"Inbred" redirects here. For the 2011 British film, see Inbred (film).
Inbreeding is the production of offspring from the mating or breeding of individuals or organisms that are closely related genetically, in contrast to outcrossing, which refers to mating unrelated individuals.[1] By analogy, the term is used in human reproduction, but more commonly refers to the genetic disorders and other consequences that may arise from incestuous sexual relationships and consanguinity.
Inbreeding results in homozygosity, which can increase the chances of offspring being affected by recessive or deleterious traits.[2] This generally leads to a decreased biological fitness of a population[3][4] (called inbreeding depression), which is its ability to survive and reproduce. An individual who inherits such deleterious traits is referred to as inbred. The avoidance of such deleterious recessive alleles caused by inbreeding, via inbreeding avoidance mechanisms, is the main selective reason for outcrossing.[5][6] Crossbreeding between populations also often has positive effects on fitness-related traits.[7]
Inbreeding is a technique used in selective breeding. In livestock breeding, breeders may use inbreeding when, for example, trying to establish a new and desirable trait in the stock, but will need to watch for undesirable characteristics in offspring, which can then be eliminated through further selective breeding or culling. Inbreeding is used to reveal deleterious recessive alleles, which can then be eliminated through assortative breeding or through culling. In plant breeding, inbred lines are used as stocks for the creation of hybrid lines to make use of the effects of heterosis. Inbreeding in plants also occurs naturally in the form of self-pollination.
Offspring of biologically related persons are subject to the possible impact of inbreeding, such as congenital birth defects. The chances of such disorders is increased the closer the relationship of the biological parents. (See coefficient of inbreeding.) This is because such pairings increase the proportion of homozygous zygotes in the offspring, in particular deleterious recessive alleles, which produce such disorders.[8] (See inbreeding depression.) Because most recessive alleles are rare in populations, it is unlikely that two unrelated marriage partners will both be carriers of the alleles. However, because close relatives share a large fraction of their alleles, the probability that any such deleterious allele is inherited from the common ancestor through both parents is increased dramatically. Contrary to common belief, inbreeding does not in itself alter allele frequencies, but rather increases the relative proportion of homozygotes to heterozygotes. However, because the increased proportion of deleterious homozygotes exposes the allele to natural selection, in the long run its frequency decreases more rapidly in inbred population. In the short term, incestuous reproduction is expected to produce increases in spontaneous abortions of zygotes, perinatal deaths, and postnatal offspring with birth defects.[9] The advantages of inbreeding may be the result of a tendency to preserve the structures of alleles interacting at different loci that have been adapted together by a common selective history.[10]
Malformations or harmful traits can stay within a population due to a high homozygosity rate and it will cause a population to become fixed for certain traits, like having too many bones in an area, like the vertebral column in wolves on Isle Royale or having cranial abnormalities in Northern elephant seals, where their cranial bone length in the lower mandibular tooth row has changed. Having a high homozygosity rate is bad for a population because it will unmask recessive deleterious alleles generated by mutations, reduce heterozygote advantage, and it is detrimental to the survival of small, endangered animal populations.[11] When there are deleterious recessive alleles in a population it can cause inbreeding depression. The authors think that it is possible that the severity of inbreeding depression can be diminished if natural selection can purge such alleles from populations during inbreeding.[12] If inbreeding depression can be diminished by natural selection than some traits, harmful or not, can be reduced and change the future outlook on a small, endangered populations.
There may also be other deleterious effects besides those caused by recessive diseases. Thus, similar immune systems may be more vulnerable to infectious diseases (see Major histocompatibility complex and sexual selection).[13]
Inbreeding history of the population should also be considered when discussing the variation in the severity of inbreeding depression between and within species. With persistent inbreeding, there is evidence that shows inbreeding depression becoming less severe. This is associated with the unmasking and eliminating of severely deleterious recessive alleles. It is not likely, though, that eliminating can be so complete that inbreeding depression is only a temporary phenomenon. Eliminating slightly deleterious mutations through inbreeding under moderate selection is not as effective. Fixation of alleles most likely occurs through Mullers Ratchet, when an asexual populations genomes accumulate deleterious mutations that are irreversible.[14]
Autosomal recessive disorders occur in individuals who have two copies of the gene for a particular recessive genetic mutation.[15] Except in certain rare circumstances, such as new mutations or uniparental disomy, both parents of an individual with such a disorder will be carriers of the gene. These carriers do not display any signs of the mutation and may be unaware that they carry the mutated gene. Since relatives share a higher proportion of their genes than do unrelated people, it is more likely that related parents will both be carriers of the same recessive gene, and therefore their children are at a higher risk of a genetic disorder. The extent to which the risk increases depends on the degree of genetic relationship between the parents: The risk is greater when the parents are close relatives and lower for relationships between more distant relatives, such as second cousins, though still greater than for the general population.[16] A study has provided the evidence for inbreeding depression on cognitive abilities among children, with high frequency of mental retardation among offspring in proportion to their increasing inbreeding coefficients.[17]
Children of parent-child or sibling-sibling unions are at increased risk compared to cousin-cousin unions.[18]
Visit link:
Inbreeding - Wikipedia, the free encyclopedia
- Age-related genetic changes in the blood associated with poor cancer prognosis - Medical Xpress - April 24th, 2025
- Parts of our DNA may evolve much faster than previously thought - The University of Utah - April 24th, 2025
- It runs in the family: the importance of genetics in pneumothorax - The BMJ - April 24th, 2025
- Inferring past demography and genetic adaptation in Spain using the GCAT cohort - Nature - April 24th, 2025
- Answers to a 160-year-old riddle about the genetics of Mendels pea traits - Nature - April 24th, 2025
- Towards a genetic obesity risk score in a single-center study of children and adolescents with obesity - Nature - April 24th, 2025
- Pan-genomic analysis highlights genes associated with agronomic traits and enhances genomics-assisted breeding in alfalfa - Nature - April 24th, 2025
- Study highlights critical diversity gap in psychiatric genomics research - Medical Xpress - April 24th, 2025
- Daily briefing: Potato pangenome reveals the complex genetics of the humble spud - Nature - April 24th, 2025
- Genetic diversity and adaptability of native sheep breeds from different climatic zones - Nature - April 24th, 2025
- Ginkgo Automation Partners with Aura Genetics to Accelerate Direct-to-Consumer Testing and Innovation - PR Newswire - April 24th, 2025
- Why Sarepta Therapeutics And Other Genetics Stocks Just Got A Sizable Boost - Investor's Business Daily - April 24th, 2025
- Why White Blood Cells were used to study genetic past and future of Indians - India Today - April 24th, 2025
- Association between plausible genetic factors and weight loss from GLP1-RA and bariatric surgery - Nature - April 24th, 2025
- Recent habitat modification of a tropical dry forest hotspot drives population genetic divergence in the Mexican leaf frog: a landscape genetics... - April 24th, 2025
- Barney's Farm Partners with Backpackboyz on Groundbreaking Cannabis Genetics Project - Ganjapreneur - Ganjapreneur - April 24th, 2025
- U.S. Preimplantation Genetic Testing Market Witness the Highest Growth Globally in Coming Years 2025-2034 - openPR.com - April 24th, 2025
- Exploring the implications of case selection methods for psychiatric molecular genetic studies - Nature - April 24th, 2025
- Genetic susceptibility to schizophrenia through neuroinflammatory pathways associated with retinal thinness - Nature - April 24th, 2025
- Who Were the Carthaginians? Ancient DNA Study Reveals a Stunning Answer - Haaretz - April 24th, 2025
- Genetics - National Geographic Society - March 28th, 2025
- Genetics: Introduction, law of inheritance and Sex Determination - BYJU'S - March 28th, 2025
- Genetics, ecology and evolution of phage satellites - Nature.com - March 28th, 2025
- As a geneticist, I will not mourn 23andMe and its jumble of useless health information | Adam Rutherford - The Guardian - March 28th, 2025
- Rare loss-of-function variants in HECTD2 and AKAP11 confer risk of bipolar disorder - Nature.com - March 28th, 2025
- With 23andMe filing for bankruptcy, what happens to consumers genetic data? - The Conversation Indonesia - March 28th, 2025
- A genetic tree as a movie: Moving beyond the still portrait of ancestry - Phys.org - March 28th, 2025
- Genetic mutations linked to Marek's disease in chickens identified - Phys.org - March 28th, 2025
- 23andMe is looking to sell customers genetic data. Heres how to delete it - CNN - March 28th, 2025
- Horses Pulled Off a Genetic Trick Only Viruses Were Thought to Use - SciTechDaily - March 28th, 2025
- CONSUMER ALERT: Warning 23AndMe Customers That Their Private Genetic Data May Be at Risk - Office of the Attorney General for the District of Columbia - March 28th, 2025
- A new study reveals the genetic change that made horses so athletic - KUOW News and Information - March 28th, 2025
- "Mystery ancestors" gave humans 20% of our current DNA, but who were they? - Earth.com - March 28th, 2025
- Correcting the Mutation Behind a Genetic Eye Disease - The Scientist - March 28th, 2025
- Your DNA is safe here: The AncestryDNA Genetic Test Kit is only $39 now - New York Post - March 28th, 2025
- 23andMe Is Bankrupt. Heres What You Need to Know About Your Genetic Data. - The Wall Street Journal - March 28th, 2025
- Commentary: 23andMe files for bankruptcy, putting its hoard of personal health information at risk - Los Angeles Times - March 28th, 2025
- DNA Microscopy Creates 3D Maps of Life From the Inside Out - SciTechDaily - March 28th, 2025
- Eugenics Must Be Included in Genetics Curriculum: Prof - Mirage News - March 28th, 2025
- 11-minute video on human genetics can make people more accepting of others, reveals new study - Hindustan Times - February 24th, 2025
- Advancing Cancer Genetic Testing to Improve Prevention and Patient Treatment - The Scientist - February 24th, 2025
- Environmental factors, lifestyle choices have greater impact on health than genes, study finds - ABC News - February 24th, 2025
- Study finds lifestyle, environment have greater impact on lifespan than genetics - CBS Boston - February 24th, 2025
- Safeguard repressor locks hepatocyte identity and blocks liver cancer - Nature.com - February 24th, 2025
- Mass spectrometry-based mapping of plasma protein QTLs in children and adolescents - Nature.com - February 24th, 2025
- The Avestagenome Project and TIGS Sign Strategic Alliance to Advance Research in Rare Genetic Disorders - The Tribune India - February 24th, 2025
- Researchers make breakthrough discovery after studying genetics of trees: 'There is a need for proactive conservation' - MSN - February 24th, 2025
- iPSCs and iPSC-derived cells as a model of human genetic and epigenetic variation - Nature.com - February 24th, 2025
- Beyond genetics: The biggest factors that influence health and aging - Earth.com - February 24th, 2025
- Genetic diversity and dietary adaptations of the Central Plains Han Chinese population in East Asia - Nature.com - February 24th, 2025
- How a uniquely human genetic tweak changed the voices of mice - NPR - February 24th, 2025
- Genetic evidence identifies a causal relationship between EBV infection and multiple myeloma risk - Nature.com - February 24th, 2025
- Genetic markers of early response to lurasidone in acute schizophrenia - Nature.com - February 24th, 2025
- Bupa to offer first genetic test for disease prediction in UK - The Times - February 24th, 2025
- Advancing Therapeutic Knowledge of Genetic Influence in ALS: Matthew B. Harms, MD - Neurology Live - February 24th, 2025
- Association of dietary carbohydrate ratio, caloric restriction, and genetic factors with breast cancer risk in a cohort study - Nature.com - February 24th, 2025
- Evaluation of polygenic scores for hypertrophic cardiomyopathy in the general population and across clinical settings - Nature.com - February 24th, 2025
- Familiar autism-linked genes emerge from first analysis of Latin American cohort - The Transmitter: Neuroscience News and Perspectives - February 24th, 2025
- Almost 90% of people would agree to genetic testing to tailor medication use, survey finds - Medical Xpress - February 24th, 2025
- Largest Genetic Study of Bipolar Disorder Identifies 298 Regions of the Genome That Increase Risk for the Condition - Mount Sinai - January 27th, 2025
- Study Sheds Light On The Origin Of Earth Lifes Genetic Code - Astrobiology News - January 27th, 2025
- Largest study on the genetics of bipolar disorder to date gives new insights into the underlying biology - Medical Xpress - January 27th, 2025
- Genetic Swiss Army Knife: New Tool For Gene Editing And Therapy - Forbes - January 27th, 2025
- Uhm Ji-won says the power of genetics is undeniable with Hyun Bin and Son Ye-jin's son - - January 27th, 2025
- Integrative proteogenomic analysis identifies COL6A3-derived endotrophin as a mediator of the effect of obesity on coronary artery disease -... - January 27th, 2025
- Genetic analysis reveals the genetic diversity and zoonotic potential of Streptococcus dysgalactiae isolates from sheep - Nature.com - January 27th, 2025
- Eight psychiatric disorders share the same genetic causes, study says - Medical Xpress - January 27th, 2025
- Exploring genetic associations and drug targets for mitochondrial proteins and schizophrenia risk - Nature.com - January 27th, 2025
- Predictive Genetic Testing and Consumer Genomics Market - GlobeNewswire - January 27th, 2025
- Evolution without sex: How mites have survived for millions of years - EurekAlert - January 27th, 2025
- Our Understanding of Rules that Produce Lifes Genetic Code May Require a Revision - DISCOVER Magazine - January 27th, 2025
- Personalized therapy for rare genetic diseases: Patient-derived organoids offer new hope - Medical Xpress - January 27th, 2025
- The One Thing That's More Important for Longevity Than Your Genes - Parade Magazine - January 27th, 2025
- Complete recombination map of the human genome created - Medical Xpress - January 27th, 2025
- Evidence of genetic determination of annual movement strategies in medium-sized raptors - Nature.com - January 27th, 2025
- Genetic study of Alaska red king crabs suggests species is more diverse and resilient to climate change - Global Seafood Alliance - January 27th, 2025
- Smartwatches reveal insights into psychiatric illnesses and genetic links - Medical Xpress - January 27th, 2025
- Unlocking the Blueprint of Human Life With a Revolutionary DNA Map - SciTechDaily - January 27th, 2025
- Largest Genetic Study of Bipolar Disorder Identifies Nearly 300 Risk-Associated Genome Regions - Inside Precision Medicine - January 27th, 2025
- Genetic Discrimination Is Coming for Us All - The Atlantic - November 16th, 2024