benefit of REVLIMID and risk of SPM when considering treatment

Increased Mortality with Pembrolizumab: In clinical trials in patients with multiple myeloma, the addition of pembrolizumab to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of patients with multiple myeloma with a PD-1 or PD-L1 blocking antibody in combination with a thalidomide analogue plus dexamethasone is not recommended outside of controlled clinical trials

Hepatotoxicity: Hepatic failure, including fatal cases, has occurred in patients treated with REVLIMID/dex. Pre-existing viral liver disease, elevated baseline liver enzymes, and concomitant medications may be risk factors. Monitor liver enzymes periodically. Stop REVLIMID upon elevation of liver enzymes. After return to baseline values, treatment at a lower dose may be considered

Severe Cutaneous Reactions: Severe cutaneous reactions including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS) have been reported. These events can be fatal. Patients with a prior history of Grade 4 rash associated with thalidomide treatment should not receive REVLIMID. Consider REVLIMID interruption or discontinuation for Grade 2-3 skin rash. Permanently discontinue REVLIMID for Grade 4 rash, exfoliative or bullous rash, or for other severe cutaneous reactions such as SJS, TEN, or DRESS.

Tumor Lysis Syndrome (TLS): Fatal instances of TLS have been reported during treatment with lenalidomide. The patients at risk of TLS are those with high tumor burden prior to treatment. These patients should be monitored closely and appropriate precautions taken

Tumor Flare Reaction (TFR): TFR has occurred during investigational use of lenalidomide for CLL and lymphoma. Monitoring and evaluation for TFR is recommended in patients with MCL. Tumor flare may mimic the progression of disease (PD). In patients with Grade 3 or 4 TFR, it is recommended to withhold treatment with REVLIMID until TFR resolves to Grade 1. REVLIMID may be continued in patients with Grade 1 and 2 TFR without interruption or modification, at the physicians discretion

Impaired Stem Cell Mobilization: A decrease in the number of CD34+ cells collected after treatment (>4 cycles) with REVLIMID has been reported. Consider early referral to transplant center to optimize timing of the stem cell collection

Thyroid Disorders: Both hypothyroidism and hyperthyroidism have been reported. Measure thyroid function before start of REVLIMID treatment and during therapy

Early Mortality in Patients with MCL: In another MCL study, there was an increase in early deaths (within 20 weeks), 12.9% in the REVLIMID arm versus 7.1% in the control arm. Risk factors for early deaths include high tumor burden, MIPI score at diagnosis, and high WBC at baseline (10 x 109/L)

Hypersensitivity: Hypersensitivity, including angioedema, anaphylaxis, and anaphylactic reactions to REVLIMID has been reported. Permanently discontinue REVLIMID for angioedema and anaphylaxis.

ADVERSE REACTIONS

Multiple Myeloma

Myelodysplastic Syndromes

Mantle Cell Lymphoma

DRUG INTERACTIONS

Periodic monitoring of digoxin plasma levels is recommended due to increased Cmax and AUC with concomitant REVLIMID therapy. Patients taking concomitant therapies such as erythropoietin stimulating agents or estrogen containing therapies may have an increased risk of thrombosis. It is not known whether there is an interaction between dex and warfarin. Close monitoring of PT and INR is recommended in patients with MM taking concomitant warfarin

USE IN SPECIFIC POPULATIONS

Please see full Prescribing Information, including Boxed WARNINGS.

Please see full SmPC for further information.

About Celgene

Celgene Corporation, headquartered in Summit, New Jersey, is an integrated global biopharmaceutical company engaged primarily in the discovery, development and commercialization of innovative therapies for the treatment of cancer and inflammatory diseases through next-generation solutions in protein homeostasis, immuno-oncology, epigenetics, immunology and neuro-inflammation. For more information, please visit http://www.celgene.com. Follow Celgene on Social Media: @Celgene, Pinterest, LinkedIn, Facebook and YouTube.

