header logo image


Page 427«..1020..426427428429..440450..»

Reducing barriers to mainstream gene therapy – BioPharma-Reporter.com

September 3rd, 2020 5:51 pm

The company is to invest 3.4m (around US$4.5m) alongside the grant.

The funds will support research into the manufacturing challenges associated with scaling gene therapies for widespread patient access, to further develop technologies to improve the safety and efficacy of current therapies, and to enable the treatment of genetic diseases with more complicated disease pathways the industry is not yet able to address.

Along with the creation of 11 new jobs in Edinburgh, the developer said it will further enhance its Pro10 platform, an AAV manufacturing process that can be scaled and applied throughout the group.

The grant will also advance development of the tool kit of inducible, repressible, tunable and responsive expression cassettes to be adopted in the current clinical pipeline and new disease targets.

Gene therapy has the potential to treat a wide range of diseases including certain forms of muscular dystrophy, congestive heart failure and some diseases of the central nervous system but, at present, only two market-approved therapies are available.

David Venables, president, AskBio Europe, commented: The grant awarded by Scottish Enterprise supports AskBio in working towards developing even safer and more effective gene therapies through improved development and manufacturing techniques. Science and innovation keep progressing, and that makes this an exciting time to develop this type of therapeutic agent.

AskBios technology is inside both currently approved AAV gene therapies, which include Luxturna, developed by Spark Therapeutics, for the treatment of patients with inherited retinal disease, and Zolgensma, developed by AveXis, for the treatment of patients with spinal muscular atrophy (SMA).

AveXis licenses AskBios self-complementary DNA technology for Zolgensma.

While the promise of such therapies is being shown, significant barriers remain before gene therapies can become more broadly impactful, according to AskBio.

With global headquarters in Research Triangle Park, North Carolina, and European headquarters in Edinburgh, UK, AskBio has generated hundreds of proprietary third generation AAV capsids and promoters, several of which have entered clinical testing.

BioPharma-Reporter (BPR) spoke to Ken Macnamara, (KM), PhD, chief operating officer, AskBio Europe,to get the AAV developers take on the factors preventing gene therapy going mainstream.

BPR: What criteria did AskBio have to fulfill to be awarded this grant?

KM: The research must be highly novel with significant risk from which a successful outcome will accelerate business growth within Scotland and globally.

BPR: What are the current manufacturing challenges associated with scaling gene therapies for widespread patient access?

KM: As we see growing evidence that gene therapy is a viable, transformational medicine, along with an acceleration in the number of AAV therapeutics moving towards regulatory approval, the ability to manufacture these therapies for diseases with large patient populations does not exist today and costs are extremely high.

Many companies can manufacture small batches of therapeutics for clinical applications, but as they approach commercialization, the challenges of production costs and timelines remain an issue. We recognized this more than a decade ago and focused on creating robust, scalable manufacturing capabilities.

Today, the challenges for manufacturing gene therapy are being met by simply adding large amounts of capacity, which is not the long-term answer. There is a significant amount of innovation taking place that will no doubt shape the future of manufacturing AAV gene therapeutics. This work continues today in our Edinburgh and US facilities to further improve the technology.

BPR: What are some of the typical safety and efficacy issues linked to current therapies?

KM: Currently approved gene therapies have provided effective therapy by targeting tissues in the body with an administered gene that produces a new, effective protein. This new gene replaces the defective or missing gene causing the patients underlying disease.

Because the techniques are relatively new, some of the risks may be unpredictable; however, medical researchers, institutions, and regulatory agencies are working to ensure that gene therapy research is as safe as possible.

AAV is not known to cause human disease, and it cannot make more of itself without outside help, so it will not replicate in the body like normal viruses do. AAV is engineered to carry therapeutic genes by removing some of its genetic cargo and replacing it with human gene sequences. This results in an AAV vector, a therapeutic genetic medicine.

Risks associated with AAV gene therapy vector administration include unwanted immune system reactions. The body's immune system may see the newly introduced AAV vectors as intruders and attack them, which may cause inflammation and, in severe cases could be local and mild or throughout a greater area of the body and be more serious. AAV vectors can also target tissues other than the intended tissue. Thus, it's possible that AAV vectors may affect additional cells, not just the targeted cells containing mutated genes. These are called off-target effects. If this happens, healthy cells may be damaged.

BPR: Can you indicate the other significant barriers that remain before gene therapies can become more broadly impactful?

KM: Therapies need to express the gene in the right tissue, at the right level, for the right amount of time. There is a great deal of research happening throughout the gene therapy field to identify the best means of delivering and controlling activation of the genetic material. Furthermore, the response of the patients immune system also needs to be considered based on the therapy. Additional funding, like that from Scottish Enterprise, can help speed up the development process of promising therapies.

BPR: How does AskBio envisage exploring the treatment of genetic diseases with more complicated disease pathways that the industry is not yet able to address?

KM: One of the most exciting advances in modern medicine has been the discovery of how AAV vectors can be used as an effective delivery system for therapeutic genetic material into living tissue. AAV gene therapy has broad therapeutic implications for a vast array of diseases.

Some genetic diseases are caused by mutations in a single gene, while others are a result of mutations in multiple genes, for example, cancer. Additionally, environmental factors, such as smoking and diet, can play a role in diseases. The complexity of these disease characteristics creates variables in developing and testing potential treatments. Currently the gene and cell therapy options that exist today are limited to treating diseases caused by a single gene mutation.

AskBios Edinburgh team leads the gene therapy field in the design and development of synthetic gene expression cassettes. The technology is essential for controlling the expression of AAV therapeutics, thereby improving their safety and efficacy. This R&D project will enable AAV therapeutics to be turned on and off and dialed up or down depending on the amount of drug needed at any given time. This technology provides a desired safety switch and level of variable dosing that previously did not exist. Before this breakthrough, AAV therapeutics could only express at one constant level and could not be turned off, which limited the type of therapeutics for which AAV could be used and may hold the key to treating pathway diseases where multiple genes are affected.

BPR: On the job creation front, is the talent already hired or are you starting a recruitment drive?

KM: The grant allows us to make some positions permanent and bring in new talent.

Ken Macnamara joined AskBio in 2019 with a wealth of R&D, business operations, financial planning, intellectual property and quality/compliance experience gained from start-up to multinational firms. He most recently was COO at Synpromics.

Dr Macnamara began his career at the University of Edinburgh, where he earned a PhD in chemistry before helping to start Lab901 (Scottish SME). There, he was a product development manager responsible for developing the TapeStation and ScreenTape technologies from concept to market success. Lab901 was acquired by Agilent Technologies in 2011. Dr Macnamara then served as R&D director for the Microfluidics business at Agilent.

Read more:
Reducing barriers to mainstream gene therapy - BioPharma-Reporter.com

Read More...

Gene therapy research for HIV awarded $14.6 million NIH grant – USC News

September 3rd, 2020 5:51 pm

Paula Cannon. (USC Photo/Richard Carrasco)

An HIV research program led by scientists at USC and the Fred Hutchinson Cancer Research Center in Seattle has received a five-year, $14.6million grant from the National Institutes of Health. The team is advancing a gene therapy approach to control the virus without the need for daily medicines.

The programs co-directors are Paula Cannon, PhD, Distinguished Professor of Molecular Microbiology and Immunology at the Keck School of Medicine of USC, and Hans-Peter Kiem, MD, PhD, the Stephanus Family Endowed Chair for Cell and Gene Therapy at Fred Hutch. Other key partners are David Scadden, MD, a professor at Harvard University, and the biotechnology company Magenta Therapeutics.

The NIH award will support preclinical studies that combine gene editing against HIV with technologies for safer and more effective hematopoietic stem cell transplants. Such transplants, also known as bone marrow transplants, are currently used for severe blood cancers. They renew a patients immune system, which can be damaged by cancer therapies, by infusing healthy donor blood stem cells that can grow into any type of blood or immune cell.

The researchers goal is to build a therapy that prepares patients for a stem cell transplantation using their own cells with little to no toxicity, engineers their own stem cells to fight HIV and stimulates those cells to quickly produce new and engineered immune cells once theyre reintroduced into the patient.

This grant funds a team with an overarching goal of developing what our perfect HIV gene therapy would look like, Cannon said. All of these pieces could happen separately, but the fact that the NIH has funded us as a team means that the sum will be so much bigger than the parts.

Halting HIV without daily drugs

About 38million people worldwide are living with HIV, the virus that causes AIDS. HIV is manageable with daily antiretroviral drugs, but the research team seeks a more durable solution.

Their strategy is inspired by the three cases where patients seem to have been cured of HIV. All had aggressive leukemia and received blood stem cell transplants from donors who also carried a mutation that confers immunity to HIV. The mutation was in the CCR5 gene, which encodes a receptor that HIV uses to infect immune cells and is present in about 1 percent of the population.

Timothy Ray Brown, famously nicknamed the Berlin patient, received such a transplant in 2007; he has been off antiretroviral drugs since then, and the virus remains undetectable in his system. In recent years, patients in London and Dusseldorf have shown similar results.

I think of the Berlin patient as proof of principle that replacing the immune system with one thats HIV-resistant by removing CCR5 is a possible way to treat somebody, Cannon said.

However, the rigors of the blood stem cell transplant process, combined with the difficulty in finding tissue-matched CCR5-negative donors, make it highly unlikely that this will provide more than a very rare treatment.

Three for one gene therapy

The research team will tackle these two major problems. First, to get around the lack of CCR5-negative donors, Cannon has already helped pioneer the use of gene editing to remove CCR5 from a patients own stem cells. This is now an investigational treatment for HIV in a clinical trial at City of Hope in Duarte, California.

She will now combine CCR5 disruption with additional genetic changes, so that the progeny of engineered stem cells will release antibodies and antibody-like molecules that block HIV.

Our engineered cells will be good neighbors, Cannon said. They secrete these protective molecules so that other cells, even if they arent engineered to be CCR5-negative, have some chance of being protected.

Meanwhile, Kiems group is providing a third approach by adapting an emerging cancer treatment called CAR T cell therapy. This re-engineers T cells of the immune system with chimeric antigen receptors (CARs), which are customized to recognize cancer cells.

In this project, Kiem and colleagues will create stem cells whose T cell descendants can instead hunt down HIV-infected cells.

A gentler blood stem cell transplant

The grant also supports two other components that relate to the blood stem cell transplant.

Magenta Therapeutics is developing less-toxic protocols for conditioningpreparing a patients bone marrow to receive a transplant. Traditionally, mild chemotherapy or radiotherapy is needed to make room for newly infused stem cells and to help them re-engraft.

The company is instead using antibody-drug conjugates to deliver this conditioning much more narrowly and to reduce the side effects that occur with systemic chemo or radiation.

Meanwhile, Scadden and his team are addressing another drawback of stem cell transplants and conditioning, the delay before infused stem cells generate new immune cells in sufficient numbers. In cancer patients, this delay leaves them highly susceptible to infection.

Scadden is approaching this using an injectable gel that biochemically resembles the bone marrow environment, to quickly repopulate the immune system with HIV-fighting cells.

With success, the teams research may free HIV patients from the need for daily medication and the expense and potential side effects that come with it. Their work may also improve other therapies based on blood stem cells, for conditions such as cancer, sickle cell disease and autoimmune disorders.

A home run would be that we completely cure people of HIV, Cannon said. What Id be fine with is the idea that somebody no longer needs to take anti-HIV drugs every day because their immune system is keeping the virus under control, so that it no longer causes health problems and, importantly, they cant transmit it to anybody else.

By Wayne Lewis

The rest is here:
Gene therapy research for HIV awarded $14.6 million NIH grant - USC News

Read More...

New HIV Gene Therapy, CAR-T Treatments Could be on the Horizon for Patients – BioSpace

September 3rd, 2020 5:50 pm

Could gene therapy provide a solution to HIV? A new research project aims to find out.

The National Institutes of Health(NIH) has backed researchers at the University of Southern California and the Fred Hutchison Cancer Center with a five-year, $14.6 million grant to develop a gene therapy that could potentially control HIV without the need for daily medications. Most HIV patients take a well-regimented cocktail of medications each day to control the virus. This therapy could change that. According to an announcement from the Keck School of Medicine at USC, the goal will be to develop a therapy that prepares patients for a stem cell transplantation using their own cells with little to no toxicity, engineers their own stem cells to fight HIV and stimulates those cells to quickly produce new and engineered immune cells once they're reintroduced into the patient. The hematopoietic stem cell transplants, also known as bone marrow transplants, have been used to treat some blood cancers. The idea is to infuse an HIV patient withhealthy donor blood stem cells that can grow into any type of blood or immune cell.

The gene therapy strategy has been inspired by three cases where leukemia patients who also had HIV received blood stem cell transplants from donors who also carried a mutation that confers immunity to HIV. The mutation was in the CCR5 gene, which encodes a receptor that HIV uses to infect immune cells and is present in about 1 percent of the population, USC said.

The program will engineer blood cells to remove CCR5 from a patient's own stem cells.That will be combined with other genetic changes so that the progeny of engineered stem cells will release antibodies and antibody-like molecules that block HIV.

In addition to the potential gene therapy treatment, researchers are also assessing whether or not CAR-T treatments will benefit HIV patients. Researchers from Harvard University developed a Dual CAR T-cell immunotherapy that can potentially help fight HIV infection. First reported by Drug Target Review, the HIV-specific CAR-T cell is being developed to not only target and eliminated HIV-infected cells, but also reproduce in vivo to enable the patients to fight off the infection. HIVs primary target it T cells, which are part of the bodys natural immune response.

Todd Allen, a professor of Medicine at Harvard Medical School, said the Dual CAR-T cell immunotherapy has so far provided a strong, long-lasting response against HIV-infection while being resistant to the virus itself.

According to the report, theDual CAR T cell was developed through the engineering of two CARs into a single T cell. Each of the CARs contained a CD4 protein that allowed it to target HIV-infected cells and a costimulatory domain, which signaled the CAR T cell to increase its immune functions. As DTR reported, the first CAR contained the 4-1BB co-stimulatory domain, which stimulates cell proliferation and persistence, while the second has the CD28 co-stimulatory domain, which increases its ability to kill infected cells.

To protect the CAR-T cells from HIV, the team added the protein C34-CXCR4, which prevents HIV from attaching to and infecting cells. When that was added, the researchers found in animal models that the treatment was long-lived, replicated in response to HIV infection, killed infected cells effectively and was partially resistant to HIV infection.

Still, other researchers are looking to those rare individuals who are infected with HIV but somehow on their own are able to suppress the virus without the need for any treatment. Researchers have sought to replicate what this small percentage of patients can naturally do in other patients who require those daily regimens of medications. Through the sequencing of the genetic material of those rare individuals, researchers made an interesting discovery.

The team discovered large numbers of intact viral sequences in the elite controllers chromosomes. But in this group, the genetic material was restricted to inactive regions, where DNA is not transcribed into RNA to make proteins, MedNewsToday reported.

Now the race is on to determine how this can be replicated and used to treat the nearly 38 million people across the globe who have been diagnosed with HIV.

The rest is here:
New HIV Gene Therapy, CAR-T Treatments Could be on the Horizon for Patients - BioSpace

Read More...

A New Target for Congenital Blindness Gene Therapy Is in Sight – Technology Networks

September 3rd, 2020 5:50 pm

As many as 40,000 people in Germany suffer from retinitis pigmentosa. This hereditary disorder is characterized by loss of photoreceptors in the retina, and can be caused by mutations in many different genes. Depending on the nature of the underlying genetic defect, the severity of the condition can vary between night blindness and progressive visual field loss that can ultimately result in total blindness. The first gene therapies for the disease have recently been approved. However, these approaches have certain disadvantages, which limit their range of application.

A research team led by PD Dr.Elvir Becirovicat the Department of Pharmacology of Natural Sciences (Head: Prof. Dr.Martin Biel) has developed a new strategy in collaboration with Prof. Dr.Stylianos Michalakisof the Opthalmology Clinic in the LMU Medical Center. This approach is designed to compensate for the causative hereditary defect by activating genes with similar functions that are normally repressed in the affected tissues, and utilizes a variant of the CRISPR/Cas9 technology that was first described in 2015. In the online journalScience Advances, the team describes the first successful application of this method in the context of gene therapy.

Currently, two strategies are being used in the development of gene therapies: In the context of gene supplementation, an attempt is made to replace the defective gene with an intact version. However, this is currently only possible for relatively small genes. The second strategy aims to correct disease-causing mutations, but this usually has to be tailored to each individual mutation. In view of the high effort and the associated development costs, a broad application of this strategy is therefore not possible. "To overcome these limitations, we have developed a new strategy," says Becirovic.

Many genes in the human genome fall into families, whose members fulfill similar functions in different cell types, or are activated at different stages during the differentiation of a particular cell type. Our idea was to compensate for the mutant genes loss of function by specifically activating genes that have a similar function but are normally not expressed in retinal cells, says Becirovic. To do so, we delivered a system called Cas9-VPR into the affected retinal cells. The Cas9-VPR system is a derivative of the CRISPR/Cas9 technology that is widely used for the targeted modification of genes. Akin to the classical CRISPR/Cas9 system, Cas9-VPR utilizes the same targeting principle to guide an activating protein to the particular gene of interest.

Becirovic and colleagues made use of a mouse model for retinitis pigmentosa to test the activation approach. These mice lack the light-sensitive rhodopsin protein that is normally expressed exclusively in the rod cells of the retina, which are required for dim light and night vision. The researchers delivered the Cas9-VPR system into the rod cells with the aid of a harmless virus. By introducing Cas9-VPR into the rods of the mice, the scientists switched on genes closely related to the rhodopsin gene, which are normally active in the cones responsible for color and daylight vision. In this way, we were able to compensate for the lack of rhodopsin function in the rod cells, to attenuate the rate of retinal degeneration and improve retinal function without detectable side-effects, says Becirovic.

The authors believe that a similar strategy can be applied to a wide range of genes and genetic diseases, and offers a number of significant advantages over existing strategies. Given the growing importance of gene therapy and its potential benefits for patients, we are convinced that our approach could soon be used in initial clinical feasibility studies, says Becirovic.

Reference: Bhm S, Splith V, Riedmayr LM, et al. A gene therapy for inherited blindness using dCas9-VPRmediated transcriptional activation. Sci Adv. 2020;6(34):eaba5614. doi:10.1126/sciadv.aba5614.

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

See more here:
A New Target for Congenital Blindness Gene Therapy Is in Sight - Technology Networks

Read More...

Wexner Medical Center performs gene therapy brain infusion for Parkinson’s disease – The Highland County Press

September 3rd, 2020 5:50 pm

For the first time ever, a team of neurologists and neurosurgeons atThe Ohio State University Wexner Medical CenterandThe Ohio State College of Medicinehas performed a novel gene therapy brain infusion to treat a patient with Parkinsons disease.

This multicenter, Phase 1bclinical safety studyis sponsored byBrain Neurotherapy Bio, Inc.and funded by theCalifornia Institute for Regenerative Medicineto test GDNF gene therapy in patients with early to moderate stages of Parkinsons disease. The one-time treatment involves infusion of a gene therapy solution into deep structures of the brain that are affected by the disease.

Parkinsons disease is a neurodegenerative movement disorder that affects one million people in the United States. Degeneration of neural pathways deep in the brain causes symptoms such as tremor, slow movement and behavioral abnormalities, said Ohio State neurosurgeon Dr. James Brad Elder who performed the gene therapy surgery on Aug. 25.

The overall goal of this gene therapy treatment strategy is to slow the neurologic deterioration associated with Parkinsons disease by enhancing levels of a naturally occurring growth factor called GDNF. Targeting gene therapy delivery to the putamen, a deep brain structure affected by Parkinsons disease, will hopefully improve overall quality of life, Elder said.

The patient, a 55-year-old Ohio man first diagnosed with Parkinsons disease in 2008, takes medicine to help control his progressively worsening disease. He said the gene therapy surgery gives him hope that his disease wont get any worse, and that he may even feel better without medications. But he added that it could take up to six months before he notices any improvements.

There has long been evidence in animal and cell culture models of Parkinson's disease suggesting that glia cell derived neurotrophic factor (GDNF) has promise as a therapy for the disease, said Dr. Sandra Kostyk, director of theMovement Disorders Divisionat Ohio State Wexner Medical Center. Patients with Parkinsons disease and related disorders are diagnosed and treated in the Movement Disorders clinics and neurosurgery programs at Ohio State.

One of the biggest clinical hurdles has been getting the molecule to the regions in the brain that would benefit these patients the most. GDNF is a relatively large molecule that cant be administered as a pill, nor intravenously, since it cant penetrate the blood brain barrier.

This new targeted gene delivery approach overcomes many of the obstacles that have slowed GDNF clinical trial research and is expected to facilitate the production of a continuous supply of GDNF to a critical region of the brain affected by Parkinsons disease.

This is a onetime treatment strategy that could have ongoing lifelong benefits. Though its hoped that this treatment will slow disease progression, we dont expect this strategy to completely stop or cure all aspects of the disease.Were cautiously optimistic as this research effort moves forward, Kostyk said.

Brain Neurotherapy Bio is a biotechnology startup company founded in 2018 byDr. Krystof Bankiewiczto develop gene therapies for neurological disorders. Bankiewicz is also a member of Ohio State Wexner Medical CentersNeurological Institute.

Ive been investigating therapeutic gene therapy approaches for Parkinsons disease for nearly 30 years, and this marks a significant milestone that may lead to major therapeutic opportunities for those suffering with this devastating condition, said Bankiewicz, who is CEO and chairman of the board of Brain Neurotherapy Bio.

Additional sites for this clinical trial include the University of California San Francisco and the University of California Irvine medical centers. For more information, emailOSUgenetherapyresearch@osumc.edu.

Read the original post:
Wexner Medical Center performs gene therapy brain infusion for Parkinson's disease - The Highland County Press

Read More...

Magenta Therapeutics Appoints Lisa M. Olson as Chief Scientific Officer and Kevin B. Johnson as Senior Vice President, Head of Regulatory and Quality;…

September 3rd, 2020 5:50 pm

Sept. 2, 2020 12:00 UTC

CAMBRIDGE, Mass.--(BUSINESS WIRE)-- Magenta Therapeutics (NASDAQ: MGTA), a clinical-stage biotechnology company developing novel medicines to bring the curative power of immune reset to more patients, today announced the appointment of two new executives, Lisa M. Olson, Ph.D., as Chief Scientific Officer and Kevin B. Johnson, Ph.D., as Senior Vice President, Head of Regulatory and Quality. The Company also announced that Jason Ryan will transition from Chief Operating and Financial Officer to a consulting role for personal reasons while a search for his replacement is conducted.

With the additions of Lisa and Kevin to our team, Magenta continues to deepen our technical expertise, bolstering our strong discovery, research, development and regulatory leadership to further our goal of delivering curative immune reset to patients in need, said Jason Gardner, D.Phil., Chief Executive Officer and President, Magenta Therapeutics. We are delighted to welcome Lisa and Kevin on board and look forward to their many contributions to the Magenta mission.

As Chief Scientific Officer, Dr. Olson will provide strategic direction, oversight and execution for Magentas research and discovery efforts. This entails driving research strategy as Magenta continues to optimize its preclinical and clinical pipeline. She will join the executive team and will be a key member of the R&D leadership team.

Dr. Olson is an experienced senior-level pharmaceutical executive, with more than 20 years of experience in research and drug discovery. She comes to Magenta following 15 years in leadership positions at the AbbVie Bioresearch Center, most recently as Vice President, Immunology Discovery and Site Head, where she was responsible for all immunology discovery scientific and portfolio decisions, including new target approval, project advancement and licensing opportunities. Under her leadership, 15 molecules advanced into clinical development, including Upadacitinib that launched last year as Rinvoq. Prior to AbbVie, she served as a Research Fellow and Group Leader in Inflammation & Immunology at Pfizer, Inc. She began her career as an Assistant Professor at Washington University School of Medicine, following a post-doctoral cardiovascular fellowship at the University of Chicago.

Dr. Olson holds a Ph.D. from the University of Illinois at Urbana-Champaign and a Bachelor of Science from Iowa State University.

As Senior Vice President, Head of Regulatory and Quality, Dr. Johnson will lead Magentas global regulatory strategy for the Companys programs across multiple therapeutic areas. He will also be responsible for the oversight and accountability for all quality activities to enable Good Practice (GxP) functions across the portfolio. In this role, Dr. Johnson will provide strategic guidance and leadership to members of the R&D leadership team and the regulatory and quality teams for Magentas portfolio for all phases of product lifecycle.

Dr. Johnson bring years of regulatory, quality assurance and development leadership, coming to Magenta from Imara, Inc., where he served as Senior Vice President, Regulatory Affairs, Quality and Pharmacovigilance, leading successful requests for several regulatory designations with the U.S. Food and Drug Administration (FDA). Prior to his time at Imara, Dr. Johnson led global regulatory strategy and implementation for breakthrough therapy-designated rare disease development programs at Vtesse, later acquired by Sucampo. He also served as Director, Global Regulatory Affairs for Rare Diseases and Gene Therapies at GlaxoSmithKline, where he was part of on the international regulatory team for the European approval of the gene therapy Strimvelis for ADA-SCID, and subsequently secured Regenerative Medicine Advanced Therapy (RMAT) designation for a retinal gene therapy product.

Dr. Johnson holds a Ph.D. in Neurobiology from the University of North Carolina (UNC) School of Medicine; a Master of Business Administration from the Kenan-Flagler School of Business, UNC; and a Bachelor of Science in Chemistry from the University of South Florida.

Along with these leadership team additions, Magenta also announced today that Jason Ryan, Chief Operating and Financial Officer, will step down from that role at the end of September. He will continue to contribute to Magenta in a consulting capacity, and the Company has commenced a search for a replacement.

Jason has been a dynamic and reliable leader at Magenta since he joined us in 2019, leading finance and operations, contributing to our strategic planning efforts, and spearheading two financings during a period of significant growth, said Gardner. We are truly grateful for his contributions to the patients we seek to serve, our employees and business partners.

About Magenta Therapeutics

Magenta Therapeutics is a clinical-stage biotechnology company developing medicines to bring the curative power of immune system reset through stem cell transplant to more patients with autoimmune diseases, genetic diseases and blood cancers. Magenta is combining leadership in stem cell biology and biotherapeutics development with clinical and regulatory expertise, a unique business model and broad networks in the stem cell transplant world to revolutionize immune reset for more patients.

Magenta is based in Cambridge, Mass. For more information, please visit http://www.magentatx.com.

Follow Magenta on Twitter: @magentatx.

Forward-Looking Statement

This press release may contain forward-looking statements and information within the meaning of The Private Securities Litigation Reform Act of 1995 and other federal securities laws. The use of words such as may, will, could, should, expects, intends, plans, anticipates, believes, estimates, predicts, projects, seeks, endeavor, potential, continue or the negative of such words or other similar expressions can be used to identify forward-looking statements. The express or implied forward-looking statements included in this press release are only predictions and are subject to a number of risks, uncertainties and assumptions, including, without limitation risks set forth under the caption Risk Factors in Magentas Annual Report on Form 10-K filed on March 3, 2020, as updated by Magentas most recent Quarterly Report on Form 10-Q and its other filings with the Securities and Exchange Commission. In light of these risks, uncertainties and assumptions, the forward-looking events and circumstances discussed in this press release may not occur and actual results could differ materially and adversely from those anticipated or implied in the forward-looking statements. You should not rely upon forward-looking statements as predictions of future events. Although Magenta believes that the expectations reflected in the forward-looking statements are reasonable, it cannot guarantee that the future results, levels of activity, performance or events and circumstances reflected in the forward-looking statements will be achieved or occur. Moreover, except as required by law, neither Magenta nor any other person assumes responsibility for the accuracy and completeness of the forward-looking statements included in this press release. Any forward-looking statement included in this press release speaks only as of the date on which it was made. We undertake no obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200902005236/en/

See the original post here:
Magenta Therapeutics Appoints Lisa M. Olson as Chief Scientific Officer and Kevin B. Johnson as Senior Vice President, Head of Regulatory and Quality;...

Read More...

Taysha Gene Therapies Builds Experienced Executive Leadership Team to Advance Pipeline of Gene Therapies for Monogenic CNS Disease in Both Rare and…

September 3rd, 2020 5:50 pm

DALLAS--(BUSINESS WIRE)--Taysha Gene Therapies, a patient-centric gene therapy company with a mission to eradicate monogenic CNS disease, today announced the appointment of its executive leadership team. This group has significant experience in gene therapy drug development and commercialization, and will enable Taysha to build the corporate culture and infrastructure necessary to advance its extensive pipeline of 18 gene therapy programs, with exclusive options to acquire four additional programs from UT Southwestern Gene Therapy Program. In addition, Sukumar Nagendran, M.D., former Chief Medical Officer of AveXis, and Phillip Donenberg, former Chief Financial Officer of AveXis, have joined the companys Board of Directors. Mr. Donenberg will also serve as the companys Audit Committee Chairman.

Joining the Taysha Board is a unique opportunity to contribute to scientific advancements in CNS gene therapy, said Sukumar Nagendran, M.D., Taysha Board of Directors. In partnership with UT Southwestern, Taysha has built an extensive pipeline of gene therapy candidates for life-threatening CNS diseases with significant unmet medical need.

It is a distinct pleasure to be reunited with many of my former AveXis colleagues that enabled the development and successful commercialization of Zolgensma, said Phillip Donenberg, Taysha Board of Directors. I am excited to contribute to Tayshas efforts to deliver therapies with the potential to improve the lives of patients with devastating CNS disease.

Each member of the Taysha leadership team has significant gene therapy expertise, with an unrelenting, patient-first focus guiding their individual areas of focus. Joining RA Session II, Founder, President and CEO of Taysha, on the management team are the following individuals:

From day one, we set out to build a team that has the passion, experience and talent to achieve our mission of eradicating monogenic CNS disease. Today, we are proud to announce a highly experienced team of CNS gene therapy experts, said Mr. Session. We are also pleased Dr. Nagendran and Mr. Donenberg have joined our Board and will contribute their several years of gene therapy expertise. Their experience in building AveXis will be invaluable as we continue to grow and advance several programs into the clinic.

About Taysha Gene Therapies

Taysha Gene Therapies is a patient-centric gene therapy company with a mission to eradicate monogenic CNS disease. We are focused on developing and commercializing AAV-based gene therapies for the treatment of monogenic diseases of the CNS in both rare and large patient populations. We were founded in partnership with The University of Texas Southwestern Medical Center, or UT Southwestern, to develop and commercialize transformative gene therapy treatments. Together with UT Southwestern, we are advancing a deep and sustainable product portfolio of 18 gene therapy product candidates, with exclusive options to acquire four additional development programs. By combining our management teams proven experience in gene therapy drug development and commercialization with UT Southwesterns world-class gene therapy research capabilities, we believe we have created a powerful engine to develop transformative therapies to dramatically improve patients lives. More information is available at http://www.tayshagtx.com.

See more here:
Taysha Gene Therapies Builds Experienced Executive Leadership Team to Advance Pipeline of Gene Therapies for Monogenic CNS Disease in Both Rare and...

Read More...

Kriya Therapeutics To Present At Upcoming Healthcare Conferences – PRNewswire

September 3rd, 2020 5:50 pm

REDWOOD CITY, Calif. and RESEARCH TRIANGLE PARK, N.C., Sept. 3, 2020 /PRNewswire/ --Kriya Therapeutics, a next generation gene therapy company focused on developing transformative treatments for highly prevalent diseases,announced today that its CEO, Shankar Ramaswamy, M.D., will present at multiple upcoming healthcare conferences in September and October. These include the following:

Citi's 15th Annual BioPharma Virtual ConferenceDate: Tuesday, September 8thTime: 3:30 PM ET / 12:30 PM PT

H.C. Wainwright & Co. 22nd Annual Global Investment ConferenceDate: Wednesday, September 16thTime: 9:30 AM ET / 6:30 AM PT

Cantor Fitzgerald Virtual Global Healthcare ConferenceDate: Thursday, September 17thTime: 3:20 PM ET / 12:20 PM PT

Chardan 4th Annual Genetic Medicines ConferenceDate: Tuesday, October 6thTime: 9:00 AM ET / 6:00 AM PT

About Kriya Therapeutics

Kriya Therapeutics is a next-generation gene therapy company focused on developing transformative treatments for highly prevalent serious diseases. With core operations in California and North Carolina, Kriya's technology-enabled platform is directed to the rational design and clinical translation of gene therapies for large patient populations. For more information, please visit http://www.kriyatx.com.

Cautionary Note on Forward-Looking Statements

This press release includes forward-looking statements pertaining to our development programs and our proprietary platform. Such forward-looking statements are subject to risks and uncertainties that could cause actual results to differ materially from those expressed or implied in such statements. The forward-looking statements contained in this press release reflect Kriya's current views with respect to future events, and Kriya does not undertake and specifically disclaims any obligation to update any forward-looking statements.

ContactDan ChenChief Financial Officer[emailprotected]

SOURCE Kriya Therapeutics

https://www.kriyatx.com/

See the rest here:
Kriya Therapeutics To Present At Upcoming Healthcare Conferences - PRNewswire

Read More...

Researchers teamed up to develop a ‘three in one’ HIV treatment and the NIH is throwing in $14.6M – Endpoints News

September 3rd, 2020 5:50 pm

The NIH is pitching $14.6 million into a three for one HIV research program led by USC and the Fred Hutchinson Cancer Research Center that aims to strike the need for daily medication or even achieve a home run cure.

The five-year grant will back preclinical studies that combine gene editing with technology to improve bone marrow transplants. The potential therapy would engineer a patients own stem cells to fight HIV, and stimulate them to produce new immune cells once reintroduced to the patient.

A home run would be that we completely cure people of HIV, Paula Cannon, a USC professor of molecular microbiology and immunology and co-director of the program, said in a statement. What Id be fine with is the idea that somebody no longer needs to take anti-HIV drugs every day because their immune system is keeping the virus under control, so that it no longer causes health problems and, importantly, they cant transmit it to anybody else.

Hans-Peter Kiem, the Stephanus Family Endowed Chair for Cell and Gene Therapy at Fred Hutch, is the co-director. Harvard University professor David Scadden and Magenta Therapeutics are also collaborating on the project.

The approach was inspired by three patients who appear to have been cured of the virus all of whom received blood stem cell transplants from donors who carried a mutation in the CCR5 gene. One of them, dubbed the Berlin patient, has been off antiretroviral drugs since 2007.

I think of the Berlin patient as proof of principle that replacing the immune system with one thats HIV-resistant by removing CCR5 is a possible way to treat somebody, Cannon said.

The program will study the use of gene editing to remove CCR5 from patients stem cells a process which is already in clinical trial for HIV treatment at City of Hope National Medical Center in Duarte, CA. The stem cells will also be engineered to release antibodies and antibody-like molecules that block HIV.

In addition, the grant will fund a Fred Hutch teams endeavor to adapt CAR-T cell therapy to create stem cells whose progeny target HIV-infected cells.

As for preparing a patient for the transplant,Magenta is working on antibody-drug conjugates to replace mild chemotherapy or radiotherapy typically given before the procedure. And Scadden is researching an injectable gel that could help immune cells repopulate more quickly, avoiding a delay.

HIV infection, which currently affects about 1.2 million Americans, has proved to be exceedingly difficult to cure. In July, Merck and Dewpoint inked a deal that allows the pharma to use the Boston-based biotechs biomolecular condensate technology to develop treatments, and potentially a cure, for the HIV virus. The NIH-funded group is hoping to at least control the virus enough to eliminate the need for daily meds. But at best, theyre also eyeing a long sought-after cure.

This grant funds a team with an overarching goal of developing what our perfect HIV gene therapy would look like, Cannon said. All of these pieces could happen separately, but the fact that the NIH has funded us as a team means that the sum will be so much bigger than the parts.

Original post:
Researchers teamed up to develop a 'three in one' HIV treatment and the NIH is throwing in $14.6M - Endpoints News

Read More...

Voyager Therapeutics Announces Upcoming Presentations at the International Parkinson and Movement Disorder Society Virtual Congress 2020 -…

September 3rd, 2020 5:50 pm

New Phase 1b Data of Investigational Gene Therapy Compound, VY-AADC (NBIb-1817), Evaluating Three-Year Safety and Clinical Outcomes in Patients with Advanced Parkinsons Disease

Voyager to Participate in Upcoming September Investor Conferences

CAMBRIDGE, Mass., Sept. 03, 2020 (GLOBE NEWSWIRE) -- Voyager Therapeutics, Inc. (NASDAQ: VYGR), a clinical-stage gene therapy company focused on developing life-changing treatments for severe neurological diseases, today announced data presentations at the International Parkinson and Movement Disorder Virtual Congress 2020 taking place on September 12-16, 2020. The presentations include new two- and three-year data related to its VY-AADC gene therapy treatment for Parkinsons disease being developed in collaboration with Neurocrine Biosciences:

Additionally, the company plans to participate in the following virtual investor conferences in September:

The webcast sessions may be accessed from the Investors & Media section of Voyagers website at http://www.voyagertherapeutics.com. Replays of the webcasts will be archived on the Company's website for at least 30 days.

About Voyager Therapeutics

Voyager Therapeutics is a clinical-stage gene therapy company focused on developing life-changing treatments for severe neurological diseases. Voyager is committed to advancing the field of AAV gene therapy through innovation and investment in vector engineering and optimization, manufacturing, and dosing and delivery techniques. Voyagers wholly owned and partnered pipeline focuses on severe neurological diseases for which effective new therapies are needed, including Parkinsons disease, Huntingtons disease, Friedreichs ataxia, and other severe neurological diseases. For more information, please visit http://www.voyagertherapeutics.com or follow @VoyagerTx on Twitter and LinkedIn.

Investor Relations: Paul CoxVP, Investor Relations857-201-3463pcox@vygr.com

Media: Sheryl Seapy W2Opure949-903-4750sseapy@purecommunications.com

Read more here:
Voyager Therapeutics Announces Upcoming Presentations at the International Parkinson and Movement Disorder Society Virtual Congress 2020 -...

Read More...

Game change: A frontrunner in the cell therapy 2.0 field offers a first look at their lead therapy. And it’s a doozy – Endpoints News

September 3rd, 2020 5:50 pm

Fouad Namouni, a storied research exec who went from project leader on Opdivo and Yervoy to the top of the oncology research group at Bristol Myers Squibb, is joining the migration to biotech, picking up a new hat as president of R&D at Blueprint Medicines.

Once again, hes headed into a toe-to-toe showdown with a rival pharma organization.

Namouni will likely be coming on board just one step ahead of an approval for pralsetinib, Blueprints RET rival to Eli Lillys Retevmo, which got out in front with a May approval. Ironically, Lillys deal to buy into RET with its acquisition of Loxo also brought Josh Bilenker and his crew to the pharma giant, marking a rare career trajectory from a biotech into pharma, which has been bleeding talent for years now.

Unlock this story instantly and join 89,400+ biopharma pros reading Endpoints daily and it's free.

SUBSCRIBE SIGN IN

Continued here:
Game change: A frontrunner in the cell therapy 2.0 field offers a first look at their lead therapy. And it's a doozy - Endpoints News

Read More...

Obsidian Therapeutics Appoints Rob Ross, MD, to Board of Directors – PRNewswire

September 3rd, 2020 5:50 pm

CAMBRIDGE, Mass., Sept. 3, 2020 /PRNewswire/ -- Obsidian Therapeutics, Inc., a biotechnology company pioneering controllable cell and gene therapies, today announced the appointment of Robert Ross, M.D., to its Board of Directors. Dr. Ross currently serves as the Chief Medical Officer of Surface Oncology.

"Rob brings strong clinical development experience, specifically in oncology, which will be invaluable as we advance towards the clinic," said Paul K. Wotton, Ph.D., Obsidian's Chief Executive Officer. "Rob has successfully advanced multiple programs from IND to pivotal trials, as well as led collaborations with industry and academic partners. His experience in progressing novel and innovative therapies, including cell and gene therapies, from the bench to the bedside will expedite the development of the first cytoDRiVE-based programs into human clinical trials to our ultimate goal of treating cancer patients with controllable living medicines."

Dr. Ross added, "Obsidian addresses a key unmet need in cell and gene therapy through the ability to regulate the biological activity of engineered cells, allowing the creation of highly effective, titratable and targeted immune-oncology therapies. I look forward to contributing to Obsidian's growth and clinical progress."

Dr. Ross serves as the Chief Medical Officer of Surface Oncology and oversees all clinical and regulatory operations and development efforts. He is responsible for advancing Surface Oncology's programs into the clinic. Rob has extensive clinical development experience, most recently at bluebird bio where he led the clinical development of genetically modified cellular therapies in betathalassemia and sickle cell disease. Rob was also the head of oncology at bluebird bio, building a multifaceted oncology program, led by an anti-BCMA chimeric antigen T cell therapy in collaboration with Celgene. Previously, he worked at Genentech and Infinity Pharmaceuticals on both small molecule and antibody programs from Phase I through pivotal trials, and was a faculty member at the Dana Farber Cancer Center, treating patients with genitourinary malignancies. Rob earned his bachelor's degree from Stanford University, his master's degree from Harvard Medical School and his medical degree from Columbia University Vagelos College of Physicians and Surgeons. Rob did his residency in internal medicine at the University of California, San Francisco and his fellowship in hematology/oncology at the combined program at the Dana Farber/Massachusetts General Hospital.

About Obsidian Therapeutics Obsidian Therapeutics, Inc. is a biotechnology company pioneering controllable cell and gene therapies to deliver transformative outcomes for patients with intractable diseases. Obsidian's proprietary cytoDRiVE platform provides, for the first time, a technology to develop a new generation of cell and gene therapies in which the level and timing of protein activity are fully controlled in a dose-dependent platform comprises a therapeutic protein of interest fused to a drug-responsive domain (DRD). In the absence of the small molecule drug, the DRD-tagged protein is degraded before it becomes active. In contrast, when the small molecule drug is present, the DRD-tagged protein is stabilized and active, permitting precise control of the timing and level of protein expression. The platform can be applied to design controllable intracellular, membrane and secreted proteins for cell and gene therapies as well as other applications. The Company is headquartered in Cambridge, Mass. For more information, please visit http://www.obsidiantx.com.

Media Contact: Maggie Beller Russo Partners, LLC [emailprotected]646-942-5631

SOURCE Obsidian Therapeutics

Home

Read the rest here:
Obsidian Therapeutics Appoints Rob Ross, MD, to Board of Directors - PRNewswire

Read More...

Dutch Amarna Therapeutics Announces the Appointment of Steen Klysner as Chief Executive Officer – b3c newswire

September 3rd, 2020 5:50 pm

LEIDEN, the Netherlands, September 03, 2020 / B3C newswire / -- Amarna Therapeutics, a privately held biotechnology company developing the next-generation SV40-based gene delivery vector platform named SVec that promises to transform gene-replacement and immunotherapy across many disease areas, today announced the appointment of Steen Klysner, Ph.D. as its new Chief Executive Officer (CEO) as per September 1. Founder and CEO Ben van Leent will become a member of Amarnas Supervisory Board.

I am very pleased to welcome Steen Klysner as our new CEO. Steen brings an extensive background as a biotech CEO to Swedish ExpreS2ion Biotech Holding AB & the Danish ExpreS2ion Biotechnologies ApS, preceded by an impressive track record in execution and value creation within the biotech industry. His leadership experience makes Steen an ideal candidate to lead Amarna into its next stage of growth and development. said Thomas Eldered, Chairman of Amarnas Supervisory Board. We are extremely grateful for Ben van Leents leadership and contributions to Amarna as both founder and CEO, and we are excited about the opportunity to focus his outstanding expertise as member of our Board.

I am incredibly honored to have been given the opportunity to lead Amarna, said Dr. Klysner. SVec has the potential to enable major medical breakthroughs, so that patients can be actually cured of life-threatening diseases for which, to date, effective treatment have not become available. Together with Amarnas highly qualified and experienced team, Im fully committed to advance the companys groundbreaking technology into the next important clinical development stages.

Steen Klysner comes to Amarna with over 30 years of experience in the life sciences industry. Prior to joining Amarna, Dr. Klysner served as CEO of the Swedish ExpreS2ion Biotech Holding AB in parallel with the Danish ExpreS2ion Biotechnologies ApS. Earlier, he was Senior Vice President (SVP) of preclinical R&D and SVP of Quality of Allergopharma, the Allergy Business Unit of Merck KGaA. He also served as CEO of Nordic Vaccine in Copenhagen, focusing on the development of non-invasive vaccination based on an integrated nanoparticle adjuvant and delivery platform. Prior to that he has also held positions at Pharmexa, Novo Nordisk and ALK.Dr. Klysner holds a Ph.D. from Technical University of Denmark combined with an Industrial Scientist Research Degree from the Danish Academy of Technical Sciences, a M.Sc. degree in Biochemistry from the University of Copenhagen and a B.Sc. in sports from the University of Copenhagen.Finally, Dr. Klysner is author/co-author of numerous patents and scientific publications in (inter)-national peer-reviewed medical journals.

I am deeply grateful to have had the opportunity to build Amarna to where it is today. In my new role as member of the Supervisory Board, my efforts will be towards helping raise the awareness of Amarna and its SVec gene delivery vector platform and using it to help build a robust pipeline, said Ben van Leent. I have full confidence that Steen, a very passionate and talented leader, will provide the leadership and expertise needed to guide Amarna through the next phases of growth. I look forward to working with Steen to drive forward Amarnas product candidates.

Caption: Steen KlysnerFor high resolution please click the image.

About SV40 vectors: A key to the success of gene therapyToday gene therapy enables the development of a next wave of treatments, with potential to not only treat but also to cure a number of major diseases. Key to the success of gene therapy is the efficient delivery of therapeutic genes into target cells, which is an ability that naturally evolved in viruses, rendering them ideally suited for gene delivery.The Simian virus 40 (SV40) strictly replicates in its natural host, macaque monkeys. The virus cannot replicate in humans and doesnt elicit an immune response, which makes it ideal for developing effective gene therapies. However, the clinical use of SV40 vectors has been hampered by production and safety issues. Amarna has solved this, by developing a novel proprietary SuperVero production cell line and the SVec gene delivery platform.Importantly, SVec can be used to efficiently induce immune tolerance to self-antigens driving degenerative, inflammatory and autoimmune human diseases. Amarna aims to develop SVec-based reverse vaccines for major indications such as neurodegenerative and psychiatric diseases (NDPs), atherosclerotic cardiovascular disease (ACD), obesity, diabetes mellitus (DM), arthritis and chronic obstructive pulmonary disease (COPD).

About Amarna TherapeuticsAmarna Therapeutics is a privately held Biotech company founded in 2008. Its head office is located in Leiden (The Netherlands), and its research facility in Seville (Spain). The company has developed a proprietary SuperVero cell line and SVec gene delivery platform for the development of safe and efficient immunotherapies for major indications within the degenerative, inflammatory and autoimmune disease areas.In October 2019, Amarna secured 10 million in new equity to progress its SVec platform towards clinical studies. The financing round was led by Flerie Invest AB, a Swedish investment company, together with existing shareholders and an innovation credit from the Netherlands Enterprise Agency (RVO.nl).

Contacts

Amarna TherapeuticsSteen Klysner, CEOThis email address is being protected from spambots. You need JavaScript enabled to view it.

LifeSpring Life Sciences Communication, AmsterdamLon Melens+31 6 538 16 427This email address is being protected from spambots. You need JavaScript enabled to view it.

Keywords: Humans; Simian virus 40; Netherlands; Genetic Therapy; Immunotherapy; Gene Transfer Techniques; Immune Tolerance

Published by B3C newswire

Visit link:
Dutch Amarna Therapeutics Announces the Appointment of Steen Klysner as Chief Executive Officer - b3c newswire

Read More...

Spirovant CEO Joan Lau Named Finalist for EY Entrepreneur of The Year in Greater Philadelphia – GlobeNewswire

September 3rd, 2020 5:50 pm

PHILADELPHIA, PA, Sept. 03, 2020 (GLOBE NEWSWIRE) -- Spirovant Sciences, a gene therapy company developing treatments and cures for genetic lung diseases including cystic fibrosis, todayannounced that its CEO, Joan Lau, PhD, has been named finalist for the Ernst & Young LLP (EY US) Entrepreneur of the Year 2020 Award in the Greater Philadelphia area. The award honors entrepreneurial business leaders whose ambitions deliver innovation, growth and prosperity as they build and sustain successful businesses that transform our world. Award winners will be announced through a special virtual event in early October.

I am sincerely honored to be named a finalist for the EY Entrepreneur of the Year and to represent our terrific company, our talented team, our inspiring patients, and all the innovative entrepreneurs and scientists in this great region, said Lau. The successes and accomplishments of Spirovant, including being acquired twice in 2019, have resulted from the talent, steadfastness and dedication of our rapidly growing team. These truly exceptional individuals power our mission to deliver innovative gene therapy treatments to patients who have no other options. I thank EY for this honor and its support of entrepreneurialism in Greater Philadelphia and throughout the world.

About EY Entrepreneur of the Year

Entrepreneur of The Year is one of the preeminent competitive award programs for entrepreneurs and leaders of high-growth companies. The nominees are evaluated based on six criteria: overcoming adversity; financial performance; societal impact and commitment to building a values-based company; innovation; and talent management. Since its launch, the program has expanded to recognize business leaders in more than 145 cities in over 60 countries around the world.

Founded and produced by Ernst & Young LLP, the Entrepreneur of The Year Awards are nationally sponsored by SAP America and the Kauffman Foundation. In Greater Philadelphia, sponsors also include PNC Bank, DFIN, SolomonEdwards Group, Ballard Spahr LLP, Morgan, Lewis & Bockius LLP, Murray Devine & Company and Pepper Troutman LLP.

About Spirovant Sciences, Inc.Spirovant is a gene therapy company focused on changing the course of cystic fibrosis and other genetic lung diseases. The company's current investigational gene therapy technologies are designed to overcome the historical barriers that have prevented effective genetic treatments for cystic fibrosis. Spirovant is advancing programs for cystic fibrosis with both AAV and lentivirus vectors. Spirovant is a wholly owned subsidiary of Sumitovant Biopharma Ltd., which is itself a wholly owned subsidiary of Sumitomo Dainippon Pharma Co., Ltd. Spirovant is located inPhiladelphia, PA.More information is available athttps://www.spirovant.com/.

About Sumitovant BiopharmaLtd.Sumitovant is a global biopharmaceutical company with offices inNew York CityandLondon. Sumitovant is a wholly owned subsidiary of Sumitomo Dainippon Pharma Co., Ltd. Sumitovant is the majority shareholder of Myovant and Urovant, and wholly owns Enzyvant, Spirovant andAltavant. Sumitovant'spipeline is comprised of early- through late-stage investigational medicines across a range of disease areas targeting high unmet need. For further information about Sumitovant please visithttps://www.sumitovant.com/.

About Sumitomo Dainippon Pharma Co., Ltd.Sumitomo Dainippon Pharma is among the top-ten listed pharmaceutical companies inJapan, operating globally in major pharmaceutical markets, includingJapan, the U.S.,Chinaand the European Union. Sumitomo Dainippon Pharma is based on the merger in 2005 between Dainippon Pharmaceutical Co., Ltd., and Sumitomo Pharmaceuticals Co., Ltd. Today, Sumitomo Dainippon Pharma has more than 6,000 employees worldwide. Additional information about Sumitomo Dainippon Pharma is available through its corporate website athttps://www.ds-pharma.com/.

Media ContactJennifer Guinan

Sage Strategic Marketing

610.410.8111

Jennifer@sagestrat.com

Read the original:
Spirovant CEO Joan Lau Named Finalist for EY Entrepreneur of The Year in Greater Philadelphia - GlobeNewswire

Read More...

‘Moondust’ carnation uses genetic engineering to achieve its blue color – Batesville Daily Guard

September 2nd, 2020 3:55 am

The search for flowers with shades and hues different from what nature provides has been ongoing since humankind discovered the intricacies of plant breeding. But there are limits to the color range that can be achieved using traditional breeding techniques. For example, blue pigments are lacking from many plants.

But science now allows breeders to extend the natural range of colors, using genetic engineering. Moondust carnation, first grown commercially in 1997, is a mini-carnation with purple-mauve flowers that gets its blue color from petunia genes grafted into the DNA of the carnation.

Twelve scientists at an Australian company called Florigene labored for a decade to isolate the gene responsible for blue color in petunia and then transfer it into the carnation. To date, they have released five carnations with the "Moon" prefix, all with varying shades of mauve, blue, violet or purple.

Flower color expression is caused by the subtle blending of pigments contained in the vacuoles (think of vacuoles as storage closets in the cell) and plastid bodies (think of these as like chlorophyll, but with a color other than green) suspended in the cell sap. Just as the man at the paint store blends different pigments to a neutral base to color paint, flower color is caused by the subtle blends of several pigments.

But roses, carnations, lilies and orchids all lack a class of blue pigments called delphinidins, named after the violet-blue we see in delphinium. The gene for delphinidin production is what the Floragene scientists removed from petunia and transferred to the carnation.

The development of the blue carnation was not the primary goal of the research team; no, they wanted to make a blue rose. But, transplanting genes is easy to say but hard to do in the lab, so they honed their techniques on carnations a much easier species to manipulate than roses. The team has not given up on the idea of a blue rose, but it is now exploring the possibility of inserting genes from sea anemones into the rose to create the blue shades. The petunia gene didnt work in roses.

You may be thinking by now, "Ive seen blue carnations for years. Whats new about this?" True, there have been blue carnations available since the 1970s, but their blue was due to food color, not natural pigments.

Scott Admire with Little Rocks United Wholesale Florists said they used to dye white carnations shipped in from cut flower growers in Central and South America. The carnations would have to be shipped in as a "dry pack," exposed to neither water nor the floral preservative silver thiosulphate. The carnations would then suck in the pigment-laden water with a good deal of it ending up in the petals, turning the flowers the shade of blue you see atop a decorated birthday cake.

Carnation flowers sometime get "sleepy" and curl up. This is caused by the production of a plant growth hormone called ethylene, which is a part of the natural aging process in flower development. Cut flower growers combat this by using the silver-containing floral preservative that stops the production of ethylene. Floragene scientists are currently seeking clearance to introduce a line of plants that do not produce ethylene, thus eliminating the need for the silver thiosulphate treatment.

This ethylene-blocking technology is not new, and in fact, an Arkansas boy Dr. Randy Woodson from Fordyce and now a dean at Purdue University responsible for the agricultural research program patented a technique in the early 1990s using the "anti-sense" procedure. Using this technique, the gene for ethylene production is switched end-for-end in the DNA strand, rendering it inoperative. It's not clear if the Floragene technique uses this same "anti-sense" technology.

Are the scientists involved in creating genetically modified plants playing God? What about environmental concerns? For the former question, my theological credentials are suspect, but to the latter question I feel confident there is no significant environmental risk in growing blue carnations. The plants are essentially pollen sterile and carnations are harvested in the tight-bud stage, so the likelihood of out-crossing with wild carnations is remote.

See the original post:
'Moondust' carnation uses genetic engineering to achieve its blue color - Batesville Daily Guard

Read More...

Chile poised to tackle food shortages and climate change with ‘Golden Apple’ and other CRISPR-edited crops – Genetic Literacy Project

September 2nd, 2020 3:55 am

Chiles intense political unrest exacerbated by months of COVID-19 quarantine has temporarily overshadowed a relentless environmental, farming crisis: an intense droughtthe worst in the countrys history now moving into its tenth year. The last few months have offered a temporary respite, with rains reaching average levels. But Chile is in desperate need of longer term responses to worsening climactic conditions that threaten to intensify existing food shortages and jeopardize the nations vital agriculture industry.

Biochemist and president of the Chilean Society of Plant Biology Dr. Claudia Stange believes she is part of the solution. Climate change is here to stay, she believes, so its time to mobilize genetic technology and adapt. Stange and her colleagues at the University of Chile are gene editing new varieties of apple, kiwi and tomato to improve their nutritional content and resistance to drought and saline soils.

This is not the first major effort to harness CRISPR and and transgenics (GMOs) to improve the environmental hardiness or nutritional content of crops. Golden Rice, recently approved for roll out in the Philippines after more than two decades of stops and starts, is a humanitarian project initiated by university scientists to generate a GMO rice high in beta carotene, a precursor to vitamin A. Vitamin A is largely absent from the diets of millions of people in southeast Asia. This deficiency is to blame for 250 000to500 000 cases of childhood blindness every year, with half of them ending in death, according to the World Health Organization (WHO).

Dr. Stanges first major project, launched in 2011 and financed with public funds, had a similar goal to that of Golden Rice: to develop an apple genetically modified to synthesize carotenoids. Due to technical constraints and an inability to get similar results using conventional plant breeding methods, genetic engineering was recognized as the best tool for producing what came to be known as the Golden Apple.

If the project is successful, it could be a major economic and health coup for Chile. It is the worlds fourth largest exporter of apples, so improving the nutritional profile of exported varieties would boost its apple industry and benefit consumers worldwide, Stange told me:

Today consumers are looking for foods that are functional, that means, with a higher content of antioxidants, vitamins, etc. Those characteristics would be fulfilled by our apples with the highest content of carotenoids -which are provitamin A molecules- and antioxidants that counteract various diseases and aging.

The Golden Apple project successfully developed transgenic lines of biofortified apple seedlings years ago, but commercializing it was another matter. Although the development and cultivation of GMO crops like corn, soybean and canola is routine in South American countries including Brazil and Argentina, progress in Chile has been slowed by regulatory obstacles and political opposition to recombinant DNA technology.

Although the country imports large quantities of grain harvested from GMO plants in other countries, Chiles biotech regulations would have prohibited the commercialization of home-grown Golden Apples. Chile currently exports locally cultivated GMO corn, soybean and canola seeds, mostly to the United States, Canada and South Africa. Facing regulatory obstacles, financing for the Golden Apple project dried up by 2014, bringing the research to an unceremonious end.

But the Golden Apple was recently given a faint breath of life. Stange was blocked in bringing her bio-fortified apple to market because it was transgenicit involved the transfer of genes from one species to another. But with advances in gene editing, specifically CRISPR, a technique that has fueled development of a new generation of improved crops, an apple with similar traits could be developed without the use of foreign genes. Chile is now growing gene-edited cereal, vegetable and fruit crops in field trials, although there is as yet no path to commercialization

There are crucial differences between gene editing and older genetic modification technology, Stange explained:

In GMOs, one or more genes from another plant or organism are inserted into a plant of interest so that gene, when expressed, gives it beneficial traits the original plant didnt havefor example, the production of provitamin-A, resistance to drought or pathogens.

In gene editing, molecular biology strategies are also used, but in this case its to avoid that a specific gene is expressed in the plant of interest. By specifically editing or mutating that gene, the plant presents positive traits that it didnt previously have.They [genetic modification and gene editing] are two strategies that seek the same end. Only in the last one there is no exogenous DNA material. For this reason, its more easily accepted in countries where GMOs arent.

After Argentina became the first country to green light gene editing research for agricultural purposes in 2015, Chile followed in 2018 with a similar rule that allows the techniques to be used as long as no transgenes are added to the target plant. Brazil, the United States, Australia, Canada, Colombia, Israel, Japan and other countries subsequently enacted their own gene editing regulations.

Building on their earlier research, Stange and her team expanded work on Golden Apples in 2018, but this time with CRISPR. These next-generation apples will not only provide high levels of Vitamin A and more antioxidants, they will resist browning, which reduces food wastethe same effect achieved by the Arctic apple, developed using a different genetic engineering technique in Canada.

To date we are selecting apple seedlings that have the desired traits: this means, that they have edited the genes of interest, that produce less browning, higher carotenoid content and that are not GMOs. At the end of the year we will be able to have the first seedlings to be transferred to Los Olmos nursery, where they will continue the evaluation in the greenhouse and field.

In the meantime, our team will continue to generate and select more lines so as to have a large number of plants that allows us to choose the best ones when they produce fruit, Stange adds about the project financed by CORFO and carried out in association with the Biofrutales Consortium and Vivero Los Olmos.

These apples wont reach our tables for a while, however. Stange estimated that it will take five years to select the best genotypes of edited apple trees, before taking them to field production.

In March 2020, Stanges laboratory launched another effort designed to address the impact of climate change on regional agricultural production: Proyecto Anillo (Ring Project) Plant Abiotic Stress for a Sustainable Agriculture (PASSA), financed by ANID. The project was developed with the help of Drs. Michael Handford and Lorena Norambuena at the University of Chiles Center for Molecular Biology, in association with Dr. Juan Pablo Martnez from the Institute of Agricultural Research (INIA) and Dr. Ricardo Tejos from Arturo Prat University.

PASSA aims to develop drought- and salt-tolerant tomato and kiwi rootstocks with CRISPR, directly addressing the water emergency situation that is gradually worsening in Chile. Tomatoes are the most consumed vegetable globally and in Chile. The South American nation is also the third largest kiwi exporter after New Zealand and Italy. Shielding these crops from increasing water scarcity and desertification is therefore an essential objective.

According to Stange:

Tomato and kiwi crops are very relevant to the countrys economy. In the case of tomato, well study the traits of the Poncho negro, a Chilean variety originating in the Azapa Valley (Arica) that has a high salinity tolerance and whose genetic breeding would increase the productivity of tomato 7742 (seminis), the most produced and marketed variety in Chile. [I]t can be grafted onto Poncho Negro.

Regarding kiwis, we will seek to increase salinity and drought tolerance of varieties used as rootstocks, to improve the productivity of Hayward commercial kiwi plants.

While the Golden Apple project requires established, fruit-producing trees, fruits are not needed to grow young kiwi and tomato plants; they can be evaluated at the laboratory and greenhouse level under conditions of drought and salinity.

Unfortunately, quarantine has forced the researchers to prioritize bioinformatic activities over laboratory experiments, delaying the project for up to six months. With this setback, it could take three years to edit the plants and evaluate them in field trials.

There is another technical obstacle that must be surmounted as well: adapting crops originating in other parts of world to local conditions:

Currently the new varieties are acquired by paying royalties to foreign companies.

This implies bringing those varieties [to Chile] and waiting a few seasons until they adapt to our edaphoclimatic conditions, with the expectation that they will produce the fruits as they are produced where they were generated. This is a risk. In our case, they are varieties already produced and marketed in Chile to which we will add these new traits.

Stange believes that the future for genetically engineered fruit, vegetables and grains will be brighter than the recent past. GMO crops are gradually being embraced and there is a growing global trend outside of precautionary-obsessed Europe towards relatively lax regulatory oversight of CRISPR gene editing. That could allow for the commercialization of new consumer-focused crop varieties, she says.

The benefit that these biofortified plants bring will overcome the conceptual reluctance to GMOs, especially in countries that appreciate the health value that these types of improved products give them. The need will make countries join the incorporation of GM and edited plant crops.

Daniel Norero is a science communications consultant and fellow at the Cornell Alliance for Science. He studied biochemistry at the Catholic University of Chile. Follow him on Twitter @DanielNorero

Read the original here:
Chile poised to tackle food shortages and climate change with 'Golden Apple' and other CRISPR-edited crops - Genetic Literacy Project

Read More...

The promise and perils of synthetic biology take center stage in a fast-paced new Netflix series – Science Magazine

September 2nd, 2020 3:55 am

Christian DitterNetflix6 episodes

The first season of the Netflix series Biohackers, consisting of six episodes released on the streaming platform on 20 August, tells a fictional tale centered around the sociotechnological movement known as do-it-yourself (DIY) biology, in which amateurs, professionals, anarchists, and civic-minded citizens push the boundaries of mainstream biology. The shows main characters include a wealthy biopharmaceutical executive, a group of medical students, a number of stereotypical biohackers making animals glow and plants play music, and a community of transhumanists intent on modifying their bodies for seemingly impractical endeavors.

Whereas biological experimentation was once the sole domain of trained professionals in well-stocked and well-funded institutional labs, the field has been democratized by the emergence of the open-source movement, plummeting sequencing costs, greater access to reagents and devices, the proliferation of online resources, and the emergence of tools and methodologies that enable nonexperts to genetically engineer organisms without years of professional training. [Valid concerns regarding some of the activities associated with the DIY bio community have been voiced by the Presidential Commission for the Study of Bioethical Issues (1).]

Medical student Mia Akerlund (right) meets biohackers pushing the boundaries of mainstream biology.

The show follows Mia Akerlund (played by Luna Wedler), a first-year medical student vying for a position at a prestigious biopharmaceutical firm headed by celebrated professor Tanja Lorenz (Jessica Schwarz). Akerlund and Lorenz clearly have some shared history, as well as their own secrets, although viewers are not privy to the details of either at the start of the series. For much of the first episodes, the relationship between these two enigmatic characters is revealed slowly through both flash-forwards and flashbacks. But we know that a big reveal is coming; the programs official description teases a secret so big it could change the fate of humanity.

Throughout the seasons six fast-paced episodes, the viewer is exposed to technologies and techniques that would be familiar to many professional scientists. And while the time frames of the various experiments conducted are often compressed for dramatic effect, Christian Ditterthe shows creator, writer, director, and showrunnergoes out of his way to present complex science as accurately as possible. In one montage, for example, we watch various biohackers, some with better aseptic technique than others, add reagents to microcentrifuge tubes, load polymerase chain reaction machines, and examine gels to assess whether they have accurately created a desired genomic sequence. In another scene, a student suffering from a degenerative disease seeks to develop his own cure in a secret lab, where he can work without burdensome oversight. The student injects himself with an unknown liquid, his purported cure. Here, the shows dialogue surrounding the cure and its antidote (to be administered if things go wrong) offers insight into how RNA interference therapies work.

But the show also serves as a pedagogical vehicle to raise many timely and interesting ethical, legal, and social concerns. From bioluminescent mammals to the collection of genetic material for clinical trials, the series storyline highlights how cavalierly we sometimes approach genomic data and genetic engineering. Later episodes depict even more egregious examples of biohacking, including organisms modified to transmit viruses as efficiently as possible. At one point, a character suggests that the ends of her research justify the experimental means, even when her methods demonstrate a gross disregard for test subjects who may suffer as a result.

The show also offers insight into some of the motivations that drive DIY biology efforts. For example, in one scene, a confidant of Akerlund expresses dismay that Lorenz is willing to sell a cheaply acquired drug to desperate patients for inflated prices. Such frustrations are what drive many citizens operating outside traditional institutions to develop their own pharmaceutical solutions.

It is ironic that Biohackers is set in Germany, one of the few places where genetic engineering experimentation outside of licensed facilities is illegal and can result in a fine or even imprisonment (2). Yet, given all that transpires in the show, one is left with the sense that such measures maybe justified.

References and Notes:1. Presidential Commission for the Study of Bioethical Issues, New directions: The ethics of synthetic biology and emerging technologies (2010).2. Sections 8 and 39 of the German Genetic Engineering Act [Gentechnikgesetz (GenTG)].

The reviewer is at Zvi Meitar Institute for Legal Implications of Emerging Technologies, Herzliya, Israel, and the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.

Read the original post:
The promise and perils of synthetic biology take center stage in a fast-paced new Netflix series - Science Magazine

Read More...

How Groups of Cells Cooperate to Build Organs and Organisms – The Scientist

September 2nd, 2020 3:55 am

Efforts to use regenerative medicinewhich seeks to address ailments as diverse as birth defects, traumatic injury, aging, degenerative disease, and the disorganized growth of cancerwould be greatly aided by solving one fundamental puzzle: How do cellular collectives orchestrate the building of complex, three-dimensional structures?

While genomes predictably encode the proteins present in cells, a simple molecular parts list does not tell us enough about the anatomical layout or regenerative potential of the body that the cells will work to construct. Genomes are not a blueprint for anatomy, and genome editing is fundamentally limited by the fact that its very hard to infer which genes to tweak, and how, to achieve desired complex anatomical outcomes. Similarly, stem cells generate the building blocks of organs, but the ability to organize specific cell types into a working human hand or eye has been and will be beyond the grasp of direct manipulation for a very long time.

But researchers working in the fields of synthetic morphology and regenerative biophysics are beginning to understand the rules governing the plasticity of organ growth and repair. Rather than micromanaging tasks that are too complex to implement directly at the cellular or molecular level, what if we solved the mystery of how groups of cells cooperate to construct specific multicellular bodies during embryogenesis and regeneration? Perhaps then we could figure out how to motivate cell collectives to build whatever anatomical features we want.

New approaches now allow us to target the processes that implement anatomical decision-making without genetic engineering. In January, using such tools, crafted in my lab at Tufts Universitys Allen Discovery Center and by computer scientists in Josh Bongards lab at the University of Vermont, we were able to create novel living machines, artificial bodies with morphologies and behaviors completely different from the default anatomy of the frog species (Xenopus laevis) whose cells we used. These cells rebooted their multicellularity into a new form, without genomic changes. This represents an extremely exciting sandbox in which bioengineers can play, with the aim of decoding the logic of anatomical and behavioral control, as well as understanding the plasticity of cells and the relationship of genomes to anatomies.

Deciphering how an organism puts itself together is truly an interdisciplinary undertaking.

Deciphering how an organism puts itself together is truly an interdisciplinary undertaking. Resolving the whole picture will involve understanding not only the mechanisms by which cells operate, but also elucidating the computations that cells and groups of cells carry out to orchestrate tissue and organ construction on a whole-body scale. The next generation of advances in this area of research will emerge from the flow of ideas between computer scientists and biologists. Unlocking the full potential of regenerative medicine will require biology to take the journey computer science has already taken, from focusing on the hardwarethe proteins and biochemical pathways that carry out cellular operationsto the physiological software that enables networks of cells to acquire, store, and act on information about organ and indeed whole-body geometry.

In the computer world, this transition from rewiring hardware to reprogramming the information flow by changing the inputs gave rise to the information technology revolution. This shift of perspective could transform biology, allowing scientists to achieve the still-futuristic visions of regenerative medicine. An understanding of how independent, competent agents such as cells cooperate and compete toward robust outcomes, despite noise and changing environmental conditions, would also inform engineering. Swarm robotics, Internet of Things, and even the development of general artificial intelligence will all be enriched by the ability to read out and set the anatomical states toward which cell collectives build, because they share a fundamental underlying problem: how to control the emergent outcomes of systems composed of many interacting units or individuals.

Many types of embryos can regenerate entirely if cut in half, and some species are proficient regenerators as adults. Axolotls (Ambystoma mexicanum) regenerate their limbs, eyes, spinal cords, jaws, and portions of the brain throughout life. Planarian flatworms (class Turbellaria), meanwhile, can regrow absolutely any part of their body; when the animal is cut into pieces, each piece knows exactly whats missing and regenerates to be a perfect, tiny worm.

The remarkable thing is not simply that growth begins after wounding and that various cell types are generated, but that these bodies will grow and remodel until a correct anatomy is complete, and then they stop. How does the system identify the correct target morphology, orchestrate individual cell behaviors to get there, and determine when the job is done? How does it communicate this information to control underlying cell activities?

Several years ago, my lab found that Xenopus tadpoles with their facial organs experimentally mixed up into incorrect positions still have largely normal faces once theyve matured, as the organs move and remodel through unnatural paths. Last year, a colleague at Tufts came to a similar conclusion: the Xenopus genome does not encode a hardwired set of instructions for the movements of different organs during metamorphosis from tadpole to frog, but rather encodes molecular hardware that executes a kind of error minimization loop, comparing the current anatomy to the target frog morphology and working to progressively reduce the difference between them. Once a rough spatial specification of the layout is achieved, that triggers the cessation of further remodeling.

The deep puzzle of how competent agents such as cells work together to pursue goals such as building, remodeling, or repairing a complex organ to a predetermined spec is well illustrated by planaria. Despite having a mechanistic understanding of stem cell specification pathways and axial chemical gradients, scientists really dont know what determines the intricate shape and structure of the flatworms head. It is also unknown how planaria perfectly regenerate the same anatomy, even as their genomes have accrued mutations over eons of somatic inheritance. Because some species of planaria reproduce by fission and regeneration, any mutation that doesnt kill the neoblastthe adult stem cell that gives rise to cells that regenerate new tissueis propagated to the next generation. The worms incredibly messy genome shows evidence of this process, and cells in an individual planarian can have different numbers of chromosomes. Still, fragmented planaria regenerate their body shape with nearly 100 percent anatomical fidelity.

Permanent editingof the encoded target morphology without genomic editing reveals a new kind of epigenetics.

So how do cell groups encode the patterns they build, and how do they know to stop once a target anatomy is achieved? What would happen, for example, if neoblasts from a planarian species with a flat head were transplanted into a worm of a species with a round or triangular head that had the head amputated? Which shape would result from this heterogeneous mixture? To date, none of the high-resolution molecular genetic studies of planaria give any prediction for the results of this experiment, because so far they have all focused on the cellular hardware, not on the logic of the softwareimplemented by chemical, mechanical, and electrical signaling among cellsthat controls large-scale outcomes and enables remodeling to stop when a specific morphology has been achieved.

Understanding how cells and tissues make real-time anatomical decisions is central not only to achieving regenerative outcomes too complex for us to manage directly, but also to solving problems such as cancer. While the view of cancer as a genetic disorder still largely drives clinical approaches, recent literature supports a view of cancer as cells simply not being able to receive the physiological signals that maintain the normally tight controls of anatomical homeostasis. Cut off from these patterning cues, individual cells revert to their ancient unicellular lifestyle and treat the rest of the body as external environment, often to ruinous effect. If we understand the mechanisms that scale single-cell homeostatic setpoints into tissue- and organ-level anatomical goal states and the conditions under which the anatomical error reduction control loop breaks down, we may be able to provide stimuli to gain control of rogue cancer cells without either gene therapy or chemotherapy.

During morphogenesis, cells cooperate to reliably build anatomical structures. Many living systems remodel and regenerate tissues or organs despite considerable damagethat is, they progressively reduce deviations from specific target morphologies, and halt growth and remodeling when those morphologies are achieved. Evolution exploits three modalities to achieve such anatomical homeostasis: biochemical gradients, bioelectric circuits, and biophysical forces. These interact to enable the same large-scale form to arise despite significant perturbations.

N.R. FULLER, SAYO-ART, LLC

BIOCHEMICAL GRADIENTS

The best-known modality concerns diffusible intracellular and extracellular signaling molecules. Gene-regulatory circuits and gradients of biochemicals control cell proliferation, differentiation, and migration.

BIOELECTRIC CIRCUITS

The movement of ions across cell membranes, especially via voltage-gated ion channels and gap junctions, can establish bioelectric circuits that control large-scale resting potential patterns within and among groups of cells. These bioelectric patterns implement long-range coordination, feedback, and memory dynamics across cell fields. They underlie modular morphogenetic decision-making about organ shape and spatial layout by regulating the dynamic redistribution of morphogens and the expression of genes.

BIOMECHANICAL FORCES

Cytoskeletal, adhesion, and motor proteins inside and between cells generate physical forces that in turn control cell behavior. These forces result in large-scale strain fields, which enable cell sheets to move and deform as a coherent unit, and thus execute the folds and bends that shape complex organs.

The software of life, which exploits the laws of physics and computation, is enabled by chemical, mechanical, and electrical signaling across cellular networks. While the chemical and mechanical mechanisms of morphogenesis have long been appreciated by molecular and cell biologists, the role of electrical signaling has largely been overlooked. But the same reprogrammability of neural circuits in the brain that supports learning, memory, and behavioral plasticity applies to all cells, not just neurons. Indeed, bacterial colonies can communicate via ionic currents, with recent research revealing brain-like dynamics in which information is propagated across and stored in a kind of proto-body formed by bacterial biofilms. So it should really come as no surprise that bioelectric signaling is a highly tractable component of morphological outcomes in multicellular organisms.

A few years ago, we studied the electrical dynamics that normally set the size and borders of the nascent Xenopus brain, and built a computer model of this process to shed light on how a range of various brain defects arise from disruptions to this bioelectric signaling. Our model suggested that specific modifications with mRNA or small molecules could restore the endogenous bioelectric patterns back to their correct layout. By using our computational platform to select drugs to open existing ion channels in nascent neural tissue or even a remote body tissue, we were able to prevent and even reverse brain defects caused not only by chemical teratogenscompounds that disrupt embryonic developmentbut by mutations in key neurogenesis genes.

Similarly, we used optogenetics to stimulate electrical activity in various somatic cell types totrigger regeneration of an entire tadpole tailan appendage with spinal cord, muscle, and peripheral innervationand to normalize the behavior of cancer cells in tadpoles strongly expressing human oncogenes such as KRAS mutations. We used a similar approach to trigger posterior regions, such as the gut, to build an entire frog eye. In both the eye and tail cases, the information on how exactly to build these complex structures, and where all the cells should go, did not have to be specified by the experimenter; rather, they arose from the cells themselves. Such findings reveal how ion channel mutations result in numerous human developmental channelopathies, and provide a roadmap for how they may be treated by altering the bioelectric map that tells cells what to build.

We also recently found a striking example of such reprogrammable bioelectrical software in control of regeneration in planaria. In 2011, we discovered that an endogenous electric circuit establishes a pattern of depolarization and hyperpolarization in planarian fragments that regulate the orientation of the anterior-posterior axis to be rebuilt. Last year, we discovered that this circuit controls the gene expressionneeded to build a head or tail within six hours of amputation, and by using molecules that make cell membranes permeable to certain ions to depolarize or hyperpolarize cells, we induced fragments of such worms to give rise to a symmetrical two-headed form, despite their wildtype genomes. Even more shockingly, the worms continued to generate two-headed progeny in additional rounds of cutting with no further manipulation. In further experiments, we demonstrated that briefly reducing gap junction-mediated connectivity between adjacent cells in the bioelectric network that guides regeneration led worms to regenerate head and brain shapes appropriate to other worm species whose lineages split more than 100 million years ago.

My group has developed the use of voltage-sensitive dyes to visualize the bioelectric pattern memory that guides gene expression and cell behavior toward morphogenetic outcomes. Meanwhile, my Allen Center colleagues are using synthetic artificial electric tissues made of human cells and computer models of ion channel activity to understand how electrical dynamics across groups of non-neural cells can set up the voltage patterns that control downstream gene expression, distribution of morphogen molecules, and cell behaviors to orchestrate morphogenesis.

The emerging picture in this field is that anatomical software is highly modulara key property that computer scientists exploit as subroutines and that most likely contributes in large part to biological evolvability and evolutionary plasticity. A simple bioelectric state, whether produced endogenously during development or induced by an experimenter, triggers very complex redistributions of morphogens and gene expression cascades that are needed to build various anatomies. The information stored in the bodys bioelectric circuitscan be permanently rewritten once we understand the dynamics of the biophysical circuits that make the critical morphological decisions. This permanent editing of the encoded target morphology without genomic editing reveals a new kind of epigenetics, information that is stored in a medium other than DNA sequences and chromatin.

Recent work from our group and others has demonstrated that anatomical pattern memories can be rewritten by physiological stimuli and maintained indefinitely without genomic editing. For example, the bioelectric circuit that normally determines head number and location in regenerating planaria can be triggered by brief alterations of ion channel or gap junction activity to alter the animals body plan. Due to the circuits pattern memory, the animals remain in this altered state indefinitely without further stimulation, despite their wildtype genomes. In other words, the pattern to which the cells build after damage can be changed, leading to a target morphology distinct from the genetic default.

N.R. FULLER, SAYO-ART, LLC

First, we soaked a planarian in voltage-sensitive fluorescent dye to observe the bioelectrical pattern across the entire tissue. We then cut the animal to see how this pattern changes in each fragment as it begins to regenerate.

We then applied drugs or used RNA interference to target ion channels or gap junctions in individual cells and thus change the pattern of depolarization/hyperpolarization and cellular connectivity across the whole fragment.

As a result of the disruption of the bodys bioelectric circuits, the planarian regrows with two heads instead of one, or none at all.

When we re-cut the two-headed planarian in plain water, long after the initial drug has left the tissue, the new anatomy persists in subsequent rounds of regeneration.

Cells can clearly build structures that are different from their genomic-default anatomical outcomes. But are cells universal constructors? Could they make anything if only we knew how to motivate them to do it?

The most recent advances in the new field at the intersection of developmental biology and computer science are driven by synthetic living machines known as biobots. Built from multiple interacting cell populations, these engineered machines have applications in disease modeling and drug development, and as sensors that detect and respond to biological signals. We recently tested the plasticity of cells by evolving in silico designs with specific movement and behavior capabilities and used this information to sculpt self-organized growth of aggregated Xenopus skin and muscle cells. In a novel environmentin vitro, as opposed to inside a frog embryoswarms of genetically normal cells were able to reimagine their multicellular form. With minimal sculpting post self-assembly, these cells form Xenobots with structures, movements, and other behaviors quite different from what might be expected if one simply sequenced their genome and identified them as wildtype X. laevis.

These living creations are a powerful platform to assess and model the computations that these cell swarms use to determine what to build. Such insights will help us to understand evolvability of body forms, robustness, and the true relationship between genomes and anatomy, greatly potentiating the impact of genome editing tools and making genomics more predictive for large-scale phenotypes. Moreover, testing regimes of biochemical, biomechanical, and bioelectrical stimuli in these biobots will enable the discovery of optimal stimuli for use in regenerative therapies and bioengineered organ construction. Finally, learning to program highly competent individual builders (cells) toward group-level, goal-driven behaviors (complex anatomies) will significantly advance swarm robotics and help avoid catastrophes of unintended consequences during the inevitable deployment of large numbers of artificial agents with complex behaviors.

Understanding how cells and tissues make real-time anatomical decisions is central to achieving regenerative outcomes too complex for us to manage directly.

The emerging field ofsynthetic morphology emphasizes a conceptual point that has been embraced by computer scientists but thus far resisted by biologists: the hardware-software distinction. In the 1940s, to change a computers behavior, the operator had to literally move wires aroundin other words, she had to directly alter the hardware. The information technology revolution resulted from the realization that certain kinds of hardware are reprogrammable: drastic changes in function could be made at the software level, by changing inputs, not the hardware itself.

In molecular biomedicine, we are still focused largely on manipulating the cellular hardwarethe proteins that each cell can exploit. But evolution has ensured that cellular collectives use this versatile machinery to process information flexibly and implement a wide range of large-scale body shape outcomes. This is biologys software: the memory, plasticity, and reprogrammability of morphogenetic control networks.

The coming decades will be an extremely exciting time for multidisciplinary efforts in developmental physiology, robotics, and basal cognition to understand how individual cells merge together into a collective with global goals not belonging to any individual cell. This will drive the creation of new artificial intelligence platforms based not on copying brain architectures, but on the multiscale problem-solving capacities of cells and tissues. Conversely, the insights of cognitive neurobiology and computer science will give us a completely new window on the information processing and decision-making dynamics in cellular collectives that can very effectively be targeted for transformative regenerative therapies of complex organs.

Michael Levinis the director of the Allen Discovery Center at Tufts University and Associate Faculty at Harvard Universitys Wyss Institute. Email him atmichael.levin@tufts.edu. M.L. thanks Allen Center Deputy DirectorJoshua Finkelsteinfor suggestions on the drafts of this story.

Originally posted here:
How Groups of Cells Cooperate to Build Organs and Organisms - The Scientist

Read More...

Viral Vector Manufacturing Market Forecast to Reach $1.47 Billion by 2025 – ResearchAndMarkets.com – Business Wire

September 2nd, 2020 3:55 am

DUBLIN--(BUSINESS WIRE)--The "Viral Vector Manufacturing Market - Forecasts from 2020 to 2025" report has been added to ResearchAndMarkets.com's offering.

The global viral vector manufacturing market is projected to grow at a CAGR of 22.09% to reach a market size of US$1,469.144 million in 2025 from US$443.592 million in 2019.

The viral vector market is primarily being driven by the growing adoption of adenoviral vectors, lentiviral vectors, as well as retroviral vectors. The growing adoption stems from the need for effectively transferring therapeutic gene into the target cells that are an integral part of the process that involves the insertion of a functional copy of a gene into a defective cell one of the preferred treatment options for most chronic diseases, which is known as Gene therapy.

Furthermore, the growing number of clinical trials, the increasing number of gene therapy, and the expanding cognizance of effective mode of disease treatment are further expected to drive the growth of the viral vector manufacturing market during the forecast period. Since vector designing, production, packaging, and release testing is subject to limited availability and faced with challenges due to the complex nature of technologies and platform and thus many players in this space often endeavor in striking strategic collaboration and acquisitions that cover many aspects like the delivery of clinical grade product under its ambit, to facilitate the successful collaboration development of viral agent-based products.

Moreover, the efficient ability to express the therapeutic genes and non-pathogenic nature is another factor that is responsible for driving the growth of this market. The other key factors that are expected to drive the growth of the market are the increasing investment in the biopharmaceutical production coupled with the growing aging population, healthcare expenditure, technological advancement, especially in the genetic engineering segment.

Moreover, the increasing accessibility of healthcare facilities, the growing demand for treatment of disease due to the increasing global burden of diseases are a few of the other factors that are poised to drive the growth of this market during the forecast period. Nevertheless, despite the transitioning of this niche industry to high manufacturing is one such factor that may restrain the growth of the market to a certain extent.

Therefore, with such growing recognition of the importance of viral vectors, various developments are taking place in the viral vector manufacturing market. For instance, in June 2020, it was announced by Emergent BioSolutions Inc. (NYSE: EBS) which is a global life sciences company that it is going to invest $75 Million in Canton Site and expand viral vector and gene therapy capability facilitating the reinforcement of its contract development and manufacturing (CDMO) capabilities.

Again, in June 2020, Oxford Biomedica (LSE: OXB) which is a major gene and cell therapy group, announced that it has signed an agreement of collaboration with the Vaccines Manufacturing and Innovation Centre (VMIC), a not-for-profit organization that has been established to provide the first strategic vaccine development and progressive manufacturing capability in the UK. Under this 5-year agreement, the organization will work towards enabling the manufacture of vaccines that are based on viral vector, to contribute towards a swift growth in the domestic capacity for this specialized field of vaccine manufacturing.

In April 2020, Merck KGaA (FWB: MRK) a leading science and technology company announced that a 100 million facility, second in Carlsbad, California USA that is intended to boost its BioReliance viral and gene therapy service offering to help their customers to aid their customers to commercialize the gene therapies that are brought about by viral vectors concomitantly helping innovators scale up their production that is in tandem with the quantum that allows them to reach out to more patients.

Earlier, in January 2020, the launch of ZYNTEGLO (autologous CD34+ cells encoding A-T87Q-globin gene) in Germany was announced by bluebird bio, Inc. (Nasdaq: BLUE). ZYNTEGLO is a one-time gene therapy that has been specifically developed for patients aged 12 years and older with transfusion-dependent -thalassemia (TDT) who do not possess 0/0 genotype.

In December 2019, it was announced that a leading supplier of services and technologies for the life sciences industry called Novasep launched oXYgene which is a fully integrated offering for the construction of facilities dedicated towards customers to aid them in their viral vector production.

In October 2019, it was reported that GE Healthcare Life Sciences which has now rebranded itself as Cytiva, was about to launch the KUBio box which is an adaptable, flexible and fully integrated environment for biomanufacturing to accelerate the production gene therapies based on of viral vector. These latest additions were intended to bring gene therapies swiftly to the market thereby contributing to the increased capacity in the viral vector area.

In March 2018, it was reported that Sartorius Stedim Biotech SA (SSB), which is a major international technology partner supplier of products and services biopharmaceutical industry has been selected by ABL Europe as its chief supplier of single-use systems whereby the new viral vector manufacturing capacity has been started in Strasbourg at its European facility. ABL Europe, a subsidiary of ABL Inc. provides dedicated viral vector GMP manufacturing services for oncolytic, vaccine and gene therapy projects in all stages of clinical development through to commercial launch.

Key Topics Covered

1. Introduction

1.1. Market Definition

1.2. Market Segmentation

2. Research Methodology

2.1. Research Data

2.2. Assumptions

3. Executive Summary

3.1. Research Highlights

4. Market Dynamics

4.1. Market Drivers

4.2. Market Restraints

4.3. Porters Five Forces Analysis

4.4. Industry Value Chain Analysis

5. Viral Vector Manufacturing Market Analysis, By Type

5.1. Introduction

5.2. Retroviral vectors

5.3. Lentiviral Vectors

5.4. Adenoviral Vectors

5.5. Others

6. Viral Vector Manufacturing Market Analysis, By Application

6.1. Introduction

6.2. Vaccinology

6.3. Gene Therapy

7. Viral Vector Manufacturing Market Analysis, By End-User

7.1. Introduction

7.2. Pharmaceutical & Biotechnology Companies

7.3. Research Institutes

7.4. Contract Research Organizations

8. Viral Vector Manufacturing Market Analysis, by Geography

8.1. Introduction

8.2. North America

8.3. South America

8.4. Europe

8.5. The Middle East & Africa

8.6. Asia-Pacific

9. Competitive Environment and Analysis

9.1. Major Players and Strategy Analysis

9.2. Emerging Players and Market Lucrativeness

9.3. Mergers, Acquisitions, Agreements, and Collaborations

9.4. Vendor Competitiveness Matrix

10. Company Profiles

10.1. Sirion-Biotech GmbH

10.2. Vigene Biosciences

10.3. Batavia Biosciences B.V.

10.4. Virovek

10.5. Lonza

10.6. Vector Biolabs

10.7. Cobra Biologics

10.8. MaxCyte, Inc.

10.9. Genelux

10.10. BioNTech SE

For more information about this report visit https://www.researchandmarkets.com/r/c3nfai

View original post here:
Viral Vector Manufacturing Market Forecast to Reach $1.47 Billion by 2025 - ResearchAndMarkets.com - Business Wire

Read More...

CAR T-Cell Optimization Starts in Production, Extends to Therapy – Genetic Engineering & Biotechnology News

September 2nd, 2020 3:55 am

Just as heat-seeking missiles race toward the infrared signatures of their targets, chimeric antigen receptor (CAR) T cells home in on cancer-associated or -specific antigens. Once the antigens are engaged, CAR T cells let fly with cytotoxic flak, granules containing perforin and granzymes, while activating supplementary tumor-killing mechanisms such as stromal sensitization and macrophage polarization. It is to be hoped that by the time the cytotoxic smoke clears, the cancer will have been destroyed.

The development of CAR T cells has revolutionized adoptive cellular therapies against cancer. CARs are genetically engineered to combine antigen- or tumor-specific-binding with T-cell activating domains. T cells, obtained from the patient (autologous cells) or from a healthy donor (allogeneic cells), are typically transduced with an engineered vector, expanded, and infused back into the patient for tumor eradication.

In the 10 years since its inception, the CAR T-cell field has progressed rapidly. Two CAR T-cell products have been approved for clinical use, and many more products are undergoing clinical trials or are in development. Although the field initially focused on B-cell malignancies, it is now advancing on solid tumors.

Despite its initial success, the CAR T-cell field must find ways to generate products that are potent, affordable, and available. To achieve enduring success, the CAR T-cell field is undertaking a range of initiatives. These include the engineering of bridging proteins for multiantigen targeting; the creation of nonviral allogeneic off-the-shelf products; the organization of vein-to-vein networks; and the development of precisely tuned therapies, that is, precisely timed and dosed therapies.

Cellular therapy is a living drug, declares Steve Shamah, PhD, senior vice president, Obsidian Therapeutics. As with any drug, damage can occur if the therapy is not carefully regulated. Our company focuses on creating controllable cell therapies by engineering CAR T cells or tumor-infiltrating lymphocytes to produce regulatable cytokines and proteins that can enhance functional activity, especially against solid tumors.

For example, the company is developing a platform that armors CAR T cells with immunomodulatory factors such as interleukin-15 (IL-15) or CD40 ligand. Shamah explains, These factors can enhance functional activity by driving T-cell expansion, conferring resistance to immunosuppression, improving antigen presentation, and inducing antigen spread. However, both factors can also produce systemic toxicity. Our technology modulates the level and timing of their activity in a fully controlled, dose-dependent manner using an FDA-approved small-molecule drug.

The Obsidian platform, cytoDRiVE, adds a drug-responsive domain (DRD) onto a therapeutic protein of interest. DRD tags are misfolded or inherently unstable in the cell. However, they can be reversibly stabilized by the binding of approved small-molecule drugs. When the drug is absent, the DRD-tagged protein is turned off. When the drug is present, the DRD-tagged protein is turned on. When DRD tags are in place, the concentration of the small-molecule drug serves as a biological rheostat for controlling the dosing of the therapeutic protein.

Preclinical in vivo mouse studies assessed anti-CD19 CAR T cells that were engineered to express an IL-15-DRD that responded to the FDA-approved drug acetazolamide. In these studies, tumor regression was demonstrated.

Controlling the precise timing and expression level of these immunomodulatory factors in CAR T cells could significantly enhance safety and therapeutic efficacy, concludes Shamah.

Obsidian is currently focusing on the oncology space, but the company is also exploring other areas such as autoimmunity and even the regulation of transcription factors to enable controllable in vivoCRISPR-Cas9 gene editing.

Despite the remarkable success of CAR T-cell therapies, relapses can occur within six months for up to 50% of patients treated with anti-CD19 CAR T-cell therapy.Failures can occur due to loss of CD19 expression or to continued tumor proliferation. Aleta Biotherapeutics has developed a novel technology to reactivate CAR T cells in relapsed patients.

Our approach utilizes antigen-bridging proteins to coat tumors with CD19, says Paul Rennert, PhD, Aletas president and CSO. [The tumors are then] recognized by the patients anti-CD19 CAR T cells, essentially creating a cytotoxic synapse that results in tumor cell death.

To thwart anti-CD19 CAR T-cell therapy relapses, the company developed a bridging protein using the extracellular domain of CD19 and an anti-CD20 antibody domain. CD20 is an antigen present on the majority of B-cell malignancies. Rennert explains that these injected bridging proteins will coat the patients tumor cells with CD19, creating a target to activate or reactivate a patients anti-CD19 CAR T cells.

To show proof-of-principle, the company performed in vivo studies using a half-life-extended form of the bridging protein injected into mice carrying CD20-positive tumor cells and anti-CD19 CAR T cells. Rennert emphasizes, Our studies demonstrated this strategy can be used to reactivate CD19 CAR T cells to prevent and reverse relapses.

Other programs in development include a bridging protein for injection to improve outcomes in multiple myeloma patients treated with CAR T cells, and bridging protein programs for HER2-positive breast cancer patients with central nervous system metastases. The company is preparing investigational new drug applications for its technology and plans to start Phase I trials in 2021.

Assessing whether engineered CAR T-cell and T-cell receptor (TCR) therapies have successfully attacked and penetrated solid tumors (and not normal cells) can be like finding the proverbial needle in the haystack. Traditional methods using immunohistochemistry are useful for immune profiling, but they cannot differentiate engineered versus endogenous cells, points out Christopher Bunker, PhD, senior director of business development, Advanced Cell Diagnostics, a Bio-Techne brand. We developed a means to easily detect and track engineered therapeutic cells and delineate their pharmacokinetics within the tumor microenvironment of intact tumor biopsies, as well as their on-target/off-tumor activity.

Enter RNAscope, an RNA in situ hybridization technology that can enable single-cell spatial transcriptomics. RNAscope, Bunker asserts, is the only off-the-shelf method that can specifically detect engineered CAR T cells and TCR T cells in solid tumor patient biopsies.

Most cell therapies employ lentivirus transduction. Because CAR or TCR transgenes have unique sequences in the viral untranslated regions, these can be used as tags for identification of engineered cell therapies with RNAscope probes. The technology utilizes pools of paired oligos that can be thought of as a ZZ pair, where the paired 3 ends hybridize to ~50 bases of target mRNA, and where the paired 5 ends hybridize to a signal amplification module, which is built through sequential hybridization steps. The signal amplification of paired oligos results in an assay able to detect individual transcripts that appear as visible and quantifiable dots.

Its a little like planting and lighting Christmas trees, quips Bunker. The ZZ pairs plant trees along the mRNA with branches that are decorated either with fluorophores or chromogens. Although the primary technology currently features four colors, the company has developed a HiPlex (12-plex) assay and foresees even higher-plex assays with different detection methods.

We envision assays based on our core technologies that enable spatial analysis of perhaps a hundred transcripts in combination with tens of proteins, Bunker projects. In the context of cell therapy development, these will enable a more comprehensive understanding of tumor biology and immune cell profiles to determine the most effective treatment strategy for a patient, as well as for monitoring efficacy of solid tumor cellular therapies.

Companies developing CAR T-cell products are also eyeing a future involving GMP production. Thus, a critical early question is how to choose the best T-cell medium for manufacturing processes. To test the suitability of a CAR T-cell growing medium, companies must assess factors such as cell viability, cell expansion, cytokine profiles, and cell purity. A medium suitable for a CAR T-cell manufacturing process also needs to support rapid activation and CAR transduction. Additionally, the selected medium needs to be compatible with a variety of donors.

There are many available choices for T-cell culture media ranging from do-it-yourself recipes to commercially available one-size-fits-all complete formulations. CellGenix has developed a novel T-cell medium that avoids the use of human serum. Sebastian Warth, PhD, a senior scientist at CellGenix, explains, To achieve consistent results, human serum requires extensive testing prior to its use for production of cellular products due to lot-to-lot inconsistencies. Since human serum is a limited resource and might not be available in large quantities, it is unfavorable for commercial-scale manufacturing. Furthermore, the human origin of serum poses a certain risk of containing adventitious agents and is, therefore, a risk to the safety of the T-cell therapy product.

The companys TCM GMP-Prototype medium provides a serum-free and xeno-free product for early-onset T-cell expansion. According to Warth, key advantages include promotion of sustained viability, support for expansion of CD4+ and CD8+ T cells, promotion of a central memory and early differentiated memory T-cell phenotype, and maintenance of a high proportion of cytokine-producing cells including polyfunctional cells. Further, it was optimized for and verified with CAR T cells.

While autologous CAR T-cell therapies have proven highly successful, they also require a long and expensive manufacturing process. The dream of being able to utilize off-the-shelf allogeneic T cells is on the horizon.

Devon J. Shedlock, PhD, senior vice president, research and development,Poseida Therapeutics, reports, With our technology, we are able to genetically modify cells to create a fully allogenic, or off-the-shelf, product that does not require additional immunosuppression treatment like earlier generation approaches. We also have developed technology to allow us to make hundreds of doses from a single manufacturing run from healthy donors, thereby dropping the cost substantially.

According to Shedlock, the technology consists of three key aspects: 1) the piggyback DNA Modification System, 2) the Cas-CLOVER site-specific gene editing system, and 3) the Booster Molecule.

The PiggyBac DNA Modification System is a nonviral technology for stably integrating genes into DNA. One key feature is that piggyBac preferentially inserts into less mature T cells, enabling the production of therapies that have a high proportion of stem cell memory T cells, or Tscm cells.

Viral technologies are virtually excluded from Tscm cells, Shedlock states. However, Tscm cells are the ideal cell type for cell-based therapies because they have the ability to engraft and potentially last a lifetime, can produce wave after wave of more differentiated cells to attack the tumor, and are much more tolerable with low levels of adverse events compared to other CAR T-cell products.

The companys Cas-CLOVER gene editing technology is a hybrid gene editing technology used to edit the T cells to make allogeneic products. Cas-CLOVER works well in resting T cells, which is important in preserving Tscm cells in a fully allogeneic CAR T-cell product, Shedlock elaborates. It also is a very precise and clean system. This is a particularly important safety issue for allogeneic products that may be given to many patients.

The Booster Molecule is added during manufacture and is temporarily expressed on the cell surface to allow cell stimulation. Normally when allogeneic CAR T-cell products are created, the T-cell receptor must be eliminated to avoid the graft-versus-host reaction, which is a major safety issue. Importantly, this booster stimulation occurs while preserving the Tscm phenotype.

Poseida Therapeutics expects to launch a clinical trial for its multiple myeloma allogeneic product late this year or early next year. The company will also begin clinical trials later in 2021 on its pan-solid tumor allogeneic program.

Creation of partnerships can help drive development of CAR T-cell therapeutics from concept through clinical trials. Advanced therapies require advanced supply chain and data management, advises Minh Hong, PhD, head of autologous cell therapy, Lonza Pharma & Biotech. Prior biopharmaceutical models of mass production and distributionand the systems that support themare not effective for personalized therapeutics. As manufacturing demand increases for autologous cell therapies, there is an overarching need to both industrialize and simplify the entire supply chain ecosystem.

Hong says the overall project needs to be considered from a more comprehensive perspective: Due to the criticality of the starting material, everything from cell sourcing, patient coordination and scheduling for collection/infusion, transportation logistics, and manufacturing logistics needs to be coordinated, ensuring the highest standards, regulatory compliance, and safety throughout the process.

To meet these needs, Lonza is building a network of partners to develop a fully integrated vein-to-vein solution, that is, a system that includes all touch points involved in patient scheduling and sample collection, through material shipping logistics, manufacturing, and eventually the infusion of the cell therapy back into the patient. The partner network, Hong indicates, will help participants define smart workflows and execute an integration strategy. Hong sums up the networks therapeutic implications as follows: We believe these partnerships will decrease time to clinical program setup.

Lonza has more than a 20-year history of providing clinical and commercial manufacturing. Hong asserts, Our company brings to the table our process development and manufacturing experience along with proprietary solutions including a manufacturing execution system solution, MODA-ESTM, for electronic batch records and manufacturing traceability. In addition, we have announced partnerships with Vineti for a supply chain orchestration system and Cryoport to aid in shipping and logistics.

Lonza is also looking beyond CAR T-cell therapies. We would not limit our solutions and partnerships to autologous cell therapies, Hong declares. We can envision solutions for our in vivo viral vector manufacturing clients as well as our traditional allogeneic cell therapy clients.

View post:
CAR T-Cell Optimization Starts in Production, Extends to Therapy - Genetic Engineering & Biotechnology News

Read More...

Page 427«..1020..426427428429..440450..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick