Nanobiotechnology, bionanotechnology, and nanobiology are terms that refer to the intersection of nanotechnology and biology.[1] Given that the subject is one that has only emerged very recently, bionanotechnology and nanobiotechnology serve as blanket terms for various related technologies.
This discipline helps to indicate the merger of biological research with various fields of nanotechnology. Concepts that are enhanced through nanobiology include: nanodevices (such as biological machines), nanoparticles, and nanoscale phenomena that occurs within the discipline of nanotechnology. This technical approach to biology allows scientists to imagine and create systems that can be used for biological research. Biologically inspired nanotechnology uses biological systems as the inspirations for technologies not yet created.[2] However, as with nanotechnology and biotechnology, bionanotechnology does have many potential ethical issues associated with it.
The most important objectives that are frequently found in nanobiology involve applying nanotools to relevant medical/biological problems and refining these applications. Developing new tools, such as peptoid nanosheets, for medical and biological purposes is another primary objective in nanotechnology. New nanotools are often made by refining the applications of the nanotools that are already being used. The imaging of native biomolecules, biological membranes, and tissues is also a major topic for the nanobiology researchers. Other topics concerning nanobiology include the use of cantilever array sensors and the application of nanophotonics for manipulating molecular processes in living cells.[3]
Recently, the use of microorganisms to synthesize functional nanoparticles has been of great interest. Microorganisms can change the oxidation state of metals. These microbial processes have opened up new opportunities for us to explore novel applications, for example, the biosynthesis of metal nanomaterials. In contrast to chemical and physical methods, microbial processes for synthesizing nanomaterials can be achieved in aqueous phase under gentle and environmentally benign conditions. This approach has become an attractive focus in current green bionanotechnology research towards sustainable development.[4]
The terms are often used interchangeably. When a distinction is intended, though, it is based on whether the focus is on applying biological ideas or on studying biology with nanotechnology. Bionanotechnology generally refers to the study of how the goals of nanotechnology can be guided by studying how biological "machines" work and adapting these biological motifs into improving existing nanotechnologies or creating new ones.[5][6] Nanobiotechnology, on the other hand, refers to the ways that nanotechnology is used to create devices to study biological systems.[7]
In other words, nanobiotechnology is essentially miniaturized biotechnology, whereas bionanotechnology is a specific application of nanotechnology. For example, DNA nanotechnology or cellular engineering would be classified as bionanotechnology because they involve working with biomolecules on the nanoscale. Conversely, many new medical technologies involving nanoparticles as delivery systems or as sensors would be examples of nanobiotechnology since they involve using nanotechnology to advance the goals of biology.
The definitions enumerated above will be utilized whenever a distinction between nanobio and bionano is made in this article. However, given the overlapping usage of the terms in modern parlance, individual technologies may need to be evaluated to determine which term is more fitting. As such, they are best discussed in parallel.
Most of the scientific concepts in bionanotechnology are derived from other fields. Biochemical principles that are used to understand the material properties of biological systems are central in bionanotechnology because those same principles are to be used to create new technologies. Material properties and applications studied in bionanoscience include mechanical properties(e.g. deformation, adhesion, failure), electrical/electronic (e.g. electromechanical stimulation, capacitors, energy storage/batteries), optical (e.g. absorption, luminescence, photochemistry), thermal (e.g. thermomutability, thermal management), biological (e.g. how cells interact with nanomaterials, molecular flaws/defects, biosensing, biological mechanisms s.a. mechanosensing), nanoscience of disease (e.g. genetic disease, cancer, organ/tissue failure), as well as computing (e.g. DNA computing). The impact of bionanoscience, achieved through structural and mechanistic analyses of biological processes at nanoscale, is their translation into synthetic and technological applications through nanotechnology.
Nano-biotechnology takes most of its fundamentals from nanotechnology. Most of the devices designed for nano-biotechnological use are directly based on other existing nanotechnologies. Nano-biotechnology is often used to describe the overlapping multidisciplinary activities associated with biosensors, particularly where photonics, chemistry, biology, biophysics, nano-medicine, and engineering converge. Measurement in biology using wave guide techniques, such as dual polarization interferometry, are another example.
Applications of bionanotechnology are extremely widespread. Insofar as the distinction holds, nanobiotechnology is much more commonplace in that it simply provides more tools for the study of biology. Bionanotechnology, on the other hand, promises to recreate biological mechanisms and pathways in a form that is useful in other ways.
Nanomedicine is a field of medical science whose applications are increasing more and more thanks to nanorobots and biological machines, which constitute a very useful tool to develop this area of knowledge. In the past years, researchers have done many improvements in the different devices and systems required to develop nanorobots. This supposes a new way of treating and dealing with diseases such as cancer; thanks to nanorobots, side effects of chemotherapy have been controlled, reduced and even eliminated, so some years from now, cancer patients will be offered an alternative to treat this disease instead of chemotherapy, which causes secondary effects such as hair lose, fatigue or nausea killing not only cancerous cells but also the healthy ones. At a clinical level, cancer treatment with nanomedicine will consist on the supply of nanorobots to the patient through an injection that will seek for cancerous cells leaving untouched the healthy ones. Patients that will be treated through nanomedicine will not notice the presence of this nanomachines inside them; the only thing that is going to be noticeable is the progressive improvement of their health.[8]
Nanobiotechnology (sometimes referred to as nanobiology) is best described as helping modern medicine progress from treating symptoms to generating cures and regenerating biological tissues. Three American patients have received whole cultured bladders with the help of doctors who use nanobiology techniques in their practice. Also, it has been demonstrated in animal studies that a uterus can be grown outside the body and then placed in the body in order to produce a baby. Stem cell treatments have been used to fix diseases that are found in the human heart and are in clinical trials in the United States. There is also funding for research into allowing people to have new limbs without having to resort to prosthesis. Artificial proteins might also become available to manufacture without the need for harsh chemicals and expensive machines. It has even been surmised that by the year 2055, computers may be made out of biochemicals and organic salts.[9]
Another example of current nanobiotechnological research involves nanospheres coated with fluorescent polymers. Researchers are seeking to design polymers whose fluorescence is quenched when they encounter specific molecules. Different polymers would detect different metabolites. The polymer-coated spheres could become part of new biological assays, and the technology might someday lead to particles which could be introduced into the human body to track down metabolites associated with tumors and other health problems. Another example, from a different perspective, would be evaluation and therapy at the nanoscopic level, i.e. the treatment of Nanobacteria (25-200nm sized) as is done by NanoBiotech Pharma.
While nanobiology is in its infancy, there are a lot of promising methods that will rely on nanobiology in the future. Biological systems are inherently nano in scale; nanoscience must merge with biology in order to deliver biomacromolecules and molecular machines that are similar to nature. Controlling and mimicking the devices and processes that are constructed from molecules is a tremendous challenge to face the converging disciplines of nanotechnology.[10] All living things, including humans, can be considered to be nanofoundries. Natural evolution has optimized the "natural" form of nanobiology over millions of years. In the 21st century, humans have developed the technology to artificially tap into nanobiology. This process is best described as "organic merging with synthetic." Colonies of live neurons can live together on a biochip device; according to research from Dr. Gunther Gross at the University of North Texas. Self-assembling nanotubes have the ability to be used as a structural system. They would be composed together with rhodopsins; which would facilitate the optical computing process and help with the storage of biological materials. DNA (as the software for all living things) can be used as a structural proteomic system - a logical component for molecular computing. Ned Seeman - a researcher at New York University - along with other researchers are currently researching concepts that are similar to each other.[11]
DNA nanotechnology is one important example of bionanotechnology.[12] The utilization of the inherent properties of nucleic acids like DNA to create useful materials is a promising area of modern research. Another important area of research involves taking advantage of membrane properties to generate synthetic membranes. Proteins that self-assemble to generate functional materials could be used as a novel approach for the large-scale production of programmable nanomaterials. One example is the development of amyloids found in bacterial biofilms as engineered nanomaterials that can be programmed genetically to have different properties.[13]Protein folding studies provide a third important avenue of research, but one that has been largely inhibited by our inability to predict protein folding with a sufficiently high degree of accuracy. Given the myriad uses that biological systems have for proteins, though, research into understanding protein folding is of high importance and could prove fruitful for bionanotechnology in the future.
Lipid nanotechnology is another major area of research in bionanotechnology, where physico-chemical properties of lipids such as their antifouling and self-assembly is exploited to build nanodevices with applications in medicine and engineering.[14]
This field relies on a variety of research methods, including experimental tools (e.g. imaging, characterization via AFM/optical tweezers etc.), x-ray diffraction based tools, synthesis via self-assembly, characterization of self-assembly (using e.g. dual polarization interferometry, recombinant DNA methods, etc.), theory (e.g. statistical mechanics, nanomechanics, etc.), as well as computational approaches (bottom-up multi-scale simulation, supercomputing).
Continued here:
Nanobiotechnology - Wikipedia, the free encyclopedia
- 001 Carla wants to know [Last Updated On: October 21st, 2010] [Originally Added On: October 21st, 2010]
- 002 Carla wants to know [Last Updated On: November 7th, 2010] [Originally Added On: November 7th, 2010]
- 003 I believe in Renewable Energy, and here's why [Last Updated On: May 8th, 2011] [Originally Added On: May 8th, 2011]
- 004 I believe in Renewable Energy, and here's why [Last Updated On: May 8th, 2011] [Originally Added On: May 8th, 2011]
- 005 U.S. and Canadian Scientists Form a Global Alliance for Nano-Bio-Electronics in Order to Rapidly Find Solutions for ... [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 006 Regenerative Medicine Biotech Company, Eqalix, Names Scientific Advisory Board [Last Updated On: October 9th, 2012] [Originally Added On: October 9th, 2012]
- 007 Home [clinam.org] [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 008 Nanomedicine [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 009 Nanotechnology in Medicine - Nanomedicine [Last Updated On: May 20th, 2015] [Originally Added On: May 20th, 2015]
- 010 IGERT Nanomedicine at Northeastern University [Last Updated On: May 20th, 2015] [Originally Added On: May 20th, 2015]
- 011 Nanomedicine - Wikipedia, the free encyclopedia [Last Updated On: May 20th, 2015] [Originally Added On: May 20th, 2015]
- 012 Nano Medicine [Last Updated On: May 25th, 2015] [Originally Added On: May 25th, 2015]
- 013 Nanomedicine, bionanotechnology | NanomedicineCenter.com [Last Updated On: June 1st, 2015] [Originally Added On: June 1st, 2015]
- 014 Nano Medicine - Treatments for Antibiotic Resistant Bacteria [Last Updated On: June 5th, 2015] [Originally Added On: June 5th, 2015]
- 015 Wiley Interdisciplinary Reviews: Nanomedicine and ... [Last Updated On: July 4th, 2015] [Originally Added On: July 4th, 2015]
- 016 IBMs nanomedicine initiative - IBM Research: Overview [Last Updated On: July 4th, 2015] [Originally Added On: July 4th, 2015]
- 017 Center for Drug Delivery and Nanomedicine (CDDN) [Last Updated On: August 15th, 2015] [Originally Added On: August 15th, 2015]
- 018 Nanorobots in Medicine - Nanomedicine [Last Updated On: September 16th, 2015] [Originally Added On: September 16th, 2015]
- 019 NMI Table of Contents Page - Nanomedicine [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 020 Nanomedicine Fact Sheet - Genome.gov | National Human ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 021 Nanomedicine Conferences| Nanotechnology conferences| 2016 ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 022 NIH National Human Genome Research Institute [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 023 Nanomedicine Fact Sheet - Genome.gov [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 024 Laboratory of Nanomedicine and Biomaterials [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 025 CLINAM - The Conference at a Glance [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 026 Nanomedicine Fact Sheet [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 027 ARTICLE IN PRESS - Nanomedicine [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 028 Nano & Me - Nano Products - Nano in Medicine [Last Updated On: August 7th, 2016] [Originally Added On: August 7th, 2016]
- 029 Nanotechnology and Medicine / Nanotechnology Medical ... [Last Updated On: August 31st, 2016] [Originally Added On: August 31st, 2016]
- 030 Nanomedicine Fact Sheet - National Human Genome Research ... [Last Updated On: October 5th, 2016] [Originally Added On: October 5th, 2016]
- 031 Nanomedicine - Wikipedia [Last Updated On: October 20th, 2016] [Originally Added On: October 20th, 2016]
- 032 Nanobiotechnology - Wikipedia [Last Updated On: November 19th, 2016] [Originally Added On: November 19th, 2016]
- 033 Exploiting acidic tumor microenvironment for the development of novel cancer nano-theranostics - Medical Xpress [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- 034 Nano-sized drug carriers could be the future for patients with lung disease - Phys.Org [Last Updated On: July 4th, 2017] [Originally Added On: July 4th, 2017]
- 035 Metallic nanomolecules could help treat fatal lung disease in the future, notes research - EPM Magazine [Last Updated On: July 5th, 2017] [Originally Added On: July 5th, 2017]
- 036 Global Nano Chemotherapy Market & Clinical Trials Outlook 2022 - PR Newswire (press release) [Last Updated On: July 5th, 2017] [Originally Added On: July 5th, 2017]
- 037 Nanomedicine: Nanotechnology, Biology and Medicine - Official Site [Last Updated On: July 5th, 2017] [Originally Added On: July 5th, 2017]
- 038 Nanoparticle delivery tech targets rare lung disease - In-PharmaTechnologist.com [Last Updated On: July 6th, 2017] [Originally Added On: July 6th, 2017]
- 039 Healthcare Nanotechnology (Nanomedicine) Market Expected to Generate Huge Profits by 2015 2021: Persistence ... - MilTech [Last Updated On: July 6th, 2017] [Originally Added On: July 6th, 2017]
- 040 State can cure skewed disease research - BusinessLIVE - Business Day (registration) [Last Updated On: July 12th, 2017] [Originally Added On: July 12th, 2017]
- 041 Converging on cancer at the nanoscale | MIT News - The MIT Tech [Last Updated On: July 12th, 2017] [Originally Added On: July 12th, 2017]
- 042 Koch Institute's Marble Center for Cancer Nanomedicine Brings Together Renowned Faculty to Combat Cancer - AZoNano [Last Updated On: July 12th, 2017] [Originally Added On: July 12th, 2017]
- 043 Application of Nanomaterials in the Field of Medicine - Medical News Bulletin [Last Updated On: August 1st, 2017] [Originally Added On: August 1st, 2017]
- 044 International Conference and Exhibition on Nanomedicine and Nanotechnology - Technology Networks [Last Updated On: August 1st, 2017] [Originally Added On: August 1st, 2017]
- 045 Cancer survivor becomes a cancer fighter at a Philly start-up - Philly.com [Last Updated On: August 1st, 2017] [Originally Added On: August 1st, 2017]
- 046 'Nanomedicine': Potentially revolutionary class of drugs are made-in ... - CTV News [Last Updated On: August 5th, 2017] [Originally Added On: August 5th, 2017]
- 047 UCalgary researcher signs deal to develop nanomedicines for ... - UCalgary News [Last Updated On: August 5th, 2017] [Originally Added On: August 5th, 2017]
- 048 Targeting tumours: IBBME researchers investigate biological barriers to nanomedicine delivery - U of T Engineering News [Last Updated On: August 8th, 2017] [Originally Added On: August 8th, 2017]
- 049 Medication for the unborn baby - Medical Xpress [Last Updated On: August 8th, 2017] [Originally Added On: August 8th, 2017]
- 050 siRNA Treatment for Brain Cancer Stops Tumor Growth in Mouse Model - Technology Networks [Last Updated On: August 11th, 2017] [Originally Added On: August 11th, 2017]
- 051 Lungs in Space - Texas Medical Center (press release) [Last Updated On: August 22nd, 2017] [Originally Added On: August 22nd, 2017]
- 052 New report shares details about Europe's nanomedicine market - WhaTech [Last Updated On: August 28th, 2017] [Originally Added On: August 28th, 2017]
- 053 Expert Radiologist and Clinician Scientist, Michelle S. Bradbury, MD, PhD, is to be Recognized as a 2017 Top Doctor ... - PR NewsChannel (press... [Last Updated On: August 29th, 2017] [Originally Added On: August 29th, 2017]
- 054 Impact of Existing and Emerging Europe Nanomedicine Market ... - MilTech [Last Updated On: August 29th, 2017] [Originally Added On: August 29th, 2017]
- 055 Innovation in cancer treatment multimodality therapy - eHealth Magazine | Elets [Last Updated On: August 30th, 2017] [Originally Added On: August 30th, 2017]
- 056 Nanomedicine Market Growth Opportunities for Distributers 2017 - Equity Insider (press release) [Last Updated On: August 30th, 2017] [Originally Added On: August 30th, 2017]
- 057 Deadly Venom Can Be Turned Into Disease Treatments | WLRN - WLRN [Last Updated On: August 30th, 2017] [Originally Added On: August 30th, 2017]
- 058 Global Nanomedicine Industry 2017 Market Growth, Trends and Demands Research Report - MENAFN.COM [Last Updated On: September 6th, 2017] [Originally Added On: September 6th, 2017]
- 059 Nanomedicine - Overview [Last Updated On: September 6th, 2017] [Originally Added On: September 6th, 2017]
- 060 Nanomedicine Research Journal [Last Updated On: September 7th, 2017] [Originally Added On: September 7th, 2017]
- 061 Nanomedicine and Drug Delivery [Last Updated On: June 20th, 2018] [Originally Added On: June 20th, 2018]
- 062 The Future Of Nano Medicine [Last Updated On: June 22nd, 2018] [Originally Added On: June 22nd, 2018]
- 063 The Promise of Nanomedicine - Laboratory Equipment [Last Updated On: July 22nd, 2018] [Originally Added On: July 22nd, 2018]
- 064 What is Nanomedicine? : Center for Nanomedicine [Last Updated On: August 24th, 2018] [Originally Added On: August 24th, 2018]
- 065 Nanomedicine Conferences | Nanotechnology Events ... [Last Updated On: September 7th, 2018] [Originally Added On: September 7th, 2018]
- 066 IEEE-NANOMED 2016 The 10th IEEE International Conference ... [Last Updated On: November 17th, 2018] [Originally Added On: November 17th, 2018]
- 067 What is Nanomedicine? The future of medicine. [Last Updated On: November 21st, 2018] [Originally Added On: November 21st, 2018]
- 068 Nanomedicine | medicine | Britannica.com [Last Updated On: January 31st, 2019] [Originally Added On: January 31st, 2019]
- 069 Nanomedicine Conferences | Nanotechnology Conferences ... [Last Updated On: March 8th, 2019] [Originally Added On: March 8th, 2019]
- 070 Regenerative Nanomedicine Lab - yimlab.com [Last Updated On: March 27th, 2019] [Originally Added On: March 27th, 2019]
- 071 Nanobiotix a nanomedicine company [Last Updated On: April 4th, 2019] [Originally Added On: April 4th, 2019]
- 072 Nano Medicine: Meaning, Advantages and Disadvantages [Last Updated On: April 5th, 2019] [Originally Added On: April 5th, 2019]
- 073 Nanomedicine | Ardena [Last Updated On: April 14th, 2019] [Originally Added On: April 14th, 2019]
- 074 Journal of Nanomedicine and Biotherapeutic Discovery- Open ... [Last Updated On: April 30th, 2019] [Originally Added On: April 30th, 2019]
- 075 10th International Nanomedicine Conference 24-26 June ... [Last Updated On: May 11th, 2019] [Originally Added On: May 11th, 2019]
- 076 Journal of Nanomedicine and Nanotechnology- Open Access ... [Last Updated On: May 19th, 2019] [Originally Added On: May 19th, 2019]
- 077 Nanomedicine Conferences 2019 | Nanotechnology Meetings ... [Last Updated On: September 14th, 2019] [Originally Added On: September 14th, 2019]
- 078 Fact Sheets about Genomics | NHGRI - genome.gov [Last Updated On: October 9th, 2019] [Originally Added On: October 9th, 2019]
- 079 Start-up of the week: charging your car can be done in minutes - Innovation Origins [Last Updated On: October 20th, 2019] [Originally Added On: October 20th, 2019]
- 080 Healthcare Nanotechnology Market 2019 Will Generate New Growth Opportunities In The Upcoming Year | - Global Market Release [Last Updated On: October 20th, 2019] [Originally Added On: October 20th, 2019]