header logo image


Page 395«..1020..394395396397..400410..»

Muscular Dystrophy Association Awards 15 Grants Totaling More Than $4 Million for Neuromuscular Disease Research – PRNewswire

September 24th, 2020 6:51 am

NEW YORK, Sept. 23, 2020 /PRNewswire/ --The Muscular Dystrophy Association (MDA) announced today the awarding of 15 new MDA grants totaling more than$4 million toward research focused on a variety of neuromuscular diseases (NMDs), including Duchenne muscular dystrophy (DMD), Charcot-Marie-Tooth disease (CMT), Becker's muscular dystrophy (BMD), spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), myotonic dystrophy type 1 (DM1) and facioscapulohumeral muscular dystrophy (FSHD). This round of grant funding reinforces MDA's unwavering commitmentin the face of declining income due to the COVID-19 pandemicto the progress of neuromuscular disease research and builds on the more than$1 billionMDA has already invested in research to uncover new treatments and cures for NMDs since its inception. Some grants will go into effect this year, while others will be awarded in 2021.

"We continue to fund the most innovative research that will lead us to cures for a range of neuromuscular diseases," saysSharon Hesterlee, PhD, executive vice president and chief research officer for Muscular Dystrophy Association. "We have already seen our investment pay off with the first effective neuromuscular disease therapies, and these grantees are pushing the envelope even further in diseases once thought incurable."

Dr. Hesterlee added, "Although COVID led the cancellation of MDA's spring review session, we are pleased to announce the funding of these projects, which were reviewed in 2019."

The newly funded projects will aim to advance research discoveries and new therapy development in multiple areas. The awarded grants will fund studies to further advance our understanding of genetic causes of and risk factors for NMDs, investigate new approaches to developing gene therapies and other innovative potential treatments, including stopping disease progression and improving genetic testing technologies.

For a complete list of individual awards for this grant cycle, visit MDA's website and explore theGrants at a Glancesection. Highlights from thegrant awards for this grant cycleinclude:

ALS grants will be announced separately later this month, as will grants being given jointly by MDA and other organizations.

About the Muscular Dystrophy AssociationFor 70 years, the Muscular Dystrophy Association (MDA) has been committed to transforming the lives of people living with muscular dystrophy, ALS, and related neuromuscular diseases. We do this throughinnovations in scienceandinnovations in care. As the largest source of funding for neuromuscular disease research outside of the federal government, MDA has committed more than $1 billion since our inception to accelerate the discovery of therapies and cures.Research we have supportedis directly linked to life-changing therapies across multiple neuromuscular diseases.MDA's MOVRis the first and only data hub that aggregates clinical, genetic, and patient-reported data for multiple neuromuscular diseases to improve health outcomes and accelerate drug development. MDA supports thelargest network of multidisciplinary clinicsproviding best in class care at more than 150 of the nation's top medical institutions. OurResource Centerserves the community with one-on-one specialized support, and we offer educational conferences, events, and materials for families and healthcare providers. Each year thousands of children and young adults learn vital life skills and gain independence atsummer campand through recreational programs, at no cost to families.During the COVID-19 pandemic, MDA continues to produce virtual events and programming to support our community when in-person events and activities are not possible. MDA's COVID-19 guidelines and virtual events are posted atmda.org/COVID19. For more information, visitmda.org.

SOURCE Muscular Dystrophy Association

https://www.mda.org

Visit link:
Muscular Dystrophy Association Awards 15 Grants Totaling More Than $4 Million for Neuromuscular Disease Research - PRNewswire

Read More...

CRISPR Therapeutics and Vertex Pharmaceuticals Announce Priority Medicines (PRIME) Designation Granted by the European Medicines Agency (EMA) to…

September 24th, 2020 6:51 am

ZUG, Switzerland and CAMBRIDGE, Mass. and BOSTON, Sept. 22, 2020 (GLOBE NEWSWIRE) -- CRISPR Therapeutics (Nasdaq: CRSP) and Vertex Pharmaceuticals Incorporated(Nasdaq: VRTX) today announced the European Medicines Agency (EMA) has granted Priority Medicines (PRIME) designation to CTX001, an investigational, autologous, ex vivo CRISPR/Cas9 gene-edited therapy for the treatment of severe sickle cell disease (SCD).

PRIME is a regulatory mechanism that provides early and proactive support to developers of promising medicines, to optimize development plans and speed up evaluations so these medicines can reach patients faster. The goal of PRIME is to help patients benefit as early as possible from innovative new therapies that have demonstrated the potential to significantly address an unmet medical need. PRIME designation was granted based on clinical data from CRISPR and Vertexs ongoing Phase 1/2 trial of CTX001 in patients with severe SCD.

About CTX001CTX001 is an investigational, autologous, ex vivo CRISPR/Cas9 gene-edited therapy that is being evaluated for patients suffering from transfusion-dependent beta thalassemia (TDT) or severe SCD, in which a patients hematopoietic stem cells are engineered to produce high levels of fetal hemoglobin (HbF; hemoglobin F) in red blood cells. HbF is a form of the oxygen-carrying hemoglobin that is naturally present at birth, which then switches to the adult form of hemoglobin. The elevation of HbF by CTX001 has the potential to alleviate transfusion requirements for TDT patients and reduce painful and debilitating sickle crises for SCD patients.

Based on progress in this program to date, CTX001 has been granted Regenerative Medicine Advanced Therapy (RMAT), Fast Track, and Orphan Drug designations from the U.S. Food and Drug Administration (FDA), and Orphan Drug Designation from the European Commission, for both TDT and SCD.

CTX001 is being developed under a co-development and co-commercialization agreement between CRISPR Therapeutics and Vertex. CTX001 is the most advanced gene-editing approach in development for TDT and SCD.

About CLIMB-111The ongoing Phase 1/2 open-label trial, CLIMB-Thal-111, is designed to assess the safety and efficacy of a single dose of CTX001 in patients ages 12 to 35 with TDT. The trial will enroll up to 45 patients and follow patients for approximately two years after infusion. Each patient will be asked to participate in a long-term follow-up trial.

About CLIMB-121The ongoing Phase 1/2 open-label trial, CLIMB-SCD-121, is designed to assess the safety and efficacy of a single dose of CTX001 in patients ages 12 to 35 with severe SCD. The trial will enroll up to 45 patients and follow patients for approximately two years after infusion. Each patient will be asked to participate in a long-term follow-up trial.

About the Gene-Editing Process in These TrialsPatients who enroll in these trials will have their own hematopoietic stem and progenitor cells collected from peripheral blood. The patients cells will be edited using the CRISPR/Cas9 technology. The edited cells, CTX001, will then be infused back into the patient as part of a stem cell transplant, a process which involves, among other things, a patient being treated with myeloablative busulfan conditioning. Patients undergoing stem cell transplants may also encounter side effects (ranging from mild to severe) that are unrelated to the administration of CTX001. Patients will initially be monitored to determine when the edited cells begin to produce mature blood cells, a process known as engraftment. After engraftment, patients will continue to be monitored to track the impact of CTX001 on multiple measures of disease and for safety.

About the CRISPR-Vertex CollaborationCRISPR Therapeutics and Vertex entered into a strategic research collaboration in 2015 focused on the use of CRISPR/Cas9 to discover and develop potential new treatments aimed at the underlying genetic causes of human disease. CTX001 represents the first treatment to emerge from the joint research program. CRISPR Therapeutics and Vertex will jointly develop and commercialize CTX001 and equally share all research and development costs and profits worldwide.

About CRISPR TherapeuticsCRISPR Therapeutics is a leading gene editing company focused on developing transformative gene-based medicines for serious diseases using its proprietary CRISPR/Cas9 platform. CRISPR/Cas9 is a revolutionary gene editing technology that allows for precise, directed changes to genomic DNA. CRISPR Therapeutics has established a portfolio of therapeutic programs across a broad range of disease areas including hemoglobinopathies, oncology, regenerative medicine and rare diseases. To accelerate and expand its efforts, CRISPR Therapeutics has established strategic collaborations with leading companies including Bayer, Vertex Pharmaceuticals and ViaCyte, Inc. CRISPR Therapeutics AG is headquartered in Zug, Switzerland, with its wholly-owned U.S. subsidiary, CRISPR Therapeutics, Inc., and R&D operations based in Cambridge, Massachusetts, and business offices in San Francisco, California and London, United Kingdom. For more information, please visit http://www.crisprtx.com.

CRISPR Therapeutics Forward-Looking Statement This press release may contain a number of forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, as well as statements regarding CRISPR Therapeutics expectations about any or all of the following: (i) the status of clinical trials (including, without limitation, the expected timing of data releases) and discussions with regulatory authorities related to product candidates under development by CRISPR Therapeutics and its collaborators, including expectations regarding the benefits of PRIME designation; (ii) the expected benefits of CRISPR Therapeutics collaborations; and (iii) the therapeutic value, development, and commercial potential of CRISPR/Cas9 gene editing technologies and therapies. Without limiting the foregoing, the words believes, anticipates, plans, expects and similar expressions are intended to identify forward-looking statements. You are cautioned that forward-looking statements are inherently uncertain. Although CRISPR Therapeutics believes that such statements are based on reasonable assumptions within the bounds of its knowledge of its business and operations, forward-looking statements are neither promises nor guarantees and they are necessarily subject to a high degree of uncertainty and risk. Actual performance and results may differ materially from those projected or suggested in the forward-looking statements due to various risks and uncertainties. These risks and uncertainties include, among others: potential impacts due to the coronavirus pandemic, such as the timing and progress of clinical trials; the potential for initial and preliminary data from any clinical trial and initial data from a limited number of patients (as is the case with CTX001 at this time) not to be indicative of final trial results; the potential that CTX001 clinical trial results may not be favorable; that future competitive or other market factors may adversely affect the commercial potential for CTX001; uncertainties regarding the intellectual property protection for CRISPR Therapeutics technology and intellectual property belonging to third parties, and the outcome of proceedings (such as an interference, an opposition or a similar proceeding) involving all or any portion of such intellectual property; and those risks and uncertainties described under the heading Risk Factors in CRISPR Therapeutics most recent annual report on Form 10-K, quarterly report on Form 10-Q and in any other subsequent filings made by CRISPR Therapeutics with the U.S. Securities and Exchange Commission, which are available on the SEC's website at http://www.sec.gov. Existing and prospective investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date they are made. CRISPR Therapeutics disclaims any obligation or undertaking to update or revise any forward-looking statements contained in this press release, other than to the extent required by law.

About VertexVertex is a global biotechnology company that invests in scientific innovation to create transformative medicines for people with serious diseases. The company has multiple approved medicines that treat the underlying cause of cystic fibrosis (CF) a rare, life-threatening genetic disease and has several ongoing clinical and research programs in CF. Beyond CF, Vertex has a robust pipeline of investigational small molecule medicines in other serious diseases where it has deep insight into causal human biology, including pain, alpha-1 antitrypsin deficiency and APOL1-mediated kidney diseases. In addition, Vertex has a rapidly expanding pipeline of genetic and cell therapies for diseases such as sickle cell disease, beta thalassemia, Duchenne muscular dystrophy and type 1 diabetes mellitus.

Founded in 1989 in Cambridge, Mass., Vertex's global headquarters is now located in Boston's Innovation District and its international headquarters is in London, UK. Additionally, the company has research and development sites and commercial offices in North America, Europe, Australia and Latin America. Vertex is consistently recognized as one of the industry's top places to work, including 10 consecutive years on Science magazine's Top Employers list and top five on the 2019 Best Employers for Diversity list by Forbes. For company updates and to learn more about Vertex's history of innovation, visit http://www.vrtx.com or follow us on Facebook, Twitter, LinkedIn, YouTube and Instagram.

Vertex Special Note Regarding Forward-Looking StatementsThis press release contains forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995, including, without limitation, statements regarding CTX001s PRIME designation or its development, the potential benefits of CTX001, our plans and expectations for our clinical trials and clinical trial sites, and the status of our clinical trials of our product candidates under development by us and our collaborators, including activities at the clinical trial sites and potential outcomes. While Vertex believes the forward-looking statements contained in this press release are accurate, these forward-looking statements represent the company's beliefs only as of the date of this press release and there are a number of risks and uncertainties that could cause actual events or results to differ materially from those expressed or implied by such forward-looking statements. Those risks and uncertainties include, among other things, that data from the company's development programs, including its programs with its collaborators, may not support registration or further development of its compounds due to safety, efficacy or other reasons, and other risks listed under Risk Factors in Vertex's annual report and subsequent quarterly reports filed with the Securities and Exchange Commission and available through the company's website at http://www.vrtx.com. Vertex disclaims any obligation to update the information contained in this press release as new information becomes available.(VRTX-GEN)

CRISPR Therapeutics Investor Contact:Susan Kim, +1 617-307-7503susan.kim@crisprtx.com

CRISPR Therapeutics Media Contact:Rachel EidesWCG on behalf of CRISPR+1 617-337-4167reides@wcgworld.com

Vertex Pharmaceuticals IncorporatedInvestors:Michael Partridge, +1 617-341-6108orZach Barber, +1 617-341-6470orBrenda Eustace, +1 617-341-6187

Media:mediainfo@vrtx.com orU.S.: +1 617-341-6992orHeather Nichols: +1 617-839-3607orInternational: +44 20 3204 5275

Excerpt from:
CRISPR Therapeutics and Vertex Pharmaceuticals Announce Priority Medicines (PRIME) Designation Granted by the European Medicines Agency (EMA) to...

Read More...

Second Variant of Parkinson’s Disease That Begins in the Gut Is Identified – Technology Networks

September 24th, 2020 6:51 am

New research suggests that Parkinson's disease is not one but two diseases, starting either in the brain or in the intestines. Which explains why patients with Parkinson's describe widely differing symptoms,. The findings points towards personalized medicine as the way forward for people with Parkinson's disease.

This is the conclusion of a study which has just been published in the leading neurology journalBrain.

The researchers behind the study are Professor Per Borghammer and Medical Doctor Jacob Horsager from the Department of Clinical Medicine at Aarhus University and Aarhus University Hospital, Denmark.

"With the help of advanced scanning techniques, we've shown that Parkinson's disease can be divided into two variants, which start in different places in the body. For some patients, the disease starts in the intestines and spreads from there to the brain through neural connections. For others, the disease starts in the brain and spreads to the intestines and other organs such as the heart," explains Per Borghammer.

He also points out that the discovery could be very significant for the treatment of Parkinson's disease in the future, as this ought to be based on the individual patient's disease pattern.

Parkinson's disease is characterised by slow deterioration of the brain due to accumulated alpha-synuclein, a protein that damages nerve cells. This leads to the slow, stiff movements which many people associate with the disease.

In the study, the researchers have used advanced PET and MRI imaging techniques to examine people with Parkinson's disease. People who have not yet been diagnosed but have a high risk of developing the disease are also included in the study. People diagnosed with REM sleep behaviour syndrome have an increased risk of developing Parkinson's disease.

The study showed that some patients had damage to the brain's dopamine system before damage in the intestines and heart occurred. In other patients, scans revealed damage to the nervous systems of the intestines and heart before the damage in the brain's dopamine system was visible.

This knowledge is important and it challenges the understanding of Parkinson's disease that has been prevalent until now, says Per Borghammer.

"Until now, many people have viewed the disease as relatively homogeneous and defined it based on the classical movement disorders. But at the same time, we've been puzzled about why there was such a big difference between patient symptoms. With this new knowledge, the different symptoms make more sense and this is also the perspective in which future research should be viewed," he says.

The researchers refer to the two types of Parkinson's disease as body-first and brain-first. In the case of body-first, it may be particularly interesting to study the composition of bacteria in the intestines known as the microbiota.

"It has long since been demonstrated that Parkinson's patients have a different microbiome in the intestines than healthy people, without us truly understanding the significance of this. Now that we're able to identify the two types of Parkinson's disease, we can examine the risk factors and possible genetic factors that may be different for the two types. The next step is to examine whether, for example, body-first Parkinson's disease can be treated by treating the intestines with faeces transplantation or in other ways that affect the microbiome," says Per Borghammer.

"The discovery of brain-first Parkinson's is a bigger challenge. This variant of the disease is probably relatively symptom-free until the movement disorder symptoms appear and the patient is diagnosed with Parkinson's. By then the patient has already lost more than half of the dopamine system, and it will therefore be more difficult to find patients early enough to be able to slow the disease," says Per Borghammer.

The study from Aarhus University is longitudinal, i.e. the participants are called in again after three and six years so that all of the examinations and scans can be repeated. According to Per Borghammer, this makes the study the most comprehensive ever, and it provides researchers with valuable knowledge and clarification about Parkinson's disease - or diseases.

"Previous studies have indicated that there could be more than one type of Parkinson's, but this has not been demonstrated clearly until this study, which was specifically designed to clarify this question. We now have knowledge that offers hope for better and more targeted treatment of people who are affected by Parkinson's disease in the future," says Per Borghammer.

According to the Danish Parkinson's Disease Association, there are 8,000 people with Parkinson's disease in Denmark and up to eight million diagnosed patients worldwide.

This figure is expected to increase to 15 million in 2050 due to the ageing population, as the risk of getting Parkinson's disease increases dramatically the older the population becomes.

Reference:

This article has been republished from materials provided by Aarhus University. Note: material may have been edited for length and content. For further information, please contact the cited source.

See the article here:
Second Variant of Parkinson's Disease That Begins in the Gut Is Identified - Technology Networks

Read More...

AI Algorithms Can Enhance the Creation of Bioscaffold Materials and Help Heal Wounds – Unite.AI

September 24th, 2020 6:51 am

Research coming out of the University of Pennsylvania School of Medicine last month demonstrated how artificial intelligence (AI) can be utilized to fight against opioid abuse. It focused on a chatbot which sent reminders to patients who underwent surgery to fix major bone fractures.

The research was published in the Journal of Medical Internet Research.

Christopher Anthony, MD, is the studys lead author and the associate director of Hip Preservation at Penn Medicine. He is also an assistant professor of Orthopaedic Surgery.

We showed that opioid medication utilization could be decreased by more than a third in an at-risk patient population by delivering psychotherapy via a chatbot, he said. While it must be tested with future investigations, we believe our findings are likely transferable to other patient populations.

Opioids are an effective treatment for pain following a severe injury, such as a broken arm or leg, but the large prescription of the drugs can lead to addiction and dependence for many users. This is what has caused the major opioid epidemic throughout the United States.

The team of researchers believe that a patient-centered approach with the use of the AI chatbot can help reduce the number of opioids taken after such surgerys, which can be a tool used against the epidemic.

Those researchers also included Edward Octavio Rojas, MD, who is a resident in Orthopaedic Surgery at the University of Iowa Hospitals & Clinics. The co-authors included: Valerie Keffala, PhD; Natalie Ann Glass, PhD; Benjamin J. Miller, MD; Mathew Hogue, MD; Michael Wiley, MD; Matthew Karam, MD; John Lawrence Marsh, MD, and Apurva Shah, MD.

The research involved 76 patients who visited a Level 1 Trauma Center at the University of Iowa Hospitals & Clinics. They were there to receive treatment for fractures that required surgery, and those patients were separated into two groups. Both groups received the same prescription for opioids to treat pain, but only one of the groups received daily text messages from the automated chatbot.

The group that received text messages could expect two per day for a period of two weeks following their procedure. The automated chatbot relied on artificial intelligence to send the messages, which went out the day after surgery. The text messages were constructed in a way to help patients focus on coping better with the medication.

The text messages, which were created by a pain psychologist specialized in pain and commitment therapy (ACT), did not directly go against the use of the medication, but they attempted to help the patients think of something other than taking a pill.

The text messages could be broken down into six core principles, : Values, Acceptance, Present Moment Awareness, Self-As-Context, Committed Action, and Diffusion.

One message under the Acceptance principle was: feelings of pain and feelings about your experience of pain are normal after surgery. Acknowledge and accept these feelings as part of the recovery process. Remember how you feel now is temporary and your healing process will continue. Call to mind pleasant feelings or thoughts you experienced today.

The results showed that the patients who did not receive the automated messages took, on average, 41 opioid pills following the surgeries, while the group who did receive the messages averaged 26. The 37 percent difference was impressive, and those who received messages also reported less overall pain two weeks after the surgery.

The automated messages were not personalized for each individual, which demonstrates success without over-personalization.

A realistic goal for this type of work is to decrease opioid utilization to as few tablets as possible, with the ultimate goal to eliminate the need for opioid medication in the setting of fracture care, Anthony said.

The study received funding by a grant from the Orthopaedic Trauma Association.

Link:
AI Algorithms Can Enhance the Creation of Bioscaffold Materials and Help Heal Wounds - Unite.AI

Read More...

Lenny Kravitz on His Signature Scent, His Beach Beauty Routine, and the Secret to His Longevity – Vogue

September 24th, 2020 6:50 am

Before lockdown began in March, Lenny Kravitz packed a bag for a week and headed to his home in Eleuthera in the Bahamas. His stay ended up being much longer than that. The singer and guitarist has spent the last six and a half months on the island he loves, returning to his Bahamian roots and living off the land. Save for a bottle of YSL Beautys Y eau de parfum, that is. As the newand lets face it, entirely fittingface of the French fashion houses seductive fougre scent, its become his signature.

Its fresh, its clean, its got spice, says Kravitz of Y, which opens with sparkling notes of green apple and bergamot, with a heart of lavender and geranium thats warmed by a zing of lemony ginger. During this period of being here on this island and living very simplybeing in the ocean, in the sun, and in the bush, as we call itit just fits. The art of presentation has always been a force within Kravitzs life, and like many during these challenging times, hes looked to his choice fragrance to elevate his mood. Im only around a few people and have no social functions, but some days I just need a little lift, explains Kravitz. I put on a nice shirt, and Ill spray on some fragrance, and it just makes me feel better. You dont have to do it for somebody, something, or some function. You can just do it for yourself.

Sticking to whats tried-and-true, Kravitz has been rotating between his rock-and-roll wardrobe signaturesdenim button-downs, love-worn ripped jeans, and printed skinny scarvesas well as following a streamlined beauty routine. The things that I use on my body are the same that Ive always used, he says, rattling off a list of natural oils and butters, including coconut oil, shea butter, and cocoa butter, as well as Dr. Bronners Almond Pure-Castile Liquid Soap, adding, I wash my body in it. I wash my hair with it. I washed my clothes in it. In his haven of the Caribbean, hes also been enjoying the spoilsand skin-care benefitsof the beach, the pearlescent white sand in particular. We have the most beautiful sand here in the Bahamasits very, very, very powdery, very, very fine, he explains. So when Im in the ocean, and I want to scrub my body, I use the sand. Thats what going on over here.

Besides the kind of head-to-toe exfoliation only a one-way ticket to Eleuthera can buy, Kravitz has been staying well, mind and body, by tending to his garden, cooking his own meals, and juicing with daily shots of immunity-boosting ginger. And hes been feeding off the island for his daily workout, an hour-long bike ride, as well. Thats been my form of cardio that I enjoy the most here, rather than being on a treadmill, he says. Its getting out in the sun and riding on the road with a lot of it on the ocean. Its so beautiful, and it gives you time to meditate. For mental clarity, hes also been limiting his news intake in an effort to tune out the noise. I only check the news and whats going on in the world often enough so that Im not in the dark, but Im not watching the television and inside of all of this negativity, he says. In terms of staying creative, Kravitz, who is working on his next album, is letting inspiration come to him in time. Its almost like if you have a radio receiver, and youre turning the dial, and all you hear is static until you finally hear music, he explains of his process. I prefer it that way because then its really pure. Im not involving my own ego or my own ideas or projections. Im getting what Im getting.

While Kravitz has always followed his own path doing what feels right to look and feel his best, he credits genetics and familial role models as the true secrets to his longevityand his impossibly ageless physique. My grandfather lived up into his 90s, and he had a thirst for life, for learning, for growing, and I think Ive inherited that from him, he explains. With the genes that I have from my parents and my grandparents, we dont seem to visibly age like one might think, so all of those things togetherwith, of course, taking care of yourself, putting the right things in your body, and taking care of your mind and spirithave contributed to aging just being about experiencing and living, not about falling apart.

See more here:
Lenny Kravitz on His Signature Scent, His Beach Beauty Routine, and the Secret to His Longevity - Vogue

Read More...

PA Health Secretary: Sickle Cell Disease Treatment Hinges On Getting Testing – LevittownNow.com

September 24th, 2020 6:49 am

Provided by the Pennsylvania Department of Health:

Secretary of Health Dr. Rachel Levine today reminded Pennsylvanians of the seriousness of sickle cell disease and the importance of getting tested for it. Sickle cell disease is the most common inherited blood disease.

We want people to get tested for sickle cell disease if they believe they could be a carrier of it, Levine said. We inherit traits from our parents like eye and hair color, but they also pass along internal traits like blood type and sickle cell conditions. It is important to be tested to confirm if you have sickle cell disease, so that treatment for the disease can be started right away to further protect yourself and your family.

Sickle cell disease is an inherited blood disease where an individuals red blood cells take a crescent or sickle shape. This change in shape can create blockages that prevent blood from reaching parts of the body. As a result, people with sickle cell complications can experience anemia, gallstones, stroke, chronic pain, organ damage and even premature death.

According to the Centers for Disease Control and Prevention (CDC), sickle cell disease affects approximately 100,000 Americans. This disease has a greater influence on African American and Hispanic populations but is also found among many other races and ethnicities.

Sickle cell disease is one of the 10 mandatory diseasesscreened for newborns. These screenings are conducted with the goal of eliminating or reducing death, disease and disability in newborn children. In addition, sickle cell disease can be diagnosed before birth to provide an early diagnosis and find treatment.

Treatment can help those with sickle cell disease live well and be healthy, but there is ultimately no cure for sickle cell disease. Treatment requires:

Finding good medical care and getting regular checkups;

Staying up to date on vaccinations and washing hands frequently to prevent infections;

Learning healthy habits;

Looking into clinical studies; and

Finding support and assistance.

Studies have shown that donated bone marrow or stem cell transplants have helped cure sickle cell disease in children with severe cases of the disease. This means that the healthy donated bone marrow or stem cell transplant replaces an individuals bone marrow that is not working properly. Bone marrow or stem cell transplants can be risky and for the donation to work the individual would need to be a close match like a brother or sister.

The Wolf administration has developed aprescribing guideline for the treatment of acute and chronic pain in patients with sickle cell diseaseto assist physicians treating patients with the disease. The guideline provides best practices to treat acute painful crises that occur with sickle cell disease patients as well as best practices for chronic pain care. The sickle cell disease guideline addresses the specific needs of that patient population. This can help prevent the misapplication of recommendations to populations that are outside the scope of other prescribing guidelines, including patients experiencing acute sickle cell crises. It is especially important to have resources specifically for the treatment of sickle cell disease patients as this patient population often experiences racial disparities and stigma.

Report a correction via email | Editorial standards and policies

Read the original post:
PA Health Secretary: Sickle Cell Disease Treatment Hinges On Getting Testing - LevittownNow.com

Read More...

Regenerative Therapy by Dr. Roshni Patel on Better CT – Farmington, CT – Patch.com

September 24th, 2020 6:49 am

When youre in pain, its important to find effective, long-lasting solutions that can provide short recovery periods. This is what regenerative medicine offers. Over the past decade, there has been a growing field of medicine that utilizes the bodys own healing capabilities using platelet-rich plasma and mesenchymal stem cells (MSCs). This growing field is labeled as regenerative medicine. Regenerative therapies focus on healing and help regrow damaged tissue naturally. Regenerative injection therapy is used to provide relief to musculoskeletal injuries that involve damage to ligaments, tendons, cartilage, joints, and discs.

Watch video of PRP:

PRP therapy on Better CT

PRP is safeas we are using what your body naturally produces, concentrating the desired critical components and transplanting them into the affected area for effective tissue regeneration and healing. There is no risk of rejection and very minimal overall procedural risk.

FDA regulations do not allow for the cloning of stem cells or growing them in a lab. Also, stem cells derived from fat cells are not approved by the FDA as it does not allow for manipulation. This leaves us to another rich stem cell source in our body which is bone marrow. Stem cells exist in our bodies and are rudimentary cells that can differentiate into other cells.

Think of bone marrow stem cells as the mother cell that is responsible for producing new blood cells. Bone marrow contains hundreds of growth factors and is often used for severe degenerative conditions or where PRP therapy may not be sufficient to provide the growth factors needed to provide relief.

Lastly, there are many offshoot therapies that use biologics derived from placental tissue or blood cord. These biologics are sometimes marketed as Stem cells but are not stem cells and contain zero viable cells. What they contain are growth factors that can also aid when combined with PRP or Stem Cells derived from your own body.

MSCs and PRPmay be used to target a number of conditions that could benefit from their healing and regenerative qualities. Especially when considering chronic pain, alternative solutions may be necessary if it has been difficult to find relief. Along with generalized joint pain, MSCs and PRPmay be used to target:

With so many options for joint pain out there, you may be wondering what benefits choosing stem cell therapy provides. Overall, because mesenchymal stem cell therapy utilizes biologic material harvested directly from the patients body, the general benefits include minimal risk, minimal recovery time, and minimal worry:

Avoid surgery and its many complications and risks: Stem cell therapy is a minimally invasive, non-surgical procedure.

Minimal post-procedural recovery time: One of the most time-consuming factors of any injury is not always the treatment itself, but actually the recovery time. With stem cell therapy, recovery time is minimal.

No risk of rejection: Due to using biologics extracted from the patient, there is no risk of rejection.

No communicable disease transmission: As the cells originate within your own body, there is no risk of spreading disease from or to another person.

If you are suffering from joint pain, back pain, or a debilitating condition like osteoarthritis, it is important to consider all of your available options. Our elite team of professionals can determine if you are the right candidate for MSCs. If youre interested in learning more, contact us today.

Continued here:
Regenerative Therapy by Dr. Roshni Patel on Better CT - Farmington, CT - Patch.com

Read More...

Does cannabis help or hurt the immune system? – Leafly

September 22nd, 2020 5:58 pm

Cannabis is celebrated for the benefits it offers in the management of certain medical conditions. As awareness around cannabis grows, consumers are becoming better versed in the therapeutic potential of cannabinoids in the treatment of specific autoimmune diseases, inflammation, and gastrointestinal disorders.

But how does cannabis affect the immune system as a whole? If youre a regular consumer, you may have pondered whether cannabis weakens or boosts your immune system. Can frequent cannabis use render you more prone to infections or contagious diseases?

As it turns out, research into cannabis and the immune system hasnt historically piqued the interest of scientists. However, as our understanding of the effects of cannabis on the body becomes more sophisticated, we need to also broaden our knowledge of how cannabis influences the immune system.

Present evidence suggests that cannabis can suppress immune system function. While this can be helpful for individuals with autoimmune illnesses, it may not be so beneficial for those with functional immune systems.

The immune system is one of the bodys most sophisticated networks. A collection of specialized cells, endogenous chemicals, and organs work in concert to ward off pathogens and infections, protecting the health and homeostasis of the body.

The immune system is multifaceted, and its core components that actively combat infection include white blood cells, the complement system, antibodies, the lymphatic system, the spleen, the thymus, and bone marrow, but well mainly talk about white blood cells.

Memories of every microbe previously defeated by the immune system are logged in white blood cells. These memories enable the fast tracking and elimination of infections that have already been experienced. The immune system is also responsible for detecting and eradicating malfunctioning cells.

The knowledge we have about the interaction of cannabis with specific immune elements is limited. While there is some research exploring the effects of cannabinoids on white blood cell count and the lymphatic system, we know less about how cannabis impacts the thymus or the complement system.

An elegant connection exists between the bodys endocannabinoid system (ECS) and its immune system. The ECS is generally considered to be one of the gate-keepers of the immune system, preventing the onset of overwhelming inflammatory responses that may result in disease. The ECS can also influence the function of immune cells.

CB1 and CB2 receptors in the endocannabinoid system mediate the effects of cannabis within the immune system. The two major cannabinoids, THC and CBD, appear to have distinctive effects on the immune system due to their unique interactions with cannabinoid receptors. Abundant literature suggests that cannabinoids affect the functions of most types of immune cells.

A 2020 review found robust evidence that CBD suppresses certain inflammatory responses in the immune system and may induce cellular death in immune cells. Immune cell death isnt always a bad thingits a normal part of the cellular life cycle, and helps to protect a person by alleviating inflammatory responses.

Like CBD, THC also suppresses immune activity, dialing down inflammatory responses. THC has also been shown to alter the function of immune cells responsible for antimicrobial activity.

When scientists discuss cannabis and the immune system, they often discuss its effects as immunomodulatory or immunosuppressive. Immunomodulation refers to any therapy that modifies the immune system response. When cannabis suppresses the expression of aspects of the immune system, this form of modulation is known as immunosuppression.

Its vital to point out here that marijuanas ability to subdue or suppress immune system cells can be useful if the immune system is dysregulated and in need of suppression. If not, immune suppression might not be helpful.

Research published in 2017 indicated that both CBD and THC have an immunomodulatory effect on the human intestinal lymphatic system, the major host of immune cells. The lymphatic system also contains more than half the bodys lymphocyteswhite blood cells that play a critical role in finding and destroying foreign cells or substances that have infiltrated the body.

The studys authors found that oral administration of CBD and THC with fats resulted in extremely high cannabinoid levels in the intestinal lymphatic system: CBD concentrations in lymph cells were 250 times higher than in plasma, while THC concentrations in lymph cells were 100 times higher than in plasma.

So, whats the significance of this? For individuals with autoimmune diseases, cannabis can achieve higher concentrations in the lymphatic system and suppress unhealthy inflammatory immune responses more successfully.

While the immunosuppressive properties of cannabis may be just what the doctor ordered for autoimmune patients, they can cause problems for other cannabis users.

Research carried out in 2003 on healthy volunteers suggests that regular cannabis may subdue immune function. Cannabis users were found to have fewer proinflammatory cells and more anti-inflammatory cells.

While less potential for inflammation may sound like a win, in this case, it was associated with a significant reduction in white cell functionality, and impaired white cells can mean a hindered ability to fight off infections. Regular cannabis users also had decreased amounts of natural killer cells, which limit the spread of tumors and microbial infections.

The study also indicated that there may be a dose-response relationship between cannabis use over an individuals lifetime, and a decrease in certain immune system markers, meaning those who use cannabis regularly may be more susceptible to the progression of infectious disease.

What about the effects of cannabis on extremely immunocompromised individuals? Unfortunately, cannabis can substantially decrease infection-fighting cells in people undergoing chemotherapy. This suppressive response may further add to the detrimental effects of chemotherapy on immune systems of those with cancer.

Research on people with HIV+ and AIDS, who are particularly vulnerable to infections, however, indicates that there is no firm evidence that cannabis adversely affects immune function.

Instead, findings suggest cannabis use among HIV+ patients may enhance the immune system by producing a statistically significant decrease in viral load and an increase in CD4 cells. CD4 cells can be considered a marker that indicate the robustness of the immune system.

While existing research allows us to glean insights into cannabis and the immune system, we need more rigorous data to paint broad brushstrokes. According to the most recent 2017 report from the National Academies of Science, Engineering, and Medicine (NASEM), theres insufficient research on the effects of cannabis or cannabinoid-based medicines on the human immune system to draw firm conclusions.

Within the current global climate shaped by COVID-19, theres an impulse among the research community to enhance our understanding of the impact of cannabis on the immune system. Some cannabis researchers are currently channeling their focus into investigating whether cannabis may be helpful or harmful in treating COVID-19.

More profound exploration into the effects of cannabinoids on the immune system is also being encouraged. Watch this space as new frontiers are forged.

Emma Stone is a journalist based in New Zealand specializing in cannabis, health, and well-being. She has a Ph.D. in sociology and has worked as a researcher and lecturer, but loves being a writer most of all. She would happily spend her days writing, reading, wandering outdoors, eating and swimming.

By submitting this form, you will be subscribed to news and promotional emails from Leafly and you agree to Leafly's Terms of Service and Privacy Policy. You can unsubscribe from Leafly email messages anytime.

Go here to read the rest:
Does cannabis help or hurt the immune system? - Leafly

Read More...

Common HIV drugs increase a type of immunity in the gut – UW Medicine Newsroom

September 22nd, 2020 5:58 pm

Drugs currentlyused to keep the HIV virus in check also cause immune-system changesthat mightmake humans better able toresist viral infectionsbutmight also cause harmful inflammation, according to a study published today in Cell Reports Medicine.

The UW Medicine-led studyby Dr.Florian Hladik and Sean Hughes examined the effects ofa commonly prescribed drug cocktail of drugs on the body.

Sold under the brand name Truvada, tenofovir disoproxil fumarate and emtricitabine (TDF/FTC)are prescribed in tandem formost HIV/AIDS patients to suppress viral loads to undetectable levels. First allowed for use in the United States 20 years ago, the drugs haveenabledpeopleto live for decades beyond their initial diagnosis.

However, Hladik said,"the virus itself never goes away."

In this research, the investigatorsstudied the effect of TDF/FTC in patients who were using the drugto prevent HIV, and in the absence of active HIV infection. The researchers observed patientsover the past five yearsand also includeddata from two earlier studies.

We wanted to know how the drugs themselves affect the immune system, Hughes said. We found that they stimulated type I / III interferon responses, a part of the immune system that is crucial for the bodys ability to fight off viruses. This only happened in the gut.

The clinical consequences of the findings are uncertain and merit further study.

Increased type I / III interferons could be a good thing and actually make the drugs more effective at suppressing viral infections, including HIV. However, they could also cause inflammation, which could contribute to conditions such as cardiovascular disease that are common in people living with HIV, Hladik said. These effects might even make it harder to find a cure for HIV if they make cells silently infected with HIV (called latent cells) more likely to survive or even cause them to proliferate.

Hladik and Hughesalso want to look for those same effects in people infected with HIV.

New drug regimens have just become available that highly suppress the HIV virus in patients and dont contain TDF/FTC or other drugs of thatclass. Bothhope to conduct a trial comparing immunity in HIV-infected individuals using TDF/FTC to others using these newer regimens to determine whether their findings are true in HIV-infected individuals. The researchers hypothesize that the newer regimens will avoid chronic immune activation and decrease the number of latent cells.

The most important next step is to repeat our studies in HIV-infected individuals, and to find out if replacing drugs such as TDF/FTC with newer regimens has clinically relevant effects on reducing chronic inflammation and persistence of latent HIV, Hladik said.

This work was funded by the National Institutes of Health(R01AI116292, R01AI111738,R01AI134293,AI027757,AI069481,R01DK112254);the Bill and Melinda Gates Foundation;the Microbicide Trials Network (UM1AI068633); the Canadian Institutes for Health Research;the Emory University-CDC HIV/AIDS Clinical Trials Unit (UM1AI069418, from the NIAID). The ddPCR work was supported by a grant from the James B. Pendleton Charitable Trust. A National Cancer Institute grant supported the Fred Hutchinson Cancer Research Center Experimental Histopathology core facility.

Read the original:
Common HIV drugs increase a type of immunity in the gut - UW Medicine Newsroom

Read More...

What we know about COVID-19 and kids – Yale News

September 22nd, 2020 5:58 pm

Its unusual that a virus would be less severe in children than it is in adults. But when it comes to COVID-19, kids make up just a small percentage of severe cases. Yale researchers are working to understand why that is.

Their discoveries can help guide understanding of the virus and possible treatment options.

Ina paper published recently in Proceedings of the National Academy of Sciences(PNAS),Dr. Naftali Kaminski, theBoehringer-Ingelheim Endowed Professor of Internal Medicine and chief of Pulmonary, Critical Care and Sleep Medicine, and colleagues shared findings related tochildrens surprising immunity to the virus. They detailed how factors including allergies, asthma, the common cold, and existing vaccines may be having a protective effect.

Meanwhile,Carrie Lucas, assistant professor of immunobiology at Yale, is looking at blood samples from the small percentage of children who develop the rare condition known as Multi-Inflammatory Syndrome in Children, or MIS-C, in response to COVID-19. Her lab is analyzing blood samples for molecular and genetic clues to figure out why a certain subset of kids are most at risk.

Findings just published in the journal Science Translational Medicine led byKevan Herold, the C.N.H. Long Professor of Immunology and Internal Medicine at Yale, revealed that children diagnosed with COVID-19 express higher levels of two specific immune system molecules, a factor that might be leading to better health outcomes.

Related story:Childrens immune response more effective against COVID-19

Understanding why children appear to be better protected from severe cases than adults could provide important clues on how the novel coronavirus spreads, who is at greatest risk, and how to treat it.

This is different from other viruses that affect kids more seriously, Kaminski said. Its an interesting conundrum and could provide implications for therapeutics.

In the PNAS paper, researchers point to the possibility that allergies and asthma in children has a protective effect. When the body responds to an allergy or asthma trigger, the immune system releases Th2 cells, which in turn increases a type of cell called the eosinophil in the blood and tissues. This allergic inflammation has been shown to dramatically reduce the levels of a key receptor to the COVID-19 molecule, known as ACE2. They added that astudy of 85 older adultswho died of COVID-19 in China showed that they had very low levels of blood eosinophils.

Initially, there was a concern about the impact of COVID-19 on children with asthma, said Kaminski. Some 7.5% of U.S. children under 18, or 5.5 million kids, have asthma, according to the Centers for Disease Control and Prevention. But, in fact, it seems that compared to other chronic lung diseases, people with asthma are infected less, and, when they are infected, asthma is not a risk factor.

Instead, risk factors known to drive worse COVID-19 outcomes include age, obesity, hypertension, and cardiac diseases.

The greater exposure children have to the common cold may also offer protection. Coronaviruses are a large family of viruses so named for their crown-like shape under a microscope, of which the common cold is one. SARS-CoV-2, which causes COVID-19, is another.

It is thought that exposure to colds may cause viral interference, when one virus interferes with the replication of a second virus. Exposure to common colds, and more severe illnesses like croup, more common in children, are associated with decreased expression of the ACE2 COVID-19 receptor. Studies have found that children symptomatic with COVID-19 may have high viral loads in their noses but, because they have lower levels of ACE2, their lungs are less likely to become infected. In other words, they can still easily spread the virus, but are less likely to develop serious symptoms.

Kaminski added that there is even evidence that vaccines can provide protection. Astudyof Department of Defense personnel found that the 2017-2018 seasonal flu vaccine produced a statistically significant number of individuals who tested positive for common cold-related coronaviruses. If future flu vaccines are designed to increase common coronaviruses, he said, this phenomenon may actually provide some protection to SARS-CoV-2 through cross-reactive immunity.

Of course, not all children are protected from the worst effects of COVID-19. Lucas and her team of pediatric immune disease researchers at Yale are looking at the rare cases of children who have been seriously affected by the virus. Specifically, they looked at children who were asymptomatic during SARS-CoV-2 infection, but weeks later developed a high fever, vomiting, abdominal pain, and sometimes shock, a condition known as MIS-C.As of Sept. 17, there were 935 confirmed cases of MIS-C in the U.S., and 19 deaths.

Lucas lab, which has enrolled 16 pediatric MIS-C patients, is analyzing immune cells in their blood at the single-cell level, as well as thousands of blood proteins, to understand what is happening.

Mostly, right now, our data are showing what the syndrome isnot, she said. For instance, we have found no sign of an active viral or bacterial infection during acute MIS-C.

They are also collecting saliva samples from parents to compare to childrens samples, which might reveal information about genetic variants. Were looking for the needle in the haystack that could be causing this rare manifestation, Lucas said. So far, theres no evidence that this is something that runs in families. I dont know of any cases where two children in a family developed MIS-C.

What they do know, she said, is that inflammatory markers are high, and most patients respond well to immunosuppressive therapies such as steroids. Additional findings will be published in the coming weeks on MedRxiv, a preprint server founded by Yale scientists which publishes studies before they have been peer-reviewed.

While children largely seem to be protected from the immediate effects of COVID-19, there are still long-term concerns, Kaminski and the authors caution. The pandemic and social distancing, they note, affect maturation of the immune system, psychological health, education, and childhood obesity.

We know that the health of children is strongly affected by socioeconomic downturns, Kaminski said, and this potential adverse outcome should not be overlooked.

View post:
What we know about COVID-19 and kids - Yale News

Read More...

Antibodies made in the lab show some promise for treating COVID-19 – Science News

September 22nd, 2020 5:58 pm

Amid the rush to test and develop potential treatments for COVID-19, lab-made antibodies are showing hints of success. In news releases, two companies announced preliminary results, though shared only limited data, that suggest the experimental drugs may help patients both early and late in infection.

One clinical trial of monoclonal antibodies human-made versions of immune system defenders produced by the body suggests that the drugs can help keep people hospitalized with COVID-19 from needing a ventilator or from dying. And a second trial appears to show that the drugs can bring down levels of the coronavirus in recently infected people, and help reduce the chances that a person would need hospitalization.

Antibodies are part of the bodys natural defense against infectious pathogens. The proteins typically attach to parts of bacteria or viruses to fight off infection. In the lab, scientists can engineer versions of antibodies to recognize specific targets in order to hinder the virus replication or prevent the bodys immune system from overreacting to the virus (SN: 2/21/20).

A monoclonal antibody drug called tocilizumab is one of the latter types; it blocks a part of the immune response that can cause inflammation, a protein known as IL-6. By curbing inflammation, the drug could help people whose immune systems have become overactive through a process called a cytokine storm, which can cause severe COVID-19 symptoms (SN: 8/6/20).

In a Phase III clinical trial of 389 people hospitalized with COVID-19, those who received tocilizumab were 44 percent less likely to need a ventilator or die compared with people who got a placebo, San Franciscobased biotechnology company Genentech announced September 17 in a news release. Of those who received the drug, 12.2 percent of people needed a ventilator or died, compared with 19.3 percent of patients who received a placebo. Still, when the researchers looked at death alone, the drug did not result in a statistically significant difference in mortality between the groups.

Saying that it was still analyzing the data, the company did not provide such specifics as how many people died in each group.

A 44-percent decrease is definitely very intriguing, says Abhijit Duggal, a critical care specialist at the Cleveland Clinic who has treated people with COVID-19. But because the results have been publicized in a news release, without key patient information, I dont know what to really make of that, Duggal says. Only as more data come in will experts be able to conclusively say whether the drug might help people, he says. The announced results have not yet been vetted by outside experts or published in a peer-reviewed journal.

Unlike many other clinical trials of potential COVID-19 drugs and treatments, the Genentech trial focused on groups of people that have been disproportionately impacted by the virus (SN: 4/10/20). Around 85 percent of people in the study are Black, Hispanic and Native American. People in these groups are more likely than white people to be infected or die from COVID-19, studies have shown. In part thats due to high rates of underlying conditions like high blood pressure and jobs with a higher risk of exposure to the virus.

Its really important that [the researchers] are including a diverse population, says Rajesh Gandhi, an infectious disease physician at Massachusetts General Hospital and Harvard Medical School in Boston. That is critical as we do these trials.

Headlines and summaries of the latest Science News articles, delivered to your inbox

In a previous Genentech-related trial that included 452 people with severe COVID-19, tocilizumab did not help improve symptoms or prevent death, researchers reported in a preliminary study posted September 12 at medRxiv.org. Other trials of the drug have reported improved outcomes in people with moderate or severe COVID-19 symptoms.

Importantly, the new trial focused on hospitalized people before they required a ventilator, says Jamie Freedman, Genentechs head of U.S. medical affairs. So differences among trials could be a timing issue. If you give it too early, before cytokines are elevated, would there be a benefit there? When patients are already in the ICU, is it too late? Or is there some sweet spot in the middle? Freedman says. Those are analyses that really need to continue.

Scientists working on another monoclonal antibody, which targets the coronavirus spike protein, also recently reported promising results (SN: 2/21/20). Called LY-CoV555, the drug can reduce the amount of virus in the bodies in newly infected people and help prevent COVID-19 hospitalizations, Indianapolis-based pharmaceutical company Eli Lilly announced September 16 in a news release.

People in this ongoing Phase II clinical trial to determine efficacy receive either a low, medium or high dose of the antibody or a placebo. So far, those who get a medium dose of LY-CoV555, which is based on an antibody from one of the first COVID-19 patients in the United States, appear to clear the virus faster than those on the placebo, according to the release. Fewer treated patients still had high viral loads later on in the study. Most people, including those on a placebo, cleared the virus from their bodies by day 11. Like Genentech, Eli Lilly released only limited data. The announced results have not yet been vetted by outside experts or published in a peer-reviewed journal.

Its really intriguing and tantalizing information, Gandhi says. But without the full details of the study, like patient age or whether any people had underlying conditions, its difficult to know how solid the findings are, he says.

Its surprising that people on the medium dose had a benefit from the drug but those on the higher dose didnt, but that could be because the results are preliminary and could change as people are added to the trial, says Nina Luning Prak, an immunologist at the University of Pennsylvania. But in principle, it looks hopeful, she says.

Whats more, of 302 people treated with any amount of LY-CoV555, five, or 1.7 percent, landed in the hospital, while nine people, or 6 percent, in a control group of 150 patients who received a placebo, were hospitalized. Its unclear based on the results included in the news release, however, whether the difference between the two groups is meaningful. But if its borne out, well see hopefully soon that this is important because it shows that an antibody is having an antiviral effect, Gandhi says.

There are many other monoclonal antibody trials ongoing around the world, many of which feature drugs that bind to a variety of both virus and host proteins. Experts are carefully watching for results, keen to know for sure whether such treatments can help patients. Still, compared with where treatments were in March and April, weve made progress, Gandhi says. I think that progress is going to just accelerate.

Continued here:
Antibodies made in the lab show some promise for treating COVID-19 - Science News

Read More...

How and when will we know that a COVID-19 vaccine is safe and effective? – Fairfield Citizen

September 22nd, 2020 5:58 pm

(The Conversation is an independent and nonprofit source of news, analysis and commentary from academic experts.)

William Petri, University of Virginia

(THE CONVERSATION) With COVID-19 vaccines currently in the final phase of study, youve probably been wondering how the FDA will decide if a vaccine is safe and effective.

Based on the status of the Phase 3 trials currently underway, it is unlikely that the results of these trials will be available before November. But it is likely that not just one but several of the competing COVID-19 vaccines will be shown to be safe and effective by the end of 2020.

I am a scientist and infectious diseases specialist at the University of Virginia, where I care for patients with COVID-19 and conduct research on the pandemic. I am also a member of the World Health Organization Expert Group on COVID-19 Vaccine Prioritization.

What is the status of COVID-19 vaccines in human clinical trials?

Phase 3 studies are underway for the Moderna and BioNTech/Pfizer vaccines and the Oxford/AstraZeneca viral vector vaccine.

Each of these vaccines uses the SARS-CoV-2 spike glycoprotein, which the virus uses to infect cells, to trigger the immune system to generate protective antibodies and a cellular immune response to the virus. Protective antibodies act by preventing the spike glycoprotein from attaching the virus to human cells, thereby neutralizing the SARS-CoV-2 virus that causes COVID-19.

In the case of Modernas nucleic acid vaccine, the messenger RNA encoding the spike glycoprotein is encased in a fat droplet called a liposome to protect the mRNA from degradation and enable it to enter cells. Once these instructions are inside the cells, the mRNA is read by the human cell machinery and made into many spike proteins so that the immune system can respond and begin producing antibodies against this coronavirus.

The Oxford/AstraZeneca uses a different strategy to activate an immune response. Here an adenovirus found in chimpanzees shuttles the instructions for manufacturing the spike glycoprotein into cells.

Phase 1 and 2 studies by pharmaceutical companies Janssen and Merck also use viral vectors similar to the Oxford/AstraZeneca vaccine, while vaccines by Novavax and GSK-Sanofi use the actual spike protein itself.

Animal tests show the vaccines provide protection from coronavirus infection

Studies in animal models of COVID-19 provide convincing evidence that vaccination with the spike glycoprotein will protect from COVID-19. Experiments have show that when the immune system is shown the spike protein which alone cannot trigger disease the immune system will generate an antibody response that protects from infection with SARS-CoV-2.

In studies in hamsters an adenovirus viral vector the approach used by Oxford/AstraZeneca, for example was used to immunize with the Spike glycoprotein. When the hamsters were infected with SARS-CoV-2 they were protected from pneumonia, weight loss and death.

In nonhuman primates, DNA vaccines which deliver the gene for the spike glycoprotein reduced the amount of virus in the lungs. Animals that produced antibody that prevented virus attachment to human cells were most likely to be protected.

What have the early Phase 1 and 2 studies in humans shown?

Overall, vaccination has triggered a more potent neutralizing antibody response than even that seen in patients recovering from COVID-19.

This has also been the case for Modernas vaccine currently in Phase 3 trials and for vaccines from CanSino Biologics and Oxford/ AstraZeneca.

What side effects have been observed?

Physicians have recorded mild to moderate reactions when the subjects were observed up to 28 days after vaccination. These side effects included mild pain, warmth and tenderness at the site of injection, and fever, fatigue, joint and muscle pain.

But Phase 1 and 2 studies are by small by design, with just hundreds of participants. So these trials will not be large enough to detect uncommon or rare side effects.

The emphasis on safety as the primary goal was recently demonstrated in the Phase 3 Oxford/AstraZeneca vaccine trial where one vaccinated individual developed inflammation of the spinal cord. It isnt clear whether the vaccine caused this reaction it might be a new case of multiple sclerosis unrelated to the vaccine but the Phase 3 trial was halted in the U.S. until more is known.

How is the FDA ensuring that a vaccine will be safe yet quickly produced?

The FDA has issued guidance for industry on the steps required for developing and ultimately licensing vaccines to prevent COVID-19 these are the same rigorous safety standards required for all vaccines.

There are, however, ways to speed the process of approval that are centered on platform technology. What this means is that if a vaccine is using an approach such as an adenovirus that has previously been shown to be safe, it may be possible for a company to use previously collected data on toxicity and pharmacokinetics to fast-track clinical trial approval.

While speed and safety may appear conflicting goals, it is also encouraging to note that the rival vaccine manufacturers have jointly pledged not to bow to any political pressures to rush vaccine approval, but to maintain the most rigorous safety standards.

How protective does a vaccine need be to receive FDA approval?

The FDA has set the bar for the primary endpoint of a Phase 3 trial of 50% protection for approval of a COVID-19 vaccine.

Protection is defined as protection from symptomatic COVID-19 infection, defined as laboratory-confirmed SARS-CoV-2 infection plus symptoms such as fever or chills, cough, shortness of breath, fatigue, muscle aches, loss of taste or smell, congestion or runny nose, diarrhea, nausea or vomiting.

This means that an effective vaccine is considered one that will reduce the number of infections in vaccine recipients by half. This is the minimal protection that is anticipated to be clinically useful. That is, in part, because lower levels of efficacy could paradoxically increase COVID-19 infections if it leads vaccinated people to decrease mask wearing or social distancing because they think they are completely protected.

Since a vaccine might be more effective at preventing severe COVID-19, the FDA instructs that protection from severe COVID-19 should be a secondary endpoint.

How many people have to be vaccinated to know if a vaccine works in Phase 3?

The current Phase 3 trials are enrolling 30,000-40,000 subjects. Most of these participants will receive the vaccine and some a placebo.

When, exactly, the results of Phase 3 studies will be released depends in large part on the rate of infection in the placebo recipients. The way that these vaccine studies work is that they test if naturally acquired new coronavirus infections are lower in the group that received the vaccine compared with the group receiving the placebo.

So while it is good news that COVID-19 infections have dropped recently in the U.S. from 70,000 to 40,000 cases per day, this drop in new infections may slow the vaccine studies.

Will Emergency Use Authorization fast-track vaccine?

In an emergency such as we are faced with the COVID-19 pandemic, with approximately 700 new deaths and 40,000 new cases per day right now, the FDA is authorized to allow the use of unapproved products for the diagnosis, treatment and prevention of disease. That includes a vaccine.

The standard approval process for vaccines can require more than one year of observation after vaccination. If the short-term safety is good and the vaccine works to prevent COVID-19, then the vaccine should be approved for use under an Emergency Use Authorization while it is still being studied.

Under Emergency Use Authorization, the FDA will continue to collect information from the companies producing the vaccines for benefit and harm, including surveillance for vaccine-associated enhanced respiratory disease or other potentially rare complications that might be observed in only one in a million.

What should we expect in terms of approvals?

I expect that the FDA will approve several vaccines by the end of 2020 under its Emergency Use Authorization authority so that vaccination can begin immediately, starting with high-risk groups including first responders, health care personnel, and the elderly and those with preexisting medical conditions.

This will be followed rapidly with roll-out of vaccination to the population at large, while all of the time the FDA and vaccine manufacturers will continue to monitor for side effects and work to improve upon these first vaccines. This process is expected to take months.

It may not be life back to normal next year, but all signs point to a healthier 2021.

This article is republished from The Conversation under a Creative Commons license. Read the original article here: https://theconversation.com/how-and-when-will-we-know-that-a-covid-19-vaccine-is-safe-and-effective-146091.

Read the original here:
How and when will we know that a COVID-19 vaccine is safe and effective? - Fairfield Citizen

Read More...

Prenatal Opioid Exposure Associated with Development of Asthma in Children – MD Magazine

September 22nd, 2020 5:58 pm

Findings from a new study demonstrated that infants exposed to opioids prior to birth had a two times higher odds of developing asthma.

The results underscore the necessity of maintaining close follow up care in this vulnerable patient population.

In the past 10 years, prenatal opioid exposure (POE) has seen a dramatic increase among the US newborn population. As many as 100 infants are born daily with Neonatal Opioid Withdrawal Syndrome (NOWS).Therefore, there lies a great need in investigating long-term outcomes in such patients.

Isabella Cervantes, BA, of the University of New Mexico School of Medicine, and colleagues designed a retrospective cohort study to determine the association between POE and the likelihood of an altered immune response by 8 years of age. Immune response was measured by the development of asthma.

To do this. Cervantes and team pulled data from a comprehensive CERNER HealthFacts U.S. national database, which captures de-identified, longitudinal health record data from 800 hospitals across the country.

The investigators used ICD-9-CM and ICD-10-CM diagnostic codes to identify infant patients born at term who had confirmed prenatal exposure to opioids or Neonatal Opioid Withdrawal Syndrome (NOWS).

Then they compared this population of patients with infants who had neither diagnoses at birth. Data was analyzed using IBM Statistical Package for Social Sciences, and Pearsons Chi-Square test analysis was conducted to determine any association between POE and asthma diagnosis.

Overall, the study included 3021 patient records between 2000-2016. A majority of the population was male (50.7%), with Caucasian (61%) being the most represented race/ethnicity.

The investigators also noted that a majority of patients had Medicaid insurance (41.9%) and were raised in urban communities (92.5%).

As many as 50.4% of patients presented with POEversus 49.6% who had no known exposure.

In their analysis, the investigators found that up to 66.3% of all asthma patients (n = 172) were prenatally exposed to opioids.

Thus, after controlling for race, gender demographics, and insurance type, they determined that the odds of developing asthma were two times higher for the prenatally exposed group (OR, 21; 95% CI, 1.4-3.0; P<.0001) than those who did not have POE.

They considered a major strength of the study to be the vastness of the national database. Therefore, the results could be consistent across different regions in the US.

A limitation, however, were the diagnostic codes used to identify their patient population of interest. For example, the codes used to identify infants with prenatal opioid exposure included other diagnoses such as Drug Withdrawal Syndrome in Newborn. Other confounding variables included smoking in the household, among others.

To address such limitations, they highlighted a need to undertake a longitudinal, prospective, multisite study for the future.

These emerging results suggest infants with POE may have altered immune reactivity that not only impacts the newborn period but persists into childhood, they wrote.

Future investigations should aim to characterize in greater detail the impact of POE on the immune system so that new follow-up strategies or effective interventions can be developed, they concluded.

The study, Increased Incidence of Asthma in Children with Prenatal Opioid Exposure, was published online in The Univeristy of New Mexico Digital Repository.

View post:
Prenatal Opioid Exposure Associated with Development of Asthma in Children - MD Magazine

Read More...

Need better immunity? Try these teas! – Hindustan Times

September 22nd, 2020 5:58 pm

No matter what the season is tea is undeniably one of the best beverages. After water, tea is the worlds most consumed beverage. Drinking tea could actually ward off some very serious conditions, including cancer and obesity. It might sound inflated, but some surveys have stated that the world drinks about six billion cups of tea a day.

Tea contains antioxidants, improves heart health, facilitates weight loss etc. It keeps the body hydrated. There is a large variety of teas available in the market today and in the list below, we share the ones that can build and boost your immune system.

1. Masala Chai: India is a land of spices and has mastered the art of curing ailments and illnesses using unique combination of spices and herbs. There are several magical and abundantly available spices in India that strengthen the immune system. Masala Chai usually contains six condiments, namely cardamom, cinnamon, star anise, pepper, cloves and ginger. Their concoction will keep you pink of health.

2. Ginger Green Tea: A body is more susceptible to catch flue during changing seasons. This is that time of the year when one needs to take good care of their immune system and diet. Make ginger green tea your bae. Ginger, which is used extensively in Indian households, consists of anti-inflammatory components and antioxidants that can cure inflammation.

3. Cinnamon Green Tea: Cinnamon is a commonly used spice globally. It is derived from the inner bark of a small evergreen tree. Adding cinnamon stick or cinnamon powder to the tea enhances its potential. This magical ingredient is believed to reduce the risk of cardiovascular disease, improves digestion, and keeps a check on diabetes among other health benefits.

Inputs by Nutritionist Tripti Tandon

Read the original:
Need better immunity? Try these teas! - Hindustan Times

Read More...

Everything you need to know about what it would take for the FDA to approve a COVID-19 vaccine – MarketWatch

September 22nd, 2020 5:58 pm

With COVID-19 vaccines currently in the final phase of study, youve probably been wondering how the Food and Drug Administration will decide if a vaccine is safe and effective.

Based on the status of thePhase 3 trialscurrently under way, it is unlikely that the results of these trials will be available before November. But it is likely that not just one but several of the competing COVID-19 vaccines will be shown to be safe and effective by the end of 2020.

I am a scientist and infectious diseases specialistat the University of Virginia, where I care for patients with COVID-19 and conduct research on the pandemic. I am also a member of the World Health Organization Expert Group on COVID-19 Vaccine Prioritization.

Phase 3 studies are under wayfor the Moderna MRNA, -0.78% and BioNTech BNTX, +1.40% /Pfizer PFE, +0.63% vaccines and the Oxford/AstraZeneca AZN, -0.37% AZN, -0.84% viral vector vaccine.

Follow the latest news on the coronavirus on MarketWatch

Each of these vaccines uses the SARS-CoV-2 spike glycoprotein, which the virus uses to infect cells, to trigger the immune system to generate protective antibodies and a cellular immune response to the virus. Protective antibodies act by preventing the spike glycoprotein from attaching the virus to human cells, thereby neutralizing the SARS-CoV-2 virus that causes COVID-19.

In the case ofModernas nucleic acid vaccine, the messenger RNA encoding the spike glycoprotein is encased in a fat dropletcalled a liposometo protect the mRNA from degradation and enable it to enter cells. Once these instructions are inside the cells, the mRNA is read by the human cell machinery and made into many spike proteins so that the immune system can respond and begin producing antibodies against this coronavirus.

The Oxford/AstraZeneca uses a different strategy to activate an immune response. Here an adenovirus found in chimpanzees shuttles the instructions for manufacturing the spike glycoprotein into cells.

Phase 1 and 2 studies by the pharmaceutical companies Janssen and Merck MRK, -0.22% also use viral vectors similar to the Oxford/AstraZeneca vaccine, while vaccines by Novavax NVAX, +1.34% and GSK GSK, -0.55% and Sanofi SNY, -1.94% use the actual spike protein itself.

Studies in animal models of COVID-19 provide convincing evidence that vaccination with the spike glycoprotein will protect from COVID-19. Experiments have show that when the immune system is shown the spike proteinwhich alone cannot trigger diseasethe immune system will generate an antibody response that protects from infection with SARS-CoV-2.

In studies in hamstersan adenovirus viral vectorthe approach used by Oxford/AstraZeneca, for examplewas used to immunize with the spike glycoprotein. When the hamsters were infected with SARS-CoV-2 they were protected from pneumonia, weight loss and death.

In nonhuman primates, DNA vaccineswhich deliver the gene for the spike glycoproteinreduced the amount of virus in the lungs. Animals that produced an antibody that prevented virus attachment to human cells were most likely to be protected.

Overall,vaccination has triggered a more potent neutralizing antibody responsethan even that seen in patients recovering from COVID-19.

This has also been the case forModernas vaccine currently in Phase 3 trialsand for vaccines fromCanSino Biologics 6185, -1.24% and Oxford/ AstraZeneca.

Physicians have recordedmild to moderate reactionswhen the subjects were observedup to 28 days after vaccination. These side effects included mild pain, warmth and tenderness at the site of injection, and fever, fatigue, joint and muscle pain.

But Phase 1 and 2 studies are by small by design, with just hundreds of participants. So these trials will not be large enough to detect uncommon or rare side effects.

The emphasis on safety as the primary goal was recently demonstrated in the Phase 3 Oxford/AstraZeneca vaccine trialwhere one vaccinated individual developed inflammation of the spinal cord. It isnt clear whether the vaccine caused this reactionit might be a new case of multiple sclerosis unrelated to the vaccinebut the Phase 3 trial was halted in the U.S. until more is known.

TheFDA has issued guidance for industryon the steps required for developing and ultimately licensing vaccines to prevent COVID-19these are the same rigorous safety standards required for all vaccines.

There are, however, ways to speed the process of approval that are centered on platform technology.

What this means is that if a vaccine is using an approach such as an adenovirus that has previously been shown to be safe, it may be possible for a company to use previously collected data on toxicity and pharmacokinetics to fast-track clinical trial approval.

ile speed and safety may appear conflicting goals, it is also encouraging to note that therival vaccine manufacturers have jointly pledgednot to bow to any political pressures to rush vaccine approval, but to maintain the most rigorous safety standards.

The FDA has set the bar for the primary endpoint of a Phase 3 trial of 50% protection for approval of a COVID-19 vaccine.

Protection is defined as protection from symptomatic COVID-19 infection, defined as laboratory-confirmed SARS-CoV-2 infection plus symptoms such as fever or chills, cough, shortness of breath, fatigue, muscle aches, loss of taste or smell, congestion or runny nose, diarrhea, nausea or vomiting.

This means that an effective vaccine is considered one that will reduce the number of infections in vaccine recipients by half. This is theminimal protection that is anticipated to be clinically useful. That is, in part, because lower levels of efficacy could paradoxically increase COVID-19 infections if it leads vaccinated people to decrease mask wearing or social distancing because they think they are completely protected.

Since a vaccine might be more effective at preventing severe COVID-19, the FDA instructs thatprotection from severe COVID-19should be a secondary endpoint.

FDA to announce tough guidelines that could delay approval of vaccine, Washington Post reports

The current Phase 3 trials are enrolling 30,000-40,000 subjects. Most of these participants will receive the vaccine and some a placebo.

When, exactly, the results of Phase 3 studies will be released depends in large part on the rate of infection in the placebo recipients. The way that these vaccine studies work is that they test if naturally acquired new coronavirus infections are lower in the group that received the vaccine compared with the group receiving the placebo.

So while it is good news that COVID-19 infections have dropped recently in the U.S. from70,000 to 40,000 cases per day, this drop in new infections may slow the vaccine studies.

In an emergency such as we are faced with the COVID-19 pandemic, with approximately 700 new deaths and 40,000 new cases per day right now, the FDA is authorized to allow the use of unapproved products for the diagnosis, treatment and prevention of disease. That includes a vaccine.

The standard approval process for vaccinescan require more than one year of observation after vaccination. If the short-term safety is good and the vaccine works to prevent COVID-19, then the vaccine should be approved for use under an Emergency Use Authorization while it is still being studied.

Under Emergency Use Authorization, the FDA willcontinue to collect informationfrom the companies producing the vaccines for benefit and harm, including surveillance for vaccine-associated enhanced respiratory disease or other potentially rare complications that might be observed in only one in a million.

I expect that the FDA will approve several vaccines by the end of 2020 under its Emergency Use Authorization authority so that vaccination can begin immediately, starting with high-risk groups including first responders, health-care personnel, and the elderly and those with pre-existing medical conditions.

This will be followed rapidly withrollout of vaccinationto the population at large, while all of the time the FDA and vaccine manufacturers will continue to monitor for side effects and work to improve upon these first vaccines. This process isexpected to take months.

It may not be life back to normal next year, but all signs point to a healthier 2021.

William Petri is professor of medicine at the University of Virginia.

This commentary was originally published by The ConversationHow and when will we know that aCOVID-19vaccine is safe andeffective?

Heres the latest on what we know worksand doesnt workin treating coronavirus infections

How to stay safe from coronavirus in a public restroom

See original here:
Everything you need to know about what it would take for the FDA to approve a COVID-19 vaccine - MarketWatch

Read More...

Good nutrition can contribute to keeping COVID-19 and other diseases away – The Conversation US

September 22nd, 2020 5:58 pm

The connection between the pandemic and our dietary habits is undeniable. The stress of isolation coupled with a struggling economy has caused many of us to seek comfort with our old friends: Big Mac, Tom Collins, Ben and Jerry. But overindulging in this kind of food and drink might not just be affecting your waistline, but could potentially put you at greater risk of illness by hindering your immune system.

Hear the word nutrition, and often what comes to mind are fad diets, juice cleanses and supplements. Americans certainly seem concerned with their weight; 45 million of us spend US$33 billion annually on weight loss products. But one in five Americans consumes nearly no vegetables less than one serving per day.

When the emphasis is on weight loss products, and not healthy day-to-day eating, the essential role that nutrition plays in keeping us well never gets communicated. Among the many things I teach students in my nutritional biochemistry course is the clear relationship between a balanced diet and a strong, well-regulated immune system.

Along with social distancing measures and effective vaccines, a healthy immune system is our best defense against coronavirus infection. To keep it that way, proper nutrition is an absolute must. Although not a replacement for medicine, good nutrition can work synergistically with medicine to improve vaccine effectiveness, reduce the prevalence of chronic disease and lower the burden on the health care system.

Scientists know that people with preexisting health conditions are at greater risk for severe COVID-19 infections. That includes those with diabetes, obesity, and kidney, lung or cardiovascular disease. Many of these conditions are linked to a dysfunctional immune system.

Patients with cardiovascular or metabolic disease have a delayed immune response, giving viral invaders a head start. When that happens, the body reacts with a more intense inflammatory response, and healthy tissues are damaged along with the virus. Its not yet clear how much this damage factors into the increased mortality rate, but it is a factor.

What does this have to do with nutrition? The Western diet typically has a high proportion of red meat, saturated fat and whats known as bliss point foods rich in sugar and salt. Adequate fruit and vegetable consumption is missing. Despite the abundance of calories that often accompanies the Western diet, many Americans dont consume nearly enough of the essential nutrients our bodies need to function properly, including vitamins A, C and D, and the minerals iron and potassium. And that, at least in part, causes a dysfunctional immune system: too few vitamins and minerals, and too many empty calories.

A healthy immune system responds quickly to limit or prevent infection, but it also promptly turns down the dial to avoid damaging the cells of the body. Sugar disrupts this balance. A high proportion of refined sugar in the diet can cause chronic, low-grade inflammation in addition to diabetes and obesity. Essentially, that dial is never turned all the way off.

While inflammation is a natural part of the immune response, it can be harmful when its constantly active. Indeed, obesity is itself characterized by chronic, low-grade inflammation and a dysregulated immune response.

And research showsthat vaccines may be less effective in obese people. The same applies to those who regularly drink too much alcohol.

Nutrients, essential substances that help us grow properly and remain healthy, help maintain the immune system. In contrast to the delayed responses associated with malnutrition, vitamin A fights against multiple infectious diseases, including measles. Along with vitamin D, it regulates the immune system and helps to prevent its overactivation. Vitamin C, an antioxidant, protects us from the injury caused by free radicals.

Polyphenols, a wide-ranging group of molecules found in all plants, also have anti-inflammatory properties. Theres plenty of evidence to show a diet rich in plant polyphenols can lower the risk of chronic conditions, like hypertension, insulin insensitivity and cardiovascular disease.

Why dont we Americans eat more of these plant-based foods and fewer of the bliss-based foods? Its complicated. People are swayed by advertising and influenced by hectic schedules. One starting place would be to teach people how to eat better from an early age. Nutrition education should be emphasized, from kindergarten through high school to medical schools.

Millions of Americans live in food deserts, having limited access to healthy foods. In these circumstances, education must be paired with increased access. These long-term goals could bring profound returns with a relatively small investment.

[Deep knowledge, daily. Sign up for The Conversations newsletter.]

Meantime, all of us can take small steps to incrementally improve our own dietary habits. Im not suggesting we stop eating cake, french fries and soda completely. But we as a society have yet to realize the food that actually makes us feel good and healthy is not comfort food.

The COVID-19 pandemic wont be the last we face, so its vital that we use every preventive tool we as a society have. Think of good nutrition as a seat belt for your health; it doesnt guarantee you wont get sick, but it helps to ensure the best outcomes.

More:
Good nutrition can contribute to keeping COVID-19 and other diseases away - The Conversation US

Read More...

Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19 – Science

September 22nd, 2020 5:58 pm

Abstract

COVID-19 pathogenesis is associated with an exaggerated immune response. However, the specific cellular mediators and inflammatory components driving diverse clinical disease outcomes remain poorly understood. We undertook longitudinal immune profiling on both whole blood and peripheral blood mononuclear cells (PBMCs) of hospitalized patients during the peak of the COVID-19 pandemic in the UK. Here, we report key immune signatures present shortly after hospital admission that were associated with the severity of COVID-19. Immune signatures were related to shifts in neutrophil to T cell ratio, elevated serum IL-6, MCP-1 and IP-10, and most strikingly, modulation of CD14+ monocyte phenotype and function. Modified features of CD14+ monocytes included poor induction of the prostaglandin-producing enzyme, COX-2, as well as enhanced expression of the cell cycle marker Ki-67. Longitudinal analysis revealed reversion of some immune features back to the healthy median level in patients with a good eventual outcome. These findings identify previously unappreciated alterations in the innate immune compartment of COVID-19 patients and lend support to the idea that therapeutic strategies targeting release of myeloid cells from bone marrow should be considered in this disease. Moreover, they demonstrate that features of an exaggerated immune response are present early after hospital admission suggesting immune-modulating therapies would be most beneficial at early timepoints.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in the clinical syndrome COVID-19 (1) that, to date, has resulted in over 20 million confirmed cases and in excess of 733,000 attributable deaths world-wide. As such, a large number of clinical trials have been established to evaluate anti-viral and immune modulatory strategies aimed at improving clinical outcome for this globally-devastating virus.

SARS-CoV-2 is a single stranded, positive sense RNA virus that enters cells via human angiotensin-converting enzyme 2 (ACE2) (2). Ordinarily, diverse immune mechanisms exist to detect every stage of viral replication and protect the host from viral challenge. Pattern recognition receptors of the innate immune system recognize viral antigen and virus-induced damage, increasing bone marrow hematopoiesis, the release of myeloid cells including neutrophils and monocytes, and the production of a plethora of cytokines and chemokines (3). If inflammatory mediator release is not controlled in duration and amplitude then emergency haematopoiesis leads to bystander tissue damage and a cytokine storm that manifests as organ dysfunction. Initial studies suggest cytokine storm occurs in COVID-19 (4). Indeed, neutrophilia and lymphopenia (resulting in an increased neutrophil to lymphocyte ratio), increased systemic interleukin-6 (IL-6) and C-reactive protein (CRP), correlate with incidence of intensive care admission and mortality (5). However, detailed understanding of cellular and molecular inflammatory mediators across the COVID-19 disease trajectory would support the development of better clinical interventions.

We carried out the Coronavirus Immune Response and Clinical Outcomes (CIRCO) study at four hospitals in Greater Manchester, UK, which was designed to examine the kinetics of the immune response in COVID-19 patients, as well as to identify early indicators of disease severity. Understanding the specific elements and kinetics of the immune response is critical to gain insight into immune phenotypes associated with disease progression, identify potential biomarkers that predict clinical outcomes and determine at which stage of the disease immune modulation may be most effective (4).

Here, by analyzing fresh blood samples immediately without prior storage we outline unappreciated immune abnormalities present within COVID-19 patients. Assessment of inflammatory mediators within the blood demonstrated these immune properties were most dysregulated in patients with severe COVID-19 prior to admission to intensive care, indicating immune modulating therapies should be considered early after admission. Furthermore, our study demonstrated profound alterations in the myeloid cells of COVID-19 patients. Our data demonstrate that monocytes from COVID-19 patients displayed elevated levels of the cell cycle marker Ki-67 but reduced expression of the prostaglandin-generating enzyme COX-2, with both these features being predominant in severe COVID-19 patients. These findings not only identify possible immune biomarkers for patient stratification but potential mechanisms of immune dysfunction contributing to the immunopathology of COVID-19.

In total, 73 patients were recruited and 49 were stratified for maximum disease severity (Fig. 1A). Six patients were excluded due to: an alternative diagnosis (2 patients); indeterminate imaging findings with negative result in the SARS-CoV-2 nasopharyngeal test (2 patients); or diagnosis of a confounding acute illness (2 patients). Two patients could not be stratified for disease severity due to insufficient clinical observation data and a further 16 were not stratified because recruitment occurred more than 7 days after admission. The median time from patient-reported symptom onset to hospital admission was 7 days. The overall median age was 61 and 63% were male. The most frequent co-morbidities were diabetes, ischemic heart disease, hypertension, asthma and chronic obstructive pulmonary disease (COPD) (Table 1). The majority (86%) of patients tested positive for SARS-CoV-2 via nasopharyngeal RT-PCR. In 14% of patients, symptoms and radiographic features were highly suggestive of COVID-19, but nasopharyngeal test was negative for the virus and thus a clinical diagnosis was made; these patients are clearly indicated in all graphs (white triangles). Patient disease severity was defined as mild (less than 28% FiO2), moderate (28-60% FiO2) or severe (above 60% FiO2, or admission to intensive care) (Fig. 1B). Death occurred in 50% of severe cases of COVID-19 and only one of the ten patients with severe disease was categorized as severe upon admission.

Patient recruitment and categorization. (A) Patients were recruited to the study as close to admission as possible and within 7 days. Peripheral blood samples were collected on recruitment and at intervals thereafter. Samples were analyzed immediately and results stratified based on their ultimate disease severity. (B) Criteria for patient stratification. NIV, non-invasive ventilation; CPAP, continuous positive airway pressure; ICU, intensive care unit.

Data are listed as median (IQR) m, where m is the number of missing data points, n (%), or n/N (%), where N is the total number with available data. PE, pulmonary embolism; AKI, Acute kidney injury. aAdmission observations. Representative participants from each severity cohort were used in cross-sectional or longitudinal analysis.

Based on blood cell counts by the hospital laboratory at admission, no significant differences in total white blood cells, neutrophils, monocytes or lymphocytes were observed between groups of COVID-19 patients that went on to progress to mild, moderate or severe disease (Fig. S1A). However, as reported previously (6, 7), a trend was evident toward a higher neutrophil to lymphocyte ratio (NLR) at hospital admission in those patients whose outcome eventually was severe (Fig. S1B). This suggested that a more in-depth immune profiling could aid in patient stratification prior to escalation of the disease.

Thus, we further explored alterations in the innate and adaptive immune compartments using high dimensional flow cytometry on white blood cells from freshly lysed whole blood (see Fig. S1C for gating strategy). Initially, we examined the first blood sample taken at the time of patient recruitment to the study (this was typically 2-3 days after hospital admission and was not greater than 7 days). At this recruitment time point, alterations to the characteristics and relative abundance of diverse immune cell types was observed. Uniform manifold approximation and projection (UMAP) visualization outlined alterations between patients and healthy controls in the characteristics of neutrophils and monocytes, dramatic increases in the frequency of neutrophils and decreased T cells, B cells and basophils. Cellular changes were exaggerated with disease severity (Fig. 2A). In a subset of infected individuals CD16low granulocytes were present (Fig. 2A); these cells can be associated with altered immune cell output from the bone marrow (8). This global picture of alterations to innate and adaptive immune cells was confirmed by manual flow cytometric gating (Fig. 2B and Fig. S1, C and D). In addition to these alterations, examining cell frequencies within isolated peripheral blood mononuclear cells (PBMCs) revealed a decrease in the frequency of plasmacytoid dendritic cells (pDCs) in COVID-19 patients, that was enhanced with elevated disease severity (Fig. S1E). There were no changes observed in frequencies of CD56+ NK cells (Fig. S1E).

Whole blood immune profile of COVID-19 patients. (A) Uniform Manifold Approximation and Projection (UMAP) of flow cytometry panel broadly visualizing white cells in whole blood. Representative images for healthy individuals, mild, moderate and severe patients are shown. Key indicates cells identified on the image. (B) Graphs show neutrophil (CD16+CD11bhi), CD14+ monocyte, CD3+ T cell, and CD19+ B cell frequencies in whole blood samples of healthy individuals (n=28) and recruitment samples from COVID-19 patients with mild (n=12), moderate (n=13) and severe (n=6) disease. (C) Longitudinal time course of (top row) neutrophils (CD16+CD11bhi), (2nd row) CD14+ monocytes, (3rd row) CD3+ T cells and (bottom row) B cells segregated by disease severity. Individual patients are shown as different colors and shapes with lines connecting data from the same patient. Crossed squares for severe patients are time points in intensive care unit (ICU). X axis values represent the number of days since reported onset of symptoms. (D) Graphs showing frequencies of neutrophils (CD16+CD11bhi), monocytes, T cells and B cells at the first and last time points in (left) mild/moderate patients (green and blue circles) and (right) severe patients (black circles). Red triangles represent severe patients that had poor outcome (deceased or long-term ICU) and are not included in the statistical test. Graphs show individual patient data with the bar representing median values. In all graphs, open triangles represent SARS-CoV-2 PCR negative patients. Kruskal Wallis with Dunns post-hoc test; 2B Neutrophils, T cells and B cells. One-way ANOVA with Holm-Sidak post-hoc test: 2B Monocytes. Paired t-test; 2D all except monocyte graph detailing mild and moderate patients which was tested using Wilcoxon matched-pairs signed rank test. (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001).

Given the dramatic alterations in neutrophil and T cell frequencies at the time of recruitment (Fig. 2B), we next examined their profile longitudinally over the course of hospitalization. To do this we used the first day of patient-reported symptom onset as a common reference point to align patient disease trajectories. This revealed that in the majority of patients, irrespective of final severity, neutrophil frequencies, although initially extremely high, decreased prior to hospital discharge while T cell frequencies reciprocally increased (Fig. 2C and 2D). In contrast, CD14+ monocytes and B cells showed no obvious trends during the hospital stay (Fig. 2C and D). These data highlight the importance of examining neutrophil to lymphocyte ratio in COVID-19 patients (6, 7), but, along with other studies (9), indicate that assessment of neutrophil to T cell ratio may provide a more stringent disease insight. Notably, in two severe patients with poor outcome, T cell frequencies were extremely low and neutrophil frequencies high even after entry into an intensive care unit (ICU) (Fig. 2C; white and pink crossed squares and Fig. 2D, red triangles); indicating that rebalancing of neutrophil to T cell ratio is crucial to recovery.

Broad changes in circulating immune cells in other viral infections are associated with alterations to circulating inflammatory mediators, such as cytokines and chemokines. These are potent modifiers of bone marrow output, immune cell survival and cell-recruitment to the inflamed lung. We used multiplex bead array to assess soluble inflammatory mediators in serum from patients at recruitment to the study. Of the 13 mediators analyzed in serum IL-6, IL-10, monocyte-chemoattractant protein-1 (MCP-1) and interferon gamma-induced protein 10 (IP-10) were significantly increased in COVID-19 patients and tracked with disease severity (Fig. S2A). No significant changes in other cytokines or chemokines measured, including IFN-, IL-1, IL-8 and TNF- were observed in COVID-19 patients (Fig. S2B).

Interestingly, longitudinal analysis (examined as above from the day of reported disease onset) of IL-6, MCP-1 and IP-10 in mild and severe patients revealed that the highest levels of these cytokines and chemokines occurred early in the disease trajectory at recruitment to the study (Fig. S2C). Indeed, there was a significant decrease in IL-6 and IP-10 in patients upon recovery (Fig. S2D). There was a dramatic reduction in IL-6, IP-10 and MCP-1 upon admission of severe patients into ICU from the ward (Fig. S2E), although this finding is based on just 3 patients. This may be due to the treatment modalities employed in intensive care, such as sedation, that can have immunomodulatory effects (10), and will be important to investigate further. Interestingly, the patient whose health declined rapidly following admission, and ultimately died from the disease, displayed a dramatic rebound in IL-6 and MCP-1 levels after 2 days on ICU (Fig. S2, D and E; red triangles).

To build on our basic assessment of cell populations outlined in Fig. 2, we next investigated alterations to specific T and B cell populations by flow cytometrically analyzing isolated peripheral blood mononuclear cells (PBMCs). Within the T cell compartment, we noted no dramatic alterations in CD4+ or CD8+ T cell frequencies (Fig. 3A and B). However, a slight decrease in CD4+ T cells was observed in severe COVID-19 patients (Fig. 3B). Both T cell subsets showed signs of activation in COVID-19 patients and this was more apparent in CD8+ T cells. Of note, the degree of T cell activation did not track with disease severity and was highly variable amongst patients (Fig. S3, A to D). Despite this, COVID-19 patients exhibited decreased frequencies of naive but elevated frequencies of effector TEMRA and HLA-DR+CD38+ CD8+ T cells (Fig. S3, A to C). CD8+ T cell subsets remained remarkably stable over the hospitalized disease course (Fig. S3E).

Altered phenotype of T and B cells in COVID-19 patients. (A,B) Graphs show frequencies of (A) CD8+ and (B) CD4+ T cells in freshly isolated PBMCs of healthy individuals (n=36) and recruitment samples from COVID-19 patients with mild (n=17), moderate (n=18) and severe (n=9-10) disease. (C,D) Representative flow cytometry plots and graph showing frequency of CD8+ T cells which are positive for perforin in healthy individuals (n=21 and COVID-19 patients with mild (n=16), moderate (n=12) and severe (n=7) disease. (E) Graph showing correlation of perforin+ CD8+ T cell frequency with C-reactive protein (CRP) in COVID-19 patients. (F) Graphs show frequencies of CD19+ B cells in freshly isolated PBMCs of healthy individuals (n=43) and recruitment samples from COVID-19 patients with mild (n=14), moderate (n=19) and severe (n=9) disease. (G) Representative flow cytometry plots and cumulative data show Ki-67 expression by B cells in healthy individuals (n=39) and COVID-19 patients (n=45). Correlation graph shows correlation of Ki-67+ B cells with C-reactive protein (CRP). (H) Representative flow cytometry plots and cumulative data show frequency of CD27hiCD38hi plasmablasts in healthy individuals (n=42) and COVID-19 patients (n=66). (I) Correlation graph shows correlation of plasmablasts and IgG+ B cell frequencies. (J) Graph shows frequencies of double negative (CD27-IgD-) B cells in freshly prepared PBMC of healthy individuals (n=42) and recruitment samples from COVID-19 patients with mild (n=14), moderate (n=19) and severe (n=9) disease. Graphs show individual patient data with the bar representing median values. In all graphs, open triangles represent SARS-CoV-2 PCR negative patients. Mann-Whitney U test; 3G, 3H. Kruskal Wallis with Dunns post-hoc test; 3A, 3D, 3F, 3J. One-way ANOVA with Holm-Sidak post-hoc test: 3B. Spearman ranked coefficient correlation test; 3E, 3G, 3I. (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001).

Interestingly, in 34/43 COVID-19 patients, higher perforin expression was observed in CD8+ T cells compared to healthy individuals (Fig. 3C and Fig. S3F), implying CD8+ T cells in COVID-19 patients had activated a cytotoxic program. Perforin expression in CD8+ T cells did not significantly track with disease severity (Fig. 3D), but a positive correlation was observed between the frequency of perforin+CD8+ T cells and clinical measurements of the inflammatory marker C-reactive protein (CRP) (Fig. 3E). This indicates increased frequencies of circulating perforin+ CD8+ T cells are more prevalent in highly inflamed patients. However, perforin+CD8+ T cells were found to increase over time in mild and most moderate COVID-19 patients, with highest levels immediately prior to discharge (Fig. S3, G to H), suggesting the higher frequencies seen in severe patients are not necessarily detrimental. This enhancement over time in mild and moderate patients suggests the higher frequencies seen in severe patients are not necessarily detrimental. Overall, these data demonstrate heterogeneous T cell activation in COVID-19 patients, but a consistent cytotoxic profile in the CD8+ T cell compartment.

Similar to the trend in whole blood (Fig. 2B), B cell frequency was reduced in PBMCs of COVID-19 patients. Decreases were particularly striking in severe patients compared to those with mild and moderate disease (Fig. 3F) and persisted with time (Fig. S4A). Although reduced in frequency, B cells displayed increased expression of Ki-67 (indicative of proliferation), which positively correlated with CRP levels (Fig. 3G). When examining B cell subsets, we observed an expansion of antibody-secreting plasmablasts (CD27hiCD38hiCD24), that positively correlated with IgG expression by B cells (Fig. 3H and I). Further, we observed a decrease in unswitched memory (CD27+IgD+IgM+) B cells but no global differences in frequencies of other B cell subsets (Fig. S4B). Of note, the differences in B cell subsets did not track with disease severity (Fig. S4C). The only subpopulation of B cells dramatically expanded in patients with severe COVID-19, compared to patients with mild and moderate disease, was double negative (DN) B cells (CD27IgD) (Fig. 3J). This subset was relatively stable throughout patient hospitalization and associated with a worse disease trajectory (Fig. S4D). DN B cells have previously been associated with an exhausted phenotype in patients with HIV (11), suggesting that patients with severe COVID-19 may have an impaired capacity to generate an effective B cell response.

COVID-19 research to date has primarily focused on T and B cells, although recent publications have highlighted alterations to monocyte phenotype (12). Monocytes can contribute significantly to inflammatory disease directly or via differentiation to macrophages and dendritic cells (13, 14). When released into the blood stream, monocytes will be affected by circulating cytokines and chemokines, including MCP-1, which we define as raised early in COVID-19 sera (Fig. S2A). In COVID-19 patients, we observed an expansion of intermediate CD14+CD16+ monocytes that tended to be highest in patients with a mild disease outcome (Fig. S5, A and B). Enhanced expression of CD64, the high affinity Fc receptor for monomeric IgG (FcRI), was apparent on classical CD14+ monocytes (Fig. 4A) and again was most evident in mild disease.

Dysregulation of circulating monocytes in COVID-19. (A) Graphs show levels of CD64 expression as assessed by mean fluorescence intensity (MFI) on CD14+ classical monocytes in freshly prepared PBMC of healthy individuals (n=25) and recruitment samples from all COVID-19 patients (n=58). COVID-19 patients were also stratified into mild (n=12), moderate (n=10) and severe (n=8) disease. (B) Graphs show frequencies of TNF-+ CD14+ monocytes following LPS stimulation of freshly prepared PBMC from healthy individuals (n=41) and COVID-19 patients (n=59). COVID-19 patients were also stratified into mild (n=14), moderate (n=15) and severe (n=7) disease. (C) Representative FACS plots demonstrating intracellular COX2 expression by CD14+ monocytes from healthy individuals and COVID-19 patients. (D, E) Graphs showing (D) frequencies of COX-2+ CD14+ monocytes and (E) COX-2 expression level as determined by MFI in CD14+ monocytes following LPS stimulation of freshly prepared PBMC from healthy individuals (n=33) and total COVID-19 patients (n=51). COVID-19 patients were also stratified into mild (n=12), moderate (n=11) and severe (n=6) disease. (F) Representative FACS plots demonstrating intracellular Ki-67 staining by CD14+ monocytes. (G) Graphs show frequencies of Ki-67+ CD14+ monocytes following LPS stimulation of freshly prepared PBMC from healthy individuals (n=37) and total COVID-19 patients (n=60). COVID-19 patients were also stratified into mild (n=14), moderate (n=14) and severe (n=8) disease. (H) Correlation of Ki-67 (% of monocytes expressing Ki-67) with CRP in COVID-19 patients. (I-K) Longitudinal time course of frequencies of CD14+ monocytes that are positive for (I) TNF-, (J) COX2 and (K) Ki-67 following LPS stimulation in mild (green shapes, n=6-7) and severe (black shapes, n=4-6) COVID-19 patients with lines connecting data from the same patient. On all graphs x axis values represent the number of days since onset of symptoms and the dotted line represents the median value from healthy individuals. (L) Graphs showing frequencies of monocytes which are TNF-+, COX-2 and Ki-67+ following LPS stimulation at the first and last time points in (left) mild patients (green circles) and (right) severe patients (black circles). Graphs show individual patient data with the bar representing median values. In all graphs, open triangles represent SARS-CoV-2 PCR negative patients. Mann-Whitney U test; 4A, 4B. 4D, 4E, 4G. Kruskal Wallis with Dunns post-hoc test; 4B, 4D, 4E, 4G. One-way ANOVA with Holm-Sidak post-hoc test:.4A. Spearman ranked coefficient correlation test; 4H. Paired t-test; 4L. (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001).

We next examined monocyte activation by stimulating with lipopolysaccharide (LPS); stimulation frequencies of viable cells were high (greater than 90%) and similar in COVID-19 patients and healthy controls. Following stratification for final disease severity, TNF- was enhanced in patients with mild disease (Fig. 4B and Fig. S5C). In contrast, IL-1 production was lower in monocytes from COVID-19 patients compared to monocytes from healthy individuals (Fig. S5D), although this was not related to disease severity. These data highlight that monocytes from COVID-19 patients exhibit a modified cytokine profile upon activation. As well as cytokines, monocytes are major producers of lipid mediators, such as prostaglandins (15) and so we also examined cyclooxygenase-2 (COX-2) expression (a rate-limiting enzyme in prostaglandin synthesis). Notably, in LPS-stimulated monocytes a reduction in COX-2 was evident in all COVID-19 patients and was most apparent in those with severe disease (Fig. 4, C to E). Accordingly, expression of COX-2 in stimulated monocytes was inversely correlated to systemic levels of the cytokine MCP-1 (Fig. S5E), which were highest in severe COVID-19 patients (Fig. S2A).

One possible reason that monocytes in COVID-19 patients display altered functionality in the periphery is due to inflammation-induced emergency myelopoiesis (3). This process occurs during infection where hematopoietic stem cells and myeloid progenitors expand in the bone marrow in order to provide more cells to combat viral infection. However, if egress is too fast then monocytes exit in an altered state. For example, unusually high expression of the cell cycle marker Ki-67 is observed in peripheral monocytes during H1N1 influenza (16) and Ebola virus (17) infection. We therefore, investigated expression of the proliferation marker Ki-67 in COVID-19. A striking increase in Ki-67+ monocytes (<5% in monocytes from most healthy controls) was evident in COVID-19 patients, but was most dramatic in patients with severe disease (Fig. 4, F and G). Ki-67 expression strongly correlated with CRP levels (Fig. 4H), and with systemic levels of the cytokines IL-6, MCP-1, IP-10 and IL-10 (Fig. S5F), cytokines that were enhanced in COVID-19 patients and tracked with severity (Fig. S2A). Enhancement of Ki-67 expression was also observed in unstimulated monocytes from COVID-19 patients (Fig. S5G).

We next assessed how monocyte alterations varied over the patients hospital stay and noted that patients with mild COVID-19 had consistently higher TNF- and COX-2 expression in LPS-activated monocytes compared to patients with severe disease (Fig. 4, I and J). Indeed, COX-2 remained low in severe patients throughout intensive care but levels were restored upon recovery in mild patients (Fig. 4L). IL-1 was consistently low over time in both severity groups with no significant differences in monocyte production of IL-1 between the first and last measured time points from mild or severe patients (Fig. S5H). Ki-67 expression, however, was highest at recruitment and decreased in patients (back down to levels seen in healthy controls) during the progression of disease, independent of severity category or final outcome (Fig. 4, K and L). Thus, defined alterations to monocyte function, specifically to TNF- and COX-2, are maintained across the disease time-course and levels of expression are associated with severity. Taken together, these findings highlight alterations to monocyte phenotype and function as key features of disease progression and severity in COVID-19.

Respiratory viruses continue to cause devastating global disease. This detailed, prospective, observational analysis of COVID-19 patients of varying severity and outcome, in real time, has revealed specific immunological features that track with disease severity, providing important information concerning pathogenesis that should influence clinical trials and therapeutics. Of particular importance, increased expression of the cell cycle marker Ki-67 in blood monocytes, reduced expression of COX-2, and a high neutrophil to T cell ratio are early predictors of disease severity that could be used to stratify patients upon admission for therapeutics. Critically, the majority of aberrant immune parameters studied reverted in patients with good outcome. Unexpectedly, multiple aspects of inflammation that were high upon admission, diminished as patients progressed in severity and were admitted to intensive care. In particular, levels of IP-10 and Ki-67 expression by monocytes were reduced after admission to intensive care, even in patients who did not recover. These data indicate that treating patients early after hospitalization is likely to be most beneficial, while cytokine levels and immune functions are disrupted.

Though other studies have focused on defects in adaptive immunity in COVID-19 pathogenesis (18), we demonstrate here considerable abnormalities in the innate immune system, in particular within myeloid cells. Profound neutrophilia exists in severe COVID-19, supportive of a role for neutrophils in acute respiratory distress syndrome (19, 20) and in line with the excess neutrophils seen in the autopsied lungs of patients that died from COVID-19 (21). Neutrophils assist in the clearance of pathogens through phagocytosis, oxidative burst and by liberating traps (neutrophil extracellular traps or NETs) that capture pathogens. The latter two functions, however, can also promote inflammation and are associated with many of the features seen in COVID-19 (22). Indeed, elevated neutrophil products have been identified in the sera of COVID-19 patients and correlate with clinical parameters such as C-reactive protein, D-dimer, and lactate dehydrogenase (23).

Altered monocyte phenotypes were also seen in COVID-19 patients, with patient blood monocytes expressing the cell cycle marker Ki-67 (up to 98%); a feature not observed in health. This likely represents either early or enhanced release of monocytes from the bone marrow due to systemic inflammatory signals and is similar to that described in pandemic H1N1 influenza (16) and Ebola virus infections (17). Equally remarkable was the reduced expression of COX-2 in monocytes in patients with severe disease, which was evident across their disease trajectory. COX-2 facilitates the production of prostanoids including prostaglandin E2 (PGE2), and other viruses are known to target this pathway to enhance viral replication (24). However, its reduction in monocytes in response to viral lung infection has not previously been reported. Reduced COX-2 alongside high IL-6 and IP-10, as seen here in severe COVID-19 patients, is an immune profile associated with pathology in idiopathic pulmonary fibrosis (IPF) (25). Therefore, our data indicate a possible fibrotic signature in patients with severe disease, supporting studies observing an unusual pattern of fibrosis in the lungs of COVID-19 patients.

Our data concur with several features of COVID-19 studied in Wuhan, China, as well as with more recent studies from across the globe (26, 27) and are also corroborated by single cell RNA sequencing of bronchoalveolar lavage cells at a single time point (28). Similarities include elevated CRP and IL-6 in patients at the time of hospitalization who eventually died (29) and increased IP-10 in those who later developed severe disease (30). IP-10 is an interferon-inducible chemokine that facilitates directed migration of many immune cells (31) and is elevated in other coronavirus infections including MERS-CoV and SARS-CoV (32), as well as in Influenza virus of swine origin (H1N1) (33, 34). The heightened levels of monocyte-chemoattractant protein 1 (MCP-1) upon admission further indicate dysregulation of monocyte function and migration in patients with severe disease. Importantly, IL-6, IP-10 and MCP-1 levels are generally the highest around the time of hospital admission but are reduced rapidly as patients are admitted to intensive care, which may well signify exhaustion of the immune cells producing these mediators.

Examining cells of the adaptive immune system, we identified lymphopenia which is now a well-established hallmark of COVID-19 patients (3538). Despite this being a key feature of COVID-19, the drivers of loss of T and B cell numbers in peripheral blood remain obscure and could equally reflect either cell death and/or elevated trafficking to the site of inflammation. Focusing on T cells, the phenotype and function of circulating T cells remain an issue with conflicting reports within the literature. Consistent with previous reports, our data show modest increases in T cell activation (27, 39, 40), primarily driven by a substantial heterogeneity between patients. Despite this, the frequencies of T cells with activated phenotypes remained stable across the disease trajectory, implying most changes to these adaptive mediators could have occurred prior to hospitalization. Importantly our data highlight activation of a cytotoxic program in CD8+ T cells, evidenced by perforin expression, which would support effective viral clearance that has previously been suggested (41). Focusing on B cells, patients with severe COVID-19 displayed a dramatic expansion of CD27IgD double negative (DN) B cells. This is in agreement with a recent study reporting lupus-like hallmarks of extrafollicular B cell activation in critically unwell COVID-19 patients (42). DN B cells are also associated with immune senescence as a result of excessive immune activation, and an exhausted phenotype is observed in patients with HIV (11). Further studies evaluating the functional capacity of expanded DN B cells will be critical to understand their contribution to severe COVID-19.

There are, of course, limitations to any study of samples during a viral pandemic for which there is no vaccine. However, we believe that these do not diminish the importance of the major findings from our study. A longitudinal analysis in real time for phenotypic, functional and soluble markers naturally limits the number of patients interrogated. In-depth analysis of smaller cohorts however, is necessary to gain insight into mechanism and is of interest to the pharmaceutical industry. It takes time to recruit the appropriate number of control subjects of the approximate gender and age of COVID patients and also with the span of comorbidities associated with the greatest risk from SARS-CoV-2. The majority of our controls were drawn from frontline workers, who produced remarkably similar results to each other. The only other potential limitation is that patients may not accurately define the onset of symptoms. As data are plotted per patient, however, this does not affect the interpretation of the results.

There are clinical implications of our data. Using non-steroidal anti-inflammatory drugs (NSAIDs) remains controversial (43) and our study would suggest they may not be desirable, as this may compound the already low COX-2 (44). Since most of the pathogenic mechanisms involve myeloid cells, neutrophils and monocytes, it would be advantageous to reduce their influx to the lung once lung pathology is established. Relevant strategies include inhibition of the complement anaphylatoxin C5a (45) or IL-8 (CXCL8), which are strong chemoattractants for many immune cells, including neutrophils. Antagonism of CXCR2 that mobilizes neutrophil and monocyte from the bone marrow, neutrophil elastase inhibitors and inhibition of G-CSF, IL-23 and IL-17 that promote neutrophil survival, are also options (46). Anti-IL-6, IL-1RA and anti-TNF- agents are already being investigated for COVID-19 treatment and are relevant to neutrophils, which express the requisite cytokine receptors. Furthermore, JAK inhibitors are currently in clinical trials and may also reduce neutrophil levels (47). Targeting toxic products of neutrophils such as S100A1/A2, HMGB1 and free radicals, but also the formation of NETs, could be beneficial (21).

In summary, this is a key longitudinal study immune profiling COVID-19 patients that places equal emphasis on innate and adaptive immunity. We identify substantial alterations in the myeloid compartment in COVID-19 patients that have not previously been reported. It would appear that comparable innate immune features have been evident in past pandemics with similar or even different viruses and so focusing immune modulation strategies on neutrophils and monocytes is an urgent priority.

Between 29th March and 7th May, 2020, adults requiring hospital admission with suspected COVID-19 were recruited from 4 hospitals in the Greater Manchester area. Our research objective was to undertake an observational study to (1) examine the kinetics of the immune response in COVID-19 patients and (2) identify early indicators of disease severity. Informed consent was obtained for each patient. Peripheral blood samples were collected at Manchester University Foundation Trust (MFT), Salford Royal NHS Foundation Trust (SRFT) and Pennine Acute NHS Trust (PAT) under the framework of the Manchester Allergy, Respiratory and Thoracic Surgery (ManARTS) Biobank (study no M2020-88) for MFT or the Northern Care Alliance Research Collection (NCARC) tissue biobank (study no. NCA-009) for SRFT and PAT (REC reference 15/NW/0409 for ManARTS and 18/WA/0368 for NCARC). Clinical information was extracted from written/electronic medical records. Patients were included if they tested positive for SARS-CoV-2 by reverse-transcriptasepolymerase-chain-reaction (RT-PCR) on nasopharyngeal/oropharyngeal swabs or sputum. Patients with negative nasopharyngeal RT-PCR results were also included if there was a high clinical suspicion of COVID-19, the radiological findings supported the diagnosis and there was no other explanation for symptoms. Patients were excluded if an alternative diagnosis was reached, where indeterminate imaging findings were combined with negative SARS-CoV-2 nasopharyngeal (NP) test or there was another confounding acute illness not directly related to COVID-19. The severity of disease was scored each day, based on degree of respiratory failure (Fig. 1B). Patients were not stratified for disease severity if there was no available clinical observation data or patients were recruited more than 7 days after hospital admission. Where severity of disease changed during admission, the highest disease severity score was selected for classification. The first available time point was used for all cross-sectional comparisons between mild, moderate and severe disease. Peripheral blood samples were collected as soon after admission as possible and at 1-2 day intervals thereafter. For longitudinal analysis we elected to correlate clinical data with immune parameters directly, rather than using the WHO ordinal scale on account of the small range of values this affords our inpatient cohort, which our study would not be powered to discern. Healthy blood samples were obtained from frontline workers at Manchester University and NHS Trusts (age range 28-69; median age=44.5 years; 42.5% males). Samples from healthy donors were examined alongside patient samples.

Whole venous blood was collected in tubes containing EDTA or serum gel clotting activator (Starstedt). Peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation using Ficoll-Paque Plus (GE Healthcare) and 50 ml SepMate tubes (STEMCELL technologies) according to the manufacturers protocol. Serum was separated by centrifuging serum tubes at 2000 g at 4C for 20 min.

Red blood cell lysis was carried out using 10x volume of distilled water for 10 s followed by addition of 10x PBS to re-establish a 1x PBS solution and stop lysis. Cells were centrifuged at 500 g for 5 min and lysis repeated if necessary.

White blood cells from lysed whole blood and isolated PBMCs separated by density gradient centrifugation were stained immediately on receipt. The following antibodies were used: BDCA-2 (clone 201A), CCR7 (clone G043H7), CD11b (clone ICRF44), CD11c (clone 3.9 or Bu15), CD123 (clone 6H6), CD14 (clone 63D3), CD16 (clone 3G8), CD19 (clone H1B19), CD24 (clone M1/69 or ML5), CD27 (clone M-T271), CD3 (clone OKT3 or UCHT1), CD38 (clone HIT2), CD4 (clone SK3), CD45 (clone 2D1), CD45RA (clone HI100), CD56 (clone MEM-188), CD62L (clone DREG-56), CD8 (clone SK1), HLA-DR (clone L234), ICOS (clone C398.4A), IgD (clone IA6-2), IgM (clone MHM-88), IgG (clone M1310G05), Ki-67 (clone Ki-67 or 11F6), PD-1 (clone EH12.2H7), perforin (clone dG9), CD66b (clone G10F5), CD64 (clone 10.1), IL-1 (clone H1b-98) and TNF- (clone MAb11), all from Biolegend; and COX-2 (clone AS67) from BD Biosciences. PBMCs were also stimulated in vitro for 3 hours with 10 ng/ml LPS in the presence of 10 g/ml brefeldin A to allow accumulation and analysis of intracellular proteins by flow cytometry. Cells were cultured in RPMI containing 10% fetal calf serum, L-Glutamine, Non-essential Amino Acids, HEPES and penicillin plus streptomycin (Gibco). For surface stains samples were fixed with BD Cytofix (BD Biosciences) prior to acquisition and for intracellular stains (Ki-67, COX-2, TNF- and IL-1) the Foxp3/Transcription Factor Staining Buffer Set (eBioscience) was used. All samples were acquired on a LSRFortessa flow cytometer (BD Biosciences) and analyzed using FlowJo (TreeStar).

Thirteen different mediators associated with anti-viral responses were measured in serum using LEGENDplex assays (BioLegend, San Diego, USA) according to the manufacturer's instructions.

Results are presented as individual data points with medians. Statistical analysis was performed using Prism 8 Software (GraphPad). Normality tests were performed on all datasets. Groups were compared using an unpaired t-test (normal distribution) or Mann-Whitney test (failing normality testing) for healthy individuals versus COVID-19 patients. Paired t-test (normal distribution) or Wilcoxon matched-pairs signed rank test (failing normality testing) was used for longitudinal data where first and last time points were examined. One-way ANOVA with Holm-Sidak post-hoc testing (normal distribution) or Kruskal-Wallis test with Dunns post-hoc testing (failing normality testing) was used for multiple group comparisons. Correlations were assessed with Pearson correlation coefficient (normal distribution) or Spearmans rank correlation coefficient test (failing normality testing) for separate parameters within the COVID-19 patient group. Information on tests used is detailed in figure legends. In all cases, a p-value of 0.05 was considered significant. ns, not significant; p < 0.05, p < 0.01, p < 0.001.

immunology.sciencemag.org/cgi/content/full/5/51/eabd6197/DC1

Figure S1. Immune cell types in COVID-19 patients.

Figure S2. Serum cytokines and chemokines in COVID-19 patients.

Figure S3. T cell activation in COVID-19 patients.

Figure S4. B cell subsets in COVID-19 patients.

Figure S5. Monocytes in COVID-19 patients.

Table S1. Raw data file (Excel spreadsheet).

This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Here is the original post:
Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19 - Science

Read More...

Bioprinted therapeutic offers novel solution for treating Type 1 Diabetes – Canada NewsWire

September 22nd, 2020 5:57 pm

Current treatments for diabetes are costlywith diabetes-related healthcare costs in Canada expected to increase to over $16.9 billion by 2020.They carry costs for patients as well, frequently in the form of negative side effects. One conventional method of treating T1D is the daily administration of insulin to manage blood sugar levels. This treatment is different from the control of a pancreatic cell, meaning patients are more likely to experience the debilitating consequences of improper glucose management. These can include damage to the eyes, nerves, kidneys, heart, and later life health complications.

To regain the benefits of working pancreatic cells, a more elegant approach is to simply replace those cells by transplanting insulin-producing pancreatic tissue into a T1D patient. However, this is not a viable long-term solution. A finite supply of donor working pancreatic tissue available to transplant, coupled with the requirement for the patient to administer life-long anti-rejection drugs that can themselves lead to significant health complications, means that an alternative is needed. An ideal solution is treating T1D with insulin made by pancreatic cells in the patient's own body, like a transplant but in a way that hides those cells from the patient's immune system so anti-rejection drugs are not needed.

In a collaborative project with Dr. Timothy Kieffer of the University of British Columbia (UBC), Vancouver-based company Aspect Biosystems is producing a bioprinted therapeutic of pancreatic cells surrounded by a protective layer that can be implanted in T1D patients. This bioprinted therapeutic will contain genetically modified stem-cell derived pancreatic cells that will take over the production of insulin and thereby regulate blood sugar levels naturally. This could serve as an effective and scalable therapy for individuals with T1D, allowing them to move away from both daily insulin injections and long-term treatment with anti-rejection drugs.

"This generous and strategic support from Genome BC allows us to strengthen our existing collaboration with Dr. Kieffer, a world leader in the development of stem cell-derived pancreatic beta cells for clinical use," said Dr. Sam Wadsworth, Chief Scientific Officer, Aspect Biosystems. "By working together, we look forward to developing a bioprinted pancreatic therapeutic that could significantly improve the quality of life for millions of people globally."

This collaboration, supported through Genome BC's GeneSolve program, represents a novel technological and genomics-based approach that will circumvent the shortcomings of existing methods. "This therapeutic design thoughtfully addresses the risks that current treatments pose to patients and incorporates genomics tools to test the system and make it safer," says Dr. Pascal Spothelfer, President and CEO, Genome BC. "It could represent a big step forward for patients and for the healthcare system."

About Genome British Columbia:

Genome BC is a not-for-profit organization supporting world-class genomics research and innovation to grow globally competitive life sciences sectors and deliver sustainable benefits for British Columbia, Canada and beyond. The organization's initiatives are improving the lives of British Columbians by advancing health care in addition to addressing environmental and natural resource challenges. In addition to scientific programming, Genome BC works to integrate genomics into society by supporting responsible research and innovation and foster an understanding and appreciation of the life sciences among educators, students and the public. http://www.genomebc.ca

About Aspect Biosystems:

Aspect Biosystems is a privately held biotechnology company combining the power of microfluidics and 3D bioprinting to fuel medical research and the development of bioprinted therapeutics. By adopting Aspect's microfluidic 3D bioprinting platform and collaborating within Aspect's network, researchers worldwide are accelerating the development and commercialization of 3D bioprinted tissues. In addition, Aspect is advancing its internal regenerative medicine programs focused on metabolic diseases and musculoskeletal injuries and disorders and partnering with key industry players to bring bioprinted therapeutics to the clinic. Learn more at http://www.aspectbiosystems.com

SOURCE Genome British Columbia

For further information: Jennifer Boon, Communications Manager, Sectors, Genome BC, Mobile: 778.327.8374, Email: [emailprotected], @genomebc #genomebc

http://www.genomebc.ca

Read the original post:
Bioprinted therapeutic offers novel solution for treating Type 1 Diabetes - Canada NewsWire

Read More...

Oncologie Announces New Data and Analyses from Clinical Programs and Name Change to OncXerna Therapeutics – GlobeNewswire

September 22nd, 2020 5:57 pm

OncXernas RNA-based biomarker platform successfully identified responders versus non-responders in trials with late-stage cancer patients

Interim results from a Phase 2 trial of bavituximab with KEYTRUDA (pembrolizumab) demonstrates a 19% overall response rate (ORR)and 43% (3/7) ORR from an exploratory analysis in a biomarker-driven subgroup of advanced gastric cancer patients

OncXernas RNA-based biomarker panel predicts enhanced response in a Phase 1b trial of navicixizumab in late-stage ovarian cancer patients. Patients in thebiomarker positive panel achieved a 70% ORR, and excludedall who had progressive disease, compared with a 31% ORR for patients in the biomarker negativepanel

WALTHAM, Mass., Sept. 18, 2020 (GLOBE NEWSWIRE) -- Oncologie, Inc., a precision medicine company using an innovative RNA-based biomarker platform to predict patient responses for potentially first-in-class targeted oncology therapies, today announced new data and analyses from its lead clinical programs, bavituximab and navicixizumab. On the basis of these positive data, the company also announced its rebranding to OncXerna Therapeutics, Inc., a change that reinforces the companys focus on using its RNA-based approach to guide novel, targeted treatments to specific people with cancer.

With a deep understanding of the tumor microenvironment biology at the RNA-level through our novel biomarker panel, we aim to dramatically improve clinical outcomes by matching patients to therapies with a mechanism of action that targets that specific biology, said Laura Benjamin, Ph.D., President and Chief Executive Officer at OncXerna Therapeutics. Todays results demonstrate a clear ability of our first panel to distinguish responders versus non-responders in our bavituximab and navicixizumab programs, and we are excited to deploy this approach in the next prospectively-defined trials that could support registration.

Interim results from Phase 2 (ONCG100) trial of bavituximab and KEYTRUDA

Trial design and background:

The Phase 2 (ONCG100) trial is a multicenter, open-label, single-arm global trial designed to assess the safety, tolerability, and antitumor activity of the investigational agent bavituximab, a chimeric monoclonal antibody that targets phosphatidylserine, in combination with KEYTRUDA, Mercks anti-PD-1 therapy, in patients with advanced gastric and gastroesophageal cancer who have progressed on or after at least one prior standard therapy. Bavituximab previously demonstrated clinical activity in a post-hoc subset analysis in patients with non-small cell lung cancer (NSCLC) who were given a PD-1 inhibitor following bavituximab treatment, suggesting that a treatment combination of bavituximab and a PD-1 inhibitor could generate similar activity in a prospective clinical trial. In addition to measuring safety and antitumor activity in this trial, OncXerna is deploying its proprietary RNA biomarker platform (TME Panel-1) to identify patients based on their response to treatment and the dominant biology of their tumor microenvironment with the potential to dramatically improve outcomes in the next, prospectively designed trial.

Approximately 80 patients in the U.S., United Kingdom, South Korea and Taiwan are planned for enrollment in two separate groups of patients: Checkpoint inhibitor-nave and checkpoint inhibitor-relapsed. The trial is continuing to enroll both groups with planned updates from all patients during the first half of 2021.

Interim results:

Interim results provided today, from the first 36 patients enrolled and with a post-baseline scan in the checkpoint inhibitor-nave group, include the following:

Next steps:

These data are being presented at the European Society for Molecular Oncology (ESMO) Virtual Congress 2020 taking place September 19-21, 2020.

OncXerna plans to conduct additional clinical trials designed to prospectively enrich for TME Panel-1 biomarker positive patients, as well as to explore additional solid tumor types.

OncXerna biomarker analysis from Phase 1b trial evaluating navicixizumab in ovarian cancer

Previously announced data and background:

OncXernas navicixizumab is a bispecific antibody designed to inhibit both Delta-like ligand 4 (DLL4) in the Notch cancer stem cell pathway as well as vascular endothelial growth factor (VEGF). Interim data from a Phase 1b dose escalation and expansion trial of navicixizumab plus paclitaxel in 44 platinum-resistant ovarian cancer patients who had failed more than two prior therapies and/or received prior Avastin (bevacizumab) therapy were presented virtually at the 2020 Society of Gynecologic Oncology (SGO) Annual Meeting in May 2020. Treatment with navicixizumab and paclitaxel demonstrated an ORR of 43%in all patients, and 64% and 33% in bevacizumab-nave, and bevacizumab pre-treated patients, respectively. Treatment-related adverse events were manageable and included hypertension (58%), headache (29%), fatigue (26%) and pulmonary hypertension (18%).

Updated biomarker analyses and results:

Using its RNA-based biomarker TME Panel-1, OncXerna recently analyzed patient tissue samples obtained from 28 of the 44 patients from the Phase 1b trial. Results from this analysis revealed the following:

Next steps:

As a result of these analyses, OncXerna plans to conduct additional clinical trials designed to prospectively enrich for TME Panel-1 biomarker positive patients with ovarian cancer who are platinum-resistant and Avastin-experienced to support registration, as well as to explore additional solid tumor types.

About Bavituximab

Bavituximab is an investigational antibody that reverses immune suppression by inhibiting phosphatidylserine (PS) signaling and is currently in Phase 2 clinical trials to treat a specific subset of patients with advanced gastric cancer to improve their response to anti-PD-1 treatment. The mechanism of action of bavituximab is to block tumor immune suppression signaling from PS to multiple immune cell receptor families (e.g., TIMs and TAMs). The dominant biology targeted by bavituximab may be relevant for patients with many types of solid tumors whose immune systems are too suppressed to benefit from currently available immune oncology therapies. Our clinical trials currently combine bavituximab with KEYTRUDA to test the hypothesis that relieving immunosuppression can enhance responses to checkpoint inhibitors. Bavituximab is an investigational agent that has not been licensed or approved anywhere globally, and it has not been demonstrated to be safe or effective for any use, including for the treatment of advanced gastric cancer.

About Navicixizumab

Navicixizumab is an investigational anti-DLL4/VEGF bispecific antibody that has demonstrated antitumor activity in patients who have progressed on Avastin (bevacizumab) in a Phase 1a/b clinical trial. The U.S. Food and Drug Administration granted Fast Track designation to navicixizumab for the treatment of high-grade ovarian, primary peritoneal or fallopian tube cancer in patients who have received at least three prior therapies and/or prior treatment with Avastin. OncXerna is targeting patients whose dominant tumor biology is driven by angiogenesis with a focus beyond VEGF to include broader anti-angiogenic pathways. Navicixizumab is an investigational agent that has not been licensed or approved anywhere globally, and it has not been demonstrated to be safe or effective for any use, including for the treatment of advanced ovarian cancer.

About OncXerna Therapeutics

OncXerna is aiming to deliver next-generation precision medicine for a larger group of cancer patients by leveraging the companys deep understanding of how to prospectively identify patients based on the dominant, RNA-based biology of their tumor microenvironments. This allows OncXerna to pair those patients with OncXernas clinical-stage therapies and known mechanism of action that directly address these biologies, to dramatically improve patient outcomes. For more information on OncXerna, please visit oncxerna.com/

About OncXernas RNA-based Biomarker Platform

Existing precision medicines target only approximately 10% of cancersthose with gene mutations or oncogenic drivers for a small number of genes. Using its proprietary biomarker platform, OncXerna is leveraging the companys deep understanding of tumor biology at the RNA level to identify the dominant biology underlying a patients cancer. OncXernas first biomarker panel is specific to the tumor microenvironment (TME Panel-1). Initial results from TME Panel-1 reveal 4 different dominant biologies, demonstrating the presence of specific patient subgroups and their predictive value in responding to treatment. OncXerna is further optimizing the biomarker platforms tumor microenvironment panel through multiple research collaborations, including a collaboration with Moffitt Cancer Center.

KEYTRUDA is a registered trademark of Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA.

Investor and Media Contact:

Ashley R. RobinsonLifeSci Partners, LLCarr@lifesciadvisors.com

Go here to read the rest:
Oncologie Announces New Data and Analyses from Clinical Programs and Name Change to OncXerna Therapeutics - GlobeNewswire

Read More...

How the single product brand trend could be an environmental home run for the beauty industry – GlobalCosmeticsNews

September 22nd, 2020 5:57 pm

As beauty professionals, Id hazard a guess that were all well acquainted, and more than a little embarrassed, about our industrys negative association with environmental issues. As one of the worlds most prolific offenders of plastic waste, we are, despite ongoing and progressive initiatives and packaging developments, one of the worst culprits of single-use products destined for landfill.

So, what about the effect of the increasing popularity of single-product beauty launches? Rather than single use, although they are creeping into the mix, the recent upsurge in single product skincare regimes is becoming a popular marketing tactic for brands and also creating a new breed of skincare founders capitalizing on the popularity of the new trend. In terms of skincare, it seems that maximalism is out, and minimalism is in.

Augustinus Bader kickstarted the movement with the launch of his stem cell moisturizer, The Cream, last year. The launch came without bells and whistles, no add on items and the range was notable for its minimalist offering just one product. The skincare guru has seemingly paved the way. Founders of cult beauty brand Summer Fridays got into game in 2018 with one product the Jet Lag Mask (although I wonder how thats faring in the current climate). While theyve since expanded to a core product range of six, the mask was the hero, and only, sell-out offering for some time.

But what effect does this new skincare approach have in terms of sustainability in comparison to its multi-step predecessor? The more is more, previously much-loved, approach to skincare promotes shelves packed with products aimed at 12-step programs to create perfect skin. This generates, to put it simply, a mass of trash. Multiple bottles of what are likely potions and lotions more a marketers dream, and an environmentalists nightmare, than a skin care holy grail. But would we use less of each bottle, and therefore limit the turnover of throw-away packaging?

Meanwhile, while the latest en vogue trend on the block, single product skincare, has been lauded as a minimalist approach to perfect skin. While some could argue that using one product will promote a much higher usage, therefore a faster rotation of treasure to trash, if having to choose between the two youd obviously lean towards the manufacturing of fewer bottles, tubes and, ultimately,waste. Less is more, as they say. And with the nature of the shopper being to increasingly seek out the new, consumers across all target market groups baby boomers to gen z are also desperately searching for efficacious products that also fulfil their desire to be a green buyer.

Craigs Resurfacing Compoundseems to have hit the nail on the head. Sold out in 48 hours, the serum was two-years in the making and is said to cut beauty regimes in half with its tantalizing mix of ingredients she pulled out the big guns; retinol, antioxidants, glycolic acid and lactic acids it also comes encased in a full recyclable bottle.

With COVID-19 teaching the world to slow down and take a breath, the same could be said for our skincare routines. As stated by Vogue, a more considered approach to beauty is both needed and being lapped up by consumers. The upsurge in single-product launches is seemingly capitalizing on a desire for less is more and causing a marketing furore to boot. Less production, less waste, and, put simply, a swift U-turn from the maximalist approach of old. Get the packaging right recycledandrecyclable if you please and the industry could be on to a winner both commercially and environmentally.

The rest is here:
How the single product brand trend could be an environmental home run for the beauty industry - GlobalCosmeticsNews

Read More...

Page 395«..1020..394395396397..400410..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick