header logo image


Page 1,181«..1020..1,1801,1811,1821,183..1,1901,200..»

David Wolfe

August 23rd, 2015 1:43 am

David Wolfe Health, Eco, Nutrition, and Natural Beauty Expert

Today is the best day ever.

David Avocado Wolfe is the rock star and Indiana Jones of the superfoods and longevity universe. The worlds top CEOs, ambassadors, celebrities, athletes, artists, and the real superheroes of this planetMomsall look to David for expert advice in health, beauty, herbalism, nutrition, and chocolate!

David is the celebrity spokesperson for Americas #1 selling kitchen appliance: the NUTRiBULLET and for http://www.LongevityWarehouse.com. He is the co-founder of TheBestDayEver.com online health magazine and is the visionary founder and president of the non-profit The Fruit Tree Planting Foundation charity (www.ftpf.org) with a mission to plant 18 billion fruit, nut, and medicinal trees on planet Earth.

With over 20 years of dedicated experience and having hosted over 2750 live events, David has led the environmental charge for radiant health via a positive mental attitude, eco-community building, living spring water, and the best-ever quality organic foods and herbs.

David champions the ideals of spending time in nature, growing ones own food, and making today the best day ever. He teaches that inspiration is found in love, travel, natural beauty, vibrant health, and peak-performance.

David has circumnavigated the Earth for decades seeking out the worlds purest foods and waters and leading adventure retreats (please see http://www.davidwolfeadventures.com).

David is a gourmet chocolatier, organic farmer, beekeeper, and a vanilla grower. He is passionate about the beautifying, health giving and mystical qualities of dark organic chocolate.You may find his favorite chocolate at:www.sacredchocolate.com/DavidAvocadoWolfe.

David is the author of many best-selling books, including Eating for Beauty, The Sunfood Diet Success System, Naked Chocolate, Amazing Grace, Superfoods: The Food and Medicine of the Future, Chaga: King of the Medicinal Mushrooms and Longevity NOW. He has also appeared in numerous breakthrough documentaries and films including: Food Matters, Hungry for Change, and Discover the Gift.

Davids Facebook site (www.facebook.com/DavidAvocadoWolfe) daily touches people all over the globe by delivering succinct powerful inspiration, news, and education.

David is a highly sought after health and personal success speaker. He has shared the stage with success and business coaches like Anthony Robbins, Richard Branson, Brian Tracy, John DeMartini, as well as acclaimed doctors and health researchers including: Dr. Bruce Lipton, Dr. Joseph Mercola, Dr. Sara Gottfried, Dr. Lissa Rankin, Dr Dave Woynarowksi and many more.

David is a lead educator and presenter at the annual Longevity Conference, Institute of Integrative Nutrition, and the Body-Mind Institute, where he hosts his own course: http://www.bodymindinstitute.com/the-david-wolfe-nutrition-certification/

Here is the original post:
David Wolfe

Read More...

Recent Articles | Gene Therapy | The Scientist Magazine

August 23rd, 2015 1:42 am

Most Recent

By targeting rhodopsin genes to neurons, scientists help blind mice see.

0 Comments

Researchers deploy ancestors of todays adeno-associated viruses to deliver gene therapies without immune system interference.

2 Comments

Expressing a gene for a component of the inner ears hair cells treated a form of genetic deafness.

0 Comments

The results of a Phase 2 trial suggest that delivering normal copies of the gene that causes cystic fibrosis may slow lung decline.

0 Comments

By Kerry Grens | June 26, 2015

Biotech firm likely to pull the plug after its gene therapy product fails.

0 Comments

Participants of two gene-therapy trials who experienced partial restoration of sight following treatment are now losing their vision once again.

0 Comments

A newly discovered protein promotes immunity to viruses and cancer by triggering the production of cytotoxic T cells.

1 Comment

By Kerry Grens | January 22, 2015

In a mouse model of a rare disease, scientists have figured out how to reduce the elevated cancer risk tied to a gene therapy treatment.

0 Comments

A small peptide helps a silencing construct home in on the adipocytes of obese mice.

0 Comments

A former postdoc in a prominent gene therapy lab is branded a fraud by the US government more than three years after having a slew of papers retracted from various journals.

3 Comments

See more here:
Recent Articles | Gene Therapy | The Scientist Magazine

Read More...

Type 1 Diabetes: Causes, Tests, Symptoms and Treatments

August 23rd, 2015 1:41 am

Type 1 Diabetes

Understanding type 1 diabetes is the first step to managing it. Get information on type 1 diabetes causes, risk factors, warning signs, and prevention tips.

Normally, the body's immune system fights off foreign invaders like viruses or bacteria. But for unknown reasons, in people with type 1 diabetes, the immune system attacks various cells in the body.

Symptoms of type 1 diabetes usually develop quickly, over a few days to weeks, and are caused by blood sugar levels rising above the normal range (hyperglycemia).

You can inherit a tendency to develop type 1 diabetes, but most people who have the disease have no family history of it.

If a person is not in ketoacidosis, the American Diabetes Association's criteria for symptoms, a medical history, a physical exam, and blood tests are used to diagnose type 1 diabetes.

Type 1 diabetes requires lifelong treatment to keep blood sugar levels within a target range.

There are many forms of insulin to treat diabetes. They are classified by how fast they start to work and how long their effects last.

Currently there is no way to prevent type 1 diabetes, but ongoing studies are exploring ways to prevent diabetes in those who are most likely to develop it.

See animated illustrations of how type 1 diabetes works.

WebMD offers a pictorial overview of the symptoms, diagnosis, and treatment of type 1 diabetes.

This type 1 diabetes assessment was designed to explore and evaluate your personal health and lifestyle history to help you manage your health and your familys health better.

Test your Type 1 Diabetes knowledge.

Continue reading below...

Follow this link:
Type 1 Diabetes: Causes, Tests, Symptoms and Treatments

Read More...

Washington Orthopaedic Center – World Class Orthopedic Care

August 22nd, 2015 12:48 am

Home Washington Orthopaedic Center

At Washington Orthopaedic Center, our highly trained staff of orthopedic surgeons specialize ina wide range of services. If you are living with unwanted pain in your bones or joints, we can help you live a pain free life once again.Our office is conveniently located in Centralia, between Olympia and Longview, Washington.

Our skilled physicians have proven that they are some of the best in the industry. Some of their accomplishments includeteaching courses around the world, helping underprivileged patients in third world countries, andbeing an official provider of the U.S. Ski Team. We offermany servicesincluding sports medicine, joint replacement, foot and ankle surgery, arthroscopic surgery, arthritis care, and more. If your injury requires surgery, we have a surgery center that offers cost effective, same day surgery.

For larger scans, such as backs and hips, we schedule imaging at Washington Diagnostic MRI and Providence Centralia Hospital directly adjacent to our offices. Our patients also benefit from the latest technology in tele-radiology. This is where the image is sent electronically to specialists that read our patients results with expert accuracy. Todays MRI technology has virtually eliminated the need for invasive exploratory surgeries.

Bursitis/tendonitis, and various sprains and strains may also imitate arthritis. Accurate diagnosis requires a careful history and physical examination, as well as x-rays of the involved area.

Treatment is dictated by the proper diagnosis, location, and severity of the condition. Our orthopedic surgeons are specially trained to provide appropriate care including medications, techniques to protect the joint, and when appropriate; surgery for the afflicted area.

All of our orthopedists have broad, extensive training in caring for these injuries, some with special interest and extra training devoted to sports medicine.

Our physicians are specialists in this area of orthopedic surgery specializing in rapid return to normal life after total hip and total knee replacement. State-of-the-art computer navigation is an option for some total knee replacement surgeries. Total joint replacement surgeries are done at Providence Centralia Hospital. Patients begin physical rehabilitation therapy at the hospital under their orthopedic physicians care and continue rehabilitation in an appropriate setting for their condition and lifestyle.

In 2008, Dr. Keith Birchard of Washington Orthopaedic Center traveled to Kudjip Nazarene Hospital in Papua New Guinea to offer his medical expertise to the local residents. Dr. Birchard spent three weeks away from []

Job Summary The Medical Assistant (MA) operates in a team with other clinic healthcare providers and support staff. The assistant escorts patients to the exam rooms and assists providers while treating patients. The MA assists []

Continue reading here:
Washington Orthopaedic Center - World Class Orthopedic Care

Read More...

Induced pluripotent stem cell – Wikipedia, the free …

August 22nd, 2015 12:48 am

Induced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from adult cells. The iPSC technology was pioneered by Shinya Yamanakas lab in Kyoto, Japan, who showed in 2006 that the introduction of four specific genes encoding transcription factors could convert adult cells into pluripotent stem cells.[1] He was awarded the 2012 Nobel Prize along with Sir John Gurdon "for the discovery that mature cells can be reprogrammed to become pluripotent." [2]

Pluripotent stem cells hold great promise in the field of regenerative medicine. Because they can propagate indefinitely, as well as give rise to every other cell type in the body (such as neurons, heart, pancreatic, and liver cells), they represent a single source of cells that could be used to replace those lost to damage or disease.

The most well-known type of pluripotent stem cell is the embryonic stem cell. However, since the generation of embryonic stem cells involves destruction (or at least manipulation) [3] of the pre-implantation stage embryo, there has been much controversy surrounding their use. Further, because embryonic stem cells can only be derived from embryos, it has so far not been feasible to create patient-matched embryonic stem cell lines.

Since iPSCs can be derived directly from adult tissues, they not only bypass the need for embryos, but can be made in a patient-matched manner, which means that each individual could have their own pluripotent stem cell line. These unlimited supplies of autologous cells could be used to generate transplants without the risk of immune rejection. While the iPSC technology has not yet advanced to a stage where therapeutic transplants have been deemed safe, iPSCs are readily being used in personalized drug discovery efforts and understanding the patient-specific basis of disease.[citation needed]

Depending on the methods used, reprogramming of adult cells to obtain iPSCs may pose significant risks that could limit their use in humans. For example, if viruses are used to genomically alter the cells, the expression of oncogenes (cancer-causing genes) may potentially be triggered. In February 2008, scientists announced the discovery of a technique that could remove oncogenes after the induction of pluripotency, thereby increasing the potential use of iPS cells in human diseases.[4] In April 2009, it was demonstrated that generation of iPS cells is possible without any genetic alteration of the adult cell: a repeated treatment of the cells with certain proteins channeled into the cells via poly-arginine anchors was sufficient to induce pluripotency.[5] The acronym given for those iPSCs is piPSCs (protein-induced pluripotent stem cells).

iPSCs are typically derived by introducing a specific set of pluripotency-associated genes, or reprogramming factors, into a given cell type. The original set of reprogramming factors (also dubbed Yamanaka factors) are the genes Oct4 (Pou5f1), Sox2, cMyc, and Klf4. While this combination is most conventional in producing iPSCs, each of the factors can be functionally replaced by related transcription factors, miRNAs, small molecules, or even non-related genes such as lineage specifiers.

iPSC derivation is typically a slow and inefficient process, taking 12 weeks for mouse cells and 34 weeks for human cells, with efficiencies around 0.01%0.1%. However, considerable advances have been made in improving the efficiency and the time it takes to obtain iPSCs. Upon introduction of reprogramming factors, cells begin to form colonies that resemble pluripotent stem cells, which can be isolated based on their morphology, conditions that select for their growth, or through expression of surface markers or reporter genes.

Induced pluripotent stem cells were first generated by Shinya Yamanaka's team at Kyoto University, Japan, in 2006.[1] Their hypothesis was that genes important to embryonic stem cell function might be able to induce an embryonic state in adult cells. They began by choosing twenty-four genes that were previously identified as important in embryonic stem cells, and used retroviruses to deliver these genes to fibroblasts from mice. The mouse fibroblasts were engineered so that any cells that reactivated the ESC-specific gene, Fbx15, could be isolated using antibiotic selection.

Upon delivery of all twenty-four factors, colonies emerged that had reactivated the Fbx15 reporter, resembled ESCs, and could propagate indefinitely. They then narrowed their candidates by removing one factor at a time from the pool of twenty-four. By this process, they identified four factors, Oct4, Sox2, cMyc, and Klf4, which as a group were both necessary and sufficient to obtain ESC-like colonies under selection for reactivation of Fbx15.

Similar to ESCs, these first-generation iPSCs showed unlimited self-renewal and demonstrated pluripotency by contributing to lineages from all three germ layers in the context of embryoid bodies, teratomas, fetal chimeras. However, the molecular makeup of these cells, including gene expression and epigenetic marks, was somewhere between that of a fibroblast and an ESC, and the cells also failed to produce viable chimeras when injected into developing embryos.

In June 2007, the same group published a breakthrough study along with two other independent research groups from Harvard, MIT, and the University of California, Los Angeles, showing successful reprogramming of mouse fibroblasts into iPS cells. Unlike the first generation of iPS cells, these cells could produce viable chimeric mice and could contribute to the germline, the 'gold standard' for pluripotent stem cells. These cells were derived from mouse fibroblasts by retroviral-mediated expression of the same four transcription factors (Oct4, Sox2, cMyc, Klf4), but the researchers used a different marker to select for pluripotent cells. Instead of Fbx15, they used Nanog, a gene that is functionally important in ESCs. By using this different strategy, the researchers were able to create iPS cells that were more similar to ESCs than the first generation of iPS cells, and independently proved that it was possible to create iPS cells that are functionally identical to ESCs.[6][7][8][9]

Unfortunately, two of the four genes used (namely, c-Myc and KLF4) are oncogenic, and 20% of the chimeric mice developed cancer. In a later study, Yamanaka reported that one can create iPSCs even without c-Myc. The process takes longer and is not as efficient, but the resulting chimeras didn't develop cancer.[10]

Induced pluripotent cells have been made from adult stomach, liver, skin cells, blood cells, prostate cells and urinary tract cells.[11]

In November 2007, a milestone was achieved[12][13] by creating iPSCs from adult human cells; two independent research teams' studies were released one in Science by James Thomson at University of WisconsinMadison[14] and another in Cell by Shinya Yamanaka and colleagues at Kyoto University, Japan.[15] With the same principle used earlier in mouse models, Yamanaka had successfully transformed human fibroblasts into pluripotent stem cells using the same four pivotal genes: Oct3/4, Sox2, Klf4, and c-Myc with a retroviral system. Thomson and colleagues used OCT4, SOX2, NANOG, and a different gene LIN28 using a lentiviral system.

On 8 November 2012, researchers from Austria, Hong Kong and China presented a protocol for generating human iPSCs from exfoliated renal epithelial cells present in urine on Nature Protocols.[16] This method of acquiring donor cells is comparatively less invasive and simple. The team reported the induction procedure to take less time, around 2 weeks for the urinary cell culture and 3 to 4 weeks for the reprogramming; and higher yield, up to 4% using retroviral delivery of exogenous factors. Urinary iPSCs (UiPSCs) were found to show good differentiation potential, and thus represent an alternative choice for producing pluripotent cells from normal individuals or patients with genetic diseases, including those affecting the kidney.[16]

Although the methods pioneered by Yamanaka and others have demonstrated that adult cells can be reprogrammed to iPS cells, there are still challenges associated with this technology:

The table at right summarizes the key strategies and techniques used to develop iPS cells over the past half-decade. Rows of similar colors represents studies that used similar strategies for reprogramming.

One of the main strategies for avoiding problems (1) and (2) has been to use small compounds that can mimic the effects of transcription factors. These molecule compounds can compensate for a reprogramming factor that does not effectively target the genome or fails at reprogramming for another reason; thus they raise reprogramming efficiency. They also avoid the problem of genomic integration, which in some cases contributes to tumor genesis. Key studies using such strategy were conducted in 2008. Melton et al. studied the effects of histone deacetylase (HDAC) inhibitor valproic acid. They found that it increased reprogramming efficiency 100-fold (compared to Yamanakas traditional transcription factor method).[25] The researchers proposed that this compound was mimicking the signaling that is usually caused by the transcription factor c-Myc. A similar type of compensation mechanism was proposed to mimic the effects of Sox2. In 2008, Ding et al. used the inhibition of histone methyl transferase (HMT) with BIX-01294 in combination with the activation of calcium channels in the plasma membrane in order to increase reprogramming efficiency.[26] Deng et al. of Beijing University reported on July 2013 that induced pluripotent stem cells can be created without any genetic modification. They used a cocktail of seven small-molecule compounds including DZNep to induce the mouse somatic cells into stem cells which they called CiPS cells with the efficiency at 0.2% comparable to those using standard iPSC production techniques. The CiPS cells were introduced into developing mouse embryos and were found to contribute to all major cells types, proving its pluripotency.[27][28]

Ding et al. demonstrated an alternative to transcription factor reprogramming through the use of drug-like chemicals. By studying the MET (mesenchymal-epithelial transition) process in which fibroblasts are pushed to a stem-cell like state, Dings group identified two chemicals ALK5 inhibitor SB431412 and MEK (mitogen-activated protein kinase) inhibitor PD0325901 which was found to increase the efficiency of the classical genetic method by 100 fold. Adding a third compound known to be involved in the cell survival pathway, Thiazovivin further increases the efficiency by 200 fold. Using the combination of these three compounds also decreased the reprogramming process of the human fibroblasts from four weeks to two weeks. [29][30]

Another key strategy for avoiding problems such as tumor genesis and low throughput has been to use alternate forms of vectors: adenovirus, plasmids, and naked DNA and/or protein compounds.

In 2008, Hochedlinger et al. used an adenovirus to transport the requisite four transcription factors into the DNA of skin and liver cells of mice, resulting in cells identical to ESCs. The adenovirus is unique from other vectors like viruses and retroviruses because it does not incorporate any of its own genes into the targeted host and avoids the potential for insertional mutagenesis.[31] In 2009, Freed et al. demonstrated successful reprogramming of human fibroblasts to iPS cells.[32] Another advantage of using adenoviruses is that they only need to present for a brief amount of time in order for effective reprogramming to take place.

Also in 2008, Yamanaka et al. found that they could transfer the four necessary genes with a plasmid.[33] The Yamanaka group successfully reprogrammed mouse cells by transfection with two plasmid constructs carrying the reprogramming factors; the first plasmid expressed c-Myc, while the second expressed the other three factors (Oct4, Klf4, and Sox2). Although the plasmid methods avoid viruses, they still require cancer-promoting genes to accomplish reprogramming. The other main issue with these methods is that they tend to be much less efficient compared to retroviral methods. Furthermore, transfected plasmids have been shown to integrate into the host genome and therefore they still pose the risk of insertional mutagenesis. Because non-retroviral approaches have demonstrated such low efficiency levels, researchers have attempted to effectively rescue the technique with what is known as the piggyBac transposon system. The lifecycle of this system is shown below. Several studies have demonstrated that this system can effectively deliver the key reprogramming factors without leaving any footprint mutations in the host cell genome. As demonstrated in the figure, the piggyBac transposon system involves the re-excision of exogenous genes, which eliminates issues like insertional mutagenesis

In January 2014, two articles were published claiming that a type of pluripotent stem cell can be generated by subjecting the cells to certain types of stress (bacterial toxin, a low pH of 5.7, or physical squeezing); the resulting cells were called STAP cells, for stimulus-triggered acquisition of pluripotency.[34]

In light of difficulties that other labs had replicating the results of the surprising study, in March 2014, one of the co-authors has called for the articles to be retracted.[35] On 4 June 2014, the lead author, Obokata agreed to retract both the papers [36] after she was found to have committed research misconduct as concluded in an investigation by RIKEN on 1 April 2014.[37]

Studies by Blelloch et al. in 2009 demonstrated that expression of ES cell-specific microRNA molecules (such as miR-291, miR-294 and miR-295) enhances the efficiency of induced pluripotency by acting downstream of c-Myc .[38] More recently (in April 2011), Morrisey et al. demonstrated another method using microRNA that improved the efficiency of reprogramming to a rate similar to that demonstrated by Ding. MicroRNAs are short RNA molecules that bind to complementary sequences on messenger RNA and block expression of a gene. Morriseys team worked on microRNAs in lung development, and hypothesized that their microRNAs perhaps blocked expression of repressors of Yamanakas four transcription factors. Possible mechanisms by which microRNAs can induce reprogramming even in the absence of added exogenous transcription factors, and how variations in microRNA expression of iPS cells can predict their differentiation potential discussed by Xichen Bao et al.[39]

[citation needed]

The generation of iPS cells is crucially dependent on the genes used for the induction.

Oct-3/4 and certain members of the Sox gene family (Sox1, Sox2, Sox3, and Sox15) have been identified as crucial transcriptional regulators involved in the induction process whose absence makes induction impossible. Additional genes, however, including certain members of the Klf family (Klf1, Klf2, Klf4, and Klf5), the Myc family (c-myc, L-myc, and N-myc), Nanog, and LIN28, have been identified to increase the induction efficiency.

Induced pluripotent stem cells are similar to natural pluripotent stem cells, such as embryonic stem (ES) cells, in many aspects, such as the expression of certain stem cell genes and proteins, chromatin methylation patterns, doubling time, embryoid body formation, teratoma formation, viable chimera formation, and potency and differentiability, but the full extent of their relation to natural pluripotent stem cells is still being assessed.[42]

Gene expression and genome-wide H3K4me3 and H3K27me3 were found to be extremely similar between ES and iPS cells.[43][citation needed] The generated iPSCs were remarkably similar to naturally isolated pluripotent stem cells (such as mouse and human embryonic stem cells, mESCs and hESCs, respectively) in the following respects, thus confirming the identity, authenticity, and pluripotency of iPSCs to naturally isolated pluripotent stem cells:

Recent achievements and future tasks for safe iPSC-based cell therapy are collected in the review of Okano et al.[54]

The task of producing iPS cells continues to be challenging due to the six problems mentioned above. A key tradeoff to overcome is that between efficiency and genomic integration. Most methods that do not rely on the integration of transgenes are inefficient, while those that do rely on the integration of transgenes face the problems of incomplete reprogramming and tumor genesis, although a vast number of techniques and methods have been attempted. Another large set of strategies is to perform a proteomic characterization of iPS cells. The Wu group at Stanford University has made significant progress with this strategy.[55] Further studies and new strategies should generate optimal solutions to the five main challenges. One approach might attempt to combine the positive attributes of these strategies into an ultimately effective technique for reprogramming cells to iPS cells.

Another approach is the use of iPS cells derived from patients to identify therapeutic drugs able to rescue a phenotype. For instance, iPS cell lines derived from patients affected by ectodermal dysplasia syndrome (EEC), in which the p63 gene is mutated, display abnormal epithelial commitment that could be partially rescued by a small compound[56]

An attractive feature of human iPS cells is the ability to derive them from adult patients to study the cellular basis of human disease. Since iPS cells are self-renewing and pluripotent, they represent a theoretically unlimited source of patient-derived cells which can be turned into any type of cell in the body. This is particularly important because many other types of human cells derived from patients tend to stop growing after a few passages in laboratory culture. iPS cells have been generated for a wide variety of human genetic diseases, including common disorders such as Down syndrome and polycystic kidney disease.[57][58] In many instances, the patient-derived iPS cells exhibit cellular defects not observed in iPS cells from healthy patients, providing insight into the pathophysiology of the disease.[59] An international collaborated project, StemBANCC, was formed in 2012 to build a collection of iPS cell lines for drug screening for a variety of disease. Managed by the University of Oxford, the effort pooled funds and resources from 10 pharmaceutical companies and 23 universities. The goal is to generate a library of 1,500 iPS cell lines which will be used in early drug testing by providing a simulated human disease environment.[60]

A proof-of-concept of using induced pluripotent stem cells (iPSCs) to generate human organ for transplantation was reported by researchers from Japan. Human liver buds (iPSC-LBs) were grown from a mixture of three different kinds of stem cells: hepatocytes (for liver function) coaxed from iPSCs; endothelial stem cells (to form lining of blood vessels) from umbilical cord blood; and mesenchymal stem cells (to form connective tissue). This new approach allows different cell types to self-organize into a complex organ, mimicking the process in fetal development. After growing in vitro for a few days, the liver buds were transplanted into mice where the liver quickly connected with the host blood vessels and continued to grow. Most importantly, it performed regular liver functions including metabolizing drugs and producing liver-specific proteins. Further studies will monitor the longevity of the transplanted organ in the host body (ability to integrate or avoid rejection) and whether it will transform into tumors.[61][62] Using this method, cells from one mouse could be used to test 1,000 drug compounds to treat liver disease, and reduce animal use by up to 50,000.[63]

Embryonic cord-blood cells were induced into pluripotent stem cells using plasmid DNA. Using cell surface endothelial/pericytic markers CD31 and CD146, researchers identified 'vascular progenitor', the high-quality, multipotent vascular stem cells. After the iPS cells were injected directly into the vitreous of the damaged retina of mice, the stem cells engrafted into the retina, grew and repaired the vascular vessels.[64][65]

In a study conducted in China in 2013, Superparamagnetic iron oxide (SPIO) particles were used to label iPSCs-derived NSCs in vitro. Labeled NSCs were implanted into TBI rats and SCI monkeys 1 week after injury, and then imaged using gradient reflection echo (GRE) sequence by 3.0T magnetic resonance imaging (MRI) scanner. MRI analysis was performed at 1, 7, 14, 21, and 30 days, respectively, following cell transplantation. Pronounced hypointense signals were initially detected at the cell injection sites in rats and monkeys and were later found to extend progressively to the lesion regions, demonstrating that iPSCs-derived NSCs could migrate to the lesion area from the primary sites. The therapeutic efficacy of iPSCs-derived NSCs was examined concomitantly through functional recovery tests of the animals. In this study, we tracked iPSCs-derived NSCs migration in the CNS of TBI rats and SCI monkeys in vivo for the first time. Functional recovery tests showed obvious motor function improvement in transplanted animals. These data provide the necessary foundation for future clinical application of iPSCs for CNS injury.[66]

In 2014, type O red blood cells were synthesized at the Scottish National Blood Transfusion Service from iPSC. The cells were induced to become a mesoderm and then blood cells and then red blood cells. The final step was to make them eject their nuclei and mature properly. Type O can be transfused into all patients. Each pint of blood contains about two trillion red blood cells, while some 107 million blood donations are collected globally every year. Human transfusions were not expected to begin until 2016.[67]

The first human clinical trial using autologous iPSCs is approved by the Japan Ministry Health and will be conducted in 2014 in Kobe. iPSCs derived from skin cells from six patients suffering from wet age-related macular degeneration will be reprogrammed to differentiate into retinal pigment epithelial (RPE) cells. The cell sheet will be transplanted into the affected retina where the degenerated RPE tissue has been excised. Safety and vision restoration monitoring is expected to last one to three years.[68][69] The benefits of using autologous iPSCs are that there is theoretically no risk of rejection and it eliminates the need to use embryonic stem cells.[69]

Read this article:
Induced pluripotent stem cell - Wikipedia, the free ...

Read More...

Kidney Failure – MedicineNet

August 21st, 2015 3:42 pm

What are the kidneys?

The kidneys play key roles in body function, not only by filtering the blood and getting rid of waste products, but also by balancing the electrolyte levels in the body, controlling blood pressure, and stimulating the production of red blood cells.

The kidneys are located in the abdomen toward the back, normally one on each side of the spine. They get their blood supply through the renal arteries directly from the aorta and send blood back to the heart via the renal veins to the vena cava. (The term "renal" is derived from the Latin name for kidney.)

The kidneys have the ability to monitor the amount of body fluid, the concentrations of electrolytes like sodium and potassium, and the acid-base balance of the body. They filter waste products of body metabolism, like urea from protein metabolism and uric acid from DNA breakdown. Two waste products in the blood usually are measured; 1) blood urea nitrogen (BUN), and 2) creatinine (Cr). Continue Reading

2/15

Longo DL, et al. Harrisons Principles of Internal Medicine. 18th edition. McGraw Hill Professional. 2011.

Medscape. Renal Failure, Acute.

NIH. Amyloidosis and Kidney Disease. IMAGES:

1. iStock

2. Veer

3. MedicineNet

4. Bigstock

5. iStock

6. iStock

7. iStock

8. iStock

9. iStock

10. Veer

11. Bigstock

12. iStock

13. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH)

14. iStock

Read more from the original source:
Kidney Failure - MedicineNet

Read More...

NIH Clinical Center: Graduate Medical Education (GME …

August 21st, 2015 3:41 pm

Graduate Medical Education (GME): Medical Genetics

Maximilian Muenke, MD

Eligibility CriteriaCandidates with the MD degree must have completed an accredited U.S. residency training program and have a valid U.S. license. Previous training is usually in, but not limited to, Pediatrics, Internal Medicine or Obstetrics and Gynecology.

OverviewThe NIH has joined forces with training programs at the Children's National Medical Center, George Washington University School of Medicine and Washington Hospital Center. The combined training program in Medical Genetics is called the Metropolitan Washington, DC Medical Genetics Program. This is a program of three years duration for MDs seeking broad exposure to both clinical and research experience in human genetics.

The NIH sponsor of the program is National Human Genome Research Institute (NHGRI). Other participating institutes include the National Cancer Institute (NCI), the National Eye Institute (NEI), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Institute of Child Health and Human Development (NICHD), the National Institute on Deafness and Other Communication Disorders (NIDCD), the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), and the National Institute of Mental Health (NIMH). Metropolitan area participants include Children's National Medical Center (George Washington University), Walter Reed Army Medical Center, and the Department of Pediatrics, and the Department of Obstetrics and Gynecology at Washington Hospital Center. The individual disciplines in the program include clinical genetics, biochemical genetics, clinical cytogenetics, and clinical molecular genetics.

The primary goal of the training program is to provide highly motivated physicians with broad exposure to both clinical and research experiences in medical genetics. We train candidates to become effective, independent medical geneticists, prepared to deliver a high standard of clinical genetics services, and to perform state-of-the-art research in the area of genetic disease.

Structure of the Clinical Training Program

RotationsThis three year program involves eighteen months devoted to learning in clinical genetics followed by eighteen months of clinical or laboratory research.

Year 1Six months will be spent on rotation at the NIH. Service will include time spent on different outpatient genetics clinics, including Cancer Genetics and Endocrine Disorders and Genetic Ophthalmology; on the inpatient metabolic disease and endocrinology ward; on inpatient wards for individuals involved in gene therapy trials; and on the NIH Genetics Consultation Service.

Three months will be spent at Children's National Medical Center and will be concentrated on pediatric genetics. Fellows will participate in outpatient clinics, satellite and outreach clinics. They will perform consults on inpatients and patients with metabolic disorders and on the neonatal service. Fellows will be expected to participate in the relevant diagnostic laboratory studies on patients for whom they have provided clinical care.

One month will be spent at Walter Reed Army Medical Center and will concentrate on adult and pediatric clinical genetics. One month will be spent at Washington Hospital Center on rotations in prenatal genetics and genetic counseling.

Year 2 Fellows will spend one month each in clinical cytogenetics, biochemical genetics, and molecular diagnostic laboratories. The remaining three months will be devoted to elective clinical rotations on any of the rotations previously mentioned. The second six months will be spent on laboratory or clinical research. The fellow will spend at least a half-day per week in clinic at any one of the three participating institutions.

Year 3This year will be devoted to research, with at least a half day per week in clinic.

NIH Genetics Clinic (Required)Fellows see patients on a variety of research protocols. The Genetics Clinic also selectively accepts referrals of patients requiring diagnostic assessment and genetic counseling. Areas of interest and expertise include: chromosomal abnormalities, congenital anomalies and malformation syndromes, biochemical defects, bone and connective tissue disorders, neurological disease, eye disorders, and familial cancers.

Inpatient Consultation Service (Required)Fellows are available twenty-four hours daily to respond to requests for genetics consultation throughout the 325-bed hospital. Written consultation procedures call for a prompt preliminary evaluation, a written response within twenty-four hours, and a subsequent presentation to a senior staff geneticist, with an addendum to the consult, as needed. The consultant service fellow presents the most interesting cases from the wards during the Post-Clinic Patient Conference on Wednesday afternoons during which Fellows present interesting clinical cases for critical review. Once a month the fellow presents relevant articles for journal club.

Metropolitan Area Genetics Clinics

Other Clinical Opportunities: Specialty Clinics at NIHThe specialty clinics of NIH treat a large number of patients with genetic diseases. We have negotiated a supervised experience for some of the fellows at various clinics; to date, fellows have participated in the Cystic Fibrosis Clinic, the Lipid Clinic, and the Endocrine Clinic.

Lectures, Courses and SeminarsThe fellowship program includes many lectures, courses and seminars. Among them are a journal club and seminars in medical genetics during which invited speakers discuss research and clinical topics of current interest. In addition, the following four courses have been specifically developed to meet the needs of the fellows:

Trainees are encouraged to pursue other opportunities for continuing education such as clinical and basic science conferences, tutorial seminars, and postgraduate courses, which are plentiful on the NIH campus.

Structure of the Research Training ProgramFellows in the Medical Genetics Program pursue state-of-the-art research related to genetic disorders. Descriptions of the diverse interests of participating faculty are provided in this catalog. The aim of this program is to provide fellows with research experiences of the highest caliber and to prepare them for careers as independent clinicians and investigators in medical genetics.

Fellows entering the program are required to select a research supervisor which may be from among those involved on the Genetics Fellowship Faculty Program. It is not required that this selection be made before coming to NIH.

In addition to being involved in research, all fellows attend and participate in weekly research seminars, journal clubs and laboratory conferences, which are required elements of each fellow's individual research experience.

Program Faculty and Research Interests

Examples of Papers Authored by Program Faculty

Program GraduatesThe following is a partial list of graduates including their current positions:

Application Information

The NIH/Metropolitan Washington Medical Genetics Residency Program is accredited by the ACGME and the American Board of Medical Genetics. Upon successful completion of the three year program, residents are eligible for board certification in Clinical Genetics. During the third residency year, residents may elect to complete either (a) the requirements for one of the ABMG laboratory subspecialties, such as Clinical Molecular Genetics, Clinical Biochemical Genetics or Clinical Cytogenetics, or (b) a second one year residency program (e.g., Medical Biochemical Genetics).

Candidates should apply through ERAS, beginning July 1 of the year prior to their anticipated start date. Candidates with the MD or MD and PhD degree must have completed a U.S. residency in a clinically related field. Previous training is usually in, but not limited to, Pediatrics, Internal Medicine or Obstetrics and Gynecology. Four new positions are available each year. Interviews are held during August and September.

Electronic Application The quickest and easiest way to find out more about this training program or to apply for consideration is to do it electronically.

The NIH is dedicated to building a diverse community in its training and employment programs.

NOTE: PDF documents require the free Adobe Reader.

View post:
NIH Clinical Center: Graduate Medical Education (GME ...

Read More...

FDA: Stem Cells from Your Own Fat are a Drug …

August 21st, 2015 3:41 pm

FDA and Adipose Stem Cells

Several years ago we became fascinated with the potential of adipose stem cells for both cosmetic and medical purposes. However, we soon discovered that nothing in the written FDA guidelines specifically addressed the use of autologous adipose stem cells. Thus began our journey for an answer. In June 2009, we sent a letter to the FDA asking for a position statement on adipose stem cells. Our request focused specifically on autologous, freshly isolated, adipose stem cells for use in soft tissue reconstruction. These stem cells are from your own fat, for your own usage, and not culture expanded .

After a very long wait, we recently received a written response from the FDA. First, a little bit of background for any stem cell newbies.

Human cells and tissues intended for human transplant are regulated by the FDA. The FDA maintains two levels of classifications for cells and tissues: 1) HCT/P 361 and 2) HCT/P 351.

uncultured stem cells from my own fat. a tissue or a drug?

Category 361 is summarized as a tissue. A subset of category 361 includes procedures that take place in the same operative session . These same session operative procedures are exempt from FDA regulation. These procedures fall under the jurisdiction of practice of medicine. Surgeons follow guidelines and laws established by state medical boards and their professional societies, but are not controlled by the FDA. The other category, 351, is the drug/biologic category, which is completely regulated by the FDA. It is infinitely easier and faster to bring medical procedures which fall under 361 guidelines to a physicians practice compared to the 351 category.

Examples of tissues and cell types in each of the two FDA categories are as follows:

Our request simply asked the FDA if SVF (not culture expanded) adipose stem cells for autologous usage in soft tissue reconstruction in the same operative session fall under the tissue or the drug classification.

Last month we finally received a response from the FDA. Close your eyes and imagine a train coming to a screeching halt.It was not the answer we were hoping for.

Your own autologous adipose stem cells from the stromal vascular fraction (SVF) used for reconstruction and repair in the same operative session are considered by the FDA to be a DRUG.

What is interesting to us is that hematopoeitic stem cells and IVF procedures are both not classified as drugs, but uncultured fat stem cells are. The FDAs main consideration for classifying adipose stem cells as a drug was because the cells are more than minimally manipulated. So what about IVF procedures? Is creating a human from a sperm and an egg only a minimal manipulation?

To make a long story short, the drug classification will add several years to the equation for surgeons manually performing therapies with adipose stem cells. In our opinion, the FDAs new position on adipose stem cells will likely have two effects:

The new FDA position means that any surgeon who wishes to use the SVF fraction (centrifuged adipose tissue plus collagenase to yield higher numbers of stem cells) must now submit an IND (Investigational New Drug Application) to the FDA and have an approved IRB (Institutional Review Board) with a hospital. This submittal process is extremely time consuming, requires many resources, and is expensive. Some surgeons will simply move their trials, therapies, and clinics offshore.

This FDA position essentially takes surgeons performing manual processing with collagenase in their ORs out of the physician practice equation for the near future. Therefore, this FDA position likely benefits adipose stem cell device makers who process adipose tissue as they are much further along in the approval process with the FDA. Device makers will likely be first to market with their autologous stem cell processes.

No. But it is not out of the question that the FDA may put fat grafting under the magnifying glass in the future.

Fat grafting uses fat obtained from liposuction. The fat is harvested with a cannula, decanted, and processed via centrifugation techniques. A portion of the processed fat is then reinjected into areas for cosmetic enhancement. The enhancements primarily involve restoring volume and fullness.

Although fat grafting does not use collagenese to isolate the stem cells, the dirty little secret is that high density fat grafting does contain small numbers of stem cells. These stem cells are found in the fat pellet separated via centrifugation after the tumescent liposuction procedure. The mechanical forces of the liposuction procedure act to separate the mesenchymal stem cells from the blood vessels. This is all within the great science of stem cell activation. Plastic surgeons have recently come to understand that the small population of stem cells in the fat pellet provide more vascularity to fat grafts. High density fat grafting results in long lasting fat grafts and healthier looking skin.

by Leeza Rodriguez CosmeticSurg Staff Writer Leeza Rodriguez on Google +

Posted in Fat Stem Cells

Read the rest here:
FDA: Stem Cells from Your Own Fat are a Drug ...

Read More...

Washington, DC – American Diabetes Association

August 21st, 2015 3:41 pm

102

Share:

People in the DMV region are increasingly feeling the effects of diabetes as thousands of people suffer from the disease, and many others may have diabetes and don't know it! It is estimated that one out of every three children born after 2000 in the United States will be directly affected by diabetes.

That is why the American Diabetes Association's Washington office is so committed to educating the public about how to stop diabetes and support those living with the disease.

We are here to help.

The American Diabetes Association has established a program to train volunteers to implement diabetes/wellness education workshops in the Washington DC Metro Area. The idea is to give people who are passionate about health promotion the resources they need to act by leading workshops on diabetes/wellness in their communities. These workshops will help get the word out about prevention strategies and the dangers of uncontrolled diabetes. The Association also hopes these workshops become places community members can exchange ideas about what they are doing to stay healthy. The ideal audience will be people that you know from your communities. Ambassador volunteers have the opportunity to motivate friends, family and members of the community to join the fight to Stop Diabetes!

If you, or someone you know, is interested in serving as an American Diabetes Association Ambassador, please contact Tiffany Ingram at 202-331-8303 ext. 4540 or tingram@diabetes.org.

We welcome your help.

Your involvement as an American Diabetes Association volunteer whether on a local or national level will help us expand our community outreach and impact, inspire healthy living, intensify our advocacy efforts, raise critical dollars to fund our mission, and uphold our reputation as the moving force and trusted leader in the diabetes community.

Find volunteer opportunities in our area through the Volunteer Center.

Read the original:
Washington, DC - American Diabetes Association

Read More...

Stem Cell Treatment & Cure in India | GIOSTAR

August 20th, 2015 7:41 am

Mr. Deven Patel President, CEO and Co-founder

Mr. Deven Patel is the President, CEO and Cofounder of GIOSTAR. He has also served as the CEO, President and Board of Directors in highly comprehensive environment of Healthcare Management, Architectural, General Construction, Alternative Energy and multifaceted Internet industries. Apart from serving as CEO and President, Mr. Patel has also served in a key positions of several public and private organizations such as Asian & Pacific American Coalition, Asian Outreach Committee Children Memorial Hospital San Diego, Federation of India Associations, National Federation of Indian American Association, CRY America, Global Organization of People of Indian Origin, Kelly Dean Citizens Awareness Circle, Phillip Redmond Foundation, Lockport Planning Commission.

During his early career, Mr. Patel was involved with the design and construction of several healthcare projects as an architect and a builder. He has also served as a partner for an assisted living and wellness center fostering care for senior citizens suffering from special conditions.

Dr. Anand Srivastava, M.S., Ph.D. Chairman, Cofounder and Chief Scientific Officer

Dr. Anand Srivastava has been associated with leading universities and research institutions of USA. In affiliation with University of California San Diego Medical College (UCSD), University of California Irvine Medical College (UCI), Salk Research Institute, San Diego, Burnham Institute For Medical Research, San Diego, University of California Los Angeles Medical College (UCLA), USA has developed several research collaborations and has an extensive research experience in the field of Embryonic Stem cell which is documented by several publications in revered scientific journals.

Dr. Anand Srivastava's success has its root in his unique background of expertise in Stem cell biology, protein biochemistry, molecular biology, immunology, in utero transplantation of stem cell, tissue targeting, gene therapy and clinical research. There are many scientists who can work in a narrowly defined field but few have broad and multidisciplinary experience to carry out clinical research in a field as challenging as Stem cell biology, cancer and gene therapy field. Dr. Anand Srivastava's wide-spectrum expertise is rare in clinical research and perfectly crafted to fit ideally with the GIOSTAR projects for Stem cell transplant, cancer and gene therapy research.

Dr. Anand Srivastava's research work has been presented in various national and international scientific meetings and conferences in India, Japan, Germany and USA. His research articles have been published in peer reviewed medical scientific journals and he has been cited extensively by other scientists. Dr. Anand Srivastava's expertise and scientific achievements were recognized by many scientific fellowships and by two consecutive award of highly prestigious and internationally recognized, JISTEC award from Science and Technology Agency, Government of Japan. Also, his research presentation was awarded with the excellent presentation award in the "Meeting of Clinical Chemistry and Medicine, Kyoto, Japan. He has also expertise in genetic engineering research, developmental biology, immunology, making the transgenic animals and his extraordinary expertise of searching and characterizing the new genes are ideal for our ongoing projects of developing the effective treatments for many degenerative diseases, genetic diseases and cancer. Based on his extraordinary scientific achievements his biography has been included in "WHO IS WHO IN AMERICA" data bank two times, first in 2005 and second in 2010.

Dr. Anand Srivastava's Long Profile

Dr. Anand Srivastava has been associated with leading universities and research institutions of USA. In affiliation with University of California San Diego Medical College (UCSD), University of California Irvine Medical College (UCI), Salk Research Institute, San Diego, Burnham Institute For Medical Research, San Diego, University of California Los Angeles Medical College (UCLA), USA has developed several research collaborations and has an extensive research experience in the field of Embryonic Stem cell which is documented by several publications in revered scientific journals.

Dr. Srivastava is a Chairman and Cofounder of California based Global Institute of Stem Cell Therapy and Research (GIOSTAR) headquartered in San Diego, California, (U.S.A.). The company was formed with the vision to provide stem cell based therapy to aid those suffering from degenerative or genetic diseases around the world such as Parkinson's, Alzheimer's, Autism, Diabetes, Heart Disease, Stroke, Spinal Cord Injuries, Paralysis, Blood Related Diseases, Cancer and Burns. GIOSTAR is a leader in developing most advance stem cell based technology, supported by leading scientists with the pioneering publications in the area of stem cell biology. Companys primary focus is to discover and develop a cure for human diseases with the state of the art unique stem cell based therapies and products. The Regenerative Medicine provides promise for treatments of diseases previously regarded as incurable.

Giostar is worlds leading Stem cell research company involved with stem cell research work for over a decade. It is headed by Dr Anand Srivastava, who is a world-renowned authority in the field of Stem cell biology, Cancer, Gene therapy. Several governments including USA, India, China, Turkey, Kuwait, Thailand and many others seek his advice and guidance on drafting their strategic & national policy formulations and program directions in the area of stem cell research, development and its regulations. Under his creative leadership a group of esteemed scientists and clinicians have developed and established Stem cell therapy for various types of Autoimmune diseases and blood disorders which are being offered to patients in USA and soon it will be offered on a regular clinical basis to the people around the globe. Giostar is already the official collaborator of Government of Gujarat, India by setting up a state of art stem cell treatment hospital in Surat civil hospital for the less fortunate tribal populace of the southern belt of Gujarat suffering from Sickle Cell Anemia. Several state Governments in India is looking for a collaborative efforts of GIOSTAR and Dr. Anand to develop stem cell transplant program in their respective states.

SUMMARY OF DR. SRIVASTAVAS WORK:

Dr. Anand Srivastavas success has its root in his unique background of expertise in Stem cell biology, protein biochemistry, molecular biology, immunology, in utero transplantation of stem cell, tissue targeting, gene therapy and clinical research. There are many scientists who can work in a narrowly defined field but few have broad and multidisciplinary experience to carry out clinical research in a field as challenging as Stem cell biology, cancer and gene therapy field. Dr. Anand Srivastavas wide-spectrum expertise is rare in clinical research and perfectly crafted to fit ideally with the GIOSTAR projects for Stem cell transplant, cancer and gene therapy research.

Dr. Anand Srivastavas research work has been presented in various national and international scientific meetings and conferences in India, Japan, Germany and USA. His research articles have been published in peer reviewed medical scientific journals and he has been cited extensively by other scientists. Dr. Anand Srivastavas expertise and scientific achievements were recognized by many scientific fellowships and by two consecutive award of highly prestigious and internationally recognized, JISTEC award from Science and Technology Agency, Government of Japan. Also, his research presentation was awarded with the excellent presentation award in the Meeting of Clinical Chemistry and Medicine, Kyoto, Japan. He has also expertise in genetic engineering research, developmental biology, immunology, making the transgenic animals and his extraordinary expertise of searching and characterizing the new genes are ideal for our ongoing projects of developing the effective treatments for many degenerative diseases, genetic diseases and cancer. Based on his extraordinary scientific achievements his biography has been included in WHO IS WHO IN AMERICA data bank two times, first in 2005 and second in 2010.

POSITIONS HELD BY DR. SRIVASTAVA (1997 to Date):

1. Chairman & Cofounder (2008-till date): Global Institute of Stem Cell Therapy and Research, San Diego, CA. USA. 2. Associate Professor: Department of Cellular and Molecular Biology, School of Medicine, University of California Los Angeles (UCLA), CA, USA. 3. Visiting Senior Scientist: Department of Stem Cell Biology, Burnham Research Institute for Medical Science, San Diego, CA, USA. 4. Senior Scientist: Stem Cell Core Facility, The Salk Research Institute, La Jolla, CA, USA. 5. Associate Professor: Department of Stem Cells and Neurology, School of Medicine, University of California Irvine (UCI), Irvine, CA, USA. 6. Assistant Professor: Cancer Center, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA 7. Honorary Visiting Professor: National Research Institute, Nansei, Mie, JAPAN.

SPECIAL STEM ISSUES OF JOURNALS DEVOTED TO DR. SRIVASTAVA

1. Current Topics of Medicinal Chemistry among top five medicinal chemistry journal devoted its special issue of stem cell to Dr. Srivastava in 2010. 2. Stem Cell International devoted its special issue on stem cells to Dr. Srivastava in 2012.

EXPERT SCIENTIFIC REVIEWER FOR LEADING JOURNALS OF MEDICINE:

Dr. Srivastava is the member of the several scientific review committees and reviewing the research grants. He has written several review articles and scientific manuscripts. He is also the reviewer and editor of several scientific journals.

1. Advances in Stem Cells 2. Current pharmaceutical Design 3. Current Topics in Medicinal Chemistry 4. Stem Cells 5. Stem Cell International 6. Current in Cell Medicine 7. Journal of Stem Cell Research and Therapy 8. Conference Papers in Molecular Biology 9. Journal of Pharmaceutics 10. Current Pharmaceutical Biotechnology 11. Open Journal of Organ Transplant Surgery 12. Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry 13. Stem Cells and Cloning: Advances and Applications 14. Blood and Lymphatic Cancer: Targets and Therapy 15. Degenerative Neurological and Neuromuscular Disease 16. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 17. Immuno Targets and Therapy 18. Current Vascular Pharmacology 19. Gastrointestinal Cancer: Targets and Therapy 20. Journal of Bioengineering and Biomedical Sciences 21. The Application of Clinical Genetics 22. Journal of Tissue Science & Engineering 23. Neuropsychiatric Disease and Treatment 24. Current Tissue Engineering 25. Hepatic Medicine: Evidence and Research 26. Current Drug Discovery Technologies 27. Current Bioactive Compounds 28. Transplant Research and Risk Management 29. Biosimilars 30. Current Drug Delivery 31. Journal of Experimental Pharmacology 32. Open Journal of Regenerative Medicine 33. Current Diabetes Reviews 34. Journal of Fertilization: In Vitro 35. Clinical and Translational Medicine

FELLOWSHIPS/ AWARDS:

2003 Awarded with NIMA (National Integrated Medical Association) Outstanding Scientist award from NIMA, India. 2003 Awarded with Excellent Scientist Award from Bharat Vikas Parisad, India for continuous excellent performance in the life science research. The 18th International Congress of Clinical Chemistry and Laboratory Medicine Kyoto Excellent Poster Award, Kyoto, Japan. 2002 Best Scientist Award for excellent contribution in the field of life science research from Kayastha Maha Sabha, Varanasi, India. 1998-2000: Long-term STA/JISTEC Award (Science and Technology Agency/Japan International Science and Technology Exchange Center, JAPAN)- Fellowship award for two year from government of Japan. 1997-1998: Short-term STA/JISTEC Award (Science and Technology Agency/Japan International Science and Technology Exchange Center, JAPAN)- Fellowship Award for three months from government of Japan (October 1997- January 1998). 1997-1998: Awarded with Research Associate-ship award from CSIR (Council of Scientific and Industrial Research) Government of India. 1990-1995: CAS (Center of Advanced Study) Award in Zoology. A doctoral research fellowship award from Government of India.

THE FOLLOWING SUMMARIZES DR. SRIVASTAVAS MAJOR SCIENTIFIC ACHIEVEMENTS:

1. Dr. Srivastava developed the animal material free and serum free Human embryonic Stem cell culture condition to use the Human ES cells to treat the human diseases. 2. Dr. Srivastava for the first time showed that if the ES cell injected into developing fetuses in utero takes participation in development of all body of a living organism. 3. For the first time he showed that ES cell is better accepted by the transplanted animals in comparison to adult stem cells. 4. For the first time he showed the way to generate the high number of pre-erythrocytes using glucocorticoid hormone. Which may be use to treat several blood diseases. 5. For the first time Using ES cells he generated the high number of CD34+ expressing a kind of hematopoietic stem cell which can be used to treat several autoimmune diseases, immune reconstitution and blood diseases. 6. For the first time he showed the molecular mechanism behind the regulation of ES cell differentiation into hematopoietic cells. 7. For the first time he showed that ES cells automatically recognize the damage portion of the brain and can be used to repair the damage brain. 8. For the first time he showed that ES cell can be used to treat the Crohns disease a kind of colon cancer. 9. For the first time, he demonstrated that the mammalian fetuses can be programmed inside the mother uterus to face the challenges of the future possible infection. This finding is very important to develop the advanced therapy for any fatal disease such as cancer and AIDS. Utilizing these techniques, fetuses can be given information about all possible infections and the capability to counter those infections and disease. 10. He has demonstrated for the first time that it is easy to correct the genetic diseases in developing fetus in utero in comparison to adult animals. 11. He has shown for the first time that the lung cancer cells can be treated with the help of plant product curcumin and can be used as effective cancer therapeutic agent. He also demonstrated that how curcumin regulated the genes related to programmed death of cancerous cell. Finding help in development of non-toxic, less expensive, easily available drug for cancer. 12. The biggest problem in the treatment of cancer and other diseases is the non-specific distribution of medicine and toxic chemotherapeutic agents to healthy tissues. Dr. Srivastava for the first time developed a technique that can help in targeting the diseased tissues using the tissue receptor binding peptide ligands. These techniques can be used for targeted delivery of drugs and genes (in case of genetic disease) to the specific fetal tissues inside the mother uterus without harming the normal tissues of mother and fetus. 13. For the first time, He demonstrated the insertion of foreign pancreas enzyme specific gene promoter into the developing animals embryo and successfully shown the incorporation and regulation of pancreatic enzyme in the control of inserted gene. This is very important finding and proves that the defective genes can be replaced easily and effectively by the normal functional genes during the development of animals. This finding will help in the change of defective genes of insulin hormone, which is present in the pancreas of diabetic patients and many other genetic diseases also. 14. For the first time, He reported the gene sequence of all important pancreatic enzymes (three isoform of trypsinogen, two isoforms of chymotrypsinogen, four types of elastases, three forms of carboxypeptidases and lipase) and its evolutionary relationship with human. Also,he reported first time the regulation of digestion by these enzymes in the alimentary canal during digestion of proteins in the developing animals. 15. For the first time, He cloned and sequenced two types of human homologue of Vitamin D receptor gene from Japanese flounder, which is most important receptor, which help in the development of bone. Before my report, characters of this gene were not known in Japanese flounder. This finding helped in the understanding of the genetic evolution of mammals. 16. For the first time, he cloned and sequenced the homologue of human placental protein, PP11, and mouse T cell specific, Tcl-30, in pancreas of Japanese flounder, this study suggest that these genes evolved from the fish pancreas and in fish it helps in synthesizing the digestive enzymes but during the evolution its function got changed and work differently in the mammalian placenta. This was very important finding related to this rare gene. 17. For the first time, He has shown that the Hox and sonic hedgehog genes regulate the development of bones and respiratory organs. He also demonstrated that how these genes could be regulated artificially. This was very important finding because it gives the idea that how genes regulate the development of organs. 18. For the first time, He has purified and characterized the human homolog of AAT and ASPT enzymes, which is the basic clinical marker in all the infection and major marker of liver function test. 19. For the first time, he demonstrated the co-ordination of AAT and ASPT enzymes in the production of energy through the amino acids after aerobic respiration. 20. For the first time, he has shown that according to metabolic demand of the body AAT and ASPT genes synthesized additional forms of its isoform to cope up with the extra energy demand and work as an on and off switch.

DR. SRIVASTAVAS EXCELLENCE IN SEVERAL ADVANCED BIOLOGICAL TECHNIQUES:

Techniques related to Human Embryonic Stem Cell Human Embryonic Stem cell culture, Serum free and feeder free hES cell culture, in vitro differentiation of hES cells into neural cells, in vitro differentiation of hES into hematopoietic cells and red blood cells under the control of cytokines. Gene regulation studies using RT-PCR, Real time PCR, Northern blot, Southern blot and in situ hybridization, immunohistochemistry during the differentiation, Cell cycle regulation studies during differentiation of hES cells into hematopoietic and neural cells. Use of siRNA for blocking a specific cell cycle. FACS analysis of differentiated cells and cell shorting. ES cell transfection.

In vivo studies with ES cells Created a mouse model for study the effect of ES cells on damaged brain. Injection of ES cells into mouse brain, tail vein injection, in vivo tracking of ES cell migration. Used the ES cells for repair of damaged brain. Gene and protein regulation during neural cell differentiation. Studies on transcription factors. Histochemical analysis of transplanted ES cells using fluorescent, confocal microscopy and deconvolution microscopy. Created a mouse model for Crohns disease. In vivo migration of ES cells into diseased portion of intestine. Studies on inflammatory cytokines during the repair of Crohns disease with ES cell. Gene regulation studies during this process. Elisa assays for the cytokines. Stem cell niche interaction.

Created in utero mouse model for ES cells transplantation. Used this model to make chimeric animals. Distribution and differentiation of ES cells into developing mouse embryo. FACS and magnetic shorting of ES cells derived CD31+, CD34+, CD45+ cells from the transplanted animal tissues. Gene and protein regulation of in vivo differentiating cells.

Created immunocompromised mouse model to study the effect of in vivo immune component on T7 phage virus. In vivo selection of tissue specific receptor binding peptide using in vivo biopanning method. Tissue targeted gene delivery to correct the blood related genetic diseases. Gene cloning, gene sequencing, synthesis of RNA probes. Protein and enzyme biochemistry Protein assay, peptide structure and amino acid sequencing, Enzyme assay, Ultra centrifugation, Ion exchange chromatography, column chromatography, HPLC, Protein and gene regulation during the development. Enzyme kinetics, Enzyme inhibition, SDS gel electrophoresis, Protein characterization.

Selection of cell receptor binding peptide and Phage display technology

- Selection of tissue receptor binding peptides using T7 phage display system. - In vivo and in vitro biopanning for selection of receptor binding peptides sequences. - Characterization of targeted cells and tissues using histochemistry and gene expression analyses. - In vivo delivery of drugs and genes to targeted tissues using microinjection.

Cancer Research

- Studying the role of pharmaceutical agent curcumin as an anti-lung cancer drug and develop it as a non-toxic cancer drug. - Role of apoptotic genes on the lung cancer cell lines. - Development of tissue targeted delivery protocol of pharmaceuticals agents for cancer and genetic diseases

Fluorescence techniques for nucleic acid sequence detection: Clinical and diagnostic applications

- Fluorescent labeling of DNA and RNA probes. - Fluorescence resonance energy transfer (FRET) protocols for DNA and RNA sequence. detection in real time (Sequence Detection System 7700, ABI, Perkin Elmer) - FRET protocols for monitoring ribozyme reactions and kinetics in real time (TaqMan, SDS 7700, ABI, Perkin Elmer). - Accessibility studies for DNA and RNA target sequences using FRET. - Fluorescence polarization protocols for monitoring ribozyme reactions (POLARstar, BMG, GmbH) and for DNA and RNA sequence detection. - Sequence detection with Syber green dye in real time quantitative PCR by Light Cycler (Roche Diagnostics, USA). - Single nucleotide polymorphism detection in real time with LightCycler hybridization probes (Roche Diagnostics, USA).

Gene detection technology: Research and Clinical applications

- Preparation of radio labeled & fluorescent labeled RNAs (ribozymes and target substrates). - In vitro transcription of RNA. - Expression of ribozymes in yeast. - Isolation and purification of cellular RNA. - RNase Protection Assay. - Kinetic characterization of ribozymes & binding kinetics using fluorescence methods. - Designing, synthesis and characterization of allosteric ribozymes induced by small drug ligands (such as theophylline & caffeine).

In utero transplantation: Clinical Research to cure the fetal genetic diseases

- Developed in utero microinjection techniques to transplant the bone marrow and stem cells to cure blood related genetic disease. - Harvest the fetal liver, bone marrow and mouse embryonic stem cells for transplantation. - Culture mouse embryonic stem cell and in vitro differentiation into the blood cells. - Fractionation of cells using flow cytometry techniques.

Standard Molecular biology techniques - Standard and site directed mutagenesis polymerase chain reaction (PCR). - Preparation and purification of plasmids. - Transformations and Transfection of DNA. - Cloning of DNA. - Solid phase synthesis of DNA (Gene Assembler, Pharmacia). - DNA sequencing & fragment analyses (ABI 310 Gene Sequencer, Perkin Elmer). - Quantitation of DNA, RNA and proteins. - Mammalian cell culture and yeast culture. - Gel electrophoresis (polyacrylamide and agarose). - Capillary gel electrophoresis (ABI 310 Gene Sequencer, Perkin Elmer). - Column/ gel/ thin layer chromatography. - Autoradiography by phosphorimager (Storm, Molecular Dynamics, USA). - High Performance Liquid Chromatography (HPLC). - Preparation and purification of chemical reagents & solvents. - Enzyme/ Protein/ purification and characterization. - Isolation of Genomic DNA, Genomic library Construction. - Radioimmunoassay.

General molecular and biochemical techniques

mRNA preparation and purification, Primer designing, Real-time PCR, RT-PCR, DNA cloning, DNA sequencing, Isolation of Genomic DNA, Genomic library Construction, Transformation, Transfection, Cell culture, Plasmid purification, RNA probe making, Different kinds of microscopy, In situ hybridization, Southern blotting, Northern blotting, Western blotting, Spectrophotometery, In utero-microinjection, Column chromatography, HPLC, PAGE, Agarose gel-electrophoresis, Enzyme assay, Protein assay, Enzyme/ Protein/ DNA purification, Histology, Phage display for tissue targeting, Radio-immunoassay,

INVITED SPEAKER AND PRESENTATIONS OF DR. SRIVASTAVAS SCIENTIFIC FINDINGS IN NATIONAL AND INTERNATIONAL CONFERENCES:

1. Srivastava A.S. Invited Speaker, STEM 2013, 9 Th Annual Conference on Biotechnology - Focusing On Latest Trend in Stem Cells, Regenerative Medicine and Tissue Engineering Mumbai, India, January 2013.

2. Srivastava A.S. "International Conference on Regenerative and Functional Medicine" (Regenerative Medicine-2012), San Antonio, USA. November 2012.

3. Sriavstava A.S. 2nd International Congress on Neurology & Epidemiology; "Impact of drugs on the natural history of neurological diseases". Nice, France. November 2012.

4. Srivastava A.S. Invited Speaker, International Expo and Conference on Analytrix & HPLC, Chicago, USA. October 2012.

5. Srivastava A.S. Invited Speaker at "International Conference on Emerging Cell Therapies" (Cell Therapy-2012) Chicago, USA. October 2012.

6. Srivastava A.S. Invited Speaker, 6th Neurodegenerative Conditions Research and Development Conference San Francisco, CA, USA. September 2012.

7. Srivastava A.S. 8th International Congress on Mental Dysfunction & Other Non-Motor Features In Parkinson's Disease and Related Disorders, Berlin, Germany. May 2012.

8. Srivastava A.S. International Conference and Exhibition on Neurology & Therapeutics Las Vegas, USA. May 2012.

9. Srivastava A.S. Montreal International Biotechnology Forum, Montreal, Quebec, Canada. May 2012.

10. Srivastava A.S. Invited Speaker, International Association of Neurorestoratology (IANR) V and 9th Global College Neuroprotection and Neuroregeneration (GCNN) conference with the 4th International Spinal Cord Injury Treatment & Trial Symposium (ISCITT) Xian City, China. May 2012.

11. Srivastava A.S. International Forum on the Mediterranean Diet, Ravello - Amalfi Coast, Italy. March 2012

12. Srivastava A.S. Hong Kong international Stem Cell Forum 2012, Hong Kong. February 2012.

13. Srivastava A.S. 4th International Conference on Drug Discovery and Therapy" (4th ICDDT 2012) Dubai, UAE, February 2012.

14. Srivastava A.S. Evolving Strategies in Hematopoietic Stem Cell Transplantation- San Diego, USA. February 2012.

15. Srivastava A.S. Hebei International Biotechnology Forum; Shijiazhuang, Hebei, China. November 2011

16. Srivastava A.S. 3rd International Conference on Drug Discovery and Therapy. Regenerative Medicine. Dubai, UAE. February 2011.

17. Srivastava A.S. 3rd Annual Congress of Regenerative Medicine & Stem Cell-2010, Shanghai, China. December 2010.

18. Srivastava A.S. 1st Annual Tetra-Congress of MolMed-Personal Medicine Congress 2010, Shanghai, China. November 2010.

19. Srivastava A.S. International Association of Neurorestoratology(IANR), American Journal of Neuroprotection and Neuroregeneration, Beijing, China. October 2010.

20. Srivastava A.S. EPS Global International Neuroscience Forum. Nha Trang, Vietnam. October 2010.

21. Srivastava A.S. EPS Global International Neuroscience Forum, Guangzhou, China. September 2010.

22. Srivastava A.S. 4th Academic Congress of International Chinese Neurosurgical Sciences. Chengdu, China. June 2010.

23. Srivastava A.S. 1st Annual World Congress of Immunodiseases and Therapy (WCIT 2010). Beijing, China. May 2010.

24. Srivastava A.S. 3rd PepCon-2010 - Protein Misfolding and Neurodegeneration. Beijing, China. March 2010

25. Srivastava A.S. Potential use of ES cells in hematopoietic and neural diseases. City of Hope National Medical Center, Duarte, California, USA. January, 2009.

26. Srivastava A.S. Differentiation of Human Embryonic Stem cell into erythrocyte and neural precursor cells: Its potential application. Cleveland Clinic, Cleveland, Ohio, USA, December, 2008.

27. Srivastava A.S. Potential of ES cell in repair of Hematopoietic and neural diseases. International Conference in Stem cell, Kerala, India, August, 2008.

28. Srivastava A. S., Singh U. and Carrier E. Embryonic stem cell improve colitis and decrease IL- 12 levels in the colitis mice. BMRP Fourth Annual Investigator Meeting, Los Angeles, USA. 2006

29. Carrier E., Shermila Kausal and Srivastava A. S. Gene Regulation During the Erythrocytic Differentiation of Embryonic Stem Cells. Blood (ASH Meeting), 2005.

30. Carrier E., Shermila Kausal and Srivastava A. S. Differentiation of Human ES cell into the Hemangioblast. Blood (AHS Meeting), 2005.

31. Srivastava A.S., Zhongling F., Victor A., Kim H.S. and Carrier E. Repair of Crohns disease with embryonic stem cells. Broad Medical Research Program, Third Annual Investigator Meeting, Los Angeles, CA, USA, 2005.

32. Srivastava A.S., Shenouda S. and Carrier E. Damaged murine brain induces ES cells into migration and proliferation. Blood:104, 779a, 2004.

33. Srivastava A.S., Shenouda S. and Carrier E. Increased expression of OCT4,SOX2 and FGF4 genes following injection of embryonic stem cell into damaged murine brain. American Society of Gene Therapy, 2004.

34. Srivastava A.S. and Carrier E.; Distribution and stability of T7 phage in mouse blood and tissues. Molecular Therapy:7, 230, 2003.

35. Moustafa M., Srivastava A.S., Nedelcu E., Minev B., Carrier E.; Chimerism and tolerance post in utero transplantation with ontogenically different sources of stem cells. 32nd annual meeting of the international society for Experimental Hematology, 31, 274, 2003 (Paris, France).

36. Steve S., Srivastava A.S. Carrier E.; In vivo survival of hematopoietic stem cell in mouse brain.11th international symposium on recent advances in Stem cell transplantation, 89-90, 2003 (San Diego, USA).

37. Srivastava A.S., Carrier E.; Distribution and stability of T7 phage in mouse. 11th international symposium on recent advances in Stem cell transplantation, 93, 2003 (San Diego, USA).

38. Elena N., Srivastava A.S., Varki N.M., Assatourian G. and E. Carrier; Embryonic stem cells survive and proliferate after intraperitoneal In utero transplantation and produce teratocarcinomas. Blood:160b, 2002.

39. Srivastava A.S and E. Carrier; In utero targeting the fetal liver by using T7 phage display system. Blood:489b, 2002.

40. Srivastava A.S. and E. Carrier; Factor responsible for in vivo neutralization of T7 phage display vector in the blood of mice. Blood:489b, 2002.

41. Srivastava A.S. and E. Carrier; Distribution and stability of T7 phage in the mouse after intravenous administration. ICCC, Kyoto, Japan. (October 2002).

42. Srivastava A.S., T. Kaido and E. Carrier; Immunological factors that affect the in vivo fate of T7 phage in the mouse. Molecular Therapy:5, 713, 2002.

43. Srivastava A.S., E. Nedelcu and E. Carrier; Engraftment of murine embryonic stem cells after in utero transplantation. Molecular Therapy:5, 1132, 2003.

44. M. Rizzi, T. Kaido, M.Gerloni, K.Schuler, A. S. Srivastava, E.Carrier and M. Zanetti; Neonatal T cell immunity by in utero immunization. AAI 2002 annual meeting, April 20 - 24, New Orleans, Experimental Biology 2002 sponsored by 7 FASEB societies.

45. Srivastava A.S., T. Kaido and E. Carrier; Kinetics of T7 phage neutralization in the blood of normal and immunodeficient mice. Blood:407, 2001.

46. Hassan S., Jody D., Srivastava A.S., T.H. Lee, M.P. Busch, Carrier E.; Immunity without microchimerism after in utero transplantation of Hematopoietic stem cell. Blood:320, 2001.

47. Srivastava A.S., Felix Tinkov, T. Friedmann and E. Carrier; Detection of T7 phage in the fetus after Systemic administration to pregnant mice. Molecular Therapy:4, 760, 2001.

48. Pillai G.R., Srivastava A.S., Hassan S., Carrier E. Differential sensitivity of human lung cancer cell lines to curcumin. 9th Annual International Symposium on Recent Advances in Hematopoietic Stem cell Transplantation. USA. 2001.

49. Hassan S., Jody D., Srivastava A.S., Carrier E.; The role of I-E molecule on survival rate and tolerance after in utero transplantation. The 42 ASH meeting, San Francisco, USA. 2000.

50. Suzuki T., Srivastava A.S., Kurokawa T.; Identification of cDNA encoding two subtypes of vitamin D receptor in flounder, Paralichthys olivaceus. Meeting of the Japanese Society of Fisheries Science, April 2 - 4, 2000, Tokyo, JAPAN.

51. Srivastava A.S., Suzuki T., Kurokawa T., Kamimoto M., Nakatsuji T.; GFP expression in pancreas of developing fish embryo under control of Carboxypeptidase A promoter. Plant and Animal Genome-VIII (PAG-VIII), Conference, San Diego, California, USA. January 9th to 12th, 2000.

52. Srivastava A.S., Suzuki T., Kurokawa T.; Molecular cloning of serine protease cDNAs from pancreas of Japanese flounder, Paralichthys olivaceus. Meeting of the Japanese Society of Fisheries Science, Tokyo, JAPAN. 1999.

53. Suzuki T., Srivastava A.S., Kurokawa T.; Cloning of FGFRs from Flounder embryos, and their expression during axial skeletal development. 32nd Annual Meeting of the Japanese Society of Developmental Biologists. JAPAN. 1999.

54. Suzuki T., Srivastava A.S., Kurokawa T.; Expression of Signal molecules during axial skeleton development in Japanese flounder. Meeting of the Japanese Society of Zoological Science. JAPAN. 1999.

55. Suzuki N., Suzuki T., Srivastava A.S., Kurokawa T.; cDNA cloning and expression analysis of receptor for calcitonin and calcitonin related peptide from Japanese flounder. Meeting of the Japanese Society of Zoological Science. JAPAN. 1999.

56. Srivastava A.S., Trigun S.K., Singh S.N.; Purification and kinetics of cytosolic aspartate aminotransferase from liver of air-breathing and non air-breathing fish. National Symposium on Comparative Physiology & Endocrinology, Raipur, INDIA. 1997.

See the article here:
Stem Cell Treatment & Cure in India | GIOSTAR

Read More...

Penn Endocrinology, Diabetes and Metabolism | Penn Medicine

August 19th, 2015 6:41 pm

Penn's Rodebaugh Diabetes Center, unique to the Philadelphia region, provides comprehensive care exclusively for patients with diabetes and pre-diabetes.

Penn's Rodebaugh Diabetes Center, unique to the Philadelphia region, provides comprehensive care exclusively for patients with diabetes and pre-diabetes.

The Penn Thyroid Center provides interdisciplinary care for patients with thyroid nodules and thyroid cancer.

The Penn Pituitary Center combines the expertise of internationally recognized specialists with state-of-the-art diagnostic resources and treatments for pituitary disorders.

Penn Endocrinology is committed to providing the highest standards of care to patients with endocrine disorders in a compassionate and professional setting.

Supported by the NIH's National Institute of Diabetes and Digestive and Kidney Diseases, Penn's Diabetes Research Center is recognized for state-of-the-art research, experienced scientific leadership, collaboration and translation of science to innovative diabetes care.

Specialists in Penn Endocrinology, Diabetes and Metabolism are national leaders in the diagnosis, treatment and management of patients with endocrine disorders including diabetes, thyroid disorders, adrenal disorders, pituitary disorders, obesity and metabolism disorders.

Penn endocrinologists work within a multidisciplinary setting that includes specialists from cardiology, women's health, cancer, bariatric surgery, neurosurgery and neurology.

Learn more about Penn Endocrinology, Diabetes and Metabolism

Read the original:
Penn Endocrinology, Diabetes and Metabolism | Penn Medicine

Read More...

The immune system and cancer | Cancer Research UK

August 19th, 2015 4:42 pm

This page is about the immune system. It also tells you about the effects that cancer or treatments may have on the immune system. Some treatments can boost theimmune system tohelp fight cancer.There is information about

The immune system protects the body against illness and infection caused by bacteria, viruses, fungi or parasites. It is really a collection of reactions and responses that the body makes to damaged cells orinfection. So it is sometimes called the immune response.

The immune system is important to cancer patients in many ways because

Cancer can weaken the immune system by spreading into the bone marrow. The bone marrowmakesblood cells that help to fight infection. Weakening of the immune system happens most often in leukaemia or lymphoma. But it can happen with other cancers too. The cancer in the bone marrow stops the bone marrow making so many blood cells.

Chemotherapy, biological therapies andradiotherapy can temporarilyweaken immunity by causing a drop in the number of white blood cells made in the bone marrow. High doses of steroids can also weaken your immune system while you are taking them.

You can find information about the different types of cancer treatments.

Some cells of the immune system can recognise cancer cells as abnormal and kill them. Unfortunately, this may not beenough to get rid of a cancer altogether. But some new treatments aim to use the immune system to fight cancer.

There are two main parts of the immune system

This is also called innate immunity. These immune mechanisms are always ready and prepared to defend the body from infection. They can act immediately (or very quickly). This inbuilt protection comes from

There are several ways that these natural protection mechanisms can be damaged or overcome if you have cancer. For example

These white blood cells are very important for fighting infection.They can

Your normal neutrophil count is between 2,000 and 7,500 per cubic millimetre of blood. When you don't have enough neutrophils you are said to be neutropaenic.

Chemotherapy and some radiotherapy treatments can lower theneutrophil count. So, after chemotherapy, biological therapy and some types ofradiotherapy you may be more likely to get bacterial or fungal infections.

If you are having cancer treatment, it is important for you to know that

You are morelikely to become ill from bugs you carry around with you normally, not from catching someone else's. This means that you usually don't have to avoid your family, friends or children when you gohome after chemotherapy.

You can ask your cancer doctor or nurse what precautions you should take against infection.

When your blood counts are low, you may needto take antibiotics to help prevent severe infection.

This is immune protection thatthe body learns from being exposed to diseases. The body learns to recognise each different kind of bacteria, fungus orvirus it meets for the first time. The next time that particular bug tries to invade the body, the immune system is ready for it and able to fight it off more easily. This is why you usually only get some infectious diseases oncefor example, measles or chicken pox.

Vaccination works by using this type of immunity. A vaccine contains a small amount of protein from a disease. This is not harmful, but it allows the immune system to recognise the disease if it meets it again. The immune response can then stop you getting the disease. Some vaccines use tiny amounts of the live bacteria or virus. These are called live attenuated vaccines.

Attenuated means that the virus or bacteria has been changed so that it will stimulate the immune system to make antibodies but won't cause the infection. Other types of vaccine use killed bacteria or viruses, or parts of proteinsproduced by bacteria and viruses.

The white blood cells involved in the acquired immune response are called lymphocytes. There are two main types of lymphocytesB cells and T cells. B and T lymphocytes are made in the bone marrow, like the other blood cells.

Lymphocyteshave to fully mature before they can help in the immune response. B cells mature in the bone marrow. But the immature T cells travel through the bloodstream to the thymus gland where they become fully developed.

Once they are fully mature, the B and T cells travel to the spleen and lymph nodes ready to fight infection.

You can read about the thymus, spleen and lymph nodes on ourpage aboutthe lymphatic system and cancer.

B cells react against invading bacteria or viruses by making proteins called antibodies. The antibody made is different for each different type of germ (bug). The antibody locks onto the surface of the invading bacteria or virus. The invader is then marked with the antibody so that the body knows it is dangerous and it can be killed off. Antibodies can also detect and kill damaged cells.

The B cells are part of the memory of the immune system. The next time the same germtries to invade, the B cells that make the right antibody are ready for it. They are able to make their antibody very quickly.

Antibodies have two ends. One end sticks to proteins on the outside of white blood cells. The other end sticks to the germ or damaged cell and helps to kill it. The end of the antibody that sticks to the white blood cell is always the same. So it is called the constant end.

The end of the antibody that recognises germs and damaged cells varies depending on the cell it is designed to recognise. So it is called the variable end. Each B cell makes antibodies with a different variable end from other B cells.

Cancer cells are not normal cells. So some antibodies with variable ends recognise cancer cells and stick to them.

There are different kinds of T cells called

The helper T cells stimulate the B cells to make antibodies, and help killer cells develop.

Killer T cells kill the body's own cells that have been invaded by the viruses or bacteria. This prevents the germfrom reproducing in the cell and then infecting other cells.

Some cancertreatments use elements of the immune system to help treat cancer.

Immunotherapy is a type of biological therapy. Biological therapies use natural body substances or drugs made from natural body substances to treat cancer. Immunotherapies are treatments that use your immune system. They are helpful in cancer treatment because cancer cells are different from normal cells and so can be picked up by the immune system.

Many different chemicals produced as part of the immune response can now be made in the laboratory. These include interferon, interleukin 2 and monoclonal antibodies.

Interferon alpha and interleukin 2 act by boosting the immune response to help the body kill off cancer cells.

Scientists are also trying to develop vaccinations against cancer cells. It may be possible for the vaccine to train the immune system to see cancer cells as being invaders and kill them.

You can read more aboutbiological therapies.

Monoclonal antibodies are made in the laboratory. The scientists developing them make an antibody with a variable end that recognises cancer cells. Monoclonal means that all the antibodies are exactly the same type, with the same variable end.

The monoclonal antibodies recognise molecules on the outside of cancer cells. Different antibodies have to be made for different types of cancer, for example

The constant end of cancer treating monoclonal antibodies kills the cancer cells by marking them so that other immune system cells pick them out. The job of these other cells is to find antibody labelled cells and kill them.

Scientists can sometimes make the monoclonal antibody even better at killing cancer cells. They may attach a radioactive atom that delivers radiation directly to the cancer cells. Or they can attach a chemotherapy drug that is taken straight to the cancer cells by the monoclonal antibody.

Monoclonal antibodies are used for many types of cancer. You can find out moreabout monoclonal antibodies.

There is a lot of research going on into using immune system therapies to treat cancer. You can find information about monoclonal antibody trials on ourclinical trials database.

Many people with cancer believe that they should strengthen their immune systems to help beat the disease. There is a commonly held belief that reducing stress can help to strengthen our immune systems. This is the thinking behind some complementary therapies, such asusing relaxation techniques.

There is some scientific evidence that stress weakens our immunity. Two studies looking at whether stress affected cancer recurrence had conflicting results. While no one knows whether strengthening immunity can help to cure cancer, most doctors and nurses agree that reducing stress is a good thing to do.

While many life stresses cannot be avoided altogether, there are ways you can try to help yourself. Many complementary therapies such as meditation, massage and reflexology, can be very relaxing.

You can avoid getting run down and look after yourself by

You can find outaboutcomplementary therapies.

The rest is here:
The immune system and cancer | Cancer Research UK

Read More...

Stem Cell Therapy | Cellular Prolotherapy | Caring Medical

August 19th, 2015 4:40 pm

Home Stem Cell Therapy | Cellular Prolotherapy

Ross Hauser, MD

Ross Hauser, MD: the use of Stem Cell Therapy in the treatment of joint and spine degeneration.

Stem cell therapy is exploding in the medical field, and for good reason. Stem cells have the potential to regenerate into any type of body tissue. The amazing thing about stem cells is that when you inject them into the body, they know what kinds of cells your body needs for example, meniscus cells or cartilage cells. It is a very exciting time for medicine, especially in the field of regenerative medicine. In our office we often refer to this as Cellular Prolotherapy.

In Stem Cell Therapy we use a persons own healing cells from bone marrow, fat, and blood (alone or in various combinations) and inject them straight to the area which has a cellular deficiency.

The goal is the same: to stimulate the repair of injured tissues. Stem cells aid in fibroblastic proliferation where cell growth, proteosynthesis, reparation, the remodeling of tissues, and chondrocyte proliferation occurs. Our bone marrow contains stem cells,also termed mesenchymal stem cells and progenitor cells, among other names. These immature cells have the ability to become tissues like cartilage, bone, and ligaments.

Consequently, researchers and clinicians are focusing on alternative methods for cartilage preservation and repair. Recently,cell-basedtherapyhas become a key focus of tissue engineering research to achieve functional replacement of articular cartilage.1

Not all injuries require stem cells to heal. For many patients the success rate with traditionalProlotherapyin this office is in the 90%+ range for all patients. However, for those cases of advanced arthritis, meniscus tears, labral tears, bone-on-bone, or aggressive injuries, our Prolotherapy practitioners may choose to use stem cell injections to enhance the healing, in combination with dextrose Prolotherapy to strengthen and stabilize the surrounding support structures formeniscus repair.

In our research published inThe Open Stem Cell Journal,Rationale for Using Direct Bone Marrow Aspirate as a Proliferant for Regenerative Injection Therapy(Prolotherapy). We not only showed the benefit of bone marrow derived stem cells as a Prolotherapy proliferant solution, but also that this exciting field of medicine needs doctors and scientisists working together to expand research and technique guidelines.

Typically the tissue that we are trying to stimulate to repair with Stem Cell Therapy or Cellular Prolotherapy is articular cartilage, but we can also proliferate soft tissues structures such as ligament and tendons. This is new technology so we are studying it as we use it to treat patients.

We chose to review this study to support our research and to inform people about the human studies usingbone marrow stem cellsfor articular cartilage lesions. Articular cartilage is a type of cartilage that covers joint surfaces and is most susceptible to injury compared to other types of cartilage.

Researchers at Cairo University School of Medicine and the University of Pittsburgh School of Medicine reported on the use of bone marrow mesenchymal stem cells and aplatelet-richfibrin scaffold to heal full-thickness cartilage defects in five patients. The researchers studied the treatment results from the bone marrow mesenchymal stem cells which were used in a platelet rich fibrin glue, placed on the tear and covered with a flap of the patients cartilage.

Platelets were used as a scaffold because platelets contain various growth factors that stimulate cartilage regeneration. The researchers expected that the biological effect of multiplegrowth factorson tissue regeneration is greater that of a single growth factor.

Results

The patients showed significant functional improvement. Two of the patients underwent arthroscopy after the transplantation and showed near normal articular cartilage. Three postoperative MRIs revealed complete healing and congruent cartilage tissue, whereas two patient MRIs showed incomplete congruity in the cartilage tissue.

Conclusion

Osteoarthritis is a cartilage degenerative processNo treatment is still available to improve or reverse the process. Stem cell therapy opened new horizons for treatment of many incurable diseasesIn this research four patients with knee osteoarthritis were selected for the study. They were aged 55, 57, 65 and 54 years, and had moderate to severe knee Osteoarthritis. After their signed written consent, 30 mL of bone marrow were taken and cultured for MSC growth. After having enough MSCs in culture (4-5 weeks) and taking in consideration all safety measures, cells were injected in one knee of each patient.

The walking time for the pain to appear improved for three patients and remained unchanged for one. On physical examination, the improvement was mainly for crepitus. It was minor for the improvement of the range of motion.

Results were encouraging, but not excellent. Improvement of the technique may improve the results.4

Platelet Rich Plasma contains a myriad of substances that stimulate healing:

Numerous studies have shown that PRP enhances the effects of Stem Cell Therapy5,6As the study above notes Results were encouraging, but not excellent. Improvement of the technique may improve the results. Platelet Rich Plasma therapy improves the technique and improves the results.

Our ultimate goal withallforms of Prolotherapy is to get the patients back to doing the things that they want to do without pain. It is our hope that the Stem Cell Therapy (Cellular Prolotherapy) treatments will form functionally, structurally, and mechanically equal to, if not better than, living tissue which has been designed to replace (or work alongside of) damaged tissue. It is hard to prove the above statement because we cannot sacrifice human beingsafterProlotherapy to see if the tissue looks and acts normally. Wecan, however, report that the majority of our patients who receive Stem Cell Therapy along with traditional Hackett-Hemwall Prolotherapy get back to activities and have dramatically decreased pain levels using this comprehensive approach.

Links to our other articles for your specific conditions

A page with more information on stem cell injection treatments combined with Prolotherapy and PRP Treatments for back pain.

In this article wediscusses research that showsthatstem cell injection therapywill aid in the repair ofarticular cartilageandmeniscus tears. The treatment relieves symptoms of stiffness,pain, disability, and inability to walk as commonly reported by our patients diagnosed with knee osteoarthritis.

Many patients have many questions about stem cell tretament for knee osteoarthritis, lets hear yours.

References for this article

1.Mazor M, Lespessailles E, Coursier R, et al.Mesenchymal stem-cell potential in cartilage repair: an update. J Cell Mol Med. 2014 Oct 29. doi: 10.1111/jcmm.12378. 2. Diekman BO, Guilak F.Stem cell-based therapies for osteoarthritis: challenges and opportunities. Curr Opin Rheumatol. 2013 Jan;25(1):119-26. doi: 10.1097/BOR.0b013e32835aa28d. 3. Hauser RA, Orlofsky A.Regenerative injection therapy with whole bone marrow aspirate for degenerative joint disease: a case series.Clin Med Insights Arthritis Musculoskelet Disord. 2013 Sep 4;6:65-72. doi: 10.4137/CMAMD.S10951. eCollection 2013. 4. Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis. 2011 May;14(2):211-5. doi: 10.1111/j.1756-185X.2011.01599.x. Epub 2011 5. Mishra A, Tummala P, King A, Lee B, Kraus M, Tse V, Jacobs CR. Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. 2009 Sep;15(3):431-5. 6. Kasten P, Vogel J, Beyen I, Weiss S, Niemeyer P, Leo A, Lginbuhl R. Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: the specific surface area makes a difference. J Biomater Appl. 2008 Sep;23(2):169-88. Epub 2008 Jul 16.

Read the original here:
Stem Cell Therapy | Cellular Prolotherapy | Caring Medical

Read More...

Stem cell – ADULT STEM CELL THERAPY IS AVAILABLE NOW!

August 19th, 2015 4:40 pm

Australia - New Zealand - Asia & Pacific Rim - China - Italy

The Foundation is a privately funded philanthropic (non profit) organization advising un-well people about how to gain access to Adult Stem Cell Therapy (ASCT). The Foundation is also promoting a plan to its members on how to prevent or limit the progression of degenerative diseases and other conditions. Degenerative disease is an escalating world problem that, if not controlled, could bankrupt our health systems.

A major objective of the Foundation is to highlight that people suffering from degenerative conditions now have the option of considering Adult Stem Cell Therapy. This therapy may improve quality of life for sufferers of Arthritis, MS, Parkinsons, Diabetes, Stroke, Alzheimers, Spinal Cord injuries, Cancer or Chronic Pain to name a few. A stem cell transplant, instead of a joint replacement, is fast becoming the preferred first option for orthopedic surgeons.

The Foundation intends to educate parents/carers of children suffering from a debilitating or degenerative condition like Cerebral Palsy, Muscular Dystrophy, Autism, Spinal injuries, Cystic fibrosis, ADHD etc. Stem cell treatments have progressed in leaps and bounds for these conditions. There are now state of the art clinics that specialize in treating the afore-mentioned conditions. Children can usually benefit substantially from an early intervention by stem cell therapies and other protocols because they are still growing. As an example: spending time in a mild hyperbaric chamber (HBO) can also be beneficial. Just fill out the Application Form for an experimental transplant and we will be only too happy to advise.

The ASCF has become a global Information Centre for stem cell therapy. The centre will only support clinics that have demonstrated they abide by the highest medical standards and have a proven track record of administering these types of therapies, in Australia and overseas. We can now advise locally which gives peace of mind to our members who are contemplating a procedure of this nature.

Creating awareness of the availability of stem cell therapy and that it has become viable for consideration.

To raise money from benefactors, including private and commercial sponsorships.

To provide medical and research reports on degenerative disease to doctors and health professionals.

To run awareness programs on Lifestyle Medicine promoting healthy foods that may prevent the onset of degenerative diseases. This includes stem cell stimulating natural products that are backed by science.

To provide information to schools on healthy diet and lifestyle plans. To provide scholarships and fellowships for the study of degenerative diseases and their treatment.

To support Adult Stem Cell research by leading Universities and Not For Profit organizations.

To open representative offices in other countries. Such offices are already established in Thailand, NZ, South Africa, India, UK and France

It is a free service giving doctors in full security and full control the ability to record and share patient stem cell data with other doctors. The following is an overview of the Registrys main features:

Australasian Stem Cell Registry Overview - Read more >>>

The ASCF has also introduced a new funding model for stem cell transplants - this new financing model is funded by the patients and their supporters.

The Foundation receives no government funding so we exist on the generosity of our members, the public and corporations. We hope if we can help improve your health outcomes that you may see your way clear at some future time to consider assisting with either your time or money to this worthwhile cause.

We would also like to point out that there are medical conditions today that are still beyond the scope of this new and exciting branch of medical science, which unfortunately means not everybody can be treated with stem cells at this stage. If you are in this category, it is even more important you follow the ASCF Prevention Plan (see below) and keep your health in the best possible state while science catches up. Science is moving very fast in the area of Regenerative Medicine.

See the rest here:
Stem cell - ADULT STEM CELL THERAPY IS AVAILABLE NOW!

Read More...

stemcellbioethics – Module 1 – The Biology of Stem Cells

August 18th, 2015 6:44 am

Table of Contents Module 1 Conceptually, stem cell research can be viewed as a branch of modern biology that attempts to create stem cells from differentiated cells or to transform embryonic or adult stem cells into specialized, differentiated cells that can be used to replace damaged cells or organs. Research conducted from 1998 to 2015 on human stem cells has demonstrated that the transformation of stem cells into healthy specialized cell types is emerging as a fundamental biological area of study that could lead to revolutionary therapies and clinical applications. Many scientists are convinced that stem cell research also will lead to a better understanding of fundamental aspects of biology in the areas of cellular differentiation, organ regeneration, regenerative medicine, and epigenetics as well as the science of cancer. In this light, stem cell research simultaneously represents a domain of both critical basic research and promising clinical application. In sum, stem cell research is rapidly advancing science in profound ways, and has great potential to positively affect our health as well as our quality of life. To more fully understand the complexities that underlie stem cell biology, it is critical to appreciate the definition of terms, understanding of the embryology, and the process of generating stem cells. Soon after fertilization, the haploid egg and sperm nuclei merge to form a single nucleus with the diploid number of chromosomes. The one-cell zygote divides as it moves along in the fallopian tube, where it continues to divide. Up until the 8-cell stage, each cell is totipotent.

Return to Top

Totipotent means that each cell can give rise to all the 220 cell types in the embryo plus the extra-embryonic tissues necessary to form the placenta and yolk sac that together allow for the development of the fetus. The ability to form the placenta is a defining feature of totipotent cells.

Soon after fertilization, the haploid egg and sperm nuclei merge to form a single nucleus with the diploid number of chromosomes. The one-cell zygote divides as it moves along in the fallopian tube, where it continues to divide. Up until the 8-cell stage, each cell is totipotent. As the embryo travels along the oviduct, the cells continue to proliferate and the morula develops into a blastocyst that contains a cavity. The outer layer of cells of the blastocyst will go on to form the placenta and other supporting tissues needed for fetal development in the uterus.

The inner cell mass of cells located at the polarized end of the cavity contain the embryonic stem cells. These cells are of particular interest to researchers and others as they will eventually mature to form virtually all of the tissues in the human body.

These are images of blastocysts, caught on the head of a pin. In the picture on the right, the blastocyst is opened revealing the inner cell mass containing the stem cells.

What does pluripotent mean? What is important to know here is that while the inner cell mass cells can form virtually every type of cell found in the body, and therefore the cells are considered pluripotent, they cannot form an entire organism because they are unable to give rise to the placenta and other tissues necessary for gestational development in the uterus. This is a key point. Because their potential is not total, they are not totipotent only totipotent cells can go on to develop into a fetus. Pluripotent cells will form every cell in the body but will never form an embryo.

Return to Top

Return to Top

Cells as the basic units of life The basis of stem cell biology begins with the understanding that cells form the basic units of life. In the 1600s, using his microscope, Robert Hooke observed small living compartments within cork plants. Likening the little units of cork tissue to miniature rooms or chambers, he coined the term "cells from the Latin word cella meaning a small room.

It took the scientific community two centuries to appreciate Hookes initial observations. By the mid 1800s, scientists such as Theodore Schwann began formulating the cellular theory of life which contained two major conclusions:

In 1908, at the Congress of the Hematologic Society in Berlin, Russian histologist Alexander Maksimov first proposed the term stem cell perhaps after noting that the stem of a tree gives rise to a variety of branches.

Cell specialization, for the 220 histologically different cell types characterized in the human body, is thus determined by the activation and suppression of a specific subset of the 20,000-25,000 genes representing 5% of the human genome. In addition, we are learning more about the role of the other 95% of the genome that has historically been referred to as junk DNA, which might not be junk after all (see Module 3 - Cellular differentiation to understand the newly discovered critical functions of junk DNA). (Wang, Huang et al.)

Self renewal is the ability of stem cells to divide indefinitely, producing a population of identical offspring. The concept of self-renewing stem cells originated in the 1960s with McCulloch and Till who demonstrated the presence of self-renewing cells in mouse bone marrow, which we now know are hematopoietic stem cells (Becker, Mc et al. 1963; Siminovitch, McCulloch et al. 1963). Today, cell surface markers and the expression of transcription factors are important characteristics of cellular differentiation.

Plasticity describes the capacity of stem cells to undergo an asymmetric division, cued by environmental conditions and genetic factors, to produce two dissimilar daughter cells. As of 2015, there is still controversy whether stem cells undergo symmetical or asymmetical division. In asymmetrical division, one daughter cell, identical to the parent,continues to contribute to the original stem cell line, while the other daughter cell differentiates into specialized cell types. Symmetrical division gives rises to two identical daughter cells that are either stem cells or cells that have begun to differentiate. Plasticity also describes the ability of an organism to change its phenotype in response to changes in the environment.

But not all stem cells exhibit these properties of self renewal and plasticity. While hematopoietic and embryonic stem cells exhibit these properties, other adult stem cells may only be committed to exhibit plasticity in their ability to differentiate into other types of cells.

The hallmark property of stem cells is their ability to differentiate into a wide variety of different cell types. Thus, scientists must demonstrate that the cells they have obtained are bona fide stem cells based on their capacity to differentiate into several other types of terminal or lineage progenitor cells.

Return to Top

Pluripotent stem cells are found in the inner cell mass of the blastocyst and have the capacity to form any of the three germ layers that compose over 200 different cell types found in the body, excluding the placenta. Multipotent stem cells are derived from adult tissue, such as umbilical cord blood and bone marrow, and generally do not have the same capacity to differentiate into all the different cell types of the human body. Sources of stem cells Traditionally, there have been four primary tissue sources to obtain human stem cells: embryo, fetus, neonatal (including cord blood), and adult tissue. While most tissues and organs of the human body contain stem cells, their frequency varies from organ to organ. In circulating blood, for example, only 1:100,000 cells are stem cells, while the percentage of stem cells in bone marrow is much greater.

In addition, in the adult, most organs have a unique type of stem cell that can be identified by the specific cell surface markers it expresses.

Return to Top

At the same time that Thomson reported his results, researchers from Johns Hopkins University, led by John Gearhart, described a method to isolate and culture immature germ cells from 5 to 8 week-old fetuses that were donated anonymously by women undergoing therapeutic or spontaneous abortions (Shamblott, Axelman et al. 1998). Dr. Gearhart and colleagues collected stem cells from the germinal centers of the ovaries or testes of the fetus and placed them in plastic dishes. They then added factors that enabled the germ stem cells to continue to divide, while simultaneously retaining them in a state of suspended development that prevented them from differentiating. These germ cell-derived stem cells could also be frozen, recovered, and maintained as stem cells in culture. Interestingly, Gearharts initial purpose for his research was merely to develop a tool for studying Downs syndrome.

The great advantage of deriving stem cells via iPS is that this remarkable technology does not require the destruction of human embryos. Moreover, the potential of iPS means that future stem cell therapies could be based on a patient's own cells (Takahashi and Yamanaka 2006). This is a key point since the use of ones own cells in stem cell therapy would eliminate the issue of tissue rejection, which is a critical problem in most organ donation scenarios. Tissue rejection would likely be an issue if patients were to receive stem cells from someone else. [insert religious views on the destruction of human embryos]

Return to Top

Disadvantages of using embryonic stem cells The major disadvantages of embryonic stem cells, apart from ethical considerations, are that they may be rejected if transplanted into an HLA incompatible person, and more importantly, that they may form tumors more easily than adult-derived stem cells.

Advantages of using adult stem cells Most adult tissues contain multipotent stem cells. The most common source for multipotent stem cells is bone marrow. Bone marrow-derived stem cells in large measure generate the multiple cell types cells found in the blood. However, scientists can direct the differentiation process of bone marrow to differentiate into a variety of other cell types (Choi, Kurtz et al. 2011). Thus, there are considerable efforts undertaken to expand the ability of adult stem cells to differentiate into even more kinds of specialized cell types.

In addition, the ease with which bone marrow cells can be obtained, coupled with our experience using these cells in a variety of treatments (e.g., leukemia), have been a great impetus for further investigation of bone marrow as a source for adult stem cells.

While bone marrow-derived cells can differentiate into a variety of blood cells and other cell types, they are not as pluripotent as are embryonic stem cells. Nonetheless, there is a significant advantage to using bone marrow or any adult-derived stem cells in autologous therapy, as the risk of tissue rejection is avoided by using the patients own cells.

Disadvantages of using adult stem cells Adult derived stem cells, however, have some disadvantages in therapeutic applications. To date, disadvantages of adult stem cells are that they are:

Read the original:
stemcellbioethics - Module 1 - The Biology of Stem Cells

Read More...

Stem Cell Treatment for Multiple Sclerosis

August 18th, 2015 6:44 am

There are many ways in which human stem cells can be used in research and the clinic. Studies of human embryonic stem cells will yield information about the complex events that occur during human development. A primary goal of this work is to identify how undifferentiated stem cells become the differentiated cells that form the tissues and organs Continue reading

Source Link(s) Are Here

What are the potential uses of human stem cells and the ...

A Acellular vaccine: Listen [MP3] A vaccine containing partial cellular material as opposed to complete cells. Acquired Immune Deficiency Syndrome (AIDS): A medical condition where the immune system cannot function properly and protect the body from disease. As a result, the body cannot defend itself against infections (like pneumonia). Continue reading

Source Link(s) Are Here

Vaccines: About/Terms/Glossary

Osteoarthritis (OA) is a disease of the entire joint involving the cartilage, joint lining, ligaments, and underlying bone. Continue reading

Source Link(s) Are Here

CDC - Arthritis - Basics - Definition - Osteoarthritis

Arthritis (from Greek arthro-, joint + -itis, inflammation; plural: arthritides) is a form of joint disorder that involves inflammation of one or more joints.[1][2] There are over 100 different forms of arthritis.[3][4] The most common form of arthritis is osteoarthritis (degenerative joint disease), a result of trauma to the joint, infection of the joint, or age. Other arthritis forms are rheumatoid arthritis, psoriatic arthritis, and related autoimmune diseases. Septic arthritis is caused by joint infection. Continue reading

Source Link(s) Are Here

Arthritis - Wikipedia, the free encyclopedia

Psoriasis (psoriasis vulgaris) is een chronische auto-immuunziekte, gekenmerkt door een versnelde deling (proliferatie) en verminderde rijping (differentiatie) van hoorncellen in de opperhuid. Omdat de cellen niet normaal uitrijpen is ook het afschilferen verstoord, waardoor lokaal sterke afschilfering van huidschubben op de aangedane plaatsen plaatsvindt. Hoewel psoriasis vooral tot uiting komt in de huid, is het niet primair een huidprobleem, maar een ontregeling van het immuunsysteem (auto-immuunziekte[1][2][3]) Continue reading

Source Link(s) Are Here

Psoriasis - Wikipedia

Im truly excited to be bringing you this information today about the miraculous healing abilities of aloe vera. First off, in case you dont know, let me emphasize that I dont sell aloe vera products of any kind, I havent been paid to write this article, and I dont earn any commissions from the sale of any products mentioned here. Continue reading

Source Link(s) Are Here

The aloe vera miracle: A natural medicine for cancer ...

Debra Torres says September 10, 2012 at 2:13 pm Wow. Its so amazing how just some small indications in mice can create a product that tempts people to actually buy it. I know that joint pain can really be a problem and inhibit movement Continue reading

Source Link(s) Are Here

Anatabloc Anti-Inflammation Joint Supplement: Review of ...

Osteoarthritis (OA) also known as degenerative arthritis, degenerative joint disease, or osteoarthrosis, is a type of joint disease that results from breakdown of joint cartilage and underlying bone.[1] The most common symptoms are joint pain and stiffness. Initially, symptoms may occur only following exercise, but over time may become constant Continue reading

Source Link(s) Are Here

Osteoarthritis - Wikipedia, the free encyclopedia

Back pain is a very common complaint. According to the Mayo Clinic, approximately 80% of all Americans will have low back pain at least once in their lives. Back pain is a common reason for absence from work and doctor visits Continue reading

Source Link(s) Are Here

Back Pain: Causes, Symptoms and Treatments - Medical News ...

Cancer i, also known as a malignant tumor or malignant neoplasm, is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body.[1][2] Not all tumors are cancerous; benign tumors do not spread to other parts of the body.[2] Possible signs and symptoms include: a new lump, abnormal bleeding, a prolonged cough, unexplained weight loss, and a change in bowel movements among others.[3] While these symptoms may indicate cancer, they may also occur due to other issues.[3] There are over 100 different known cancers that affect humans.[2] Tobacco use is the cause of about 22% of cancer deaths.[1] Another 10% is due to obesity, a poor diet, lack of physical activity, and consumption of alcohol.[1][4] Other factors include certain infections, exposure to ionizing radiation, and environmental pollutants.[5] In the developing world nearly 20% of cancers are due to infections such as hepatitis B, hepatitis C, and human papillomavirus (HPV).[1] These factors act, at least partly, by changing the genes of a cell.[6] Typically many such genetic changes are required before cancer develops.[6] Approximately 510% of cancers are due to genetic defects inherited from a persons parents.[7] Cancer can be detected by certain signs and symptoms or screening tests.[1] It is then typically further investigated by medical imaging and confirmed by biopsy.[8] Many cancers can be prevented by not smoking, maintaining a healthy weight, not drinking too much alcohol, eating plenty of vegetables, fruits and whole grains, being vaccinated against certain infectious diseases, not eating too much red meat, and avoiding too much exposure to sunlight.[9][10] Early detection through screening is useful for cervical and colorectal cancer.[11] The benefits of screening in breast cancer are controversial.[11][12] Cancer is often treated with some combination of radiation therapy, surgery, chemotherapy, and targeted therapy.[1][13] Pain and symptom management are an important part of care. Palliative care is particularly important in those with advanced disease.[1] The chance of survival depends on the type of cancer and extent of disease at the start of treatment.[6] In children under 15 at diagnosis the five year survival rate in the developed world is on average 80%.[14] For cancer in the United States the average five year survival rate is 66%.[15] In 2012 about 14.1 million new cases of cancer occurred globally (not including skin cancer other than melanoma).[6] It caused about 8.2 million deaths or 14.6% of all human deaths.[6][16] The most common types of cancer in males are lung cancer, prostate cancer, colorectal cancer, and stomach cancer, and in females, the most common types are breast cancer, colorectal cancer, lung cancer, and cervical cancer.[6] If skin cancer other than melanoma were included in total new cancers each year it would account for around 40% of cases.[17][18] In children, acute lymphoblastic leukaemia and brain tumors are most common except in Africa where non-Hodgkin lymphoma occurs more often.[14] In 2012, about 165,000 children under 15 years of age were diagnosed with cancer. The risk of cancer increases significantly with age and many cancers occur more commonly in developed countries.[6] Rates are increasing as more people live to an old age and as lifestyle changes occur in the developing world.[19] The financial costs of cancer have been estimated at $1.16 trillion US dollars per year as of 2010.[20] Cancers are a large family of diseases that involve abnormal cell growth with the potential to invade or spread to other parts of the body.[1][2] They form a subset of neoplasms Continue reading

Source Link(s) Are Here

Cancer - Wikipedia, the free encyclopedia

Read the original here:
Stem Cell Treatment for Multiple Sclerosis

Read More...

Stem Cells Transplant For Renal Failure-Kidney Failure

August 18th, 2015 6:44 am

Nowadays, there are millions of people living with kidney failure. To a large extent, kidney failure decreases patients life quality severely. Thereby, patients are eager to know is stem cells in China helpful to patients with kidney failur...Read More

IgA Nephropathy is caused by the deposition of IgA, without a timely and effective prevention and control, the kidney function will decline seriously. Traditionally, patients will be recommended with some hormones to remit their symptoms an...Read More

With the development medical science, the Treatment for Chronic Kidney Disease has been not so difficult and more and more patients take stem cell transplant therapy to reverse their kidney function. In beginning of the year of 2015, we hop...Read More

In the past, the only stage 5 kidney failure treatment is kidney transplant, but with the medical development, Stem Cell Therapy as the latest therapy has been used in treating kidney disease, now in India, USA, China, Stem Cell Therapy all...Read More

As the second advanced stage of kidney disease, there must be a certain fear in stage 4 kidney failure patients heart. An efficient treatment means the one which can reverse the condition and help patients live a normal life. The applicatio...Read More

Both Micro-Chinese Medicine Osmotherapy and Stem Cell Therapy are efficient treatments for kidney diseases. Their applications in treating kidney disease bring patients new hopes. Now follow us to learn more about Micro-Chinese Medicine Osm...Read More

Kidney failure patients have not been sentenced to death yet. Kidney failure itself will not cause death directly, but its severe complications can. Doctors will adopt the corresponding measures to deal with complications, however, to manag...Read More

End Stage Renal Failure is the last stage of chronic kidney disease, so it is the most severe stage. When condition develops End Stage Renal Failure, patients believe that dialysis or kidney transplant will be their only choice. However, is...Read More

In addition to dialysis and kidney transplant, nowadays the application of Micro-Chinese Medicine Osmotherapy, Immunotherapy and Stem Cell Therapy brings new hopes for chronic kidney failure patients. Now follow us to learn more about Stem...Read More

Read more here:
Stem Cells Transplant For Renal Failure-Kidney Failure

Read More...

Ophthalmology – The University of Chicago Medicine

August 18th, 2015 6:43 am

The Section of Ophthalmology and Visual Science provides medical and surgical treatment of eye diseases. The section members' interests include cataract surgery with lens implantation, transplantation including corneal diseases plus refractive surgery, vitreo-retinal surgery, and medical diseases of the retina including special treatment of diabetic retinopathy and age-related retinal degenerations, eye plastic surgery, strabismus surgery, and neuro-opthalmology.

Refractive surgery is based on special imaging of the cornea obtained by the computer. The surgery is employed to correct irregularities in the cornea. In selected cases, we also use surgery to correct refractive errors, eliminating the need for glasses.

The Retinal Imaging and Laser Treatment Center uses a computer to analyze retinal diseases in preparation for laser treatment. The vitreo-retinal center also specializes in difficult diagnostic problems including hereditary defects of the retina.

Glaucoma diagnosis and treatment is based on special computer-generated visual field testing and optical nerve imaging. The treatment includes outpatient laser as well as surgical intervention.

Strabismus surgery is based on television analysis and orthoptic testing of ocular motility. Treatment is carried out, in special cases, with sutures that can be adjusted after surgery for perfect alignment. Chemical injection replaces surgery in selected cases.

Neuro-ophthalmology consultation is available, as is ocular plastic surgery for external and eyelid defects.

All eye care services are located on the University of Chicago medical campus:

Duchossois Center for Advanced Medicine 5758 S. Maryland Avenue, Clinic 1B Chicago, IL 60637

UCH_004213 (11)

Read more from the original source:
Ophthalmology - The University of Chicago Medicine

Read More...

What is Stem Cell Therapy? – American Academy of Anti …

August 18th, 2015 6:40 am

Regenerative medicine is an emerging branch of medicine with the goal of restoring organ and/or tissue function for patients with serious injuries or chronic disease in which the bodies own responses are not sufficient enough to restore functional tissue. A growing crisis in organ transplantation and an aging population have driven a search for new and alternative therapies. There are approximately 90,000 patients in the US transplant-waiting list. In addition there are a wide array of major unmet medical needs which might be addressed by regenerative technologies.

New and current Regenerative Medicines can use stem cells to create living and functional tissues to regenerate and repair tissue and organs in the body that are damaged due to age, disease and congenital defects. Stem cells have the power to go to these damaged areas and regenerate new cells and tissues by performing a repair and a renewal process, restoring functionality. Regenerative medicine has the potential to provide a cure to failing or impaired tissues.

While some believe the therapeutic potential of stem cells has been overstated, an analysis of the potential benefits of stem cells based therapies indicates that 128 million people in the United States alone may benefit with the largest impact on patients with Cardiovascular disorders (5.5 million), autoimmune disorders (35 million) and diabetes (16 million US patients and more than 217 million worldwide): US patients with other disorders likely to benefit include osteoporosis (10 million), severe burns (0.3 million),spinal cord injuries (0.25 million).

Source: M.E. Furph, Principles of Regenerative Medicine (2008)

Read this article:
What is Stem Cell Therapy? - American Academy of Anti ...

Read More...

History of biotechnology – Wikipedia, the free encyclopedia

August 17th, 2015 6:43 am

Biotechnology is the application of scientific and engineering principles to the processing of materials by biological agents to provide goods and services.[1] From its inception, biotechnology has maintained a close relationship with society. Although now most often associated with the development of drugs, historically biotechnology has been principally associated with food, addressing such issues as malnutrition and famine. The history of biotechnology begins with zymotechnology, which commenced with a focus on brewing techniques for beer. By World War I, however, zymotechnology would expand to tackle larger industrial issues, and the potential of industrial fermentation gave rise to biotechnology. However, both the single-cell protein and gasohol projects failed to progress due to varying issues including public resistance, a changing economic scene, and shifts in political power.

Yet the formation of a new field, genetic engineering, would soon bring biotechnology to the forefront of science in society, and the intimate relationship between the scientific community, the public, and the government would ensue. These debates gained exposure in 1975 at the Asilomar Conference, where Joshua Lederberg was the most outspoken supporter for this emerging field in biotechnology. By as early as 1978, with the synthesis of synthetic human insulin, Lederberg's claims would prove valid, and the biotechnology industry grew rapidly. Each new scientific advance became a media event designed to capture public support, and by the 1980s, biotechnology grew into a promising real industry. In 1988, only five proteins from genetically engineered cells had been approved as drugs by the United States Food and Drug Administration (FDA), but this number would skyrocket to over 125 by the end of the 1990s.

The field of genetic engineering remains a heated topic of discussion in today's society with the advent of gene therapy, stem cell research, cloning, and genetically modified food. While it seems only natural nowadays to link pharmaceutical drugs as solutions to health and societal problems, this relationship of biotechnology serving social needs began centuries ago.

Biotechnology arose from the field of zymotechnology or zymurgy, which began as a search for a better understanding of industrial fermentation, particularly beer. Beer was an important industrial, and not just social, commodity. In late 19th century Germany, brewing contributed as much to the gross national product as steel, and taxes on alcohol proved to be significant sources of revenue to the government.[2] In the 1860s, institutes and remunerative consultancies were dedicated to the technology of brewing. The most famous was the private Carlsberg Institute, founded in 1875, which employed Emil Christian Hansen, who pioneered the pure yeast process for the reliable production of consistent beer. Less well known were private consultancies that advised the brewing industry. One of these, the Zymotechnic Institute, was established in Chicago by the German-born chemist John Ewald Siebel.

The heyday and expansion of zymotechnology came in World War I in response to industrial needs to support the war. Max Delbrck grew yeast on an immense scale during the war to meet 60 percent of Germany's animal feed needs.[3] Compounds of another fermentation product, lactic acid, made up for a lack of hydraulic fluid, glycerol. On the Allied side the Russian chemist Chaim Weizmann used starch to eliminate Britain's shortage of acetone, a key raw material in explosives, by fermenting maize to acetone. The industrial potential of fermentation was outgrowing its traditional home in brewing, and "zymotechnology" soon gave way to "biotechnology."

With food shortages spreading and resources fading, some dreamed of a new industrial solution. The Hungarian Kroly Ereky coined the word "biotechnology" in Hungary during 1919 to describe a technology based on converting raw materials into a more useful product. He built a slaughterhouse for a thousand pigs and also a fattening farm with space for 50,000 pigs, raising over 100,000 pigs a year. The enterprise was enormous, becoming one of the largest and most profitable meat and fat operations in the world. In a book entitled Biotechnologie, Ereky further developed a theme that would be reiterated through the 20th century: biotechnology could provide solutions to societal crises, such as food and energy shortages. For Ereky, the term "biotechnologie" indicated the process by which raw materials could be biologically upgraded into socially useful products.[4]

This catchword spread quickly after the First World War, as "biotechnology" entered German dictionaries and was taken up abroad by business-hungry private consultancies as far away as the United States. In Chicago, for example, the coming of prohibition at the end of World War I encouraged biological industries to create opportunities for new fermentation products, in particular a market for nonalcoholic drinks. Emil Siebel, the son of the founder of the Zymotechnic Institute, broke away from his father's company to establish his own called the "Bureau of Biotechnology," which specifically offered expertise in fermented nonalcoholic drinks.[5]

The belief that the needs of an industrial society could be met by fermenting agricultural waste was an important ingredient of the "chemurgic movement."[6] Fermentation-based processes generated products of ever-growing utility. In the 1940s, penicillin was the most dramatic. While it was discovered in England, it was produced industrially in the U.S. using a deep fermentation process originally developed in Peoria, Illinois. The enormous profits and the public expectations penicillin engendered caused a radical shift in the standing of the pharmaceutical industry. Doctors used the phrase "miracle drug", and the historian of its wartime use, David Adams, has suggested that to the public penicillin represented the perfect health that went together with the car and the dream house of wartime American advertising.[7] In the 1950s, steroids were synthesized using fermentation technology. In particular, cortisone promised the same revolutionary ability to change medicine as penicillin had.

Even greater expectations of biotechnology were raised during the 1960s by a process that grew single-cell protein. When the so-called protein gap threatened world hunger, producing food locally by growing it from waste seemed to offer a solution. It was the possibilities of growing microorganisms on oil that captured the imagination of scientists, policy makers, and commerce.[8] Major companies such as British Petroleum (BP) staked their futures on it. In 1962, BP built a pilot plant at Cap de Lavera in Southern France to publicize its product, Toprina.[9] Initial research work at Lavera was done by Alfred Champagnat,[10] In 1963, construction started on BP's second pilot plant at Grangemouth Oil Refinery in Britain.[10]

As there was no well-accepted term to describe the new foods, in 1966 the term "single-cell protein" (SCP) was coined at MIT to provide an acceptable and exciting new title, avoiding the unpleasant connotations of microbial or bacterial.[9]

The "food from oil" idea became quite popular by the 1970s, when facilities for growing yeast fed by n-paraffins were built in a number of countries. The Soviets were particularly enthusiastic, opening large "BVK" (belkovo-vitaminny kontsentrat, i.e., "protein-vitamin concentrate") plants next to their oil refineries in Kstovo (1973) [11][12][13] and Kirishi (1974).[14]

By the late 1970s, however, the cultural climate had completely changed, as the growth in SCP interest had taken place against a shifting economic and cultural scene (136). First, the price of oil rose catastrophically in 1974, so that its cost per barrel was five times greater than it had been two years earlier. Second, despite continuing hunger around the world, anticipated demand also began to shift from humans to animals. The program had begun with the vision of growing food for Third World people, yet the product was instead launched as an animal food for the developed world. The rapidly rising demand for animal feed made that market appear economically more attractive. The ultimate downfall of the SCP project, however, came from public resistance.[15]

This was particularly vocal in Japan, where production came closest to fruition. For all their enthusiasm for innovation and traditional interest in microbiologically produced foods, the Japanese were the first to ban the production of single-cell proteins. The Japanese ultimately were unable to separate the idea of their new "natural" foods from the far from natural connotation of oil.[15] These arguments were made against a background of suspicion of heavy industry in which anxiety over minute traces of petroleum was expressed. Thus, public resistance to an unnatural product led to the end of the SCP project as an attempt to solve world hunger.

Also, in 1989 in the USSR, the public environmental concerns made the government decide to close down (or convert to different technologies) all 8 paraffin-fed-yeast plants that the Soviet Ministry of Microbiological Industry had by that time.[14]

In the late 1970s, biotechnology offered another possible solution to a societal crisis. The escalation in the price of oil in 1974 increased the cost of the Western world's energy tenfold.[16] In response, the U.S. government promoted the production of gasohol, gasoline with 10 percent alcohol added, as an answer to the energy crisis.[7] In 1979, when the Soviet Union sent troops to Afghanistan, the Carter administration cut off its supplies to agricultural produce in retaliation, creating a surplus of agriculture in the U.S. As a result, fermenting the agricultural surpluses to synthesize fuel seemed to be an economical solution to the shortage of oil threatened by the Iran-Iraq war. Before the new direction could be taken, however, the political wind changed again: the Reagan administration came to power in January 1981 and, with the declining oil prices of the 1980s, ended support for the gasohol industry before it was born.[17]

Biotechnology seemed to be the solution for major social problems, including world hunger and energy crises. In the 1960s, radical measures would be needed to meet world starvation, and biotechnology seemed to provide an answer. However, the solutions proved to be too expensive and socially unacceptable, and solving world hunger through SCP food was dismissed. In the 1970s, the food crisis was succeeded by the energy crisis, and here too, biotechnology seemed to provide an answer. But once again, costs proved prohibitive as oil prices slumped in the 1980s. Thus, in practice, the implications of biotechnology were not fully realized in these situations. But this would soon change with the rise of genetic engineering.

The origins of biotechnology culminated with the birth of genetic engineering. There were two key events that have come to be seen as scientific breakthroughs beginning the era that would unite genetics with biotechnology. One was the 1953 discovery of the structure of DNA, by Watson and Crick, and the other was the 1973 discovery by Cohen and Boyer of a recombinant DNA technique by which a section of DNA was cut from the plasmid of an E. coli bacterium and transferred into the DNA of another.[18] This approach could, in principle, enable bacteria to adopt the genes and produce proteins of other organisms, including humans. Popularly referred to as "genetic engineering," it came to be defined as the basis of new biotechnology.

Genetic engineering proved to be a topic that thrust biotechnology into the public scene, and the interaction between scientists, politicians, and the public defined the work that was accomplished in this area. Technical developments during this time were revolutionary and at times frightening. In December 1967, the first heart transplant by Christian Barnard reminded the public that the physical identity of a person was becoming increasingly problematic. While poetic imagination had always seen the heart at the center of the soul, now there was the prospect of individuals being defined by other people's hearts.[19] During the same month, Arthur Kornberg announced that he had managed to biochemically replicate a viral gene. "Life had been synthesized," said the head of the National Institutes of Health.[19] Genetic engineering was now on the scientific agenda, as it was becoming possible to identify genetic characteristics with diseases such as beta thalassemia and sickle-cell anemia.

Responses to scientific achievements were colored by cultural skepticism. Scientists and their expertise were looked upon with suspicion. In 1968, an immensely popular work, The Biological Time Bomb, was written by the British journalist Gordon Rattray Taylor. The author's preface saw Kornberg's discovery of replicating a viral gene as a route to lethal doomsday bugs. The publisher's blurb for the book warned that within ten years, "You may marry a semi-artificial man or womanchoose your children's sextune out painchange your memoriesand live to be 150 if the scientific revolution doesnt destroy us first."[20] The book ended with a chapter called "The Future If Any." While it is rare for current science to be represented in the movies, in this period of "Star Trek", science fiction and science fact seemed to be converging. "Cloning" became a popular word in the media. Woody Allen satirized the cloning of a person from a nose in his 1973 movie Sleeper, and cloning Adolf Hitler from surviving cells was the theme of the 1976 novel by Ira Levin, The Boys from Brazil.[21]

In response to these public concerns, scientists, industry, and governments increasingly linked the power of recombinant DNA to the immensely practical functions that biotechnology promised. One of the key scientific figures that attempted to highlight the promising aspects of genetic engineering was Joshua Lederberg, a Stanford professor and Nobel laureate. While in the 1960s "genetic engineering" described eugenics and work involving the manipulation of the human genome, Lederberg stressed research that would involve microbes instead.[22] Lederberg emphasized the importance of focusing on curing living people. Lederberg's 1963 paper, "Biological Future of Man" suggested that, while molecular biology might one day make it possible to change the human genotype, "what we have overlooked is euphenics, the engineering of human development."[23] Lederberg constructed the word "euphenics" to emphasize changing the phenotype after conception rather than the genotype which would affect future generations.

With the discovery of recombinant DNA by Cohen and Boyer in 1973, the idea that genetic engineering would have major human and societal consequences was born. In July 1974, a group of eminent molecular biologists headed by Paul Berg wrote to Science suggesting that the consequences of this work were so potentially destructive that there should be a pause until its implications had been thought through.[24] This suggestion was explored at a meeting in February 1975 at California's Monterey Peninsula, forever immortalized by the location, Asilomar. Its historic outcome was an unprecedented call for a halt in research until it could be regulated in such a way that the public need not be anxious, and it led to a 16-month moratorium until National Institutes of Health (NIH) guidelines were established.

Joshua Lederberg was the leading exception in emphasizing, as he had for years, the potential benefits. At Asilomar, in an atmosphere favoring control and regulation, he circulated a paper countering the pessimism and fears of misuses with the benefits conferred by successful use. He described "an early chance for a technology of untold importance for diagnostic and therapeutic medicine: the ready production of an unlimited variety of human proteins. Analogous applications may be foreseen in fermentation process for cheaply manufacturing essential nutrients, and in the improvement of microbes for the production of antibiotics and of special industrial chemicals."[25] In June 1976, the 16-month moratorium on research expired with the Director's Advisory Committee (DAC) publication of the NIH guidelines of good practice. They defined the risks of certain kinds of experiments and the appropriate physical conditions for their pursuit, as well as a list of things too dangerous to perform at all. Moreover, modified organisms were not to be tested outside the confines of a laboratory or allowed into the environment.[18]

Atypical as Lederberg was at Asilomar, his optimistic vision of genetic engineering would soon lead to the development of the biotechnology industry. Over the next two years, as public concern over the dangers of recombinant DNA research grew, so too did interest in its technical and practical applications. Curing genetic diseases remained in the realms of science fiction, but it appeared that producing human simple proteins could be good business. Insulin, one of the smaller, best characterized and understood proteins, had been used in treating type 1 diabetes for a half century. It had been extracted from animals in a chemically slightly different form from the human product. Yet, if one could produce synthetic human insulin, one could meet an existing demand with a product whose approval would be relatively easy to obtain from regulators. In the period 1975 to 1977, synthetic "human" insulin represented the aspirations for new products that could be made with the new biotechnology. Microbial production of synthetic human insulin was finally announced in September 1978 and was produced by a startup company, Genentech.,[26] although that company did not commercialize the product themselves, instead, it licensed the production method to Eli Lilly and Company. 1978 also saw the first application for a patent on a gene, the gene which produces human growth hormone, by the University of California, thus introducing the legal principle that genes could be patented. Since that filing, almost 20% of the more than 20,000 genes in the human DNA have been patented.[27]

The radical shift in the connotation of "genetic engineering" from an emphasis on the inherited characteristics of people to the commercial production of proteins and therapeutic drugs was nurtured by Joshua Lederberg. His broad concerns since the 1960s had been stimulated by enthusiasm for science and its potential medical benefits. Countering calls for strict regulation, he expressed a vision of potential utility. Against a belief that new techniques would entail unmentionable and uncontrollable consequences for humanity and the environment, a growing consensus on the economic value of recombinant DNA emerged.

With ancestral roots in industrial microbiology that date back centuries, the new biotechnology industry grew rapidly beginning in the mid-1970s. Each new scientific advance became a media event designed to capture investment confidence and public support.[28] Although market expectations and social benefits of new products were frequently overstated, many people were prepared to see genetic engineering as the next great advance in technological progress. By the 1980s, biotechnology characterized a nascent real industry, providing titles for emerging trade organizations such as the Biotechnology Industry Organization (BIO).

The main focus of attention after insulin were the potential profit makers in the pharmaceutical industry: human growth hormone and what promised to be a miraculous cure for viral diseases, interferon. Cancer was a central target in the 1970s because increasingly the disease was linked to viruses.[29] By 1980, a new company, Biogen, had produced interferon through recombinant DNA. The emergence of interferon and the possibility of curing cancer raised money in the community for research and increased the enthusiasm of an otherwise uncertain and tentative society. Moreover, to the 1970s plight of cancer was added AIDS in the 1980s, offering an enormous potential market for a successful therapy, and more immediately, a market for diagnostic tests based on monoclonal antibodies.[30] By 1988, only five proteins from genetically engineered cells had been approved as drugs by the United States Food and Drug Administration (FDA): synthetic insulin, human growth hormone, hepatitis B vaccine, alpha-interferon, and tissue plasminogen activator (TPa), for lysis of blood clots. By the end of the 1990s, however, 125 more genetically engineered drugs would be approved.[30]

Genetic engineering also reached the agricultural front as well. There was tremendous progress since the market introduction of the genetically engineered Flavr Savr tomato in 1994.[31] Ernst and Young reported that in 1998, 30% of the U.S. soybean crop was expected to be from genetically engineered seeds. In 1998, about 30% of the US cotton and corn crops were also expected to be products of genetic engineering.[31]

Genetic engineering in biotechnology stimulated hopes for both therapeutic proteins, drugs and biological organisms themselves, such as seeds, pesticides, engineered yeasts, and modified human cells for treating genetic diseases. From the perspective of its commercial promoters, scientific breakthroughs, industrial commitment, and official support were finally coming together, and biotechnology became a normal part of business. No longer were the proponents for the economic and technological significance of biotechnology the iconoclasts.[32] Their message had finally become accepted and incorporated into the policies of governments and industry.

According to Burrill and Company, an industry investment bank, over $350 billion has been invested in biotech since the emergence of the industry, and global revenues rose from $23 billion in 2000 to more than $50 billion in 2005. The greatest growth has been in Latin America but all regions of the world have shown strong growth trends. By 2007 and into 2008, though, a downturn in the fortunes of biotech emerged, at least in the United Kingdom, as the result of declining investment in the face of failure of biotech pipelines to deliver and a consequent downturn in return on investment.[33]

There has been little innovation in the traditional pharmaceutical industry over the past decade and biopharmaceuticals are now achieving the fastest rates of growth against this background, particularly in breast cancer treatment. Biopharmaceuticals typically treat sub-sets of the total population with a disease whereas traditional drugs are developed to treat the population as a whole. However, one of the great difficulties with traditional drugs are the toxic side effects the incidence of which can be unpredictable in individual patients.

Read this article:
History of biotechnology - Wikipedia, the free encyclopedia

Read More...

Page 1,181«..1020..1,1801,1811,1821,183..1,1901,200..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick