Scanning electron micrograph of a human T lymphocyte (also called a T cell) from the immune system of a healthy donor. Source: National Institute of Allergy and Infectious Diseases (NIAID).
The immune systems natural capacity to detect and destroy abnormal cells may prevent the development of many cancers. However, cancer cells are sometimes able to avoid detection and destruction by the immune system. Cancer cells may:
In the past few years, the rapidly advancing field of cancer immunology has produced several new methods of treating cancer, called immunotherapies, that increase the strength of immune responses against tumors. Immunotherapies either stimulate the activities of specific components of the immune system or counteract signals produced by cancer cells that suppress immune responses.
These advances in cancer immunotherapy are the result of long-term investments in basic research on the immune systemresearch that continues today. Additional research is currently under way to:
Why is immunotherapy such a hot area of cancer research today? In this short excerpt from the documentary, Cancer: The Emperor of All Maladies, PBS, Dr. Steven A. Rosenberg of the National Cancer Institutes Center for Cancer Research discusses his work in immunotherapy and its promise for cancer patients.
One immunotherapy approach is to block the ability of certain proteins, called immune checkpoint proteins, to limit the strength and duration of immune responses. These proteins normally keep immune responses in check by preventing overly intense responses that might damage normal cells as well as abnormal cells. But, researchers have learned that tumors can commandeer these proteins and use them to suppress immune responses.
Blocking the activity of immune checkpoint proteins releases the "brakes" on the immune system, increasing its ability to destroy cancer cells. Several immune checkpoint inhibitors have been approved by the Food and Drug Administration (FDA). The first such drug to receive approval, ipilimumab (Yervoy), for the treatment of advanced melanoma, blocks the activity of a checkpoint protein known as CTLA4, which is expressed on the surface of activated immune cells called cytotoxic T lymphocytes. CTLA4 acts as a "switch" to inactivate these T cells, thereby reducing the strength of immune responses; ipilimumab binds to CTLA4 and prevents it from sending its inhibitory signal.
Two other FDA-approved checkpoint inhibitors, nivolumab (Opdivo) and pembrolizumab (Keytruda), work in a similar way, but they target a different checkpoint protein on activated T cells known as PD-1. Nivolumab is approved to treat some patients with advanced melanoma or advanced lung cancer, and pembrolizumab is approved to treat some patients with advanced melanoma.
Researchers have also developed checkpoint inhibitors that disrupt the interaction of PD-1 and proteins on the surface of tumor cells known as PD-L1 and PD-L2. Agents that target other checkpoint proteins are also being developed, and additional research is aimed at understanding why checkpoint inhibitors are effective in some patients but not in others and identifying ways to expand the use of checkpoint inhibitors to other cancer types.
Progress is also being made with an experimental form of immunotherapy called adoptive cell transfer (ACT). In several small clinical trials testing ACT, some patients with very advanced cancerprimarily blood cancershave had their disease completely eradicated. In some cases, these treatment responses have lasted for years.
In one form of ACT, T cells that have infiltrated a patients tumor, called tumor-infiltrating lymphocytes (TILs), are collected from samples of the tumor. TILs that show the greatest recognition of the patient's tumor cells in laboratory tests are selected, and large populations of these cells are grown in the laboratory. The cells are then activated by treatment with immune system signaling proteins called cytokines and infused into the patients bloodstream.
The idea behind this approach is that the TILs have already shown the ability to target tumor cells, but there may not be enough of them within the tumor microenvironment to eradicate the tumor or overcome the immune suppressive signals that are being released there. Introducing massive amounts of activated TILs can help to overcome these barriers and shrink or destroy tumors.
Another form of ACT that is being actively studied is CAR T-cell therapy. In this treatment approach, a patients T cells are collected from the blood and genetically modified to express a protein known as a chimeric antigen receptor, or CAR. Next, the modified cells are grown in the laboratory to produce large populations of the cells, which are then infused into the patient.
CARs are modified forms of a protein called a T-cell receptor, which is expressed on the surface of T cells. These receptors allow the modified T cells to attach to specific proteins on the surface of cancer cells. Once bound to the cancer cells, the modified T cells become activated and attack the cancer cells.
Therapeutic antibodies are antibodies made in the laboratory that are designed to cause the destruction of cancer cells.
One class of therapeutic antibodies, called antibodydrug conjugates (ADCs), has proven to be particularly effective, with several ADCs having been approved by the FDA for the treatment of different cancers.
ADCs are created by chemically linking antibodies, or fragments of antibodies, to a toxic substance. The antibody portion of the ADC allows it to bind to a target molecule that is expressed on the surface of cancer cells. The toxic substance can be a poison, such as a bacterial toxin; a small-molecule drug; or a radioactive compound. Once an ADC binds to a cancer cell, it is taken up by the cell and the toxic substance kills the cell.
The FDA has approved several ADCs for the treatment of patients with cancer, including:
Other therapeutic antibodies do not carry toxic payloads. Some of these antibodies cause cancer cells to commit suicide (apoptosis) when they bind to them. In other cases, antibody binding to cancer cells is recognized by certain immune cells or proteins known collectively as "complement," which are produced by immune cells, and these cells and proteins mediate cancer cell death (via antibody-dependent cell-mediated cytotoxicity or complement-dependent cytotoxicity, respectively). Sometimes all three mechanisms of inducing cancer cell death can be involved.
One example of this type of therapeutic antibody is rituximab (Rituxan), which targets a protein on the surface of B lymphocytes called CD20. Rituximab has become a mainstay in the treatment of some B-cell lymphomas and B-cell chronic lymphocytic leukemia. When CD20-expressing cells become coated with rituximab, the drug kills the cells by inducing apoptosis, as well as by antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity.
Other therapies combine non-antibody immune system molecules and cancer-killing agents. For example, denileukin diftitox (ONTAK), which is approved for the treatment of cutaneous T-cell lymphoma, consists of the cytokine interleukin-2 (IL-2) attached to a toxin produced by the bacterium Corynebacterium diphtheria, which causes diphtheria. Some leukemia and lymphoma cells express receptors for IL-2 on their surface. Denileukin diftitox uses its IL-2 portion to target these cancer cells and the diphtheria toxin to kill them.
The use of cancer treatment (or therapeutic) vaccines is another approach to immunotherapy. These vaccines are usually made from a patients own tumor cells or from substances produced by tumor cells. They are designed to treat cancers that have already developed by strengthening the bodys natural defenses against the cancer.
In 2010, the FDA approved the first cancer treatment vaccine, sipuleucel-T (Provenge), for use in some men with metastatic prostate cancer. Other therapeutic vaccines are being tested in clinical trials to treat a range of cancers, including brain, breast, and lung cancer.
Yet another type of immunotherapy uses proteins that normally help regulate, or modulate, immune system activity to enhance the bodys immune response against cancer. These proteins include cytokines and certain growth factors. Two types of cytokines are used to treat patients with cancer: interleukins and interferons.
Immune-modulating agents may work through different mechanisms. One type of interferon, for example, enhances a patients immune response to cancer cells by activating certain white blood cells, such as natural killer cells and dendritic cells. Recent advances in understanding how cytokines stimulate immune cells could enable the development of more effective immunotherapies and combinations of these agents.
Immunotherapy research at NCI is done across the institute and spans the continuum from basic scientific research to clinical research applications.
The Center of Excellence in Immunology (CEI) brings together researchers from across NCI and other NIH institutes to foster the discovery, development, and delivery of immunotherapy approaches to prevent and treat cancer and cancer-associated viral diseases.
Go here to see the original:
Immunotherapy: Using the Immune System to Treat Cancer ...
- Sjogren's Disease Symptoms - Dry Mouth & Eyes | NIAMS - June 11th, 2025
- Why don't bats get cancer? Researchers discover protection from genes and strong immune systems - Phys.org - June 11th, 2025
- HIV/AIDS: Facts about the viral infection that attacks the immune system - Live Science - June 11th, 2025
- SARS-CoV-2 protein found to spread between cells, triggering immune attack on healthy cells - Medical Xpress - June 11th, 2025
- Study reveals mechanisms behind antibiotic-related immune disruptions in infants - News-Medical - June 11th, 2025
- Israeli scientists discover immune cells that both fight and fuel breast cancer - The Times of Israel - June 11th, 2025
- One thing everyone should know about innate immunity - Harvard T.H. Chan School of Public Health - June 11th, 2025
- Immune System - National Institutes of Health (NIH) | (.gov) - June 11th, 2025
- Pseudomonas aeruginosa-derived metabolites and volatile organic compounds: impact on lung epithelial homeostasis and mucosal immune response -... - June 11th, 2025
- Discovery Suggests Method to Offset Antibiotic-Caused Harm to Infant Immune Systems - PR Newswire - June 11th, 2025
- Modified CAR-T cells target widespread protein found in multiple types of cancer - Medical Xpress - June 11th, 2025
- Indian team uncovers how the immune system brakes when viruses team up - India Today - June 11th, 2025
- COVID boosters do not harm T-cell function in the vulnerable - News-Medical - June 11th, 2025
- Atherosclerosis: from lipid-lowering and anti-inflammatory therapies to targeting arterial retention of ApoB-containing lipoproteins - Frontiers - June 11th, 2025
- New study reveals the cellular network behind food tolerance and allergies - The Jerusalem Post - June 11th, 2025
- As COVID cases rise again, the top three things you must do to strengthen your immunity - The Economic Times - June 11th, 2025
- 2025-06 - Getting the message from particles to protection - Wits University - June 11th, 2025
- Alopecia Areata - Hair loss Causes & Living With It | NIAMS - June 3rd, 2025
- Atopic Dermatitis Treatment, Symptoms & Causes | NIAMS - June 3rd, 2025
- Psoriasis Types, Symptoms & Causes | NIAMS - June 3rd, 2025
- Autoimmune Diseases | NIAMS - June 3rd, 2025
- Neoantigens combined with in situ cancer vaccination induce personalized immunity and reshape the tumor microenvironment - Nature - June 3rd, 2025
- Systemic Lupus Erythematosus (Lupus): Diagnosis, Treatment, and Steps ... - June 3rd, 2025
- What Is Scleroderma? Symptoms & Causes| NIAMS - June 3rd, 2025
- Vision, Immune System Studies and Hardware Inspections Keep Crew Busy - NASA (.gov) - June 3rd, 2025
- Vitamin C, anyone? The truth about immunity boosters - The Times - June 3rd, 2025
- COVID-19 vaccination atlas using an integrative systems vaccinology approach - Nature - June 3rd, 2025
- Key to treating Alzheimers may lie within immune system, UVA researchers say - WVIR - June 3rd, 2025
- Study says original COVID-19 vaccination did not stop immune system from fighting variants - The University of Arizona Health Sciences - June 3rd, 2025
- Engineered viruses and gene therapy halt tumor growth and extend survival in mice - News-Medical - June 3rd, 2025
- Integrated lncRNA and mRNA analysis reveals the immune modulatory mechanisms of antimicrobial peptide BSN-37 in mouse peritoneal macrophages - Nature - June 3rd, 2025
- Neuro-immune crosstalk in cancer: mechanisms and therapeutic implications - Nature - June 3rd, 2025
- Research Spotlight: New Therapeutic Approach Stops Glioblastoma from Hijacking the Immune System - Mass General Brigham - June 3rd, 2025
- To fight HIV, antibodies boost the immune system - drugdiscoverynews.com - June 3rd, 2025
- Innovative technology simplifies T cell harvesting for cancer immunotherapy - News-Medical - June 3rd, 2025
- Daily briefing: Immune cell spies give the brain information about the gut - Nature - June 3rd, 2025
- Innovative treatment uses patients own immune system to fight cancer - The Independent - June 3rd, 2025
- Eosinophil innate immune memory after bacterial skin infection promotes allergic lung inflammation - Science | AAAS - April 5th, 2025
- Researchers Discover mRNA Vaccines Leave Lasting Mark on the Immune System - SciTechDaily - April 5th, 2025
- Scientific Journeys: Uncovering how dioxins affect the immune system - National Institutes of Health (NIH) (.gov) - April 5th, 2025
- Oligodendroglial precursor cells modulate immune response and early demyelination in a murine model of multiple sclerosis - Science | AAAS - April 5th, 2025
- Measles can ravage the immune system and brain, causing long-term damage a virologist explains - The Conversation - April 5th, 2025
- Microscopic Instigators - The University of New Mexico - April 5th, 2025
- Changes in the immune index before and after surgery in urinary malignancy patients with AIDS - Nature - April 5th, 2025
- Non-immune targeting of CXCR3 compromises mitochondrial function and suppresses tumor growth in glioblastoma - Nature - April 5th, 2025
- 8 Supplements That Will Boost Your Immune System - Verywell Health - April 5th, 2025
- Improving immunotherapy for the treatment of hepatocellular carcinoma: learning from patients and preclinical models - Nature - April 5th, 2025
- Redefining the immune landscape of hepatitis A virus infection - Nature - April 5th, 2025
- What Happens to Your Immune Health When You Take Vitamin C and Zinc Together? - Verywell Health - April 5th, 2025
- Diet Has A Major Impact On The Immune System - WorldHealth.net - April 5th, 2025
- Top 7 ways to boost your immune system - The Indian Express - April 5th, 2025
- Kinetics of pIgR and IgM immune responses in snakehead ( Channa argus ) to inactivated Aeromonas hydrophila via immersion and intraperitoneal... - April 5th, 2025
- What Is Man Flu? - Cleveland Clinic Health Essentials - April 5th, 2025
- Dynamics of T cell subpopulations and plasma cytokines during the first year of antineoplastic therapy in patients with breast cancer: the BEGYN-1... - April 5th, 2025
- Publication in npj Vaccines Reports Cross-reactive and Long-Lasting Immune Responses for self-amplifying mRNA (samRNA) COVID-19 Vaccine Booster... - April 5th, 2025
- 9 Supplements, Tonics, and Oils to Boost Immune Health - W Magazine - April 5th, 2025
- Preoperative pan-immuno-inflammatory values and albumin-to-globulin ratio predict the prognosis of stage IIII colorectal cancer - Nature - April 5th, 2025
- Systemic Lupus Erythematosus (Lupus) - Who gets it? | NIAMS - February 7th, 2025
- Systemic Lupus Erythematosus (Lupus) Basics - National Institute of ... - February 7th, 2025
- Long COVID: women at greater risk compared to men could immune system differences be the cause? - The Conversation - February 7th, 2025
- What is Pemphigus? Symptoms & Causes | NIAMS - February 7th, 2025
- How the immune system influences pancreatic cancer: New interactions provide therapeutic insights - Medical Xpress - February 7th, 2025
- Mitochondrias Secret Power Unleashed in the Battle Against Inflammation - SciTechDaily - February 7th, 2025
- WNT11 Promotes immune evasion and resistance to Anti-PD-1 therapy in liver metastasis - Nature.com - February 7th, 2025
- The role of the behavioral immune system in the expression of short and long-term orientation in young Chilean men during the COVID-19 pandemic - BMC... - February 7th, 2025
- Harvard nutritionist eats these 5 foods to keep her 'immune system strong' and 'energy high' - CNBC - February 7th, 2025
- Micro Immune Response On-chip (MIRO) models the tumour-stroma interface for immunotherapy testing - Nature.com - February 7th, 2025
- Personalized Therapeutic Vaccine Steers the Immune System to Fight Kidney Cancer | Newswise - Newswise - February 7th, 2025
- Identification of m6A methyltransferase-related WTAP and ZC3H13 predicts immune infiltrates in glioblastoma - Nature.com - February 7th, 2025
- Serotonin attenuates tumor necrosis factor-induced intestinal inflammation by interacting with human mucosal tissue - Nature.com - February 7th, 2025
- Identification of the immune infiltration and biomarkers in ulcerative colitis based on liquidliquid phase separation-related genes - Nature.com - February 7th, 2025
- FLASH radiation reprograms lipid metabolism and macrophage immunity and sensitizes medulloblastoma to CAR-T cell therapy - Nature.com - February 7th, 2025
- Young Innovators: U of S researcher uses bat immune systems to find next generation therapies - Saskatoon Star-Phoenix - February 7th, 2025
- World Cancer Day 2025: Chronic stress, immune system, and cancer risk- How are these connected? - The Times of India - February 7th, 2025
- New research unlocks key to long-lasting immune response in cancer and chronic diseases - The Peter Doherty Institute for Infection and Immunity - February 7th, 2025
- Microbial Dynamics and Immune Response to NTHi in COPD - Physician's Weekly - February 7th, 2025
- MHE Week in Review RFK Jr. Spotlight - Managed Healthcare Executive - February 7th, 2025
- Psoriasis Basics: Overview, Symptoms, and Causes - January 27th, 2025
- Vitiligo Symptoms, Treatment & Causes | NIAMS - January 27th, 2025
- The Surprising Connection Between Obesity, Parasites, and Your Immune System - SciTechDaily - January 27th, 2025