In genetics, a mosaic, or mosaicism, involves the presence of two or more populations of cells with different genotypes in one individual who has developed from a single fertilized egg.[1][2] Mosaicism has been reported to be present in as high as 70% of cleavage stage embryos and 90% of blastocyst-stage embryos derived from in vitro fertilization.[3]
Genetic mosaicism can result from many different mechanisms including chromosome non-disjunction, anaphase lag, and endoreplication.[3] Anaphase lagging is the most common way by which mosaicism arises in the preimplantation embryo.[3] Mosaicism can also result from a mutation in one cell during development in which the mutation is passed on to only its daughter cells. Therefore, the mutation is only going to be present in a fraction of the adult cells.[2]
Genetic mosaics may often be confused with chimerism, in which two or more genotypes arise in one individual similarly to mosaicism. However, the two genotypes arise from the fusion of more than one fertilized zygote in the early stages of embryonic development, rather than from a mutation or chromosome loss.
Different types of mosaicism exist, such as gonadal mosaicism (restricted to the gametes) or somatic mosaicism.
Somatic mosaicism occurs when the somatic cells of the body are of more than one genotype. In the more common mosaics, different genotypes arise from a single fertilized egg cell, due to mitotic errors at first or later cleavages.
In rare cases, intersex conditions can be caused by mosaicism where some cells in the body have XX and others XY chromosomes (46, XX/XY).[4][5] In the fruit fly Drosophila melanogaster, where a fly possessing two X chromosomes is a female and a fly possessing a single X chromosome is a sterile male, a loss of an X chromosome early in embryonic development can result in sexual mosaics, or gynandropmorphs.[6][7] Likewise, a loss of the Y chromosome can result in XY/X mosaic males.[8]
The most common form of mosaicism found through prenatal diagnosis involves trisomies. Although most forms of trisomy are due to problems in meiosis and affect all cells of the organism, there are cases where the trisomy occurs in only a selection of the cells. This may be caused by a nondisjunction event in an early mitosis, resulting in a loss of a chromosome from some trisomic cells.[9] Generally this leads to a milder phenotype than in non-mosaic patients with the same disorder.
An example of this is one of the milder forms of Klinefelter syndrome, called 46/47 XY/XXY mosaic wherein some of the patient's cells contain XY chromosomes, and some contain XXY chromosomes. The 46/47 annotation indicates that the XY cells have the normal number of 46 total chromosomes, and the XXY cells have a total of 47 chromosomes.
Around 30% of Turner's syndrome cases demonstrate mosaicism, while complete monosomy (45, X) occurs in about 5060% of cases.
But mosaicism need not necessarily be deleterious. Revertant somatic mosaicism is a rare recombination event in which there is a spontaneous correction of a mutant, pathogenic allele.[10] In revertant mosaicism, the healthy tissue formed by mitotic recombination can outcompete the original, surrounding mutant cells in tissues like blood and epithelia that regenerate often.[10] In the skin disorder ichthyosis with confetti, normal skin spots appear early in life and increase in number and size over time.[10]
Other endogenous factors can also lead to mosaicism including mobile elements, DNA polymerase slippage, and unbalanced chromosomal segregation.[11] Exogenous factors include nicotine and UV radiation.[11] Somatic mosaics have been created in Drosophila using Xray treatment and the use of irradiation to induce somatic mutation has been a useful technique in the study of genetics.[12]
True mosaicism should not be mistaken for the phenomenon of Xinactivation, where all cells in an organism have the same genotype, but a different copy of the X chromosome is expressed in different cells. The latter is the case in normal (XX) female mammals, although it is not always visible from the phenotype (like it is in calico cats). However, all multicellular organisms are likely to be somatic mosaics to some extent.[13]
Somatic mutation leading to mosaicism is prevalent in the beginning and end stages of human life.[11] Somatic mosaics are common in embryogenesis due to retrotransposition of L1 and Alu transposable elements.[11] In early development, DNA from undifferentiated cell types may be more susceptible to mobile element invasion due to long, un-methylated regions in the genome.[11] Further, the accumulation of DNA copy errors and damage over a lifetime lead to greater occurrences of mosaic tissues in aging humans. As our longevity has increased dramatically over the last century, our genome may not have had time to adapt to cumulative effects of mutagenesis.[11] Thus, cancer research has shown that somatic mutations are increasingly present throughout a lifetime and are responsible for most leukemia, lymphomas, and solid tumors.[14]
One basic mechanism which can produce mosaic tissue is mitotic recombination or somatic crossover. It was first discovered by Curt Stern in Drosophila in 1936. The amount of tissue which is mosaic depends on where in the tree of cell division the exchange takes place. A phenotypic character called "Twin Spot" seen in Drosophila is a result of mitotic recombination. However, it also depends on the allelic status of the genes undergoing recombination. Twin spot occurs only if the heterozygous genes are linked in repulsion i.e. trans phase. The recombination needs to occur between the centromere the adjacent gene. This gives an appearance of yellow patches on the wild type background in Drosophila. another example of mitotic recombination is the Bloom's syndrome which happens due to the mutation in the blm gene. The resulting BLM protein is defective. the defect in RecQ an helicase facilitates the defective unwinding of DNA during replication and is thus associated with the occurrence of this disease.[15][16]
Germline or gonadal mosaicism is a special form of mosaicism, where some gametesi.e., sperm or oocytescarry a mutation, but the rest are normal.[17][18]
The cause is usually a mutation that occurred in an early stem cell that gave rise to all or part of the gametes.
This can cause only some offspring to be affected, even for a dominant disease.
Genetic mosaics can be extraordinarily useful in the study of biological systems, and can be created intentionally in many model organisms in a variety of ways. They often allow for the study of genes that are important for very early events in development, making it otherwise difficult to obtain adult organisms in which later effects would be apparent. Furthermore, they can be used to determine the tissue or cell type in which a given gene is required and to determine whether a gene is cell autonomous. That is, whether or not the gene acts solely within the cell of that genotype, or if it affects the entire organism of neighboring cells which do not themselves contain that genotype.
The earliest examples of this involved transplantation experiments (technically creating chimeras) where cells from a blastula stage embryo from one genetic background are aspirated out and injected into a blastula stage embryo of a different genetic background.
Genetic mosaics are a particularly powerful tool when used in the commonly studied fruit fly, where specially-selected strains frequently lose an X[7] or a Y[8] chromosome in one of the first embryonic cell divisions. These mosaics can then be used to analyze such things as courtship behavior,[7] female sexual attraction,[19] and the autonomy or non-autonomy of particular genes.
Genetic mosaics can also be created through mitotic recombination. Such mosaics were originally created by irradiating flies heterozygous for a particular allele with X-rays, inducing double-strand DNA breaks which, when repaired, could result in a cell homozygous for one of the two alleles. After further rounds of replication, this cell would result in a patch, or "clone" of cells mutant for the allele being studied.
More recently the use of a transgene incorporated into the Drosophila genome has made the system far more flexible. The flip recombinase (or FLP) is a gene from the commonly studied yeast Saccharomyces cerevisiae which recognizes "flip recombinase target" (FRT) sites, which are short sequences of DNA, and induces recombination between them. FRT sites have been inserted transgenically near the centromere of each chromosome arm of Drosophila melanogaster. The FLP gene can then be induced selectively, commonly using either the heat shock promoter or the GAL4/UAS system. The resulting clones can be identified either negatively or positively.
In negatively marked clones the fly is transheterozygous for a gene encoding a visible marker (commonly the green fluorescent protein or GFP) and an allele of a gene to be studied (both on chromosomes bearing FRT sites). After induction of FLP expression, cells that undergo recombination will have progeny that are homozygous for either the marker or the allele being studied. Therefore, the cells that do not carry the marker (which are dark) can be identified as carrying a mutation.
It is sometimes inconvenient to use negatively marked clones, especially when generating very small patches of cells, where it is more difficult to see a dark spot on a bright background than a bright spot on a dark background. It is possible to create positively marked clones using the so-called MARCM ("mosaic analysis with a repressible cell marker", pronounced [mark-em]) system, developed by Liqun Luo, a professor at Stanford University, and his post-doc Tzumin Lee who now leads a group at Janelia Farm Research Campus. This system builds on the GAL4/UAS system, which is used to express GFP in specific cells. However a globally expressed GAL80 gene is used to repress the action of GAL4, preventing the expression of GFP. Instead of using GFP to mark the wild-type chromosome as above, GAL80 serves this purpose, so that when it is removed by mitotic recombination, GAL4 is allowed to function, and GFP turns on. This results in the cells of interest being marked brightly in a dark background.[20]
In 1929, Alfred Sturtevant studied mosaicism in Drosophila.[6] A few years later, In the 1930s, Curt Stern demonstrated that genetic recombination, normal in meiosis, can also take place in mitosis.[21][22] When it does, it results in somatic (body) mosaics. These are organisms which contain two or more genetically distinct types of tissue.[23] The term "somatic mosaicism" was used by C.W. Cotterman in 1956 in his seminal paper on antigenic variation.[11]
See the article here:
Mosaic (genetics) - Wikipedia
- 001 Salk News Clip - Long Lived Fruit Flies (KPBS) - Video [Last Updated On: February 7th, 2012] [Originally Added On: February 7th, 2012]
- 002 Seen At 11: Could The Next Generation Live To Be 150? [Last Updated On: February 17th, 2012] [Originally Added On: February 17th, 2012]
- 003 Combating Aging's Ravages - Advances in Minnesota and France - Video [Last Updated On: February 21st, 2012] [Originally Added On: February 21st, 2012]
- 004 Immortal worms defy aging [Last Updated On: February 28th, 2012] [Originally Added On: February 28th, 2012]
- 005 Immortal worms defy ageing [Last Updated On: February 28th, 2012] [Originally Added On: February 28th, 2012]
- 006 The 27th Colloque Médecine et Recherche of the Fondation Ipsen in the Alzheimer Disease series: “Proteopathic Seeds ... [Last Updated On: February 29th, 2012] [Originally Added On: February 29th, 2012]
- 007 Biostem U.S., Corporation Continues Building Its Scientific and Medical Board of Advisors With Appointment of Leading ... [Last Updated On: March 19th, 2012] [Originally Added On: March 19th, 2012]
- 008 Biostem U.S., Corporation Adds Jeanne Ann Lumadue, MD, PhD, MBA to Its Scientific and Medical Board of Advisors [Last Updated On: May 23rd, 2012] [Originally Added On: May 23rd, 2012]
- 009 Longevity Science: Unraveling the Secrets of Human ... [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 010 LongevityMap: Genetic association studies of longevity [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 011 Genetics and Aging - The Genetic Theory of Aging [Last Updated On: May 21st, 2015] [Originally Added On: May 21st, 2015]
- 012 To Measure Longevity, Common Sense Trumps Genetic Test [Last Updated On: May 22nd, 2015] [Originally Added On: May 22nd, 2015]
- 013 Scientists seek genetic clues to longevity from 115-year ... [Last Updated On: May 22nd, 2015] [Originally Added On: May 22nd, 2015]
- 014 Telomeres and Aging - Understanding Cellular Aging [Last Updated On: May 29th, 2015] [Originally Added On: May 29th, 2015]
- 015 Longevity genetics study retracted from Science | WIRED [Last Updated On: June 1st, 2015] [Originally Added On: June 1st, 2015]
- 016 Genetics of Human Longevity - Longevity Science [Last Updated On: June 1st, 2015] [Originally Added On: June 1st, 2015]
- 017 Longevity genes - Supercentenarian [Last Updated On: June 8th, 2015] [Originally Added On: June 8th, 2015]
- 018 Overview | Institute for Aging Research | Albert Einstein ... [Last Updated On: July 6th, 2015] [Originally Added On: July 6th, 2015]
- 019 Genetic Improvement of Dairy Cow Longevity - eXtension [Last Updated On: July 6th, 2015] [Originally Added On: July 6th, 2015]
- 020 Genetic determinants of exceptional human longevity ... [Last Updated On: July 6th, 2015] [Originally Added On: July 6th, 2015]
- 021 Secrets of Aging, Long Life, longevity Genes [Last Updated On: July 11th, 2015] [Originally Added On: July 11th, 2015]
- 022 Fine-Tuning Your Longevity Genes | Life Code [Last Updated On: July 20th, 2015] [Originally Added On: July 20th, 2015]
- 023 LonGenity and Longevity Genes Project [Last Updated On: July 31st, 2015] [Originally Added On: July 31st, 2015]
- 024 Biology of Aging | National Institute on Aging [Last Updated On: August 2nd, 2015] [Originally Added On: August 2nd, 2015]
- 025 Genetics, lifestyle and longevity: Lessons from centenarians [Last Updated On: September 25th, 2015] [Originally Added On: September 25th, 2015]
- 026 Resveratrol By RevGenetics Resveratrol Benefits, Anti ... [Last Updated On: September 28th, 2015] [Originally Added On: September 28th, 2015]
- 027 Genetics Articles - Bodybuilding.com [Last Updated On: October 20th, 2015] [Originally Added On: October 20th, 2015]
- 028 Genetic Anti-Aging and Health: Creating REAL Results by ... [Last Updated On: October 24th, 2015] [Originally Added On: October 24th, 2015]
- 029 5 Ways to Prevent a First Heart Attack - Verywell [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 030 Genes Linked to the Effect of Stress and Mood on Longevity ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 031 SPH - Boston University School of Public Health [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 032 Power 9 - Blue Zones [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 033 Human longevity: Genetics or Lifestyle? It takes two to ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 034 Is Longevity Entirely Hereditary? - BEN BEST [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 035 Veritas Genetics - Committed to disease prevention, early ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 036 GENETICS: Is aging in our genes? - nia.nih.gov [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 037 Aging, genetics and longevity drugs - biopsychiatry.com [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 038 Longevity, how to live longer with diet, food, and dietary ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 039 Genetics of Longevity in Model Organisms: Debates and ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 040 The Okinawa Centenarian Study : Evidence based gerontology [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 041 Can Humans Live Forever? Longevity Research Suggests ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 042 Genetics of longevity and aging. [Last Updated On: August 13th, 2016] [Originally Added On: August 13th, 2016]
- 043 Genetic Secrets Of Longevity Discovered | IFLScience [Last Updated On: August 13th, 2016] [Originally Added On: August 13th, 2016]
- 044 Longevity Genes Project | Institute for Aging Research ... [Last Updated On: August 15th, 2016] [Originally Added On: August 15th, 2016]
- 045 Ageing - Wikipedia, the free encyclopedia [Last Updated On: September 6th, 2016] [Originally Added On: September 6th, 2016]
- 046 Supercourse: Epidemiology, the Internet, and Global Health [Last Updated On: September 8th, 2016] [Originally Added On: September 8th, 2016]
- 047 Population Reference Bureau (PRB) [Last Updated On: November 17th, 2016] [Originally Added On: November 17th, 2016]
- 048 normande genetics: sustainable genetics that breed quality [Last Updated On: November 23rd, 2016] [Originally Added On: November 23rd, 2016]
- 049 Medical genetics of Jews - Wikipedia [Last Updated On: December 1st, 2016] [Originally Added On: December 1st, 2016]
- 050 Ashkenazi Jews - Wikipedia [Last Updated On: December 7th, 2016] [Originally Added On: December 7th, 2016]
- 051 Ageing - Wikipedia [Last Updated On: December 7th, 2016] [Originally Added On: December 7th, 2016]
- 052 Drosophila melanogaster - Wikipedia [Last Updated On: December 25th, 2016] [Originally Added On: December 25th, 2016]
- 053 Lamarckism - Wikipedia [Last Updated On: January 5th, 2017] [Originally Added On: January 5th, 2017]
- 054 68-Year Study: Childhood Intelligence and Longevity Related - Newsmax [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- 055 There's No Known Limit To How Long Humans Can Live | Time.com - TIME [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- 056 Could a High IQ Mean a Longer Life? - Sioux City Journal [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- 057 Researchers Find Genetic Mutation That Encourages Longevity In Men - Yeshiva World News [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- 058 Haifa U Researchers Find Genetic Mutation that Encourages Longevity in Men - The Jewish Press - JewishPress.com [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- 059 11 Basic Guidelines for General Health and Longevity ... [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- 060 This Study Could Help Extend the Human Lifespan - Futurism [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- 061 Sharks could hold genetic secret to long life: Study - The Hindu [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- 062 Longevity Genes Predict Whether You'll Live Past 100 [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- 063 Study probes Greenland sharks' secret to long life - NATIONAL - The ... - The Hindu [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- 064 Swiss-led research team identifies new life-expectancy markers - The Hans India [Last Updated On: July 30th, 2017] [Originally Added On: July 30th, 2017]
- 065 16 Genetic Markers Linked to Lifespan | Worldhealth.net Anti-Aging ... - Anti Aging News [Last Updated On: July 30th, 2017] [Originally Added On: July 30th, 2017]
- 066 Mutation explains why some men live to 100 - ISRAEL21c [Last Updated On: July 30th, 2017] [Originally Added On: July 30th, 2017]
- 067 How to live old - The Sherbrooke Times [Last Updated On: July 30th, 2017] [Originally Added On: July 30th, 2017]
- 068 The 16 genetic markers that can cut a life story short - Medical Xpress - Medical Xpress [Last Updated On: July 30th, 2017] [Originally Added On: July 30th, 2017]
- 069 Health Shorts: Stem cell 'cures,' Sugar spike, Longevity - Sarasota Herald-Tribune [Last Updated On: July 30th, 2017] [Originally Added On: July 30th, 2017]
- 070 23 People That Lived to 100 Spill Their Secrets of Longevity [Last Updated On: July 30th, 2017] [Originally Added On: July 30th, 2017]
- 071 An extra dose of this longevity hormone helped make mice smarter - Popular Science [Last Updated On: August 8th, 2017] [Originally Added On: August 8th, 2017]
- 072 EDITORIAL: 99%, My Life Sucks, Dogfighting, and Brady's Brain - GoLocalProv [Last Updated On: August 8th, 2017] [Originally Added On: August 8th, 2017]
- 073 Genetic strategies to reduce gilt feed and development costs - National Hog Farmer [Last Updated On: August 14th, 2017] [Originally Added On: August 14th, 2017]
- 074 Kahn Longevity Center [Last Updated On: August 19th, 2017] [Originally Added On: August 19th, 2017]
- 075 Media's Anti-Aging Agenda without the Benefit of Scientific Evidence, Fact or Common Sense - Anti Aging News [Last Updated On: August 19th, 2017] [Originally Added On: August 19th, 2017]
- 076 Genetic mutation explains why some men live to 100 - Jewish Journal [Last Updated On: August 25th, 2017] [Originally Added On: August 25th, 2017]
- 077 This 23-year-old just closed her second fund which is focused on ... - TechCrunch [Last Updated On: August 25th, 2017] [Originally Added On: August 25th, 2017]
- 078 Do Low Calorie Diets Help You Live Longer? - Healthline [Last Updated On: August 30th, 2017] [Originally Added On: August 30th, 2017]
- 079 The 5 Aging Startups Backed by Longevity Fund - Nanalyze [Last Updated On: August 30th, 2017] [Originally Added On: August 30th, 2017]
- 080 The Genetic Theory of Aging - Concepts and Evidence [Last Updated On: August 30th, 2017] [Originally Added On: August 30th, 2017]