header logo image


Page 1,412«..1020..1,4111,4121,4131,414..1,4201,430..»

RBCC: Could Stem Cells Be Key to Promising Autism Therapy?

October 16th, 2012 1:17 pm

NOKOMIS, Fla.--(BUSINESS WIRE)--

Rainbow Coral Corp. (RBCC) subsidiary Rainbow BioSciences will keep a close eye on a new study that could potentially lead to stem cell therapies for children with autism.

Researchers have been given the go-ahead by the FDA to launch a small study evaluating the effectiveness of autism treatments using patients own umbilical cord blood. Thirty children, aged two to seven, will receive injections of their own stem cells from the cord blood banked by their parents at birth.

Scientists will evaluate whether the stem cell therapy helps improve language and behavior in the children. Although the cause of autism is unknown and there is no cure for the disorder, one theory suggests that autism occurs because cell in the brain, known as neurons, are not connecting normally. Its possible that stem cells may address this problem.

RBCC is working to capitalize on the rising demand for effective new stem cell treatments by bringing a potentially game-changing stem cell technology to market. The company is close to a deal with Regenetech to acquire a license to perform cell expansion using that companys Rotary Cell Culture SystemTM, a rotating-wall bioreactor originally developed by NASA.

The rotating-wall bioreactor is capable of multiplying functional, 3-D stem cells for use in a variety of research projects, said RBCC CEO Patrick Brown. Stem cells carry tremendous potential to help researchers develop new treatments and cures for devastating diseases from Parkinsons to Alzheimers and even autism, but much research must be done first. Consequently, were very optimistic about the market potential for this revolutionary bioreactor technology.

RBCC plans to offer the new technology to help kickstart billions of dollars worth of research in an industry currently dominated by Amgen, Inc. (AMGN), Celgene Corporation (CELG), Genzyme Corp. (NASDAQ:GENZ) and Gilead Sciences Inc. (GILD).

For more information on Rainbow BioSciences, please visit http://www.rainbowbiosciences.com/investors.html.

About Rainbow BioSciences

Rainbow BioSciences, LLC, is a wholly owned subsidiary of Rainbow Coral Corp. (OTCBB:RBCC). The company continually seeks out new partnerships with biotechnology developers to deliver profitable new medical technologies and innovations. For more information on our growth-oriented business initiatives, please visit our website at [http://www.RainbowBioSciences.com]. For investment information and performance data on the company, please visit http://www.RainbowBioSciences.com/investors.html.

Read the original here:
RBCC: Could Stem Cells Be Key to Promising Autism Therapy?

Read More...

University of Maryland School of Medicine scientists develop stem cell model for hereditary disease

October 15th, 2012 9:25 pm

Public release date: 15-Oct-2012 [ | E-mail | Share ]

Contact: Karen Robinson karobinson@som.umaryland.edu 410-706-7590 University of Maryland Medical Center

A new method of using adult stem cells as a model for the hereditary condition Gaucher disease could help accelerate the discovery of new, more effective therapies for this and other conditions such as Parkinson's, according to new research from the University of Maryland School of Medicine.

Scientists at the University of Maryland School of Medicine reprogrammed stem cells to develop into cells that are genetically similar to and react to drugs in a similar way as cells from patients with Gaucher disease. The stem cells will allow the scientists to test potential new therapies in a dish, accelerating the process toward drug discovery, according to the paper published online in the journal the Proceedings of the National Academy of Sciences (PNAS) on Oct. 15 (Panicker et.al.).

The study was funded with $1.7 million in grants from the Maryland Stem Cell Research Fund; researchers received a start-up grant for $200,000 in 2007 and a larger, five-year grant for $1.5 million in 2009.

"We have created a model for all three types of Gaucher disease, and used stem cell-based tests to evaluate the effectiveness of therapies," says senior author Ricardo Feldman, Ph.D., associate professor of microbiology and immunology at the University of Maryland School of Medicine, and a research scientist at the University of Maryland Center for Stem Cell Biology and Regenerative Medicine. "We are confident that this will allow us to test more drugs faster, more accurately and more safely, bringing us closer to new treatments for patients suffering from Gaucher disease. Our findings have potential to help patients with other neurodegenerative diseases as well. For example, about 10 percent of Parkinson's disease patients carry mutations in the recessive gene for Gaucher disease, making our research possibly significant for Parkinson's disease as well."

Gaucher disease is the most frequent lipid-storage disease. It affects 1 in 50,000 people in the general population. It is most common in Ashkenazi Jews, affecting 1 in 1,000 among that specific population. The disease occurs in three subtypes Type 1 is the mildest and most common form of the disease, causing symptoms such as enlarged livers and spleens, anemia and bone disease. Type 2 causes very serious brain abnormalities and is usually fatal before the age of two, while Type 3 affects children and adolescents.

The condition is a recessive genetic disorder, meaning that both parents must be carriers for a child to suffer from Gaucher. However, said Dr. Feldman, studies have found that people with only one copy of a mutated Gaucher gene those known as carriers are at an increased risk of developing Parkinson's disease.

"This science is a reflection of the mission of the University of Maryland School of Medicine to take new treatments from bench to bedside, from the laboratory to patients, as quickly as possible," says E. Albert Reece, M.D., Ph.D., M.B.A., vice president for medical affairs at the University of Maryland and John Z. and Akiko K. Bowers Distinguished Professor and dean of the University of Maryland School of Medicine. "We are excited to see where this research goes next, bringing new hope to Gaucher patients and their families."

Dr. Feldman and his colleagues used the new reprogramming technology developed by Shinja Yamanaka in Japan, who was recognized with this year's Nobel Prize for Medicine or Physiology. Scientists engineered cells taken from the skin of Gaucher patients, creating human induced pluripotent stem cells, known as hiPSC stem cells that are theoretically capable of forming any type of cell in the body. Scientists differentiated the cells to form white blood cells known as macrophages and neuronal cells.

Read this article:
University of Maryland School of Medicine scientists develop stem cell model for hereditary disease

Read More...

Realizing the potential of stem cell therapy

October 15th, 2012 9:25 pm

Public release date: 15-Oct-2012 [ | E-mail | Share ]

Contact: Kat Snodgrass 202-962-4090 Society for Neuroscience

NEW ORLEANS New animal studies provide additional support for investigating stem cell treatments for Parkinson's disease, head trauma, and dangerous heart problems that accompany spinal cord injury, according to research findings released today. The work, presented at Neuroscience 2012, the annual meeting of the Society for Neuroscience and the world's largest source of emerging news about brain science and health, shows scientists making progress toward using stem cell therapies to repair neurological damage.

The studies focused on using stem cells to produce neurons essential, message-carrying cells in the brain and spinal cord. The loss of neurons and the connections they make for controlling critical bodily functions are the chief hallmarks of brain and spinal cord injuries and of neurodegenerative afflictions such as Parkinson's disease and ALS (amyotrophic lateral sclerosis), also known as Lou Gehrig's disease.

Today's new findings show that:

Other recent findings discussed show that:

"As the fields of developmental and regenerative neuroscience mature, important progress is being made to begin to translate the promise of stem cell therapy into meaningful treatments for a range of well-defined neurological problems," said press conference moderator Jeffrey Macklis, MD, of Harvard University and the Harvard Stem Cell Institute, an expert on development and regeneration of the mammalian central nervous system. "Solid, rigorous, and well-defined pre-clinical work in animals can set the stage toward human clinical trials and effective future therapies."

###

This research was supported by national funding agencies such as the National Institutes of Health, as well as private and philanthropic organizations.

Todd Bentsen, (202) 962-4086

Read the original here:
Realizing the potential of stem cell therapy

Read More...

State licensing hearing for Bonita Springs stem cell doctor to begin Tuesday

October 15th, 2012 9:25 pm

The Grekos hearing is scheduled to begin at 9 a.m. Tuesday. The location has changed to the Collier County Courthouse in room 4-D, according to a case filing Monday.

The hearing before J. Lawrence Johnson, an administrative law judge from Tallahassee, will begin at 9 a.m. The hearing is scheduled to last four days. The Collier County Courthouse is located at 3315 U.S. 41 E.

Photo by Allie Garza

Zannos Grekos

BONITA SPRINGS Bonita Springs physician Zannos Grekos, whose license is in jeopardy for controversial stem cell therapy, is getting his day before a judge.

Barring a last-minute delay or settlement, an administrative hearing is scheduled to begin Tuesday in Naples for the 47-year-old. He is fighting to get his license back in good standing from a suspension order, while the state Department of Health is pursuing more discipline and potentially revocation of his license.

Trained as a cardiologist, he's been licensed in Florida since 1996.

The trial-like proceeding, without a jury, is scheduled for four days before an administrative law judge. The proceeding is open to the public. The case against Grekos has garnered considerable media attention, including CNN and inquiries from European media.

A Texas father, Jimmy Bell, will be tracking what happens. Last year, he paid $57,000 upfront for his 5-year-old son, Jason, to undergo stem cell therapy to fight pulmonary hypertension. Despite pleas that his boy was weakening by the day, the treatment was never scheduled and Jason died. Bell received a $10,000 refund.

"He's taking advantage of people and it's more for personal gain," Bell said. "I'd like to see that stopped."

Follow this link:
State licensing hearing for Bonita Springs stem cell doctor to begin Tuesday

Read More...

Significant Recovery Of Motor And Neurological Functions In Ischemic Stroke Rats With Neuralstem NSI-566 Cells

October 15th, 2012 8:24 pm

ROCKVILLE, Md., Oct. 15, 2012 /PRNewswire/ --Neuralstem, Inc. (NYSE MKT: CUR) announced that data on Neuralstem's NSI-566 spinal cord-derived neural stem cell line in a rat model of ischemic stroke was presented in a poster, "Histopathological Assessment of Adult Ischemic Rat Brains after 4 Weeks of Intracerebral Transplantation of NSI-566RSC Cell Line," at The Society for Neurosciences Annual Meeting (http://www.sfn.org/AM2012/). This study was conducted independently in the laboratory of Dr. Cesar Borlongan, who is the director at the Center of Excellence for Aging and Brain Repair at the University of South Florida College of Medicine. Post-mortem histology was conducted in collaboration with Neuralstem. Rats that suffered ischemic stroke by middle cerebral artery occlusion, were transplanted 7 days post-stroke with increasing doses of NSI-566 into the stroke area. The animals were followed for safety and behavioral response for 56 days post-transplantation. Researchers reported Saturday that there was significant improvement in both motor and neurological tests in the stem cell-treated rats. There were significant dose-dependent differences in the behavioral improvement across treatment groups at post-transplantation periods, with the highest dose showing the most significant improvement in both motor and neurological tests. Similarly, there were significant differences in the behavioral performance among treatment groups at post-transplantation periods, with the most significant improvement in both motor and neurological tests seen at day 56 post-transplantation.

(Logo: http://photos.prnewswire.com/prnh/20061221/DCTH007LOGO )

"This study was designed to evaluate the potential therapeutic value of intracerbral dosing of human neural stem cells (NSI-566, supplied by Neuralstem) in an animal model of adult ischemic stroke," said Cesar V. Borlongan, Ph.D., University of South Florida College of Medicine, and the lead study author. "The results are very clear. The recovery of motor and neurological tests demonstrated by high-dose transplanted stroke animals was significantly better throughout the 56-day study period compared to vehicle-infused stroke animals, or low-dosed animals. In addition, there was stable improvement in the high-dose animals, and they showed a trend of better improvement over time."

A separate poster, "Survival and Differentiation of Human Neural Stem Cells (NSI-566RSC) After Grafting into Ischemia-Injured Porcine Brain," was also presented on Saturday. This study was independently carried out by Dr. Martin Marsala and his colleagues. Dr. Marsala is a professor and the head of the Neuroregeneration Laboratory at University of California San Diego and also a member of the Sanford Consortium for Regenerative Medicine. In this study, the same stem cells were transplanted into the brains of pigs that received an ischemic stroke on one side of the brain. 8-9 weeks after the ischemic event, which models chronic stroke in humans, feasibility and safety of escalating cell doses and injections were assessed. Body temperature, behavior, muscle tone and coordination, sensory function, food consumption, defecation, and micturition were monitored at least twice daily for the first 7 days, and once weekly thereafter, until termination. Up to 12 million cells in 25 cell injection deposits via 5 cannula penetrations were shown to be safe, which closely mimics the intended clinical route and method of delivery in future human clinical trials. At 6 weeks post-transplantation, there were no complications from the cell transplantation method or the cells. All animals recovered and showed progressive improvement with no distinction. All treated animals showed effective engraftment and neuronal maturation with extensive axonal projections. These data support the application of NSI-566RSC cell line to be transplanted into a chronic stage of previously ischemia-injured brain for treatment of motor deficits resulting from stroke.

"Our study was designed to evaluate the potential value of Neuralstem's cells in a chronic model of ischemic stroke and in a species that allowed for the use of human scale transplantation tools and dosing," said Martin Marsala, MD, at the University of California at San Diego Medical School, and the lead study author of the porcine study. "We have demonstrated clearly that both the route of administration and the cells are safe and well tolerated and that the cells survived and differentiated into mature neurons in the host brain tissue."

"We have demonstrated safety and efficacy of NSI-566RSC in a subacute model of ischemic stroke in rats and feasibility and safety in a chronic model of ischemic stroke in mini-pigs," said Karl Johe, PhD, Chairman of Neuralstem's Board of Directors and Chief Scientific Officer. "Together, these two studies demonstrate strong proof of principle data that our NSI-566 cells are ready to go into humans to treat paralysis in stroke patients."

Neuralstem has recently completed a Phase I trial testing the safety of NSI-566 in the treatment of amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease) and has been approved to initiate a human clinical trial in ischemic stroke in China, through its subsidiary, Suzhou Neuralstem.

About Neuralstem

Neuralstem's patented technology enables the ability to produce neural stem cells of the human brain and spinal cord in commercial quantities, and the ability to control the differentiation of these cells constitutively into mature, physiologically relevant human neurons and glia. Neuralstem has recently treated the last patient in an FDA-approved Phase I safety clinical trial for amyotrophic lateral sclerosis (ALS), often referred to as Lou Gehrig's disease, and has been awarded orphan status designation by the FDA.

In addition to ALS, the company is also targeting major central nervous system conditions with its NSI-566 cell therapy platform, including spinal cord injury, ischemic stroke and glioblastoma (brain cancer). The company has submitted an IND (Investigational New Drug) application to the FDA for a Phase I safety trial in spinal cord injury.

Read the original here:
Significant Recovery Of Motor And Neurological Functions In Ischemic Stroke Rats With Neuralstem NSI-566 Cells

Read More...

Protein could be key for drugs that promote bone growth

October 15th, 2012 8:23 pm

Public release date: 15-Oct-2012 [ | E-mail | Share ]

Contact: Jennifer Hilliard Scott jscott1@georgiahealth.edu 706-721-8604 Georgia Health Sciences University

AUGUSTA, Ga. Georgia Health Sciences University researchers have developed a mouse that errs on the side of making bone rather than fat, which could eventually lead to better drugs to treat inflammatory diseases such as rheumatoid arthritis.

Drugs commonly used to treat those types of conditions called glucocorticoids work by turning down the body's anti-inflammatory response, but simultaneously turn on other pathways that lead to bone loss. The result can lead to osteoporosis and an accumulation of marrow fat, says Dr. Xingming Shi, bone biologist at the GHSU Institute of Molecular Medicine and Genetics.

The key to the body developing bone instead of fat, a small protein called GILZ, was shown in cell cultures in 2008. Now, with work by GHSU Graduate Student Guodong Pan, the work has been replicated in an animal model. Pan received the American Society for Bone and Mineral Research's Young Investigator Award for his work at the society's annual meeting Oct. 12-15 in Minneapolis.

Bone and marrow fat come from the same biological precursor mesynchymal stem cells. "The pathways for bone and fat have a reciprocal relationship, so we needed to find the key that disrupts the fat production pathway, which would then instead encourage bone growth," Shi says.

GILZ, Shi and Pan say, was already a known mediator of the anti-inflammatory response of glucocorticoids, and the protein also mediates bone production. Shi's early research had shown that glucocorticoids enhance bone formation in the lab because of a short "burst" of GILZ.

The protein works by inhibiting the way cells regulate fat production and turn on fat-producing genes, Shi says. "When you permanently express GILZ, the fat pathway is suppressed, so the body chooses to produce bone instead."

"We found that when we overexpressed the protein in these mice, it increased bone formation," Pan added. "This supports our original hypothesis that GILZ mediates the body's response to glucocorticoids and encourages bone growth." In fact, the genetically modified mice showed a significant increase in bone mineral density and bone volume as well, he found.

"That means GILZ is a potential new anti-inflammatory drug candidate that could spare people from the harmful effects associated with glucocorticoid therapy," Pan said

See the original post:
Protein could be key for drugs that promote bone growth

Read More...

Study Suggests How Expanding Waistlines May Contribute to Cancer

October 15th, 2012 8:20 pm

Newswise Fat progenitor cells may contribute to cancer growth by fortifying the vessels that provide needed blood to tumors, according to preclinical research findings by investigators at The University of Texas Health Science Center at Houston (UTHealth).

The results were reported in Cancer Research, a journal of the American Association for Cancer Research.

Studies of groups of people have demonstrated a link between obesity and certain cancers; however, the physiological causes have not been identified. The World Health Organization reports that in 2008 there were more than 1.4 billion obese adults in the world and that cancer claimed the lives of 7.6 million that year.

Some researchers have theorized that what obese people eat may affect cancer progression. However, although diet is an important factor, the direct effect of excess fat tissue on tumors has to be taken into consideration, said Mikhail Kolonin, Ph.D., senior author and associate professor at the Center for Stem Cell and Regenerative Medicine at the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases at UTHealth.

The UTHealth scientists found a new link between tumor growth and obesity. They report that tumors emit a signal that attracts progenitor cells from white adipose tissue in mouse models of cancer. These cells in turn support the network of blood vessels that nourish tumors - a process called tumor angiogenesis.

For the first time, we have demonstrated that excess fat is a key factor in cancer progression regardless of the diet contributing to the extra weight, Kolonin said.

In an attempt to understand how fat tissue fuels tumor growth, our laboratory has focused on a possible role of adipose stromal progenitor cells. These cells serve as stem cells in fat tissue. We have discovered that they expand in obesity and are mobilized into the systemic circulation, Kolonin said.

Our experiments show that fat progenitors are recruited by tumors, where they incorporate into blood vessels and become fat cells, said Yan Zhang, M.D., Ph.D., the studys lead author and research scientist at the UTHealth Medical School. We found that obese animal fat progenitor cells recruited by tumors improved vascular function and, therefore, increased survival and proliferation of cancer cells.

Chieh Tseng, study author and graduate research assistant at the The University of Texas Graduate School of Biomedical Sciences at Houston, said, Our work has the potential to help a lot of people. Currently, we are investigating the molecular mechanisms of fat progenitor cell homing to tumor. We are also screening for new molecules targeting the pathways through which cells traffic from fat tissue to promote tumor growth.

The next step in this research would be to inactivate fat progenitor cells in an effort to slow cancer progression, said Kolonin, who is on the faculty of the graduate school and is the holder of the Jerold B. Katz Distinguished Professorship in Stem Cell Research at UTHealth.

See original here:
Study Suggests How Expanding Waistlines May Contribute to Cancer

Read More...

All projects involving Moriguchi face probe

October 15th, 2012 8:19 pm

Tuesday, Oct. 16, 2012

The government and universities began looking Monday into research projects involving Hisashi Moriguchi, who falsely claimed he had carried out the world's first clinical trial using a trailblazing stem cell technology.

The Cabinet Office and the science and health ministries, as well as the University of Tokyo, Tokyo Medical and Dental University and Kyorin University plan to probe what role Moriguchi may have played in the projects and whether his purported achievements are true.

Moriguchi, 48, said last week that he performed treatment using pluripotent stem (iPS) cells, which have the potential to grow into any type of body tissue, on six people but later admitted most of his claim was false.

"While the treatment was implemented, it was only one procedure," he said at a news conference Saturday in New York. "At the end of the day, I lied."

The education and science ministry found that Moriguchi was engaged in two research projects subsidized by the government between fiscal 2001 and 2005.

The projects, which received a combined 20.7 million in subsidies, concerned topics such as the comparison of cooperation between business and academia in Japan and the U.S. and did not involve experiments or surgery.

The Cabinet Office is set to provide 160 million in subsidies to a four-year project aimed at developing refrigeration techniques for cells and body organs that will run through fiscal 2013. The project leader at the University of Tokyo hired Moriguchi as a researcher.

The office has asked the Japan Society for the Promotion of Science, which manages the project, to look into Moriguchi's contributions.

A report submitted by the project members in fiscal 2010 said the research covers methods to refrigerate iPS cells, as well as organs such as the heart, uterus and lymph nodes, and that Moriguchi was a key researcher.

Read more:
All projects involving Moriguchi face probe

Read More...

Director of Operations for GeneCell International, Jose Cirino, Accentuates the Importance Surrounding the Minority …

October 15th, 2012 8:19 pm

Miami, FL (PRWEB) October 15, 2012

Leveraging more than a decade of experience in the biotech industry and a founding member of GeneCell International, Jose Cirino, Director of Operations, is an industry expert for expanding awareness in the field of adult stem cells worldwide. Cirino plays a pivotal role in GeneCell Internationals success, managing all operational aspects of a company thats at the forefront of the biotech industry. While providing leadership and direction for the company, he is responsible for all strategic planning to help advance GeneCells mission and objectives, as well as the expansion of product, service and development at the national and international levels. Currently, Cirino is not only working on the expansion and awareness of cord blood services, but on the implementation of other adult stem cells sources, such as umbilical cord tissue, dental pulp, and adipose (fat) tissue into other countries. He has presentation talks in the advantage of adult cord blood banking to health and biotech industry organizations, conferences and small group meetings (both English and Spanish). Cirino was a key player in the expansion of GeneCell International into Miami, Florida, as the first and only stem cell laboratory of its kind in the South Floridian market and the gateway to international countries.

Through his field of work, Cirinos aspiration and passion is being able to assist individuals in potentially saving their life when a debilitating immune deficiency or disorder arises. Though, Cirino continuously asks himself, Why isn't everyone banking these cells?

His best assumption is that people are not informed about stem cell banking and what is most disheartening, some have never even heard of it. Most people are not aware they have stem cells in their body. Others believe that stem cells only come from only human embryos since this is whats mainly discussed in politics and the news today. May this be the reason they are choosing to have no part in it and ignore it? If so, this is not the case, these cells are found in adults and there are not controversial, moral, ethical or have any political issues surrounding them. The amazing thing about these cells, aside from their potential to treat a variety of different diseases, is that for the most part they can be harvested from the individual through relatively minimally invasive procedures and can be cryogenically frozen (at a temperature of -321 F (-196 C)) and stored for decades until a disease manifests itself or the needed for cell-based therapies arises," said Cirino.

Due to this lack of awareness, there is a massive shortage of stem cell units stored for future treatments. This shortage, or lack of availability, is mostly affecting patients of African, Asian, Hispanic and Native American Indian descent. I, being a minority member of this group, am very concerned by this shortage. Since patients who need a transplant are more likely to find a match within their own genetic background, Cirino adds it is important that the pool of donors reflects the overall community.

A persons blood stem cell type is inherited, which means a patient is more likely to find a matched donor from within their own ethnic group, more than half of cord blood donations and privately banked cord blood in the United States are from Caucasians while minorities remain underrepresented, significantly. By increasing awareness of the advantages of cord blood among minorities, there is a potential for increased access to therapies for more people.

Umbilical cord blood preservation is a process by which blood is collected from the umbilical cord of a newborn baby and is stored cryogenically in a specially-designated bank. According to the National Marrow Donor Program, cord blood contains cells that can be transfused to a patient to treat various diseases, including lymphoma and leukemia. Currently, there are approximately 80 treatable diseases and the list of illnesses continues to grow. Cord blood is rich in stem cells and because certain immune cells found in the cord blood are not mature, there is less risk for the recipients immune system to reject these cells. Cord blood can be used to treat the child from whom the blood was collected as well as some first-degree relatives who are a close genetic match, such as immediate family members. Additionally, patients can get the treatment in about three weeks - as opposed to six to eight for bone marrow from an adult donor.

Prior to founding GeneCell, Cirino served as the President of the International Division to a cord blood laboratory in Boston, Massachusetts, where he was responsible for identifying, evaluating and selecting international representatives for affiliate programs to expand the services internationally. In doing so, he coordinated laboratory development protocol license agreements and implemented these programs throughout various international countries. After the expansion into other countries, Cirino would manage the company owned offices as well as provide support to the affiliate offices, from Mexico and South America, to the UK and the Middle East. He also represented the company at international health and biotech industry conferences, implemented new sales tools and processes for all international divisions of the company, and oversaw all accounting tasks as a method of monitoring its sales projections. Cirino joined the company as the Accounting Manager, where he was responsible for all aspects of U.S. and international accounting functions. He is a seasoned accounting professional, holding various accounting positions within large companies such as Sir Speedy Printing Centers of Boston and Harvard Institute for International Development. He has served as a member within various industry organizations including the International Cord Blood Society, and New England Fertility Society, as well as participated in the International Federation of Gynecology and Obstetrics (FIGO), The Mexican Federation of Ultrasounds, The World Cord Blood Congress, and Stem Cells USA-Regenerative Medicine conferences.

In addition to cord blood, Cirinos implementation projects of other adult stem cells sources, in the U.S. and other countries, include Cord Tissue Segment, Dental Pulp and Adipose Tissue:

About Cord Tissue Segment - A gelatinous substance, which functions as the primary connective tissue of the umbilical cord and is referred to as Whartons Jelly. This segment contains an important amount of Mesenchymal stem cells. These cells are an excellent candidate for regenerative medicine and tissue engineering applications. Mesenchymal stem cells have shown great promise in the potential treatment of diseases such as heart attack, Parkinsons disease, Alzheimers disease, type I diabetes, assist in bone and dental regeneration and expedite wound healing. In the past, the umbilical cord has been viewed as medical waste and discarded, resulting in the loss of this potential life-saving resource. By storing the stem cells extracted from your umbilical cord tissue segment along with your babys cord blood, youll have access to a wider variety of stem cells as new scientific discoveries are made.

Continued here:
Director of Operations for GeneCell International, Jose Cirino, Accentuates the Importance Surrounding the Minority ...

Read More...

Biotech Industry Look to Benefit From New Act Designed to Promote R&D Joint Ventures

October 15th, 2012 8:19 pm

NEW YORK, NY--(Marketwire - Oct 15, 2012) - The Biotechnology Industry has seen increased investor interest in 2012 as it continues to impress with strong gains. The iShares NASDAQ Biotechnology Index ETF (IBB) has gained over 35 percent this year, more than double the S&P 500 Index's gain of 15 percent. New legislation, increased mergers & acquisition activity as a result of major patent expirations have all been contributing factors to the industry's rapid rise in 2012. Five Star Equities examines the outlook for companies in the Biotech Industry and provides equity research on Amicus Therapeutics, Inc. ( NASDAQ : FOLD ) and Osiris Therapeutics, Inc. ( NASDAQ : OSIR ).

Access to the full company reports can be found at: http://www.FiveStarEquities.com/FOLD http://www.FiveStarEquities.com/OSIR

The Biotechnology Industry Organization (BIO) has recently praised the introduction of the High Technology Small Business Research Incentives Act. The new legislation would allow investors of joint venture R&D projects to utilize the losses and tax credits.

"Through the tax code, Congress historically has provided opportunities that encourage private investment in pre-revenue, R&D-intensive companies. The early growth of the biotech industry in the 1980s was due in part to the ability of investors to support projects aimed at finding new cures and treatments through similar joint ventures. This legislation will help spur greater private investment in biotech and other R&D intensive industries," BIO's President and CEO Jim Greenwood said in a statement.

Five Star Equities releases regular market updates on the Biotech Industry so investors can stay ahead of the crowd and make the best investment decisions to maximize their returns. Take a few minutes to register with us free at http://www.FiveStarEquities.com and get exclusive access to our numerous stock reports and industry newsletters.

Amicus Therapeutics is a biopharmaceutical company at the forefront of developing therapies for rare diseases. Shares of the company soared last Thursday after it reported positive preliminary results from an ongoing Phase 2 study for the treatment of people with Pompe disease.

Osiris Therapeutics, having developed the world's first approved stem cell drug Prochymal, is the leading stem cell company. The company is focused on developing and marketing products to treat medical conditions in inflammatory, cardiovascular, orthopedic and wound healing markets. The company recently reported that Swissmedic has invoked rapid authorization procedures for the Prochymal review.

Five Star Equities provides Market Research focused on equities that offer growth opportunities, value, and strong potential return. We strive to provide the most up-to-date market activities. We constantly create research reports and newsletters for our members. Five Star Equities has not been compensated by any of the above-mentioned companies. We act as an independent research portal and are aware that all investment entails inherent risks. Please view the full disclaimer at: http://www.FiveStarEquities.com/disclaimer

Read the rest here:
Biotech Industry Look to Benefit From New Act Designed to Promote R&D Joint Ventures

Read More...

State licensing hearing for Bonita Springs stem cell doctor to begin Tuesday

October 15th, 2012 8:18 pm

The Grekos hearing is scheduled to begin at 9 a.m. Tuesday in the Martin Luther King, Jr. Administration Building, room 1-140A, 5775 Osceola Trail, Naples. It is scheduled for four days.

Photo by Allie Garza

Zannos Grekos

BONITA SPRINGS Bonita Springs physician Zannos Grekos, whose license is in jeopardy for controversial stem cell therapy, is getting his day before a judge.

Barring a last-minute delay or settlement, an administrative hearing is scheduled to begin Tuesday in Naples for the 47-year-old. He is fighting to get his license back in good standing from a suspension order, while the state Department of Health is pursuing more discipline and potentially revocation of his license.

Trained as a cardiologist, he's been licensed in Florida since 1996.

The trial-like proceeding, without a jury, is scheduled for four days before an administrative law judge. The proceeding is open to the public. The case against Grekos has garnered considerable media attention, including CNN and inquiries from European media.

A Texas father, Jimmy Bell, will be tracking what happens. Last year, he paid $57,000 upfront for his 5-year-old son, Jason, to undergo stem cell therapy to fight pulmonary hypertension. Despite pleas that his boy was weakening by the day, the treatment was never scheduled and Jason died. Bell received a $10,000 refund.

"He's taking advantage of people and it's more for personal gain," Bell said. "I'd like to see that stopped."

The hearing has been rescheduled numerous times since the state issued an emergency restriction against Grekos in February 2011. Authorities restricted his license and told him not to do any treatment with patients which involve bone marrow or stem cells.

The rest is here:
State licensing hearing for Bonita Springs stem cell doctor to begin Tuesday

Read More...

Cell transformation earns Nobel Prize

October 15th, 2012 6:17 am

About a week ago, the Nobel Prize winners in medicine were revealed as Sir John B. Gurdon and Shinya Yamanaka for their work in cell research.

The award was given to these two doctors for the discovery that mature cells can be reprogrammed to become pluripotent." That is, any mature cells can go back to their original state, thus reversing the process of cell aging.

Yamanaka was able to draw this conclusion due to a combination of his own research and the research of Gurdon done 40 years earlier.

In 1962, Gurdon was able to take the nucleus from a frogs intestine and place it into a frogs egg. From this, a normal frog was born. Gurdons research was inspiration to Yamanakas experiment, where he wanted to reverse the process of cell maturity without using an egg.

He was able to figure out a gene combination, which he inserted into a mature cell, so that the cell was able to go back to its primitive state.

According to Yamanaka, whats significant about this technology is not only can we avoid the ethical controversy of using embryos, but also a transplant patient can avoid organ rejection because the treatment will be done by using the patients own cells and not somebody elses.

Past controversy of stem cell research has come from the fact that in order to examine a brand new cell, the scientist would have to kill an embryo. Yamanaka also mentions that this discovery may some day be a possible cure for Parkinsons disease.

Since, Yamanakas discovery was made in 2006, classroom textbooks have already been changed and biology teachers have been informing their students about this new method.

DePaul professor Dr. Elizabeth LeClaire talked to her biology students about the research Thursday.

I dont think [the research] will revolutionize the world of medicine, said LeClaire. This may not be the answer you want to hear, but most diseases are very common and are caused by diet and exercise.

Here is the original post:
Cell transformation earns Nobel Prize

Read More...

Arlen Specter praised as fighter from a more moderate era

October 15th, 2012 5:24 am

WASHINGTON Political leaders paused Sunday to mourn the loss of Arlen Specter, the long-serving former Pennsylvania senator whosefriends and foes across the political spectrumpraised the passionate, if combative, lawmaker who crossed political lines in a way that seems unimaginable in today's partisan era.

"Arlen Specter was always a fighter," President Obama said in a statement."From his days stamping out corruption as a prosecutor in Philadelphia to his three decades of service in the Senate, Arlen was fiercely independent never putting party or ideology ahead of the people he was chosen to serve."

"He brought that same toughness and determination to his personal struggles, using his own story to inspire others," the president said, adding that his efforts to advance stem-cell research funding, veterans health and other issues "will continue to change lives for years to come."Specter died Sunday at 82 afterbattling twice battling cancer, including non-Hodgkin's lymphoma, and other serious illnesses.

Photos: Arlen Specter through the years

His 30-year career in the Senate made him a lion of an earlier and sometimes unrecognizable era in Washington having started his career as a Democrat before becoming a Republican, only to switch once again in his final unsuccessful reelection campaign in 2010.

Specter's most notable work came on the Judiciary Committee, where he played key roles in confirmation of presidential appointees to the Supreme Court, particularly his grilling of Anita Hill during the Clarence Thomas hearings. Even before his late-career switch back to the Democratic Party he provided crucial support for Obama's policies.

"Sen. Specter was a man of moderation; he was always passionate but always easy to work with," said Senate Majority Leader Harry Reid (D-Nev.). "America is better today because of Arlen Specter.

Republican Sen. Orrin Hatch of Utah, who had workedopposite Specter as the top Republican on the Judiciary Committee, recalled his "longtime friend and colleague" as "a spirited man" who represented his state's values with "great integrity and conviction." Chad Griffin, the chairman of the Human Rights Campaign, the nation's largest gay rights advocacy group, noted Specter's critical vote to repealthe "Don't Ask, Don't Tell" law barring gaypersonnel from serving opening inthe military. Obama signed the bill into law in 2010.

"While we disagreed with his support for some conservative judicial nominees, which will leave a lasting negative impact on our community, he was willing to work across party lines to get things done," Griffin said in a statement, noting Specter's support for funding for stem cell research "at a time when it was difficult for a Republican senator to speak out."

Photos: Notable deaths of 2012

Read the original here:
Arlen Specter praised as fighter from a more moderate era

Read More...

Cell therapy portfolio outperforms major indices year-to-date

October 14th, 2012 4:02 pm
Tweet 


On August 10 we created a model portfolio in Google Finance of 29 public companies in the cell therapy sector then we compared how that portfolio was doing against the major indices year-to-date (Since 1 January 2012).  See that post here.  Bottom line: even though we are still in a relatively bullish market, the CT portfolio was doing better.  Significantly better.
So how is the sector portfolio doing now that we've been through three quarters?
CT model portfolio compared to 3 major indices YTD
In case you can't read the image above, the blue line represents the cell therapy portfolio and here are the stats on performance since 1 January 2012:
  • Cell Therapy Portfolio:  +24.44%
  • Dow Jones:  +4.5%
  • S+P 500:  +6.78%
  • Nasdaq:  +10.26%
The only change I've made to the portfolio of 29 companies listed in our August 10 post is to add Thermogenesis (KOOL).  Today its stock is at .968 up from .7 at the beginning of the year.
You do or should know, I'm no financial analyst.  I'm not entirely sure what assumptions are behind this 'model portfolio' or precisely what one should take from this snapshot but what is clear to me is that at least from one perspective the sector is treating investors fairly well.
I certainly welcome comments from more sophisticated investors or analysts.  In fact, if anyone with that kind of experience or expertise wants to write a guest post on this blog providing a more sophisticated commentary on what this all means, I would very much welcome the contribution.
In the meantime, I hope this helps.
_________________
Post-publication addition:
Carter Gould, Associate Biotech Analyst at Dawson James Securities emailed me to point out that the cell therapy portfolio is simply riding the bull wave of biotech in general and and the portfolio has not done even half as well as the broader biotech (BTK) index which is up 45% YTD.  All very true.  Here is a YahooFinance snapshot of the BTK performance vs the three major indices.















http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feedproxy.google.com/~r/CellTherapyBlog/~3/ediPNE1NBDw/cell-therapy-portfolio-outperforms.html

Read More...

Yamanaka and the Frailty of Peer Review

October 14th, 2012 4:02 pm


More than one back story exists on
Shinya Yamanaka and his Nobel Prize, but one that has received little
attention this week also raises questions about hoary practice of
peer review and publication of research – not to mention the
awarding of billions of dollars in taxpayer dollars.

The Yamanaka tale goes back to a 2010
article in the New Scientist magazine by Peter Aldous in which the
publication examined more than 200 stem cell papers published from
“2006 onwards.” The study showed an apparent favoritism towards
U.S. scientists. Also specifically reported were long delays in
publication of Yamanaka's papers, including in one case 295 days.
Here is part of what Aldous wrote,

“All's fair in love and war, they
say, but science is supposed to obey more noble ideals. New findings
are submitted for publication, the studies are farmed out to experts
for objective 'peer review' and the best research appears promptly
in the most prestigious journals. 

“Some stem cell biologists are crying
foul, however. Last year(2009), 14 researchers in this notoriously
competitive field wrote
to leading journals
 complaining of "unreasonable or
obstructive reviews". The result, they claimed, is that
'publication of truly original findings may be delayed or rejected.' 

“Triggered by this protest, New
Scientist scrutinised the dynamics of publication in the most
exciting and competitive area of stem
cell research
, in which cells are 'reprogrammed' to
acquire the versatility of those of an early-stage embryo. In this
fast-moving field, where a Nobel prize is arguably at stake,
biologists are racing feverishly to publish their findings in top
journals. 

“Our analysis of more than 200
research papers from 2006 onwards reveals that US-based scientists
are enjoying a significant advantage, getting their papers published
faster and in more prominent journals (find
our data, methods and analyses here
). 

“More mysterious, given his standing
in the field, is why two of Yamanaka's papers were among the 10 with
the longest lags. In the most delayed of all, Yamanaka reported that
the tumour-suppressing gene p53 inhibits the formation of
iPS cells. The paper took 295 days to be accepted. It was eventually
published by Nature in August 2009 alongside four similar
studies. 'Yamanaka's paper was submitted months before any of the
others,' complains Austin
Smith
 at the University of Cambridge, UK, who coordinated
the letter sent to leading journals. 

“Yamanaka suggests that editors may
be less excited by papers from non-US scientists, but may change
their minds when they receive similar work from leading labs in the
US. In this case, Hochedlinger submitted a paper similar to
Yamanaka's, but nearly six months after him. Ritu
Dhand
, Nature's chief biology editor, says that each paper
is assessed on its own merits. Hochedlinger says he was unaware of
Yamanaka's research on p53 before publication.”

Last week, Paul Knoepfler of UC Davis
wrote of other issues dealing with peer review, but coincidentally
also dealing with iPS cells. What New Scientist and Knoepfler are
discussing is not an isolated situation. It is part of a continuum of
complaints, both serious and self-interested but exceedingly
pervasive. A Google search today on the term “problems with peer
review” turned up 10.1 million references.  Writing on Ars Technica last year, Jonathan Gitlin, science policy analyst at the National
Human Genome Research Institute
,  summarized many of the issues, citing a “published” (our quotation marks)
study that said peer review doesn't work “any better than chance.”
Gitlin said,

“A common criticism is that peer
review is biased towards well-established research groups and the
scientific status quo. Reviewers are unwilling to reject papers from
big names in their fields out of fear, and they can be hostile to
ideas that challenge their own, even if the supporting data is good.
Unscrupulous reviewers can reject papers and then quickly publish
similar work themselves.” 

At the $3 billion California stem cell
agency, peer review is undergoing some modest, indirect examination
nowadays. The agency is moving towards tighter scrutiny of budgets
proposed by applicants. And, following a record wave of appeals this
summer by disgruntled applicants rejected during peer review, it is
also moving to bring the appeal process under more control.
As the agency tries to move faster and
more successfully towards development of commercial therapies, it may
do well to consider also the frailties of its peer review process and the
perils of scientific orthodoxy.   

Source:
http://feedproxy.google.com/~r/blogspot/uqpFc/~3/lESi4gQF2IA/yamanaka-and-frailty-of-peer-review.html

Read More...

Yamanaka: ‘Rejected, Slow and Clumsy’

October 14th, 2012 4:02 pm


This week's announcement of the Nobel
Prize
for Shinya Yamanaka brought along some interesting
tidbits, including who was “snubbed” as well as recollections
from the recipient.

Jon Bardin of the Los Angeles Times
wrote the “snubbed” piece and quoted Christopher Scott of
Stanford and Paul Knoepfler of UC Davis about the selection issues.
Bardin's piece mentioned Jamie Thomson and Ian Wilmut as scientists
who also could have been considered for the award but were not named.
Ultimately, Bardin wrote that the award committee was looking for a
“singular, paradigm shifting discovery,” which he concluded was
not the case with Thomson or Wilmut.
How Yamanaka arrived at his research
was another topic in the news coverage, much of it dry as dust.
However, Lisa Krieger of the San Jose Mercury News began her story
with Yamanaka's travails some 20 years ago. At the time, no one was returning his phone
calls as he looked for work, and he was rejected by
50 apparently not-so-farsighted American labs.
But that job search in 1993 came only after Yamanaka
decided he was less than successful as an orthopedic surgeon,
according to an account in JapanRealTime. “Slow and clumsy” was
how Yamanaka described himself.
And so he moved on to research. But
again he reported stumbling. In this case, he found a way to reduce
“bad cholesterol” but with a tiny complication – liver cancer.
That in turn sent him on a journey to learn how cells proliferate and
develop, which led him to the work that won the Nobel Prize.
Yamanaka said his original interest in
orthopedic medicine was stimulated by his father along with the treatments
for injuries young Yamanaka received while playing rugby and learning judo. The JapanRealTime account continued,

“'My father probably still thinks in
heaven that I’m a doctor,' he said in the interview(with Asahi
Shimbun
last April). 'IPS cells are still at a research phase and
have not treated a single patient. I hope to link it to actual
treatment soon so I will be not embarrassed when I meet my father
someday.'”

And then there was, of course, the much-repeated story from the researcher who shared the Nobel with Yamanaka, John Gurdon. He has preserved to this day a
report from a high school biology teacher that said the 15-year-old
Gurdon's desire to become a scientist was “quite ridiculous.”
The teacher, who is unnamed, wrote,

“If he can’t learn simple
biological facts he would have no chance of doing the work of a
specialist, and it would be a sheer waste of time, both on his part
and of those who would have to teach him.”

Source:
http://feedproxy.google.com/~r/blogspot/uqpFc/~3/7J31SRIukpg/yamanaka-rejected-slow-and-clumsy.html

Read More...

Tighter Controls on Stem Cell Grant Budgets Hits Quorum Bump

October 14th, 2012 4:02 pm


SAN FRANCISCO – A move to tighten
budget controls on grants from the $3 billion California stem cell
agency stalled Monday, but it appears that the plan is headed for
ultimate approval.

The proposal was up for consideration
by the agency's directors' Science Subcommittee, which could not act
on it after it lost its quorum.
Members of the panel generally favored
the stronger budget controls, but had questions about the specifics
of implementing the plan during closed-door reviews of grant
applications. The proposal is likely to be altered to respond to
those concerns. It would then either come back to the Science
Subcommittee or go to the full board.
The plan would make it clear to
recipients of large grants that approval of an application by the
agency's governing board does not provide a carte blanche to
researchers. Ellen Feigal, senior vice president for research and
development, said it can be “extremely difficult” for CIRM staff
to deal with budget problems in grants following board approval.
The committee also approved a plan to
speed the application process on its next disease team round, which
is aimed at driving research into the clinic. The concept proposal
for that round is scheduled to come before directors later this
month. The round will be limited to “more mature stage” research
that is close to a clinical trial, if not in one. Feigal said 10 to
15 applications are expected.
Another proposal to add more millions
to CIRM's strategic partnership program was also approved.

Source:
http://feedproxy.google.com/~r/blogspot/uqpFc/~3/EqLIk55mLu4/tighter-controls-on-stem-cell-grant.html

Read More...

Yamanaka and the Golden State

October 14th, 2012 4:02 pm


The iPierian biopharmaceutical company
in South San Francisco was quick to make a change in its web site
this morning after the Nobel Prize for medicine was announced.

Altered was the bio for one of its
scientific advisors, Shinya Yamanaka, to note that he had won the
Nobel. The bio is tucked away on the site, but it is likely that the
company, which specializes in iPS work, will figure out how to put
the news out front on its home page as well as issue a press release.
It was all part of the reaction today
in California to the Nobel for Yamanaka, who has substantial links to
the Golden State, including UCSF and the Gladstone Institutes.
Both enterprises moved with greater
deftness than iPierian. Yamanaka is a professor at UCSF and a senior
investigator at Gladstone, and the organizations quickly put together a news conference this morning that featured Yamanaka on a video
hook-up from Japan.
UCSF, which is allied with Gladstone,
issued a press release that quoted the president of Gladstone, R.
Sanders Williams
, who also mentioned the California stem cell agency.
Williams said,

“Dr. Yamanaka’s story is a
thrilling tale of creative genius, focused dedication and successful
cross-disciplinary science. These traits, nurtured during Dr.
Yamanaka’s postdoctoral training at Gladstone, have led to a
breakthrough that has helped propel the San Francisco Bay Area to the
forefront of stem cell research. Dozens of labs — often supported
by organizations such as the California Institute for Regenerative
Medicine (CIRM)
and the Roddenberry Foundation–have adopted his
technology.” 

CIRM, which is the state's $3 billion
stem cell effort, published an item on its blog quoting CIRM
President Alan Trounson. He said,

"There are few moments in science
that are undisputed as genuine elegant creativity and simplicity.
Shinya Yamanaka is responsible for one of those. The induced
pluripotent stem cells he created will allow us to interrogate and
understand the full extent and variation of human disease, will
enable us to develop new medicines and will forever change the way
science and medicine will be conducted for the benefit of mankind. An
extraordinary accomplishment by a genuinely modest and brilliant
scientist. He absolutely deserves a Nobel award.”

The CIRM item by Amy Adams, the
agency's communications manager, said that just five years after
Yamanaka's research,

“CIRM alone is funding almost $190
million in awards developing better ways of creating iPS cells and
using those cells to develop new therapies (the
full list of iPS grants is on our website
).”

One of the recipients of CIRM's iPS
cash is the well-connected iPierian, which has taken in $7.1 million.
Yamanaka, however, has never received a grant from the agency, and
it is not known whether he ever applied since CIRM releases only the
names of researchers whose applications were approved.

Source:
http://feedproxy.google.com/~r/blogspot/uqpFc/~3/RbQ09EsO8Qc/yamanaka-and-golden-state.html

Read More...

Stem Cell Orthodoxy and Peer Review

October 14th, 2012 4:02 pm


Going against the grain can be
difficult as UC Davis stem cell scientist Paul Knoepfler learned
again in connection with his research that dealt with similarities
between cancer and iPS cells.

His “unsettling” findings troubled
some scientists who reviewed his paper prior to its publication in
September in Stem Cells and Development. (See here and here.)
As many readers know, iPS or
reprogrammed adult cells are currently a hot research avenue in stem
cell research because they avoid many of the ticklish ethical and
political problems connected with human embryonic stem cells.
Knoepfler shared his thoughts on the
publication and peer review process on his blog last week. He wrote,

“Not surprisingly...there are certain
members of the stem cell field who would rather focus away from the
ideas that iPS cells are similar in some respects to cancer.”

Knoepfler, whose research was financed
in part by the California stem cell agency, wrote,

“Once we had a manuscript together
comparing iPS cells to cancer cells, we sent it to several high
profile journals without much luck. We thought that the fact that our
data indicated that iPS cells are similar to cancer cells might make
reviewers and editors excited. We thought that the paper was novel
and thought provoking in a number of ways. At the same time I
realized the theme of the paper would be controversial. 

“I would say two general things about
the review process at the two journals that turned down the paper.
First, the reviewers at these journals were enormously helpful with
their suggestions and helped us improve the paper substantially.
Second, they were clearly very uncomfortable with the notion that iPS
cells are related in some ways to cancer so unsettled in fact that I
believe it influenced their reviews.”

At one journal, a reviewer said the
findings were either “not sufficiently novel” or “trivial.”
“Little useful insights” said another. And a third said, “many
unsettling results....”
Knoepfler commented on this blog,

“Yeah, it may be unsettling that iPS
cells share traits with cancer cells, but if that is the reality,
isn’t it important that people know that and think about it, talk
about it, and address the issue with eyes open?”

Knoepfler's item and similar comments
from other researchers that can found elsewhere on the Internet
indirectly raise questions about the California stem cell agency's process
of peer review of applications for hundreds of millions of dollars in
funding, especially in the wake of this summer's unprecedented rash of appeals of decisions by grant reviewers.
The key question is whether the agency's closed-door process reinforces orthodoxy or, in fact, is all but controlled by what
amounts to scientific conventional wisdom. Obviously, no researcher
likes to see a paper rejected or a grant denied. But the record
number of appeals at CIRM and other private complaints could well indicate
that potentially profitable proposals are receiving a less than
welcome reception behind closed doors from agency reviewers.
The agency's board itself is
hard-pressed to make such determinations. It is hamstrung by
procedures that do not permit it to expand an application directly –
only a staff-written summary. Names of applicants and institutions
are censored, although the board is required by law to discuss in
public most aspects of a research proposal. Exceptions are permitted for proprietary information. Additionally, a handful of the 29 members of the governing board do participate in the reviews, which come before final action by the board. 
Currently the agency is pushing hard to
commercialize stem cell research and fulfill at least some of the
promises to voters that were made in 2004. To do that, the agency may
well have to step outside of the normal comfort zone of the good
burghers of stem cell science.

Source:
http://feedproxy.google.com/~r/blogspot/uqpFc/~3/LITB6cXS-ZM/stem-cell-orthodoxy-and-peer-review.html

Read More...

Cell therapy portfolio outperforms major indices year-to-date

October 14th, 2012 3:59 pm
Tweet 


On August 10 we created a model portfolio in Google Finance of 29 public companies in the cell therapy sector then we compared how that portfolio was doing against the major indices year-to-date (Since 1 January 2012).  See that post here.  Bottom line: even though we are still in a relatively bullish market, the CT portfolio was doing better.  Significantly better.
So how is the sector portfolio doing now that we've been through three quarters?
CT model portfolio compared to 3 major indices YTD
In case you can't read the image above, the blue line represents the cell therapy portfolio and here are the stats on performance since 1 January 2012:
  • Cell Therapy Portfolio:  +24.44%
  • Dow Jones:  +4.5%
  • S+P 500:  +6.78%
  • Nasdaq:  +10.26%
The only change I've made to the portfolio of 29 companies listed in our August 10 post is to add Thermogenesis (KOOL).  Today its stock is at .968 up from .7 at the beginning of the year.
You do or should know, I'm no financial analyst.  I'm not entirely sure what assumptions are behind this 'model portfolio' or precisely what one should take from this snapshot but what is clear to me is that at least from one perspective the sector is treating investors fairly well.
I certainly welcome comments from more sophisticated investors or analysts.  In fact, if anyone with that kind of experience or expertise wants to write a guest post on this blog providing a more sophisticated commentary on what this all means, I would very much welcome the contribution.
In the meantime, I hope this helps.
_________________
Post-publication addition:
Carter Gould, Associate Biotech Analyst at Dawson James Securities emailed me to point out that the cell therapy portfolio is simply riding the bull wave of biotech in general and and the portfolio has not done even half as well as the broader biotech (BTK) index which is up 45% YTD.  All very true.  Here is a YahooFinance snapshot of the BTK performance vs the three major indices.















http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

Source:
http://feedproxy.google.com/~r/CellTherapyBlog/~3/ediPNE1NBDw/cell-therapy-portfolio-outperforms.html

Read More...

Page 1,412«..1020..1,4111,4121,4131,414..1,4201,430..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick