Biotech company Mogrify is deploying its proprietary direct cellular conversion technology to develop cell therapies in a variety of disease areas, including auto-immune, musculoskeletal, respiratory diseases and in cancer immunotherapy.The platform utilizes data from next-generation sequencing and cellular networks to identify transcription factors or small molecules required to directly convert a cell, addressing key challenges that are typically associated with the safety and efficacy of cell therapies.Technology Networks recently spoke with Joe Foster, COO, Mogrify, to learn more about the platform, the challenges encountered in developing cell therapies, and to gain Mogrify's insights on the future of this exciting research space.Molly Campbell (MC): What were some of the major highlights for Mogrify in 2019?Joe Foster (JF): In the past year, Mogrify has solidified its reputation as a pioneer in the expanding field of cell therapy. Using a systematic, data-driven approach, our innovative cell conversion platform addresses many of the challenges impeding systematic discovery, process development and the manufacturing processes.At an operational level, Mogrify has seen unprecedented growth in the last year, with emphasis on world-class science. We have established a leadership team with unparalleled track records, including the appointment of Dr Darrin M. Disley OBE, as CEO and Dr Jane Osbourn OBE, as Chair. Looking forward and with plans to boost our team to 70 individuals working across all disciplines, Mogrify has also moved operations to the new Bio-Innovation Centre in Cambridge, giving our team access to state-of-the-art facilities to continue their work in developing novel approaches to cell therapy.Mogrify received MSDs Innovation Award at the 15th Annual Scrip Awards, in acknowledgement of our potential to transform future cell therapies. Dr Jane Osbourn OBE was also the first female to win the Lifetime Achievement Award, recognizing her significant contributions to the biotech industry. Mogrifys significant fundraising success was also marked at the prestigious European Lifestars Awards, which celebrates excellence in the life science industry. Here, Mogrify was recognized as the Seed Stage Finance Raise of the Year.MC: In Mogrify's opinion, what key trends can we expect to see in the cell therapy space in 2020?JF: Many of the current approaches to cell therapy involve first converting cells back into a stem cell-like stateinduced pluripotent stem cellsbefore then converting them into the cell type required.Mogrify plans to lead the movement towards direct cell conversion, or transdifferentiation, where cells can be transformed from one cell type to another, without having to go through an intermediate pluripotent stage. Direct conversion of cells would enhance the speed of cell therapy development, as cells do not need to use traditional developmental pathways to reach a mature state.
Another bottleneck in the delivery of cell therapies is that most approaches rely on autologous transplants, which are carried out using patient-derived cells. Future innovations are moving towards using allogeneic therapies, where the cells used for therapy are derived from a healthy donor. Such advances are paving the way towards the development of universal donor cells, which would turn cell therapies into off-the-shelf treatments, enhancing the scale and accessibility of the treatments.
Finally, cell therapy methods are likely to move from ex vivo approaches (where cells are isolated from the patient, reprogrammed, and delivered back into the patient), to in vivo approaches, where cell therapies are delivered directly to the recipient, for example, through the use of small molecules present in a reprogramming cocktail or direct gene editing. In vivo technologies would, therefore, be able to reprogram cells directly in living humans, expanding the scope of cell therapy in a clinical setting. Overall, future cell therapies will have the capacity to be more effective, safer, and widely accessible.
MC: What are the key challenges that currently exist when developing and testing cell therapies? How does Mogrify hope to overcome such challenges?JF: The biggest challenges in producing cell therapies surround the efficacy, safety profile, and scalability of clinical treatment regimes. To make treatments safer, delivered cells must bypass the host immune system. This can be achieved with autologous therapy, but comes at the cost of scale and efficiency, as the patients cells need to be extracted, cultured, and reprogrammed before treatment can be delivered. Genetic engineering technologies (such as CRISPR/Cas9) that can be employed to remove the antigenic potential of allogeneic cell therapies (e.g. CAR-T) can be used in conjunction with such treatments, but this brings an additional layer of complication.Another difficulty comes from the technical challenges associated with generating, culturing, and expanding the required cells. In theory, any cell type can be derived from pluripotent cells. However, determining precisely how to generate any cell from pluripotent cells is conceptually and practically complex. Each cell type would require a distinct combination of transcription factors (or small molecules) and optimized culture conditions to ensure robust conversion into the desired phenotype. These technical challenges are associated with slow progress and poor efficiency in deriving reliable therapeutic cells.
Mogrify aims to tackle these hurdles with solutions involving big data, computational predictions, and bioinformatics. Mogrifys proprietary algorithm uses next generation sequencing data to predict the combination of transcription factors necessary to reliably convert any cell type into another cell type. Mogrifys technology provides a framework for direct cell conversion, and can also identify the best culture conditions to ensure that the cell populations remain stable and viable. This greatly improves cell therapy efficiency, as mature cells are created without the often arduous and imprecise process of differentiating cells from pluripotency.
Mogrifys technology is also compatible with in vivo cell therapies, as it can identify a combination of small molecules that will drive the necessary transcriptional networks to create the cells of choice. Therefore, Mogrifys technology can also be applied to overcome safety issues associated with allogeneic ex vivo approaches, and has the potential to greatly enhance the scale at which cell therapies can be delivered.MC: Are you able to tell us more about the latest developments in Mogrify's pipeline?JF: Currently, Mogrify is focused on applying the platform to musculoskeletal disorders, cancer immunotherapy, and auto-immune, ocular and respiratory diseases. Specifically, Mogrify is committed to identifying opportunities in regenerative medicine contexts, where direct cell conversion could have strong therapeutic potential.The current lead musculoskeletal program is in the development of chondrocytes for the treatment of cartilage defects and osteoarthritis. Mogrifys platform identified a cocktail of small molecules that successfully drives the conversion of fibroblast cells to chondrocytes, which has been proven to form functional hyaline cartilage in vitro. This can even be performed using an allogeneic approach without the need for gene editing (as the cartilage is immunopriviliged). Thus, it represents an opportunity for an off-the-shelf therapy that could be a relatively inexpensive and accessible treatment. At present, this treatment is in pre-clinical stages, and has a powerful potential for success in regenerative cartilage therapy. Similarly, an in vivo method of transdifferentiating osteoarthritic chondrocytes to healthy cells is being investigated in ongoing studies using a cocktail of small molecules.
Joe Foster, COO, Mogrify was speaking to Molly Campbell, Science Writer, Technology Networks.
Here is the original post:
Leading the Movement Towards Direct Cell Conversion: An Interview With Mogrify - Technology Networks
- Aspen Neuroscience to Present at the International Society for Stem Cell Research (ISSCR) 2025 Annual Meeting - BioSpace - June 11th, 2025
- How do axolotls regenerate limbs and organs? This researcher has started to uncover the secret - Northeastern Global News - June 11th, 2025
- OS Therapies Submits Request for Regenerative Medicine Advanced Therapy (RMAT) Designation to U.S. FDA for OST-HER2 in the Prevention of Metastases in... - June 11th, 2025
- Paralysis Ends Now: Revolutionary Cell Therapy That Repairs Severed Spinal Cords Enters Trials and Begins Restoring Human Mobility - Rude Baguette - June 11th, 2025
- Aspen Neuroscience to Present at the International Society for Stem Cell Research (ISSCR) 2025 Annual Meeting - PR Newswire - June 11th, 2025
- Exclusive Look: Longeveron CEO Reveals Latest Neuro Therapy Developments at Major Healthcare Conference - Stock Titan - June 11th, 2025
- Chondroitinase ABC in spinal cord injury: advances in delivery strategies and therapeutic synergies - Frontiers - June 11th, 2025
- Are Stem Cell Therapies Safe to Try? - The New York Times - June 11th, 2025
- Transforming Healthcare: Whats on the Horizon for Cell Therapies? - Technology Networks - June 11th, 2025
- Adia Nutrition Inc. Expands Business Model with Licensing Agreements to Meet Global Demand for Adia Med's Regenerative Therapies - Newsfile - June 11th, 2025
- RFK Jr. will end the war against alternative medicine at the FDA, from stem cell therapy to chelation - Fortune - June 11th, 2025
- Canine Stem Cell Therapy Market to Reach US$ 300.1 Million by 2034 - openPR.com - June 11th, 2025
- Global Stem Cell Therapy Market to Surpass USD 52.1 Billion - openPR.com - May 6th, 2025
- How AI Is Accelerating The Future Of Regenerative Medicine - Forbes - May 6th, 2025
- Darnatein to Present at 14th International BMP Conference Highlighting Advances in Regenerative Biologics - PR Newswire - May 6th, 2025
- RION names Biopharma Veteran Suneet Varma as Senior Advisor to Spearhead Expansion into Regenerative Therapeutics - Business Wire - May 6th, 2025
- Revolutionary BMP Super-Agonists: Darnatein's New Biologics Promise Breakthrough in Bone and Cartilage Repair - Stock Titan - May 6th, 2025
- Regenerative Medicine: The Future of Healthcare - April 14th, 2025
- Regenerative medicine: Current therapies and future ... - April 14th, 2025
- Space Doctors and Stem Cell Production in Microgravity - Cedars-Sinai - April 14th, 2025
- Tracking Tissue Development to Inspire Regenerative Therapies - the-scientist.com - April 14th, 2025
- Study aims to stop Alzheimers with stem cell infusions - Drug Target Review - April 14th, 2025
- RheeGen's Topical Stem Cell Therapy Pioneers Future of Regenerative Medicine - Yahoo Finance - April 14th, 2025
- Lab-grown meat: you may find it icky, but it could drive forward medical research - ET HealthWorld - April 14th, 2025
- Advances in regenerative medicine-based approaches for skin ... - March 9th, 2025
- Regenerative Medicine: Case Study for Understanding and Anticipating ... - March 9th, 2025
- Top 3 Grants in Regenerative Medicine: February 2025 - RegMedNet - March 9th, 2025
- Editorial: Tissue Engineering and Regenerative Medicine: Advances, Controversies, and Future Directions by Frontiers in Bioengineering and... - March 9th, 2025
- Malaysia To Host 7th World Conference On Exercise And Regenerative Medicine - BERNAMA - March 9th, 2025
- Advancing Regenerative Medicine: A Comprehensive Outlook on the Global Cell Therapy Market - openPR - March 9th, 2025
- Worlds First 3D-Printed Penis Implant Successfully Restores Function in Pigs and Rabbits - The Daily Galaxy --Great Discoveries Channel - March 9th, 2025
- AskBio Receives FDA Regenerative Medicine Advanced Therapy designation for Parkinsons disease investigational gene therapy - Bayer - February 24th, 2025
- What is Regenerative Medicine? | Regenerative Medicine | University of ... - February 24th, 2025
- The quest for a communication device that tells cells to regenerate the body - Big Think - February 24th, 2025
- Transforming the future of regenerative medicine - Reuters - February 24th, 2025
- Breakthrough Alzheimer's Treatment Gets Official WHO Recognition - Major Milestone for Rare Disease Therapy - StockTitan - February 24th, 2025
- Regenerative Medicine Pioneer with 35-Year Track Record Takes Scientific Helm at ZEO ScientifiX - StockTitan - February 24th, 2025
- 101 Guide to Regenerative Medicine Types | Applications, Challenges - February 7th, 2025
- Regenerative Medicine | What is it? | ASCPM - February 7th, 2025
- Regenerative medicine and advanced therapy | NIST - February 7th, 2025
- Therapeutic Reprogramming toward Regenerative Medicine - February 7th, 2025
- Novel living biomaterial aims to advance regenerative medicine - February 7th, 2025
- UC Irvine-led discovery of new skeletal tissue advances regenerative ... - February 7th, 2025
- Top 3 Grants in Regenerative Medicine: January 2025 - RegMedNet - February 7th, 2025
- Advancements in lung regeneration: from bench to bedside - February 7th, 2025
- Entos Pharmaceuticals Awarded $4 Million USD in Funding from the California Institute for Regenerative Medicine (CIRM) for its Congenital Generalized... - February 7th, 2025
- Adia Nutrition Officially Enters $15.1 Billion Global Stem Cell Market with Domestic Treatments by Successful Opening of First Florida Location -... - February 7th, 2025
- Cell therapy weekly: iPSC therapy IND for Phase III trial cleared - RegMedNet - February 7th, 2025
- Creative Medical Technology Holdings Expands Collaboration with Greenstone Biosciences to Accelerate iPSCelz - EIN News - February 7th, 2025
- Placental Stem Cell Therapy Solution Market Size And Booming - openPR - February 7th, 2025
- Stem Cells Applications in Regenerative Medicine and Disease ... - December 6th, 2024
- Ageing of stem cells reduces their capacity to form tumours - Nature.com - December 6th, 2024
- Master of Science in Regenerative Medicine and Entrepreneurships FUSION program information session - The Daily | Case Western Reserve University - December 6th, 2024
- BioRestorative Therapies Announces Notice of Allowance of - GlobeNewswire - December 6th, 2024
- Stem Cell Therapy Strategic Business Report 2024 - - GlobeNewswire - December 6th, 2024
- University of Colorado Anschutz Medical Campus-Led Team Receives Up to $46 Million to Develop Innovative Treatment to Cure Blindness - University of... - December 6th, 2024
- Affimed Announces Acimtamig and AlloNK Combination Granted Regenerative Medicine Advanced Therapy (RMAT) Designation by the U.S. Food and Drug... - December 6th, 2024
- Navigating the hope and hype of regenerative medicine - October 14th, 2024
- Cell and Gene Therapy Investment Ticks Up After Hard Few Years - BioSpace - October 14th, 2024
- Crackdowns on Unproven Stem Cell Therapies Worked Abroad - Medpage Today - October 14th, 2024
- How Regenerative Medicine can help you get out of pain without surgery - WJLA - October 14th, 2024
- Regenity Biosciences Receives 510(k) Clearance for RejuvaKnee, a Groundbreaking Regenerative Meniscus Implant Device to Redefine the Standard of Care... - October 14th, 2024
- Buy, Sell, Hold: Cell and Gene Therapy - BioPharm International - October 14th, 2024
- Mayo Clinic offers unique regenerative medicine procedure for knee and ... - September 13th, 2024
- Regenerative Medicine to the Rescue - Cleveland Clinic - September 13th, 2024
- Regenerative medicine applications: An overview of clinical trials - September 13th, 2024
- The Progression of Regenerative Medicine and its Impact on Therapy ... - September 13th, 2024
- Immune cell injection significantly boosts healing of bone, muscle & skin - September 13th, 2024
- Regenerative Medicine Foundation - September 13th, 2024
- BridgeBio Receives FDAs Regenerative Medicine Advanced Therapy (RMAT ... - September 13th, 2024
- Tissue engineering and regenerative medicine approaches in colorectal ... - September 13th, 2024
- Tubular scaffolds boost stem cell-driven bone regeneration in skull defects - Phys.org - September 13th, 2024
- Finding the right path(way) to reduce fat accumulation in the liver - Medical University of South Carolina - September 13th, 2024
- NAMRU EURAFCENT Signs Agreement with Egypt Center for Research and Regenerative Medicine - DVIDS - September 13th, 2024
- BridgeBio Receives FDAs Regenerative Medicine Advanced Therapy (RMAT) Designation for BBP-812 Canavan Disease Gene Therapy Program - StockTitan - September 13th, 2024
- BioNexus Gene Lab Corp. Signs Strategic Partnership MOU with Shenzhen Rongguang Group to Advance Cancer Screening, Precision Medicine, and... - September 13th, 2024
- Neurona Therapeutics Receives $3.8 Million CIRM Grant for the Development of Next Generation Neural Cell Therapy Candidate - Yahoo Finance - September 13th, 2024
- Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets - Nature.com - September 13th, 2024
- Cellino Awarded $25M in Funding from the Advanced Research Projects Agency for Health (ARPA-H) - Business Wire - September 13th, 2024
- HepaTx Enters Collaboration with Mayo Clinic to Advance Cell Therapy Technology for Liver Disease to Clinical Trials - Longview News-Journal - September 13th, 2024