Forward-Looking Statements

This press release contains forward-looking statements, which are generally statements that are not historical facts. Forward-looking statements can be identified by the words "expects," "anticipates," "believes," "intends," "estimates," "plans," "will," "outlook" and similar expressions. Forward-looking statements are based on management's current plans, estimates, assumptions and projections, and speak only as of the date they are made. Celgene undertakes no obligation to update any forward-looking statement in light of new information or future events, except as otherwise required by law. Forward-looking statements involve inherent risks and uncertainties, most of which are difficult to predict and are generally beyond each company's control. Actual results or outcomes may differ materially from those implied by the forward-looking statements as a result of the impact of a number of factors, many of which are discussed in more detail in the Annual Report on Form 10-K and other reports of each company filed with the Securities and Exchange Commission, including factors related to the proposed transaction between Bristol-Myers Squibb and Celgene, such as, but not limited to, the risks that: managements time and attention is diverted on transaction related issues; disruption from the transaction make it more difficult to maintain business, contractual and operational relationships; legal proceedings are instituted against Bristol-Myers Squibb, Celgene or the combined company could delay or prevent the proposed transaction; and Bristol-Myers Squibb, Celgene or the combined company is unable to retain key personnel.

1 Scott DW, Gascoyne RD. The tumour microenvironment in B cell lymphomas. Nat Rev Cancer. 2014;14(8):517-534.2 Kridel R, Sehn LH, Gascoyne RD. Pathogenesis of follicular lymphoma. J Clin Invest. 2012;122(10):3424-3431.3 Chiu H, Trisal P, Bjorklund C, et al. Combination lenalidomide-rituximab immunotherapy activates anti-tumour immunity and induces tumour cell death by complementary mechanisms of action in follicular lymphoma. Br J Haematol. 2019;185(2):240-253.4 European Cancer Information System. Estimates of cancer incidence and mortality in 2018, for all countries. Available at: https://ecis.jrc.ec.europa.eu/explorer.php. Accessed August 2019.5 European Society for Medical Oncology. Follicular Lymphoma: A Guide for Patients. 2014. Available at: https://www.esmo.org/content/download/52236/963497/file/EN-Follicular-Lymphoma-Guide-for-Patients.pdf . Accessed September 2019.6 Leonard JP, Trneny M, Izutsu K, et al. AUGMENT: A Phase III Study of Lenalidomide Plus Rituximab Versus Placebo Plus Rituximab in Relapsed or Refractory Indolent Lymphoma. J Clin Oncol. 2019;10;37(14):1188-1199.7 ClinicalTrials.gov Rituximab Plus Lenalidomide for Patients With Relapsed / Refractory Indolent Non-Hodgkin's Lymphoma (Follicular Lymphoma and Marginal Zone Lymphoma) (AUGMENT). Available at: https://clinicaltrials.gov/ct2/show/NCT01938001 Accessed September 2019.8 ClinicalTrials.gov Lenalidomide Plus Rituximab Followed by Lenalidomide Versus Rituximab Maintenance for Relapsed/Refractory Follicular, Marginal Zone or Mantle Cell Lymphoma (MAGNIFY). Available at: https://clinicaltrials.gov/ct2/show/NCT01996865 Accessed August 2019.9 American Cancer Society. Lymphoma. Available at: https://www.cancer.org/cancer/lymphoma.html. Accessed August 2019.10 American Cancer Society. What is Hodgkin Lymphoma? Available at: https://www.cancer.org/cancer/hodgkin-lymphoma/about/what-is-hodgkin-disease.html. Accessed August 2019.11 American Cancer Society. What is Non-Hodgkin Lymphoma? Available at: https://www.cancer.org/cancer/non-hodgkin-lymphoma/about/what-is-non-hodgkin-lymphoma.html. Accessed August 2019.12 Lymphoma Action. Follicular lymphoma. Available at: https://lymphoma-action.org.uk/types-lymphoma-non-hodgkin-lymphoma/follicular-lymphoma. Accessed November 2019.13 Montoto S, Lopez-Guillermo A, Ferrer A, et al. Survival after progression in patients with follicular lymphoma: analysis of prognostic factors. Ann Oncol. 2002;13(4):523-30.

See the article here:
Celgene Receives CHMP Positive Opinion for REVLIMID (lenalidomide) in Combination With Rituximab for the Treatment of Adult Patients With Previously...

Read More...

In vitro culture of cynomolgus monkey embryos beyond early gastrulation – Science Magazine

Sunday, November 17th, 2019

Huaixiao Ma

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.

Jinglei Zhai

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.

Haifeng Wan

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.

Xiangxiang Jiang

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.

Xiaoxiao Wang

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.

Lin Wang

State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.

Yunlong Xiang

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

Xiechao He

Primate Research Center, Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.

Zhen-Ao Zhao

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

Bo Zhao

State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.

Ping Zheng

State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.Primate Research Center, Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.

Lei Li

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.

Hongmei Wang

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.

Go here to see the original:
In vitro culture of cynomolgus monkey embryos beyond early gastrulation - Science Magazine

Read More...

Stem Cell Banking Market Overview and Scope 2019 to 2025 | Key Players: China Cord Blood Corporation (China), CBR Systems, Inc. (US), & more -…

Sunday, November 17th, 2019

Growing Opportunities in Global Stem Cell Banking Industry 2019

The market report envelopes all-in information on the global Stem Cell Banking Market and the nature of the market growth over the foreseeable period. The report provides a comprehensive elaboration of the positives and negatives of the global Stem Cell Banking market with Regression Analysis, S.T.E.E.P.L.E and Porters Five Forces Analysis. With SWOT analysis, the report offers detailed insights about different players operating within the Stem Cell Banking market. In addition, the analysts of the report have served the qualitative and quantitative scrutinizing of different micro- and macro-economic factors influencing the global Stem Cell Banking market.

The Stem Cell Banking market report examines the consumption pattern of each segment and the factors affecting the pattern. In addition, the report focuses on the production footprint of each segment in various industries and regions across the globe.

Interpret a Competitive Outlook Analysis with Sample Report: https://www.acquiremarketresearch.com/sample-request/234697/

The Stem Cell Banking market report helps the readers grasp the changing trend in the industry supply chain, manufacturing techniques and expenses, and the current scenario of the end-users in the global Stem Cell Banking market.

All the players running in the global Stem Cell Banking market are elaborated thoroughly in the Stem Cell Banking market report on the basis of proprietary technologies, distribution channels, industrial penetration, manufacturing processes, and revenue. In addition, the report examines R&D developments, legal policies, and strategies defining the competitiveness of the Stem Cell Banking market players.

China Cord Blood Corporation (China), CBR Systems, Inc. (U.S.), Esperite (Netherlands), Vcanbio (U.S.), Boyalife Group (China), LifeCell (India), Crioestaminal (U.S.), RMS Regrow (Korea), Cryo-cell (U.S.), Cordlife Group (Singapore), PBKM FamiCord (Switzerland), Cells4life (UK), Beikebiotech (China), StemCyte (U.S.), Cellsafe Biotech Group (Malaysia), PacifiCord (U.S.), Familycord (U.S.), Cryo Stemcell (India), Stemade Biotech (India)

Product type Coverage (Market Size & Forecast, Major Company of Product type, etc.): Umbilical Cord Blood Stem Cell, Embryonic Stem Cell, Adult Stem Cell

Application Coverage (Market Size & Forecast, Different Demand Market by Region, Main Consumer Profile, etc.): Diseases Therapy, Healthcare

This report studies the global market size of Stem Cell Banking especially focuses on key regions like the United States, European Union, China, and other regions (Japan, Korea, India and Southeast Asia).

The Report Comprises the Following Aspects of the Market:

Inputs of Historical Illustration: 2014 to 2018; Growth Estimation: 2019 to 2025.

Proficient Analysis of Industry, Innovation, Development, Contemporary Trends, Threats, and SWOT.

Forecasts of Market: Main products and geographies and leading divisions including applications.

Competitive Landscape Picture: Market drivers and top players, the abilities of companies with regards to manufacturing as well as continuation and potentials.

Any query?Enquire Here For Discount Or Report Customization (Use Corporate email ID to Get Higher Priority): https://www.acquiremarketresearch.com/enquire-before/234697/

Major Highlights of the Stem Cell Banking Market Report:

Stem Cell Banking Market Overview, Market shares, and strategies of key players, Sales Market Forecast, Industry Analysis of Stem Cell Banking Market and its Driving Factor Analysis, Market Competition Status by Major Key players, Upstream and Downstream Market Analysis of Stem Cell Banking Market. It also Contains Cost and Gross Margin Analysis of Stem Cell Banking Market.

Stem Cell Banking Market

After reading the Stem Cell Banking market report, readers can:

Understand the drivers, restraints, opportunities and trends that impact the overall growth of the Stem Cell Banking market. Grasp the market outlook in terms of value and volume. Study the strengths, weaknesses, opportunities and threats of each stakeholder operating in the Stem Cell Banking market. Learn about the manufacturing techniques of Stem Cell Banking in brief. Figure out the positive and negative factors impacting product sales.

Browse the full report Description, TOC and Table of Figure @ https://www.acquiremarketresearch.com/industry-reports/stem-cell-banking-market/234697/

Customization Available

With the given market data, Researchers offer customizations according to the companys specific needs. The following customization options are available for the report:

Regional and country-level analysis of the Stem Cell Banking market, by end-use.

Detailed analysis and profiles of additional market players.

Read more:
Stem Cell Banking Market Overview and Scope 2019 to 2025 | Key Players: China Cord Blood Corporation (China), CBR Systems, Inc. (US), & more -...

Read More...

Editas and Celgene sub Juno are tackling hottest immunotherapy cells – Endpoints News

Sunday, November 17th, 2019

As the first CRISPR-edited cancer patients watch their treatments unfold, one of the first CRISPR companies is rejigging a major oncology deal.

Editas Medicine is amending its long-running collaboration with Celgene and their subsidiary Juno Therapeutics. The new deal will expand the focus of their work to cover a subset of immune cells that have become an increasingly hot target for immunotherapy: gamma-delta cells.

The deal will make Editas eligible for a $70 million payment along with other possible milestones and royalties.

Its a significant expansion of the deal, Editas CSO Charlie Albright toldEndpoints News. These cells are part of the immune system and have significant potential to treat solid tumors.

Since it began in 2015, the Juno-Editas collaboration has focused largely on alpha-beta cells, the ones outfitted with the special receptors in current CAR-T treatments. Scientists at those companies and elsewhere have most publicly tried to apply CRISPR to improve CAR-T, which now work solely through viral gene transfer.

But they have also worked on expanding the approach to other immune cell types in hopes of making the treatment more effective, more accessible or as is the case with some of the gamma delta research expand it into other cancer types, especially solid tumors.

Editas has been slowly building their gamma-delta base throughout the year, Albright said. In April, they signedan agreement with BlueRock, in part to access pluripotent stem cells they hope to make into engineered gamma-delta cells that can be delivered to a patient. (Essentially a form of off-the-shelf CART).

Several companies are now pursuing gamma-delta immunotherapies, including GammaDelta Therapeutics and its new spinoff Adaptate and Regeneron-backed Adicet Bio. Theyre betting chiefly on these cells ability to penetrate the solid tumors that have been so resistant to the first wave of CAR-T treatments.

Albright argued, though, that for these techniques to work you need gene editing. Innate abilities in the cells have to be tuned up, he said. You have to increase cells persistence and enhance their ability to survive in a tumors micro-environment. Ideally, he said, you even give it new abilities, such as the power to catalyze the bodys innate immune system.

You cant do that with viral transduction, Albright said. You need gene editing.

Excerpt from:
Editas and Celgene sub Juno are tackling hottest immunotherapy cells - Endpoints News

Read More...

Page 14«..10..13141516..20..»


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick