header logo image


Page 720«..1020..719720721722..730740..»

Dementia Live and ‘Stem Cell Therapy for Stroke and Traumatic Brain Injury Patients’ seminars – Trumbull Times

February 3rd, 2020 4:44 pm

Published 7:30am EST, Monday, February 3, 2020

Bridges by EPOCH at Trumbull, a memory care assisted living community, located at 2415 Reservoir Ave., will host the following complimentary events in February. Call 203-935-8530 to RSVP.

Dementia Live Experience Thursday, Feb. 6, from 4 to 8 p.m. Presented by Right at Home, Caregivers are invited to reserve a time slot to step inside the body and mind of dementia. This powerful virtual experience will allow caregivers to see, hear and feel what life is like for someone living with dementia. Caregivers may bring their loved ones with memory loss to enjoy an activity with Bridges residents during this seminar. Refreshments will be served.

Caregiver Support Group Wednesday, Feb. 19, at 5:30 p.m. Caregivers are invited to trade tips, socialize with others on a similar journey and receive expert advice from dementia care professionals who understand their challenges and concerns. Dinner will be served. Caregivers may bring their loved ones with memory loss to dine with Bridges residents while they attend the group.

Dine and Discover Stem Cell Therapy for Stroke and Traumatic Brain Injury (TBI) Patients: Thursday, Feb. 20, at 5 p.m.; With Guest Speaker Dr. Peter McAllister, co-founder and Chief Medical Officer, New England Institute for Clinical Research. Stroke and traumatic brain injury strike millions of people each year. Dr. McAllister will discuss the various treatment options for the long-term effects of these conditions, including weakness, spasticity, language and cognitive difficulties and pain. He'll also discuss new research on stem cell therapy that could help restore function for stroke and TBI patients. Caregivers may bring their loved ones with memory loss to enjoy a meal and an activity with Bridges by EPOCH residents during this seminar. Dinner will be served.

See more here:
Dementia Live and 'Stem Cell Therapy for Stroke and Traumatic Brain Injury Patients' seminars - Trumbull Times

Read More...

Freeport stem cell therapy provider Okyanos in wind-up petition battle – EyeWitness News

February 3rd, 2020 4:44 pm

NASSAU, BAHAMAS The fate of Freeports pioneering stem cell therapy provider has now become the subject of legal dispute, with its principal creditor seeking the winding-up of the company.

According to court documents seen by Eyewitness News, Okyanos claims that damagessuffered toits nearly 15,000 sq feet rented Freeport facilities as a result of Hurricane Dorian in September 2019 left thepremisesunfit for use. As a consequence, all of thecompanysbusiness ceased. That claim however has beenfiercely disputed by its landlord First Commercial Ltd who is seeking to have its dispute arbitrated and block the removal of the companys equipment which could satisfy an award in those proceedings.

Okyanos is the first licensed stem cell therapy provider in The Bahamas. It has been treating patients with chronic diseases by using their own stem cells from fat tissue. It opened to patients in October 2014, providing treatment for those with autoimmune, orthopaedic, cardiovascular and neurological conditions.

According to details outlined in a wind-up petition by its primary creditor LS Enterprise Ltd, -a companyregisteredin the British Virgin Islands, Okyanos between August 2, 2017 and May 6 2019 entered into four loanfacilityagreementsfor working capital and generalcorporate amounting to some $15.9 million. Okyanos had ultimately sought additional loans from LS Enterprise Ltd following Hurricane Dorian however was informed that it was in default of its facility agreements having ceased to carry on its business and that all loans were immediately due and payable.

According to the wind-up petition an ex parte order obtained by Okyanoss landlord First Commercial Ltd had restrained the stem cell therapy provider fromremediatingthepremisesor removing its equipment. It is claimed that substantial amounts of water and wind had penetrated the companyspremises causing major property loss and damage.Further, a lack of consistent electricity and airconditioninghad caused mold contamination.

Thecompanyattemptedtomitigateloss and damage by movingequipmentto aclimatecontrolledstorage and and preparing thecompanysoperatingfacilitiesfor moldremediation butthat was hampered by the landlord whose servants oragentsinstructed thecompanys personnel to cease anddeistfrom such activities, LS Enterprise outlined in its petition.

It further noted that in a notice to the landlord dated October 25, 2019, Okyanos had exercised its right to terminate its leaseagreementwithin 60 daysfollowingthe storm due to the facilities being unfit for use or occupancy the hurricane. On October 30, First Commercial Ltd obtained an ex parte order restraining the company from anyfurtherremediation efforts as well as the removal or disposal of equipment, LS Enterprise has claimed. The company had filed for damages with its insurance provider but had not received the majority of any such insurance proceeds the petition station.

Accordingly it is claimed that the company has insufficient funds to secure a new lease forfacilitiesto treatpatients,arbitratewith landlord torecover itsequipment and supplies, or conduct amarketingcampaignto attract patients to The Bahamas.

However, an affidavit but attorney Andre Jay Feldman, president and a member of the Board of Directors of First Commercial Centre seeking to restrain Okyanos from breaching its lease disputed the companys damages claim.

According to Mr Feldmans affidavit, a copy of which was seen by Eyewitness News, he inspected thepremiseson September 4 and beyond some minimal damage due to a single window having opened in one of theclinicalrooms, there was no damagewhatsoeverthroughoutthe clinic and nosignificantdamage referred to by the company. Mr Feldman claimed that Steve Araiza, a Houston based attorney for Okyanos had written him on September 26, 2019 seeking a rent abatement and to end theleaseon thegrounds of hurricane damage.

According to Mr Feldman, flood water had entered parts of theground flooroccupiedby CIBC and on September 15, 2019, the bank had not onlyremediatedany damage but hadreopenedfor business. He further contended that on September 4, Okyanos had allowed the Rand Memorial Hospital to use itsfacilities for urgent patient care. Mr Feldman contends that there was no damage to make the facilities unfit for use. According to Mr Feldman, since September 1 there had been no payment towards rent or electricity with respect to air-conditioning consumption. He asserted that if Okyanos is allowed to remove its assets they would be shipped out of country and would not be available to satisfy any award from arbitration. The landlord is claiming it is owed $1,768,000 and that while it plans to claim on a $890,000 loss of rentinsurancethere is no guarantee that can be recovered.

Original post:
Freeport stem cell therapy provider Okyanos in wind-up petition battle - EyeWitness News

Read More...

Stem Cell Pain Relief No Surgery Regenerative Therapy Webinar Released – Newswire

February 3rd, 2020 4:44 pm

Gilbert, Arizona based alternative medicine specialist Dr. Farid Rooh launched a new webinar on stem cell therapy, exosome injections, and other regenerative medicine therapies for chronic pain.

(Newswire.net -- February 3, 2020) -- Gilbert, AZ -- Gilbert, Arizona based alternative medicine specialist Dr. Farid Rooh launched a new webinar on stem cell therapy, exosome injections, and other regenerative medicine therapies for chronic pain.

Dr. Farid Rooh-Parvar DPSc, BCIM of Wellness 1st Integrative Medical Center in Gilbert, Arizona, announced a new webinar on the most effective regenerative medicine therapies for chronic and acute pain, arthritis, sciatica and other conditions.

More details can be found at http://bit.ly/2L8DNxY.

The newly released webinar aims to answer a series of important questions related to the most effective ways to address pain resulting form a variety of musculoskeletal conditions.

Dr. Rooh discusses the numerous applications of research-based regenerative medicine on countless patients who have seen important improvements in terms of pain relief, improved function and mobility.

The new webinar includes a detailed look at therapeutic approaches including stem cell therapy, exosome injections, amniotic tissue, adipose tissue and bone marrow therapies and more.

The focus is on helping viewers get a basic understanding on how the latest innovations in alternative, holistic and regenerative medicine can help patients suffering from a diverse range of health issues.

The webinar provides essential insights into the applications of regenerative medicine for the treatment and management of neck, back, shoulder and join pain, sciatica, arthritis, tennis elbow, loss of feeling in feet and other conditions.

All approaches are based on identifying and addressing the root cause of the patients health issues, rather than simply alleviating the symptoms.

With the latest announcement, Dr. Rooh continues to expand his range of high-quality alternative and regenerative medicine resources for patients in Arizona and beyond.

An experienced practitioner specializing in holistic and alternative medicine, Dr. Rooh offers personalized treatments for patients in Gilbert, Chandler and the surrounding areas of Arizona.

A satisfied patient said: As a new patient I was beyond impressed with this medical facility. During my consultation the kind and approachable Dr. Rooh met with me then his outstanding case manager Casi spent time with me exploring my options for a treatment plan that best suits my needs and situation. I can't express what a wonderful experience this was and I am so excited to be a new patient of theirs.

Interested parties can find more information by visiting the above-mentioned website.

See the rest here:
Stem Cell Pain Relief No Surgery Regenerative Therapy Webinar Released - Newswire

Read More...

Current research: 2020 Latest Report on Exosome Diagnostics Market Report Technologies, Analyze the Pipeline Landscape and Key Companies – WhaTech…

February 3rd, 2020 4:44 pm

Exosome Diagnostics Market Report analysis including industry Overview, Country Analysis, Key Trends, Key Retail Innovations, Competitive Landscape and Sector Analysis for upcoming years.

ReportsnReports added a new report on The Exosome Diagnostics Market Technologies report delivers the clean elaborated structure of the Report comprising each and every business related information of the market at a global level. The complete range of information related to the Exosome Diagnostics Market Technologies is obtained through various sources and this obtained the bulk of the information is arranged, processed, and represented by a group of specialists through the application of different methodological techniques and analytical tools such as SWOT analysis to generate a whole set of trade based study regarding the Exosome Diagnostics Market Technologies.

Download a Free PDF Sample of Exosome Diagnostics Market Technologies Research Report at:

http://www.reportsnreports.com/contactme=1781607

Top Companies mentioned in this report are Capricor Therapeutics Inc, Evox Therapeutics Ltd, ReNeuron Group Plc, Stem Cell Medicine Ltd, Tavec Inc, Codiak Biosciences Inc, Therapeutic Solutions International Inc, ArunA Biomedical Inc, Ciloa 85.

This latest report is on Exosome Diagnostics Market Technologies which explores the application of exosome technologies within the pharmaceutical and healthcare industries. Exosomes are small cell-derived vesicles that are abundant in bodily fluids, including blood, urine and cerebrospinal fluid as well as in in vitro cell culture.

These vesicles are being used in a variety of therapeutic applications, including as therapeutic biomarkers, drug delivery systems and therapies in their own right. Research within this area remains in the nascent stages, although a number of clinical trials have been registered within the field.

Exosomes have several diverse therapeutic applications, largely centering on stem cell and gene therapy.

Exosomes have been identified as endogenous carriers of RNA within the body, allowing for the intracellular transportation of genetic material to target cells.

As such, developers have worked to engineer exosomes for the delivery of therapeutic miRNA and siRNA-based gene therapies. As RNA is highly unstable within the body, a number of different biological vector systems have been developed to enhance their transport within the circulation, including viruses and liposomes.

Similarly, exosomes derived from stem cells have also been identified for their therapeutic applications, particularly in the treatment of cancer and cardiovascular disease. Exosome technologies offer several advantages over existing biologic-based drug delivery systems.

Reasons to buy this Report:

Develop a comprehensive understanding of exosome technologies and their potential for use within the healthcare sector, Analyze the pipeline landscape and gain insight into the key companies investing in exosomes technologies, Identify trends in interventional and observational clinical trials relevant to exosomes.

Get this Report @ http://www.reportsnreports.com/purchasme=1781607

Scope of this Report:

What are the features of the exosome lifecycle?,How are therapeutic exosomes prepared?,How do exosome therapies in development differ in terms of stage of development, molecule type and therapy area?,Which companies are investing in exosome technologies?,How many clinical trials investigate exosomes as biomarkers, therapeutics and vectors?

Table of contents for Exosome Diagnostics Market Technologies:

1 Table of Contents 4

1.1 List of Tables 6

1.2 List of Figures 7

2 Exosomes in Healthcare 8

2.1 Overview of Exosomes 8

2.2 Drug Delivery Systems 9

2.2.1 Modified Release Drug Delivery Systems 9

2.2.2 Targeted Drug Delivery Systems 10

2.2.3 Liposomes 12

2.2.4 Viruses 14

2.2.5 Exosomes 17

2.3 The Exosome Lifecycle 18

2.4 Exosomes in Biology 18

2.5 Exosomes in Medicine 19

2.5.1 Biomarkers 19

2.5.2 Vaccines 20

2.6 Exosomes as a Therapeutic Target 20

2.7 Exosomes as Drug Delivery Vehicles 21

2.8 Therapeutic Preparation of Exosomes 21

2.8.1 Isolation and Purification 22

2.8.2 Drug Loading 22

2.8.3 Characterization 23

2.8.4 Bioengineering 23

2.8.5 Biodistribution and In Vivo Studies 23

2.8.6 Advantages of Exosome Therapies 24

2.8.7 Disadvantages of Exosome Therapies 24

2.9 Exosomes in Therapeutic Research 25

2.9.1 Exosome Gene Therapies 25

2.9.2 Exosome in Stem Cell Therapy 26

2.10 Exosomes in Oncology 27

2.10.1 Immunotherapy 27

2.10.2 Gene Therapy 28

2.10.3 Drug Delivery 29

2.10.4 Biomarkers 30

2.11 Exosomes in CNS Disease 30

2.11.1 Tackling the Blood-Brain Barrier 30

2.11.2 Exosomes in CNS Drug Delivery 31

2.11.3 Gene Therapy 32

2.12 Exosomes in Other Diseases 33

2.12.1 Cardiovascular Disease 33

2.12.2 Metabolic Disease 33

3 Assessment of Pipeline Product Innovation 36

3.1 Overview 36

3.2 Exosome Pipeline by Stage of Development and Molecule Type 36

3.3 Pipeline by Molecular Target 37

3.4 Pipeline by Therapy Area and Indication 38

3.5 Pipeline Product Profiles 38

3.5.1 AB-126 - ArunA Biomedical Inc. 38

3.5.2 ALX-029 and ALX-102 - Alxerion Biotech 39

3.5.3 Biologics for Autism - Stem Cell Medicine Ltd 39

3.5.4 Biologic for Breast Cancer - Exovita Biosciences Inc. 39

3.5.5 Biologics for Idiopathic Pulmonary Fibrosis and Non-alcoholic Steatohepatitis - Regenasome Pty 39

3.5.6 Biologic for Lysosomal Storage Disorder - Exerkine 39

3.5.7 Biologics for Prostate Cancer - Cells for Cells 40

3.5.8 CAP-2003 - Capricor Therapeutics Inc. 40

3.5.9 CAP-1002 - Capricor Therapeutics Inc. 41

3.5.10 CIL-15001 and CIL-15002 - Ciloa 42

3.5.11 ExoPr0 - ReNeuron Group Plc 42

3.5.12 MVAX-001 - MolecuVax Inc. 43

3.5.13 Oligonucleotides to Activate miR124 for Acute Ischemic Stroke - Isfahan University of Medical Sciences 44

3.5.14 Oligonucleotides to Inhibit KRAS for Pancreatic Cancer - Codiak BioSciences Inc. 44

3.5.15 Proteins for Neurology and Proteins for CNS Disorders and Oligonucleotides for Neurology - Evox Therapeutics Ltd 44

3.5.16 TVC-201 and TVC-300 - Tavec Inc. 45

4 Assessment of Clinical Trial Landscape 48

4.1 Interventional Clinical Trials 48

4.1.1 Clinical Trials by Therapy Type 48

4.1.2 Clinical Trials by Therapy Area 49

4.1.3 Clinical Trials by Stage of Development 50

4.1.4 Clinical Trials by Start Date and Status 50

4.2 Observational Clinical Trials 51

4.2.1 Clinical Trials by Therapy Type 51

4.2.2 Clinical Trials by Therapy Area 51

4.2.3 Clinical Trials by Stage of Development 52

4.2.4 Clinical Trials by Start Date and Status 53

4.2.5 List of All Clinical Trials 54

5 Company Analysis and Positioning 67

5.1 Company Profiles 67

5.1.1 Capricor Therapeutics Inc. 67

5.1.2 Evox Therapeutics Ltd 72

5.1.3 ReNeuron Group Plc 73

5.1.4 Stem Cell Medicine Ltd 77

5.1.5 Tavec Inc. 78

5.1.6 Codiak Biosciences Inc. 80

More here:
Current research: 2020 Latest Report on Exosome Diagnostics Market Report Technologies, Analyze the Pipeline Landscape and Key Companies - WhaTech...

Read More...

The Neuroscience Behind Why We Feel Stressed and What to Do About It – Thrive Global

February 3rd, 2020 4:42 pm

Stress is also an emotion, one that we share with other animals and with one another across the life span, although the causes of stress can be quite variable. Chronic stress is especially harmful. Stress is also highly variablewhat would stress out one person another takes in stride, and vice versa.

Stress can have a substantial impact on longevity. Consider an experiment with Pacific salmon. After swimming upstream to spawn, and releasing tons of glucocorticoids because of the stress, they die. Its not because theyre exhausted, or for some other biologically preprogrammed reason rather, they experience rapid aging because of the production of those stress hormones. When researchers removed the adrenal glands of the salmon, which release all those glucocorticoids, the salmon didnt die after spawning.

As biologist Robert Sapolsky says,

If you catch salmon right after they spawn . . . you find they have huge adrenal glands, peptic ulcers, and kidney lesions, their immune systems have collapsed . . . [and they] have stupendously high glucocorticoid concentrations in their bloodstreams.

The bizarre thing is that this sequence . . . not only occurs in five species of salmon, but also among a dozen species of Australian marsupial mice Pacific salmon and marsupial mice are not close relatives. At least twice in evolutionary history, completely independently, two very different sets of species have come up with the identical trick: If you want to degenerate very fast, secrete a ton of glucocorticoids.

Earlier, I mentioned my University of Montreal colleague Sonia Lupien, one of the world experts on the physiology of stress. She writes:

A week seldom passes without hearing or reading about stress and its deleterious effects on health There is a great paradox in the field of stress research, and it relates to the fact that the popular definition of stress is very different from the scientific definition of stress.

In popular terms, stress is mainly defined as time pressure. We feel stressed when we do not have the time to perform the tasks we want to perform In scientific terms, stress is not equivalent to time pressure. If this were true, every individual would feel stressed when pressured by time. However, we all know people who are extremely stressed by time pressure and others who actually seek time pressure to perform adequately (so-called procrastinators). This shows that stress is a highly individual experience.

The term stress dates back to Old English in 1303 as a variant of distress and was typically used in contexts of coercion or bribery. In modern times, stress was first used by engineers in the 1850s to describe outside forces that could put a strain on a structureheat, cold, and pressure. In the 1930s, endocrinologist Hans Selye revived this use of the term to include physiological reactions to outside forces acting on the body, such as heat, cold, and injuries that lead to pain. It wasnt until the 1960s that we began to use the word the way we use it today, to mean the psychological tension we feel from anticipating adverse events, and the biological correlates of them.

You may be familiar with homeostasis, the idea that the body seeks to maintain consistency, say, in core temperature, or blood levels of oxygen.

In the last twenty years, though, weve recognized that levels of some of our physiological systemssuch as blood sugar levels, heart rate, blood pressure, and respiration raterequire continual adjustment to function optimally. This idea of stability through change is called allostasissystems fluctuating regularly in response to lifes demands.

When a situation is perceived as being stressful (because it is novel, unpredictable, uncontrollable, or painful), two major classes of stress hormones are secreted, catecholamines and glucocorticoids. They are the first hormonal systems to respond to stress. The short-term secretion of these hormones in the face of a challenge serves an adaptive purpose and leads to the fight-or-flight response (allostasis). However, the same stress hormones that are essential for survival can have damaging effects on both physical and mental health if they are secreted over a longer period of time (called allostatic load). This happens because when these primary stress hormones are increased for long periods of time, it leads to dysregulation of other major biological pathways in the body and the brain, for example, insulin, glucose, lipids, and neurotransmitters. This in turn causes a dysregulation of various other operations, such as the immune system, the digestive system, the reproductive system, cardiac health, and mental health.

Your allostatic load is the cumulative effect of stress over time; it indexes your changes in various biomarkers of stress (blood sugar, insulin, immune markers, stress markers, etc.) in response to the events of your life. Your allostatic load can be calculated by looking at levels of certain stress biomarkers, including C-reactive protein, insulin, blood pressure, and so on. Social support is a strong predictor of allostatic load, with those having less social support showing the highest load. This is another case of not knowing the direction of causalitydoes having few or no friends increase stress? Probably. Does being stressed to begin with drive friends away? Probably. Does not having friends to comfort you cause that stress to linger instead of dissipating? Again, probably.

There are many ways to reduce stress, of course. Cognitive behavioral therapy (CBT), a form of talk therapy that teaches tools to help you cope, is one of them. Exercise, meditation, listening to music, immersing yourself in nature, and sometimes just talking to friends and having social support can help to reduce stress significantly.

If emotions are constructed, like perceptions, you might think that the brain tries to fill in and predict what is going to happen next to us emotionallyand it does. For most of us, our bodies seek to maintain a kind of emotional consistency; we internally regulate our emotions so that we dont experience extremes, because they can be emotionally and physiologically overwhelming. The central nervous system learns to anticipate stressors and to make allostatic adjustments in advance. The entire process is dynamicit is an adaptable, plastic system that responds to sensory perceptions and cognitive processing by regulating neurotransmitters and hormones to either produce or recover from stress.

Part of effective regulation is the reduction of uncertainty. Our brains try to anticipate the outcome of future events, to anticipate our needs and plan how to satisfy those needs in advance. Doing this is metabolically expensive if your life is marked by great uncertainty, and the brain can easily use up its resources, resulting in a harmful increase in allostatic load. Because allostasis is a predictive system, it can be influenced or miscalibrated by early life stressors or extreme traumas. A stable fetal and early childhood environment can lead to a well-functioning allostatic system. But adverse childhood experiences can result in a system that either overreacts or just shuts down in response to what might otherwise be considered normal daily ups and downs, creating hypervigilance, reduced resilience, and sometimes wild mood swingsa lifetime in which normal allostatic regulation is never reached. Someone who has grown up in adverse conditions will have long-term memories that contain threatening and stressful information; their default prediction for even neutral events is that something bad could happen, and this kicks in their stress response, releasing cortisol and adrenaline in advance of a great many situations that are benign. On a systems level, wed say that they are not regulating their HPA (hypothalamic-pituitary-adrenal) axisthe bodys stress response system.

When we lack this kind of regulation, because either our lives are chaotic or our neurochemical systems are not properly calibrated, we can experience mood swings; we can act irrationally or impulsively, causing ourselves harm; and we can experience a range of illnesses, diseases, and other problems across the life span. Increased allostatic load (and the resulting loss of hormone regulation) can lead to cardiovascular disease, diabetes, compromised immune function, and cognitive decline. It has also been linked to a number of psychiatric conditions, for example, depression and anxiety disorders, and burnout and post-traumatic stress disorders.

Elevated cortisol levels in response to early life stress have been linked to accelerated hippocampal atrophy among both healthy individuals and people in the early stages of Alzheimers disease. Thus, successful emotion regulation may protect not only older peoples physical well-being but their mental capacities as well.

There are many factors that influence the stress response and the health of the allostatic systemits not just the obvious things like a mother who took drugs during pregnancy or an early toddlerhood surrounded by domestic violence. These factors include:

But not everyone with a stressful childhood ends up with a psychiatric disorder, or even a high allostatic load. Stressful experiences can lead to very different outcomes, depending on the interaction of the factors listed above. Some people develop resilience, grit, tenacity, and focus. Others fall apart. The prized combination that allows some people to live more positive lives, to turn lemons into lemonade, is still unknown and an active topic of research. One thing we do know is that thoughtful parenting and/ or education can put people on the more positive path and give them better overall life outcomes, reducing the disadvantages caused by childhood adversity.

Follow ushereand subscribeherefor all the latest news on how you can keep Thriving.

Stay up to date or catch-up on all our podcasts with Arianna Huffingtonhere.

See more here:
The Neuroscience Behind Why We Feel Stressed and What to Do About It - Thrive Global

Read More...

UVA Honors Its Leading Researchers at Boar’s Head Banquet – University of Virginia

February 3rd, 2020 4:41 pm

The University of Virginias top leaders gathered Wednesday evening at the Boars Head Resort to honor faculty members from across Grounds for their outstanding contributions to their fields of study and societal impact through their research and scholarly activities.

University of Virginia President Jim Ryan presented the 2019 Research Achievement Awards to 13 UVA faculty members at the dinner event.

This is the first year of the Research Achievement Awards, Vice President for Research Melur Ram Ramasubramanian said. We believe that as a university, we are what we celebrate. We want to acknowledge the talented UVA faculty who are leaders in their fields and are impacting the world in positive ways.

Provost Elizabeth Liz Magill said, Were delighted to have a chance to celebrate the accomplishments and achievements of our faculty. From education policy to precision medicine to police-community relations, there are many different fields and individuals being honored by these awards.

Im awed and immensely grateful for the contributions the award winners have made to their respective fields and to the University of Virginia, Ryan said. Our strategic plan focuses a good deal of attention on supporting research. ... Our ultimate goal is to make it possible for researchers at UVA to do their very best work.

The awards covered excellence in research, collaboration, mentorship, public impact and innovation.

Pompano arrived at UVA in 2014 and assembled a robust research team in her lab. Pursuing new technologies and new questions, she is developing new approaches to study immunity. In the areas of immunoanalysis and immunoenineering, she is working to map out cellular activity in live tissues. Her group was recently awarded a large grant from the National Institutes of Health to develop an artificial lymph node on a microfluidic chip.

Dr. Pompano chose the road less travelled by pursuing entirely new technologies and questions, rather than the safer route of building on the experiences from her Ph.D. or postdoc work, Jill Venton, chair of the Department of Chemistry, said. This strategy required spending the first 2.5 years of her professorship laying new groundwork. Dr. Pompano is a research leader in the fields of analytical chemistry and immunoengineering.

Bassoks work is in early childhood education, and her focus has been to find a way for it to both meet high standards and make a difference in the lives of young children. To do this, she has partnered with policymakers and school districts in Virginia and Louisiana to study how early childhood education opportunities can happen at scale.

In the past four years, her work has accelerated. She has published 16 articles and received more than $6 million in grant funding. In 2017, Bassok was honored with the Presidential Early Career Award for Scientists and Engineers.

Daphna Bassok has raised the bar for the field and will motivate other scholars to do more insightful and rigorous work, said Katherine Magnuson, director of the University of Wisconsins Institute for Research on Poverty.

Alhusens research focuses on improving maternal and early infant health outcomes for disabled women and women living in poverty. Her research has been funded by the National Institutes of Health, the Health Resources and Services Administration and numerous foundations, and the goal of her work is to provide higher quality care to vulnerable populations.

She has received numerous awards for her work, including the Southern Nursing Research Society Early Science Investigator Award; the Association of Womens Health, Obstetric, and Neonatal Nurses Award for Excellence in Research; and School of Nursings Faculty Research Mentor Award.

Walsh is Lockhart B. McGuire Professor of Internal Medicine and directs the School of Medicines Hematovascular Biology Center. His research is focused on clonal hematopoiesis of indeterminate potential, or CHIP.

In his lab, he is looking at how mutations in blood cells lead to chronic diseases like heart attack and stroke. Through precision medicine, he is identifying and combatting the out-of-control multiplying process in these mutations to fight age-related diseases, as well as blood cancers like leukemia.

Walsh has published more than 350 scientific articles and he is the recipient of multiple research grants from the National Institutes of Health, including a MERIT Award. In 2011, the American Heart Association designated him a Distinguished Scientist by for his contributions to cardiovascular research.

Throughout his career, Scullys research, scholarship and teaching have focused on the science of how corrosion occurs and the engineering required to prevent it. He has conducted research and collaborated with scientists around the world in numerous industries such as energy, transportation, infrastructure, aerospace, maritime and microelectronics.

His projects include two U.S. Department of Energy Energy Frontier Research centers, two Department of Defense multi-university research initiatives, as well as grants from the National Science Foundation, PPG Industries and Axalta (formerly DuPont), and the U.S. Office of the Undersecretary of Defense.

Scully, the Charles Henderson Chaired Professor and chair of the Department of Materials Science and Engineering, also co-directs the Center for Electrochemical Science and Engineering, one of the leading centers in the world focusing on materials degradation. The center has generated more than $30 million in research funding in the last 10 years and graduates on average four to five Ph.D. students per year.

Scully is technical editor in chief of CORROSION, The Journal of Science and Engineering, the premier international research journal for the field. He serves in several capacities as an ambassador for the materials-corrosion field, including several meetings to debrief the U.S. Congress on materials degradation issues of national importance.

John Scullys contributions to corrosion can be characterized by quality, quantity and longevity, said Gerald S. Frankel, Ohio State University distinguished professor in materials science and engineering and a member of CORROSIONs editorial board. It is clear that he is a world leader, if not the world leader, in metal passivity, passivity breakdown and localized corrosion, and stress corrosion cracking.

In more his more than 20 years at UVA, Lambert has advanced the science of risk analysis and systems engineering. He has led more than 60 projects related to advanced logistics systems for a total of approximately $25 million in research funding.

Lambert, a professor in the Department of Engineering Systems and Environment, has focused on the disruption of system priorities by emergent and future conditions, including technologies, regulations, markets, environments, behaviors and missions. His work has been applied to disaster resilience, energy infrastructure, coastal protection, economic development, transportation, biofuels and Olympics planning, among other challenges.

His research has been cited more than 5,000 times across more than 200 publications. In 2019, he chaired the Fifth World Congress on Risk, convening more than 300 scientists in Cape Town, South Africa.

Professor Lambert is among the most accomplished and respected scientists of systems engineering and risk analysis in the world today, said Igor Linkov, Risk and Decision Science Team Lead for the U.S. Army Engineer Research and Development Center. Lambert in his research invented the application of scenario-based preferences in risk analysis.

Connelly, Morris and Grossman worked together on a multi-disciplinary project to examine how early life experiences affect the brain and social behaviors. The team studies the brain, as well as social and cognitive development, during the first two years of life, focusing on oxytocin and its role in social behavior. Their research has helped to illuminate gaps in our knowledge about behavioral development in humans, and helps us better understand healthy and atypical development.

They received a National Science Foundation Research Award in 2017 for their cutting-edge approach in combining epigenetic, neuroscience and behavioral methods across their three labs, and their work has led to several publications.

Moore is a busy physician-scientist with his own lab, and has recently become the division chief of Pediatric Gastroenterology, Hepatology, & Nutrition at UVA. He also co-wrote the application for a Trans-University Microbiome Initiative grant, which was funded last year by the Universitys Strategic Investment Fund in an effort to make UVA a center for microbiome research. But that has not stopped him from repeatedly aiding his colleagues and providing them with key resources when they needed them.

Three colleagues joined forces to nominate Moore for the mentorship award, mentioning his critical support, his generous sponsorship and advice, and his guidance as they dealt with grant applications and the logistics of their first accepted grants. Moore went above and beyond, donating lab space and reaching out to his networks to help them make the connections and give them a leg up in their careers.

Williams only arrived at Batten two years ago, but after the violent Unite the Right rally in Charlottesville in August 2017 he was able to immediately show the value of his research and public service engagement to the University community.

Starting before he came to the University, he has spent two decades doing research in the field on police-community relations around racial profiling, community policing and the need for law enforcement officers to work with their community on issues of public safety. In all his work, he strives to make an impact on communities by building relationships and tackling problems wherever they crop up.

Dr. Williams consistently uses his knowledge, experience and passion for the good of our city, Mindy Goodall, executive director of the Charlottesville Police Foundation, said. Charlottesville is fortunate to have gained him as a citizen and champion of police and community reconciliation.

The award for Innovator of the Year was presented to Dillingham and Ingersoll for their creation of PositiveLinks, an application designed to improve health outcomes and care for people living with HIV. They will give deliver a keynote lecture Feb. 18 in the Rotunda Dome Room.

Other researchers (in alphabetical order by school) were honored for being the top 25 in sponsored funding, top cited, national award winners, named to a national academy, or named as an outstanding researcher for their school:

Timothy Beatley, PlanningBarbara Brown Wilson, PlanningMona El Khafif, Urban & Environmental Planning

Jessica Connelly, PsychologyRita F. Dove, EnglishKevin Everson, ArtTobias Grossman, PsychologyL. Ilse Cleeves, AstronomyNitya Kallivayalil, AstronomyLee M. Lockwood, EconomicsJames P. Morris, PsychologyKen Ono, MathematicsRebecca R. Pompano, ChemistryMarilyne Stains, ChemistryAlan S. Taylor, History

Christopher Barrett, Director

David G. Mick, Marketing

Derrick P. Alridge, Leadership, Foundations and PolicyDaphna Bassok, Leadership, Foundations and PolicyRobert Q. Berry, Instruction and Special EducationCatherine Bradshaw, Human ServicesBenjamin L. Castleman, Leadership, Foundations and PolicyNancy L. Deutsch, Youth-NexJason Downer, Human ServicesSara E. Rimm-Kaufman, Leadership, Foundations and PolicyWilliam J. Therrien, Instruction and Special EducationArt Weltman, KinesiologyJoanna Lee Williams, Leadership, Foundations and PolicyAmada P. Williford, Human Services

Thomas H. Barker, Biomedical EngineeringHilary Bart-Smith, Mechanical and Aerospace EngineeringCraig H. Benson, Environmental EngineeringSteven M. Bowers, Electrical and Computer EngineeringJames T. Burns, Materials ScienceBenton H. Calhoun, Electrical and Computer EngineeringJoe C. Campbell, Electrical and Computer EngineeringGeorge J. Christ, Biomedical EngineeringJason L. Forman, Center for Applied BiomechanicsJeffery W. Holmes, Biomedical EngineeringPatrick E. Hopkins, Mechanical and Aerospace EngineeringKevin A. Janes, Biomedical EngineeringJames H. Lambert, Systems and EnvironmentXiaodong (Chris) Li, Mechanical and Aerospace EngineeringPamela M. Norris, Mechanical and Aerospace EngineeringElizabeth J. Opila, Materials ScienceMatthew B. Panzer, Mechanical and Aerospace EngineeringJohn R. Scully, Materials ScienceKevin Skadron, Computer ScienceMary Lou Soffa, Computer ScienceJohn A. Stankovic, Computer ScienceMalathi Veeraraghavan, Electrical and Computer Engineering

Brian N. Williams, Public PolicyJay Shimshack, Research Dean

Jayakrishna Ambati, OphthalmologyRuth Bernheim, Public Health SciencesAlison K. Criss, Microbiology /GIDIRebecca Dillingham, Infectious DiseasesLinda R. Duska, Obstetrics/Gynecology OncologyAnindya Dutta, Biochemistry/Molecular GeneticsW. Jeff Elias, NeurosurgeryEdward H. Egelman, Biochemistry/Molecular GeneticsRobin A. Felder, Clinical PathologyEric R. Houpt, Infectious DiseasesKaren Ingersoll, Psychiatry and Neurobehavioral SciencesKaren C. Johnston, NeurologyJaideep Kapur, NeurologyAnne K. Kenworthy, Molecular Physics and BiophysicsJonathan Kipnis, NeuroscienceRobert C. Klesges, Public Health SciencesBoris P. Kovatchev, Psychiatry and Neurobehavioral SciencesThomas P. Loughran, Oncology and MedicineColeen A. McNamara, Internal and Cardiovascular MedicineWladek Minor, Molecular Physics and BiophysicsSean R. Moore, PediatricsJames P. Nataro, PediatricsImre Noth, Internal and Pulmonary MedicineMark D. Okusa, NephrologyGary K. Owens, Cardiovascular Research, Molecular Physiology and Biological PhysicsKevin A. Pelphrey, NeurologyWilliam A. Petri, Internal Medicine and Infectious DiseasesKodi S. Ravichandran, MicrobiologyPatricio E. Ray, PediatricsStephen S. Rich, Public Health SciencesLukas K. Tamm, Molecular Physics and BiophysicsGregory C. Townsend, Internal Medicine and Infectious DiseasesKenneth Walsh, Internal and Cardiovascular MedicineKatharine Hsu Wibberly, Public Health SciencesMichael C. Wiener, Molecular Physics and BiophysicsMark Yeager, Molecular Physics and BiophysicsJames C. Zimring, Pathology

Jeanne L. Alhusen, Nursing

View post:
UVA Honors Its Leading Researchers at Boar's Head Banquet - University of Virginia

Read More...

Podcast: Why do I have to get a flu shot every year? – Chemical & Engineering News

February 3rd, 2020 4:41 pm

Credit: Shutterstock

The flu virus, shown here as an illustration, evolves quickly, helping it escape our vaccines and immune systems.

Credit: Bethany Halford/C&EN

Although the Wuhan coronavirus is dominating headlines across the globe, influenza kills hundreds of thousands of people worldwide each year. In the US, millions of people roll up their sleeves annually for a flu shot. But this ritual is confusing for many. Why is it that most vaccines are effective for a lifetime while the flu vaccine is only effective for a year? And why do we sometimes get the flu even when weve gotten the vaccine? The answer is evolution: the flu is constantly evolving to evade our immune systems. In this episode of Stereo Chemistry, scientists who study flu evolution and pandemics explain what makes fighting the flu so difficult.

Subscribe to Stereo Chemistry now on Apple Podcasts, Google Podcasts, or Spotify.

The following is the script for the podcast. We have edited the interviews within for length and clarity.

StefanieOlsen: This is the info sheet from the CDC on the flu vaccine. Kind of who should get it, why you should get it, who shouldnt get it, what to expect, whats normal, whats not normal. All that sort of stuff. So Ill give you that for your perusal.

Matt Davenport: Thats Stephanie Olsen. Shes a nurse practitioner at a MinuteClinic in Cambridge, Massachusetts. Thats where C&EN senior correspondent Bethany Halford and her son went to get the flu vaccine back in the fall.

Stefanie Olsen: Are you a righty or a lefty?

Bethanys son: Im a righty.

Stefanie Olsen: OK. Cool. Well use your left arm. Find this big muscle. Here we go: clean, clean, clean. OK. One, two, three. Good job. Done. There you are.

Bethanys son: One tiny sting.

Stephanie Olsen: One tiny sting and done. Good job.

Matt: That didnt seem so bad.

Bethany Halford: It really wasnt bad at all.

Matt: Well hello there, Bethany.

Matt: Thanks so much for bringing your recorder along with you for the flu shot.

Bethany: No problem. Im actually glad I made this recording because I plan to replay it for my son every year just before we go to get our shots. Its a process thats met with no small amount of dread. But the Centers for Disease Control and Prevention recommend that most people get the flu vaccine every year.

Matt: So you and your son went in September. Its now almost February. Lets pretend youre a podcast cohost who has not gotten their flu shot. Is it too late?

Bethany: Well, CDC does recommend getting the flu vaccine by the end of October because it takes a few weeks for your body to create the antibodies that fight the virus. And this year the flu seems to be ramping up early. But doctors say that even now, its not too late to get the vaccine.

And were right in the thick of flu season. During the last flu season in the Northern Hemisphere, from October 2018 to May 2019, as many as 42.9 million people in the US got sick with the flu; 647,000 of those people were hospitalized, and 61,200 died.

Matt: Those numbers are from CDC, and theyre pretty typical for a flu season. So influenza is this huge problem, and its been that way for a long time. And its not going away, right? Unlike other vaccines, the flu shot is something you should get every year. And sometimes that flu shot isnt going to work.

Bethany: And this episode is all about how the flu outfoxes our vaccines and immune systems: through evolution. The flu virus is constantly changing itself to evade our immune systems response. And the virus changes enough each yearsometimes even enough within a single flu seasonthat the vaccine weve created is simply no longer effective.

Matt: So Beth, at the risk of sounding like a chemist right after the Nobel Prize announcement, isnt that a little more biology than chemistry?

Beth: Well, yes. But the evolutionary changes to influenza are really chemical changes. Theyre mutations in the viruss RNA that lead to amino acid changes in the viruss proteins. So there is plenty of chemistry to dig into. Were going to talk to three experts to learn how those changes happen and how studying them could help protect us better in the future. Well also look at what happens at the molecular level when a certain strain of flu becomes a pandemic that spreads quickly across the globe.

And were going to start by talking to a chemist.

Jesse Bloom: Hi, my name is Jesse Bloom.

Bethany: Jesse studies protein evolution at the Fred Hutch Cancer Research Center in Seattle. Hes also affiliated with the University of Washington and the Howard Hughes Medical Institute.

Sign up for C&EN's must-read weekly newsletter

Jesse Bloom: I actually did my PhD in chemistry, working with Frances Arnold, who studied the directed evolution of proteins.

Matt: Wait. The Frances Arnold?

Bethany: Yes, the Frances Arnold from Caltech who won a share of the 2018 Nobel Prize in Chemistry.

Jesse Bloom: After working with Frances, I remained really interested in protein evolution, but I wanted to study the evolution of proteins in a context with biomedical significance. So my lab now focuses on viral evolution, particularly the evolution of influenza virus. And the reason for that is these viruses evolve their proteins very rapidly.

Bethany: Jesse says there are really two main forms of flu evolution. One is called antigenic drift, and the other is called antigenic shift.

Matt: I like the rhyme scheme.

Bethany: Catchy, right? So lets start with the drift.

Jesse Bloom: Antigenic drift is the much more common form of flu evolution, and that essentially can be thought of as last years strain or a couple years ago strain of human flu evolving to be a little bit different, each year. Our immune systems are actually great at mounting antibody responses that protect us against flu, and theres pretty good evidence that if youre infected with a particular strain of flu, your body will provide very good, long-lasting immunity to that particular strain of flu.

Bethany: So, if our bodies provide long-lasting immunity, Im sure youre wondering why we still have to get a flu shot every year.

Bethany: Heres how Jesse explains it.

Jesse Bloom: The challenge with flu is the virus evolves very rapidly. In particular, the positions on the viral proteins that are recognized by our immune system, primarily by our antibodies, change, and they change enough that after about 5 years, many of those antibodies sort of dont work anymore. So antigenic drift and what typically is responsible for the seasonal influenza outbreaks is the virus that was present last year or the year before changing a little bit so that after about 5 years, its mostly evaded your immune systems memory.

Bethany: Now, I told you this was a chemistry story, so before we go any further, let me give you a picture of what Jesse is talking about. There are two proteins that scientists think are most important with respect to immunitywe create antibodies that bind to these two proteins in order to mount a defense against influenza. The first protein is hemagglutinin, which helps the influenza virus latch on to cells and infect them. The second is neuraminidase, which helps cleave new virus particles away from infected cells so the virus can continue to attack healthy cells. If you think of the flu virus as a sort of blob, hemagglutinin and neuraminidase stick out of that blob like pins in a pin cushion. Scientists name different strains of flu based on which types of hemagglutinin and neuraminidase they have.

Matt: Are those the proteins were referring to when we talk about like H1N1 influenza or H3N2 influenza ?

Bethany: Thats right. Right now, there are three types of flu circulating in humans: H1N1, H3N2, and influenza B.

Jesse Bloom: I mean, they all evolve pretty fast, like, compared to almost anything else we encounter in life. But definitely H3N2 evolves the fastest. H1N1 is sort of in the middle. And influenza B is the slowest, although influenza B is still pretty fast. And this plays outfor instance, influenza B is most known for infecting children because its relatively less good at escaping immunity. Obviously children dont have any immunity at all, if they havent been vaccinated, anyway, to escape. So theyre always going to be susceptible. And then H3N2 is sort of best at infecting older peopleits also good at infecting younger people, but its good at affecting all agesand probably the reason is that H3N2 is evolving the fastest. So it can best get away from that prior immunity.

Matt: So, when he says something is evolving fast, what does that mean on a molecular level?

Bethany: Take H3N2 influenza, for example. The hemagglutinin protein on H3N2 will change three to four of its amino acids every yearan evolution rate that Jesse says is extraordinarily high.

Matt: OK, so I understand why these gradual changesthe antigenic driftmake it so that we have to get the flu vaccine every year. But why dont we need frequent vaccinations for all RNA viruses? Like measles?

Bethany: CDC recommends just two shots for measles as part of whats called the MMR vaccine. It protects you from measles, mumps, and rubella. You get the first shot when youre about a year old, the other when youre about 5 years old. It seems that the parts of the measles virus that the immune system goes afteror makes antibodies forjust dont seem to be changing that much. We know this because before the measles vaccine existed, people who got measles only got it once in their lifetime. And in the 50 or so years since weve had the vaccine, people who get it dont get measles. As Jesse explains, theres no reason measles cant drift like the flu, thats just not what we see. So the thinking is that measles is mutating, but not in a way that helps the virus. Its not as wily as influenza.

Matt: That is super interesting. But . . .

Bethany: How does knowing this help fight the flu?

Bethany (in interview): Can you talk a little bit about how studying flus evolution can help us fight the virus?

Jesse Bloom: So first, the way the flu vaccines are made currently, theres sort of this forecasting problem. We know that the vaccine works better when the vaccine is more similar to the virus that is infecting people. But it takes a while, maybe about 9 months, to really produce enough vaccine to be given to everybody. And because the virus is changing a little bit every year, you have to predict what virus is going to be circulating 9 months in the future. So you basically have to say, How do we think the virus is going to be evolving? And so by understanding the viruss evolution, we can make better decisions about which flu strain should go in the flu vaccine. And when those decisions are better, the vaccine will work better.

Bethany (in studio): Jesse also says that studying evolution helps scientists understand which parts of the flu virus change the least or mutate less frequently. It could be that some of these less-dynamic parts of the flu could become targets for longer-lasting vaccines.

Matt: I can dig it. So whats driving the evolution? Whats making the proteins change?

Bethany: Good question. Lets get another influenza evolution expert to chime in.

Adam Lauring: So Im Adam Lauring. Im an associate professor here at the University of Michigan. I am a physician-scientist, which means I spend part of my time actually doing clinical work in infectious diseases. But most of my time I spend actually running a research lab, in which we study virus evolution, including influenza virus. Evolution is really for me kind of the be all, end all in the problem of influenza. Evolution has immediate and real-world impacts.

Bethany (in interview): When we say flu is evolving, what is actually going on?

Adam Lauring: At its simplest, the flu will mutate, and that means that its making changes in its genome which will lead to changes in its proteins, and those protein changes will make the virus different. And then theres selection. And so viruses that are better at doing what viruses do will take over, and the viruses that are less fit will die away. And so its kind of like you learned when you first learned biology: its survival of the fittest, or the best one wins. And so the virus is mutating all the time, and the ones who are best able to make copies of themselves and spread from person to person are going to become the new viruses and replace the old ones.

Bethany (in studio): Now, flu evolution is a complex process thats influenced by many things. But one thing that helps flu evolve especially fast is that its an RNA virus. That means its genes are stored in ribonucleic acid, or RNA. RNA viruses, in general, evolve faster than viruses that store their genetic information in DNA. Both DNA and RNA viruses have proteins called polymerases, and the job of these proteins is to make copies of the viruss genetic code. DNA polymerases, however, have a built-in proofreading function. They can check their work for mistakes and correct them. RNA polymerases dont do that.

Adam Lauring: Because of this, most RNA viruses have mutation rates or error rates that are about a thousandfold higher than for DNA viruses. That means that an RNA virus can generate mutants way more quickly, and then some of those mutants will confer an advantage to the virus, and that will lead to faster evolution.

Bethany: Adam says that all of the flu viruss proteins can and are evolving but that mutations to the hemagglutinin and neuraminidase proteinsthe Hs and Nsare the ones that matter most.

Adam Lauring: Mutations in those proteins tend to make a bigger difference in terms of whether the virus succeeds or fails, and a major reason is those proteins, theyre on the surface of the virus, and so theyre targeted by the immune system. And so you have antibodies targeting those proteins. So if a virus figures out a way to escape those antibodies, it will do better than its brothers and sisters.

Bethany: So weve been talking a lot about mutation, but Adam also points out that theres a lot more to evolving quickly than just how fast a virus mutates. For instance, the number of people infected could play a role. The example he gave me is the more people infected, the more opportunities the virus has to evolve. Thats because a greater diversity of people would mean a wider variety of immune systems, and the virus would need to generate new or different versions of itself to survive.

Adam Lauring: Broad strokes, flu does evolve quickly but maybe not for the reasons we typically think. And there are probably subtleties yet to be uncovered.

Bethany: To try to uncover some of those subtleties, Adams lab has been collaborating with Arnold Monto and Emily Martin, who are epidemiologists at the University of Michigan School of Public Health. For about 8 years, they have been following 300 or so Michigan families to see what viruses are circulating among them and how their immunity changes over time. The flu virus is part of this sampling. As part of the work, they collect nose and throat swabs anytime someone from one of those families gets sick.

Matt: Oh, wait. Everyone gets swabbed when anyone gets sick?

Bethany: Right. Heres why.

Adam Lauring: Its really kind of a slice of what flu is doing locally, and youre not really biased by only getting sick people or people who tend to go to the doctor.

Bethany: Adams group realized that the collection of samples the epidemiologists had accumulated gave them a great opportunity to see how flu viruses were evolving outside of a laboratory. So they raided the freezer and then did in-depth genetic sequencing of all the influenza viruses they found.

Adam Lauring: The virus makes a lot of mutations. Everybodys flu viruses, their population is actually a little bit different. So I could have the flu and you could have the flu and wed be in the same room, but our flu viruses might be a little bit different if you really looked hard enough. And so what were able to do with our sequencing is really understand those subtle differences in kind of the overall flu mixture that each person has in them.

Bethany: And then they compare, see which versions are actually being transmitted from person to person.

Adam Lauring: And that is really important in understanding evolution, right, because you may generate all sorts of cool viruses inside you. But if they dont make it onto the next person, its kind of a dead end. And that virus could be the most awesome virus there is, but if it doesnt get transmitted, its gone forever. And so what we tried to do is understand exactly how many viruses kind of go across from one person to the next. And we found that its actually a really small number. Its hard for a new virus to kind of make it both within a host and to get on to the next host.

Matt: Thats wild. So, if its hard for a new flu virus to survive within a host and also hard for that virus to make it to the next host, how is that much evolution happening? Why do we still need to get the flu vaccine every year?

Bethany: Adam says its really just a numbers game. Hundreds of millions of people are infected with the flu each year, which gives the virus lots of opportunities to make a successful mutant.

Adam Lauring: One analogy I give is flu viruses are sort of like people playing the slot machines. And so most of the time the virus is losing when you talk about kind of on an individual host or in a household. But if you have a hundred million people playing the slot machines, youre going to hit the jackpot with some frequency.

Matt: I like that analogy. Its kind of empowering. Like humanitys the house and the flus a rube giving us their money.

Bethany: Sure. Just remember, the flus currency isnt money. Its trying to survive, and when it thrives, it makes you sick. So its not like a casino catches fire whenever someone hits the jackpot. And the analogy really works best for antigenic drift. Weve got a whole other type of evolution to talk aboutremember how I said there were two? This second kind leads to pandemics, and well talk about it . . . after the break.

Matt: Hey. Sorry to leave you hanging like that, but dont worry. Theres going to be a silver lining. Were not just going to be like. The flu. Yeah, its brutal. Welp, see you later.

Thats the great thing about covering chemistry. Its that were not just talking about problems, were talking to the people solving them.

In fact, earlier this month, Leigh Krietsch Boerner wrote a phenomenal piece for C&EN about how researchers are examining the effectiveness of flu shots, especially vaccines made using eggs.

Weve got a link to Leighs story in the description, but if you want to inoculate yourself against the possibility of missing more of our great coverage, sign up for our newsletter. Well send a weekly dose of chemistrys biggest goings-on right to your inbox. Head to cenm.ag/newsletter to subscribe.

Matt: So, Bethany, you said there were two main forms of influenza evolution: antigenic drift, which weve been talking about. But there was also, what was that rhyme again?

Bethany: Antigenic shift.

Matt: Right, antigenic shift. Whats that?

Bethany: When the influenza virus undergoes antigenic shift, it experiences a much larger change. It changes so much, in fact, that we usually dont have much of an antibody arsenal built up to fight it.

Matt: And how does it make such a dramatic shift?

Bethany: So, antigenic shift can happen a few different ways. Another way flu is different from measles is that flu doesnt just circulate in people. It also circulates in many other animal species, like pigs and whales and birds.

Bethany: Yeah. But it turns out, the vast majority of influenza strains that exist in the world actually are circulating in wild waterfowl. And sometimes those viruses will jump from birds to people or from birds to pigs to people, for example.

A single animal can also get infected by two different strains of flu from two other animals. Those viruses then swap some of their genetic material to make a new, third strain.

However its happening, when the flu is evolving outside of humans, vaccine makers and our immune systems are largely blind to what these viruses look like. That means if one of these viruses does jump to humans, it could hit us hard. Were talking global pandemic here. Thats because the virus would look very different from anything our immune systems have seen, and we might have little or no ability to recognize the strain or fight it.

Matt: That sounds gnarly. And a little scary.

Bethany: It is. Global flu pandemics occur when a novel influenza virus spreads quickly around the globe.

Matt: Is that why were so concerned when people get infected with flu on chicken farms, for example?

Bethany: Yes. And you may have heard about the recent outbreak that started in Wuhan, China. Thats a coronavirusso, not the flubut its another example of a pathogen that made the jump into people from animals. But theres actually a lot more to becoming a global pandemic than just generating a virus people havent seen before. Lets talk to someone who studies how global influenza pandemics emerge.

Seema Lakdawala: My name is Seema Lakdawala. I am an assistant professor at the University of Pittsburgh in the School of Medicine and the Department of Microbiology and Molecular Genetics.

Bethany: Seema says there are several hurdles a new virus has to overcome before it can become a pandemic

Seema Lakdawala: And the first hurdle is that they have to be able to infect the human host. And so its hard for some viruses that may be emerging in birds to infect the human hosts unless theres access. And so it doesnt happen as readily, but that does happen in many occasions.

Matt: That makes sense, right? Its kind of like what Adam was talking about earlier. How you can have all these cool bugs being made in humans, but if they cant survive, and if they cant make the leap in humans, they really arent a threat.

Bethany: Right. And Seema says the next hurdle, after a virus has made it into a human, is the virus being able to survive in respiratory systems. In humans, the flu is a respiratory infection, but in birds, its gastrointestinal. Influenza virus can move from birds to people through contact with feces or other secretions, butdont worrynot from eating poultry or eggs.

Read more from the original source:
Podcast: Why do I have to get a flu shot every year? - Chemical & Engineering News

Read More...

Colombia’s first ever science minister faces calls to resign over fungi-based cancer treatment – Science Magazine

February 3rd, 2020 4:41 pm

Mabel Gisela Torres Torres, Colombias new minister of science, is under fire for giving cancer patients a fungi extract.

By Rodrigo Prez Ortega Feb. 3, 2020 , 4:33 PM

In December 2019, when Colombian President Ivn Duque Mrquez appointed molecular biologist Mabel Gisela Torres Torres to be the first head of the newly created Ministry of Science, Technology and Innovation, only a few of the nations researchers knew who she was.

Torres was a total stranger, recalls Gustavo Quintero Hernndez, dean of the School of Medicine and Health Sciences at Del Rosario University.

Now, Torres is obscure no moreand finds herself at the center of controversy that has included calls for her resignation.

The storm began on 10 January, 1 day before Torres took office, when the newspaper El Espectador published a story raising questions about her research record. The story reported a claim Torres made, during a broadcast interview in August 2019, that she had essentially run an informal, uncontrolled clinical trial with cancer patients. Torres said she had given a brew made from a fungus she was studying to patients with cervical, breast, and brain cancer, and that their health had improved. She didnt seek formal ethical, safety, and efficacy reviews prior to starting the work because it would have taken too long, and because she believed the fungus posed no threat to human health, she told the same paper the next day. She also said she hasnt published the extensive data she has claimed to collect from such studies as an act of rebellion, although she plans to submit an application to patent her findings.

Torress remarks drew immediate condemnation from many Colombian scientists, with more than six scientific and medical societies issuing statements of concern. We cannot accept derogatory attitudes in relation to the scientific method, the laxity with ethical codes of scientific experimentation, and of disdain for the process of publication and peer review, said the Colombian Academy of Exact, Physical and Natural Sciences in a statement.

We can only regret that the course of how to do science in our country has been left in the hands of pseudoscience, said the Colombian Association of Medical Faculties (ASCOFAME) in a statement.

Some researchers believe Torres should step down. We want her to resign, says Juan Manuel Anaya, an immunologist at Del Rosario University. Her act of offering a hope for patients with cancer has to be criticized, he says, because it was unethical and eventually dangerous.

Torres did not respond to requests for comment from ScienceInsider. But on 30 January she told the newspaper El Tiempo that she would not resign. I have always believed that [being appointed minister] is no accident, she said.

In an earlier statement, Torres defended her work, which focused on the taxonomy, genetics, and bioactive compounds of fungi in the genus Ganoderma. At no time have I stated in a simplistic way that this species is the cure against cancer, she wrote in the 18 January statement. I have not offered a medicine, let alone commercialized it. I have rigorously observed the ethics protocols established for scientific experimentation in general and those that apply specifically in my disciplinary field.

The controversy had disheartened many researchers who just 1 year ago were celebrating a successful push to create Colombias first science ministry. It has been very frustrating. We hoped that we get started on the right foot, says Lucy Gabriela Delgado Murcia, an immunologistat the National University of Colombia, Bogot. She was part of the Misin Internacional de Sabios, an advisory group of 47 members of the national and international scientific community that helped set goals for the new ministry.

Its very astonishing that a person who has difficulty [adhering to] the scientific method is the person that will lead the science of this country, says physician Quintero Hernndez, president of the board of ASCOFAME.

Others are withholding judgment. Laura Guzmn Dvalos, who was Torress Ph.D. adviser at the University of Guadalajara, described Torres as a brilliant student and notes that studies have suggested metabolites in the fungi Torres studied have shown potential as a cancer treatment in cell and mouse studies. And she says that although she is not aware of any clinical studies in humans, I dont think its a bad idea that Torres gave her fungi brew to patients. The fungi is meant to complement, not replace, traditional cancer treatments such as chemotherapy, she notes. She herself takes a supplement derived from fungi, Dvalos says, and many professors at her university give the supplements to cancer patients.

Marine biologist Juan Armando Snchez Muoz of the University of Los Andes, who was also a member of the Misin Internacional de Sabios, says he wishes Torres would be more emphatic on her comments on the scientific method and medical ethics. But he also notes that, in her current position, her job isnt to do science but to administrate research programs and funding. We have to give her chance to demonstrate that she can do it, he says.

Excerpt from:
Colombia's first ever science minister faces calls to resign over fungi-based cancer treatment - Science Magazine

Read More...

Study likens Earth’s evolution to creation of Frankenstein’s monster – Harvard Gazette

February 3rd, 2020 4:41 pm

Modern biology relies on relatively homogeneous building blocks to encode genetic information, said Seohyun Kim, a postdoctoral researcher in chemistry and first author on the paper. If Szostak and Kim are right and Frankenstein molecules came first, why did they evolve to homogeneous RNA?

Kim put them to the test, pitting potential primordial hybrids against modern RNA and manually copying the chimeras to imitate the process of RNA replication. Pure RNA, he found, is more efficient, more precise, and faster than its heterogeneous counterparts. In another surprising discovery, Kimfound that the chimeric oligonucleotides like ANA and DNA could have helped RNA evolve the ability to copy itself. Intriguingly, he said, some of these variant ribonucleotides have been shown to be compatible with or even beneficial for the copying of RNA templates.

If the more efficient early version of RNA reproduced faster than its hybrid counterparts, it would, over time, out-populate its competitors. Thats what the Szostak team theorizes happened in the primordial soup: Hybrids grew into modern RNA and DNA, which then outpaced their ancestors and, eventually, took over.

No primordial pool of pure building blocks was needed, Szostak said. The intrinsic chemistry of RNA copying would result, over time, in the synthesis of increasingly homogeneous bits of RNA. The reason for this, as Seohyun has so clearly shown, is that when different kinds of nucleotides compete for the copying of a template strand, it is the RNA nucleotides that always win, and it is RNA that gets synthesized, not any of the related kinds of nucleic acids.

So far, the team has tested only a fraction of the possible variant nucleotides available on early Earth. So, like those first bits of messy RNA, their work has just begun.

Read the rest here:
Study likens Earth's evolution to creation of Frankenstein's monster - Harvard Gazette

Read More...

Academia Gets The First Production Cray Shasta Supercomputer – The Next Platform

February 3rd, 2020 4:41 pm

Indiana University is the proud owner of the first operational Cray Shasta supercomputer on the planet. The $9.6 million system, known as Big Red 200 to commemorate the universitys 200th anniversary and its school colors, was designed to support both conventional HPC as well as AI workloads. The machine will also distinguish itself in another important way, being one of the worlds first supercomputers to employ Nvidias next-generation GPUs.

We will get to that in a moment.

Although Big Red 200 is the first Shasta system to be up and running, it is one in a pretty long line of machines that Cray, now a unit of Hewlett Packard Enterprise, hopes to deploy in the coming decade based on this architecture. Notably, Shasta was tapped by the Department of Energy to be the basis of its first three exascale systems. Later this year, Berkeley Lab will be the recipient of a pre-exascale Shasta system, in this case, the NERSC-9 machine, code-named Perlmutter. Big Red 200 will have just a fraction of the capacity of those super-sized systems, but the use of Nvidias upcoming GPUs will make it a unique resource for anyone with access to the machine.

Those GPUs are expected to be plugged into Big Red 200 later this summer that according to Brad Wheeler, vice president for information technology and chief information officer. The exact nature of those GPUs is unknown, which is understandable, inasmuch as Nvidia has not announced they are even on the way. The most likely explanation is that they will be the next-generation Tesla GPUs based on the upcoming Ampere architecture.

Our best guess is that Ampere GPUs will be unveiled in March at Nvidias GPU Technology Conference, which suggests they will be ready to ship in time for their summer rendezvous at IU. Note the Berkeley Labs Perlmutter system is also in line for these next-generation Nvidia chips in the same general timeframe as the Big Red 200 upgrade.

According to Wheeler, the addition of the new GPUs was something of a fluke. The original plan was to outfit the system with Nvidia V100 GPUs, which would have brought its peak performance to around 5.9 petaflops. But as they were getting ready to receive the system, an opportunity presented itself to wait a bit longer and move up to Nvidias newer technology. At the last minute, we decided to take the machine in two phases, explained Wheeler.

The first phase of the system the one currently up and running at IU is comprised of 672 dual-socket nodes powered exclusively by CPUs, in this case, Rome Epyc 7742 processors from AMD. (Yes, AMD ate Intels lunch yet again in another high-profile HPC deal). The second phase of the new IU supercomputer will commence this summer and will bring additional AMD Rome nodes online and these will be equipped with one or more of the next-generation Nvidia GPUs. When all is said and done, Big Red 200 is expected to deliver close to 8 petaflops.

As a result of the two-phase approach, waiting a few more months yielded an additional two petaflops of performance, even though, according to Wheeler, they ended up buying a smaller number of GPUs. (The newer silicon is expected to deliver 70 percent to 75 percent more performance than that of the current generation.) Perhaps more importantly, having the latest and greatest GPUs will help attract additional research dollars to the university, especially for AI-enabled research.

Speaking of which: The university is particularly interested in pointing out the artificial intelligence capabilities of the new machine, claiming that it will be the fastest university-owned AI supercomputer. Of course, until the new GPUs are unveiled, we wont really know the extent of those capabilities, but they are almost sure to be more impressive than that of the current V100, which is certainly no slouch in that regard. Although, Big Red 200 is expected to deliver about eight times the peak performance of its predecessor, Big Red 2, Wheeler told us that for AI work, it will be a far bigger jump.

That is because Big Red 2, which was installed in 2013, was equipped with the now-ancient Kepler Tesla K20 GPU accelerators. That processor topped out at 1.18 FP64 teraflops and 3.52 FP32 teraflops. It had no specialized logic for machine learning, such as the Tensor Cores employed in the current Volta GPUs, or even FP16 capability, as is coming to many different compute engines in both the raw and bfloat16 flavor invented by Google and increasingly in favor. Big Red 2 was dismantled in December 2019 to make room for its successor, after having served IU researchers for seven years.

The new GPUs are certain to get a workout at IU. Researchers there are already applying AI techniques in areas like medical research and molecular genetics, cybersecurity, fraud prevention, and neuroscience, to name a few. Of course, the new system will also be expected to support more conventional HPC workloads, including the usual suspects such as climate modeling, genomic analysis, and particle physics simulations. Depending on the code employed, the GPUs could come in handy in these domains as well. There were so many things being done algorithmically to really start to enable GPU use across a range of research disciplines and methods, notes Wheeler.

To make up for the slight delay in GPU deployment, the university is upgrading its Carbonate cluster with 96 additional Tesla V100 accelerators. It was previously outfitted with 16 P100 GPUs and 8 V100 GPUs according to the systems webpage, and was the main resource for IU researchers that needed modern AI hardware. The additional V100s will provide some extra capacity until phase two of Big Red 200 comes online.

Featuring highlights, analysis, and stories from the week directly from us to your inbox with nothing in between.

Subscribe now

See more here:
Academia Gets The First Production Cray Shasta Supercomputer - The Next Platform

Read More...

Study finds THC rises in hemp due to genetics, not growing conditions – New Food

February 3rd, 2020 4:41 pm

Researchers from Cornell University studied hemp from two sites to determine whether the difference in growing conditions affected THC levels.

As the hemp industry grows, producers face the risk of cultivating a crop that can become unusable and illegal if it develops too much of the psychoactive chemical THC, according to researchers from Cornell University. The researchers have determined that a hemp plants propensity to go hot become too high in THC is determined by genetics, not as a stress response to growing conditions, which is said to be contrary to popular belief.

[People thought] there was something about how the farmer grew the plant something about the soil, the weather getting too hot, or drought, said Larry Smart, Horticulture Professor and senior author of the study, but our evidence from this paper is that fields go hot because of genetics, not because of environmental conditions.

Smart and his team conducted field trials at two sites, studying the genetics and chemistry of 217 hemp plants. They found that differences in growing conditions between the sites had no significant influence on which chemicals the plants produced. But when they compared the CBD (cannabidiol) and THC levels of each of the plants against their genomes, they found very high correlation between their genetics and the chemicals they produced.

Jacob Toth, first author of the paper and a doctoral student in Smarts lab, developed a molecular diagnostic to demonstrate that the hemp plants in the study fell into one of three genetic categories: plants with two THC-producing genes; plants with two CBD-producing genes; or plants with one gene each for CBD and THC.

To minimise the risk of plants going hot, hemp growers ideally want plants with two CBD-producing genes, the researchers explained.

While conducting the research, the team also discovered that as many as two-thirds of the seeds they obtained of one hemp variety which were all supposed to be low-THC hemp produced THC above legal limits.

The researchers explained that they hope their work will help address this problem by providing breeders with easy-to-use genetic markers that can be utilised much earlier on seedlings and both sexes of plants.

View original post here:
Study finds THC rises in hemp due to genetics, not growing conditions - New Food

Read More...

Human Genetics Market 2020 Projections, SWOT Analysis, Size and Forecast by 2026 | QIAGEN, Agilent Technologies, Thermo Fisher Scientific – Jewish…

February 3rd, 2020 4:41 pm

Global Human Genetics market 2020 in depth research by industry competitive landscape, size, growth rate, strategy, trends and forecast 2026.

The report on the global Human Genetics market is just the resource that players need to strengthen their overall growth and establish a strong position in their business. It is a compilation of detailed, accurate research studies that provide in-depth analysis on critical subjects of the global Human Genetics market such as consumption, revenue, sales, production, trends, opportunities, geographic expansion, competition, segmentation, growth drivers, and challenges.

Get the Sample of this [emailprotected]https://www.qyresearch.com/sample-form/form/1494807/global-human-genetics-market

As part of geographic analysis of the global Human Genetics market, the report digs deep into the growth of key regions and countries, including but not limited to North America, the US, Europe, the UK, Germany, France, Asia Pacific, China, and the MEA. All of the geographies are comprehensively studied on the basis of share, consumption, production, future growth potential, CAGR, and many other parameters.

Market Segments Covered:

The key players covered in this studyQIAGENAgilent TechnologiesThermo Fisher ScientificIlluminaPromegaLabCorpGE

Market segment by Type, the product can be split intoCytogeneticsPrenatal GeneticsMolecular GeneticsSymptom Genetics

Market segment by Application, split intoResearch CenterHospitalForensic Laboratories

Regions Covered in the Global Human Genetics Market:

The Middle East and Africa (GCC Countries and Egypt) North America (the United States, Mexico, and Canada) South America (Brazil etc.) Europe (Turkey, Germany, Russia UK, Italy, France, etc.) Asia-Pacific (Vietnam, China, Malaysia, Japan, Philippines, Korea, Thailand, India, Indonesia, and Australia)

Highlights of the Report Accurate market size and CAGR forecasts for the period 2019-2025 Identification and in-depth assessment of growth opportunities in key segments and regions Detailed company profiling of top players of the global Human Genetics market Exhaustive research on innovation and other trends of the global Human Genetics market Reliable industry value chain and supply chain analysis Comprehensive analysis of important growth drivers, restraints, challenges, and growth prospects

The scope of the Report:

The report offers a complete company profiling of leading players competing in the global Human Genetics market with high focus on share, gross margin, net profit, sales, product portfolio, new applications, recent developments, and several other factors. It also throws light on the vendor landscape to help players become aware of future competitive changes in the global Human Genetics market.

Get Customized Report in your Inbox within 24 hours @https://www.qyresearch.com/customize-request/form/1494807/global-human-genetics-market

Strategic Points Covered in TOC:

Chapter 1: Introduction, market driving force product scope, market risk, market overview, and market opportunities of the global Human Genetics market

Chapter 2: Evaluating the leading manufacturers of the global Human Genetics market which consists of its revenue, sales, and price of the products

Chapter 3: Displaying the competitive nature among key manufacturers, with market share, revenue, and sales

Chapter 4: Presenting global Human Genetics market by regions, market share and with revenue and sales for the projected period

Chapter 5, 6, 7, 8 and 9 : To evaluate the market by segments, by countries and by manufacturers with revenue share and sales by key countries in these various regions

About Us:QYResearch always pursuits high product quality with the belief that quality is the soul of business. Through years of effort and supports from huge number of customer supports, QYResearch consulting group has accumulated creative design methods on many high-quality markets investigation and research team with rich experience. Today, QYResearch has become the brand of quality assurance in consulting industry.

Read the original:
Human Genetics Market 2020 Projections, SWOT Analysis, Size and Forecast by 2026 | QIAGEN, Agilent Technologies, Thermo Fisher Scientific - Jewish...

Read More...

Don’t believe the conspiracy theories you hear about coronavirus and HIV – Massive Science

February 3rd, 2020 4:41 pm

The 2019 novel coronavirus (2019-nCoV) outbreak has sparked a speedy response, with scientists, physicians, and front-line healthcare professionals analyzing data in real-time in order to share findings and call out misinformation. Today, The Lancet published two new peer-reviewed studies: one which found that the new coronavirus is genetically distinct from human SARS and MERS, related viruses which caused their own outbreaks, and a second which reports clinical observations of 99 individuals with 2019-nCoV.

The first cases of the coronavirus outbreak were reported in late December 2019. In this new study, Nanshan Chen and colleagues analyzed available clinical, demographic, and laboratory data for 99 confirmed coronavirus cases at the Wuhan Jinyintan Hospital between Jan 1 to Jan 20, 2020, with clinical outcomes followed until 25th January.

Chen and colleagues reported that the average age of the 99 individuals with 2019-nCoV is around 55.5 years, where 51 have additional chronic conditions, including cardiovascular and cerebrovascular (blood flow to the brain) diseases. Clinical features of the 2019-nCoV include a fever, cough, shortness of breath, headaches, and a sore throat. 17 individuals went on to develop acute respiratory distress syndrome, resulting in death by multiple organ failure in 11 individuals. However, it is important to note here that most of the 2019-nCoV cases were treated with antivirals (75 individuals), antibiotics (70) and oxygen therapy (75), with promising prognoses, where 31 individuals were discharged as of 25th January.

Based on this sample, the study suggests that the 2019 coronavirus is more likely to affect older men already living with chronic conditions but as this study only includes 99 individuals with confirmed cases, it may not present a complete picture of the outbreak. As of right now, there are over 6,000 confirmed coronavirus cases reported, where a total of 126 individuals have recovered, and 133 have died.

In a second Lancet study, Roujian Lu and their fellow colleagues carried out DNA sequencing on samples, obtained from either a throat swab or bronchoalveolar lavage fluids, from eight individuals who had visited the Huanan seafood market in Wuhan, China, and one individual who stayed in a hotel near the market. Upon sequencing the coronaviruss genome, the researchers carried out phylogenetic analysis to narrow down the viruss likely evolutionary origin, and homology modelling to explore the virus receptor-binding properties.

Lu and their fellow colleagues found that the 2019-nCoV genome sequences obtained from the nine patients were very similar (>99.98% similarity). Upon comparing the genome to other coronaviruses (like SARS), the researchers found that the 2019-nCoV is more closely related (~87% similarity) to two bat-derived SARS-like coronaviruses, but does not have as high genetic similarity to known human-infecting coronaviruses, including the SARS-CoV (~79%) orMiddle Eastern Respiratory Syndrome (MERS) CoV (~50%).

The study also found that the 2019-nCoV has a similar receptor-binding structure like that of SARS-CoV, though there are small differences in certain areas. This suggests that like the SARS-CoV, the 2019-nCoV may use the same receptor (called ACE2) to enter cells, though confirmation is still needed.

Finally, phylogenetic analysis found that the 2019-nCoV belongs to the Betacoronavirus family the same category that bat-derived coronaviruses fall into suggesting that bats may indeed be the 2019-nCoV reservoir. However, the researchers note that most bat species are hibernating in late December, and that no bats were being sold at the Huanan seafood market, suggesting that while bats may be the initial host, there may have been a secondary animal species which transmitted the 2019-nCoV between bats and humans.

Its clear that we can expect new findings from the research community in the coming days as scientists attempt to narrow down the source of the 2019-nCoV.

See the original post:
Don't believe the conspiracy theories you hear about coronavirus and HIV - Massive Science

Read More...

Bent into shape: The rules of tree form – Knowable Magazine

February 3rd, 2020 4:41 pm

Theres a place in West Virginia where trees grow upside-down. Branches sprout from their trunks in the ordinary fashion, but then they do an about-face, curving toward the soil. On a chilly December day, the confused trees bare branches bob and weave in the breeze like slender snakes straining to touch the ground.

Its really kind of mind-boggling, says plant molecular biologist Chris Dardick, waving toward the bizarro plum trees. Theyre completely messed up.

Im visiting an orchard at the Appalachian Fruit Research Station, an outpost of the US Department of Agriculture nestled in the sleepy Shenandoah Valley. Here, at Dardicks workplace, the disoriented plums are but one in an orchard of oddities, their outlines, seasonally stripped of leaves, standing out in stark relief.

There are trees with branches that shoot straight up, standing to attention in disciplined rows, with nary a sideways branch. There are trees with branches that elegantly arch, like woody umbrellas; others with appendages that lazily wander this way and that.

Dwarf trees crouch, sporting ball-like crowns akin to Truffula trees. Compact trees poke from the ground in clumps of scraggly, knee-high sticks. Apple trees with some hidden predicaments grow in a greenhouse nearby: Their roots reach sideways rather than down. The topsy-turvy growth of all of these trees comes from genetic variations that cause the dialing up, dialing down or elimination altogether of the activity of key genes controlling plant architecture.

Understanding these misfits has real-world applications: It could help grow the next generation of orchards that, densely packed with trees, produce more fruit while using less land and labor than today. But Dardick is also trying to answer a fundamental question: How do different trees get their distinctive shapes? From the towering spires of spruce and fir, the massive spreading limbs of an oak to the stately arching canopies of an elm, the skeletal shapes of trees offer signature silhouettes.

Dardicks work and that of other researchers also could help to explain how the shapes of individual trees are far from fixed. Trees, much more than we can, will morph in response to their literal neck of the woods. Limbs in the shade reach toward spots of sunlight. Trees on windswept hills bend trunk and branches into gnarled architectures.

The familiar shape of a regular plum tree (left) is transformed by dialing down the activity of certain plant architecture genes, leading to plums with erect branches that shoot straight up (middle) or plums with branches that cascade downward (right).

CREDIT: C. HOLLENDER (LEFT), C. DARDICK (CENTER AND RIGHT)

Work by breeders, biologists and botanists have revealed sizable pockets of knowledge about the hormones, genes and processes that yield the diverse shapes of trees and other plants, between species and within species. It has not been easy: Two of trees most appealing attributes their long lives and large sizes make them intractable research subjects.

But as scientists pursue these questions, commonalities are emerging between vastly different species. The puzzle of shape diversity and adaptability turns out to be tied to the fundamentals of being a plant: grappling with gravity, fighting for sunlight, all while anchored in one place for a lifetime.

Plants are stuck. The best they can do is grow toward something, says Courtney Hollender, a former postdoc of Dardicks who now runs her own lab in the Department of Horticulture at Michigan State University in East Lansing. Thats all theyve got; they cant run, they have to adapt to their environment. And theyve developed brilliant ways to do it.

Scientists have a word for the ability to adapt so readily: plasticity. In plants, this feature is both obvious and astounding. Most animals are born in specific shapes then just grow larger, but plants are modular they grow in various iterations of two building blocks: shoots and roots.

It is the first of these where and when a shoot grows or doesnt grow that governs the basic form a tree takes.

Some aspects are hardwired. Leaves emerge in a pattern that is usually fixed throughout the trees life, with structural arrangements that tend to be shared by members of a given plant family. And shoots emerge where leaves meet the stem. So, for example, plants in the maple family, which have leaves set opposite each other, have branches in the same format. Members of the beech family have leaves, and thus branches, that alternate up the stem.

But the interplay between physiology and external forces also plays a large part. Take your standard-issue plant with a main central stem that grows upward and has few side branches. Most plants, from basil to birch, start out this way, a growth habit that probably evolved because it enables them to quickly reach the light more rapidly than the competition. Called apical dominance (the tip of the plant is the apex), this is largely under the purview of the plant hormone indole acetic acid, also known as auxin. Made in the tip, auxin diffuses downward and blocks the growth of side branches.

This is why pinching the tips off of basil or geranium makes them bushy you are removing the source of that bossy auxin, freeing buds on the stems sides from the prohibition and allowing them to grow. (Though auxin is mighty, its not the only player here. Other plant hormones, along with light intensity and access to nutrients, also wield power.)

Another related and less-understood phenomenon occurs in some tree species. Called apical control, it also is imposed by the tip of a tree and probably also by auxin. But rather than operating at the scale of a branch, it commandeers the whole dang tree.

Think of a pine. At the top, theres a pointy tip, then upper branches that tend to reach skyward. Moving down, the branches become more horizontal, growing out more than up. But unlike a basil plant, a pine tree does not become bushy when you lop off the top. Instead, a new bud near the top grows upward, becoming the new leader. Or an existing branch reorients to grow up and become the new dominant tip.

These two principles are always in the back of arborists minds as they work. They have to consider, If we cut a branch here, that bud below is going to break and well just get a branch in basically the same spot, Dardick says. All of their rules of what to prune and where are based on these physiological factors that contribute to tree shape.

Physiology also underpins the plastic responses trees have to more extreme situations they may face. A tree on a high mountain peak or windswept coast must contend with exposure to mechanical forces that could topple and kill it. To survive, such trees become short and stocky, their bent, asymmetric crowns reducing drag and presumably protecting a tree from violent gusts. The driver is the winds very touch a response now called thigmomorphogenesis that has been observed for hundreds of years.

How it works is still unclear, but over the past decade researchers have made some headway. Theyre actively studying force-sensing proteins and processes that may be involved. And recent work suggests an important role for hormones such as jasmonate, which accumulates in all kinds of plants in response to damage and mechanical stress. In experiments with a weedy mustard called Arabidopsis, plants became stunted when researchers bent their leaves back and forth twice a day.Mutants that couldnt make jasmonate, though, grew normally.

Sometimes, wind does more than gust against a tree: It blows the whole tree over, and that tree, if still rooted, must reorient the growth of its branches and buds toward the sky. Avalanches, erosion and landslides deal similar fates. And trees in all sorts of circumstances must grow around obstacles, away from competitors and toward the light. To get these jobs done, trees make a special kind of wood called reaction wood.

Trees may become contorted in challenging physical environments, such as this ridge in the Rocky Mountains. The touch of wind and other forces prompt physiological responses by the plant that yield a shorter, stockier stature, gnarled asymmetric shape and the development of specialized wood. This characteristic tree form is called a krummholz (German for crooked wood).

CREDIT: BRYCE BRADFORD / FLICKR

Hardwoods such as maple, beech, oak and poplar form this tough stuff (in this case called tension wood) on the upper side of their stems. Incredibly, it creates a tensile force thatpullsthe stem upward. If you walk around the woods, you can see that most species, if not all species, have this kind of reaction wood response, says Andrew Groover, a research geneticist with the USDA Forest Services Pacific Southwest Research Station in Davis, California.

The hardwood tree first discerns that it is off-kilter using specialized gravity-sensing cells. Where these cells reside in trees the woody stem? the tip of new shoots? was unknown until Groover and colleagues detected them in woody and soft tissues of poplar, a few years back. The cells contain organelles called statoliths that sink down in the cell and indicate to the plant that its leaning one way or the other. This, in turn, causes that influential auxin to mobilize, triggering the growth of tension wood on the top. Cellulose with a peculiar gelatinous layer is thought to act as the muscle that generates the pulling-up force.

In this experiment, young, potted poplar trees were placed sideways to investigate the plantsgravity-sensing machinery. The poplar in this time-lapse movie, taken over two weeks, responded to being tipped on its side by reorienting its growth upward. The plant hormone auxin is key to this response. Mutants that cannot respond appropriately to auxins signaling instructions do not right themselves this way. (This particular poplar also received a dose of a chemical called gibberellic acid that interacts with auxin, so that scientists could learn more about its role.)

CREDIT: ANDREW GROOVER AND SUZANNE GERTTULA, US FOREST SERVICE, PACIFIC SOUTHWEST RESEARCH STATION DAVIS CA

Much of the knowledge about the architecture of plants is rooted in millennia of human efforts to alter crop shapes to make them more suitable for cultivation, and modern science is now revealing the genetic changes that lie behind these creations. The lessons, it turns out, apply broadly across the plant kingdom, to herbaceous and woody species alike.

It is hard to overstate the importance to human history of some of these plant-shape changes, says plant molecular geneticist Jiayang Li, who details some of their genetic underpinnings in the Annual Review of Plant Biology. A classic example is the transformation of the ancestor of corn (maize) into a key staple crop for much of the world. It arose from a species of the Central American grasses called teosintes bushy plants with many branches. Domestication, among other things, abolished that branching, yielding the single-stalked upright corn we plant today.

Similarly, explains Li, who works at the Chinese Academy of Sciences Institute of Genetics and Developmental Biology, the green revolution of the 20th century ushered in compact, dwarf varieties of wheat and rice. By modifying the height and thickness of the stems of these grasses, breeders developed varieties that could carry more grain without toppling over in wind and rain.

Much of Lis own research has focused on architectural variation in rice, although the work turns out to have implications for the architecture of plants in general, from lowly mosses to towering trees. Like other grasses, rice grows shoots called tillers specialized, grain-bearing branches that emerge from the base. In cultivated rice, the angle at which these tillers grow varies widely: Some varieties are squat and wide-spreading, others have shoots that are more upright. Breeders are interested in altering tiller angle because upright plants can be grown more densely, giving farmers more bang for their acreage.

In a key advance, in 2007, a team including Li reported theyd discovered the genetic cause of the spread-out architecture trait. The scientists named the responsible gene TAC1, short for tiller angle control. A functional TAC1 gene increases rices tiller angle, leading to open, widely branching plants. Mutations in TAC1 lead to the opposite: plants with erect shoots that reach up, instead of out.

That same year, Lis team and a group in Japan both reported another major achievement: finding a long-sought gene behind a curious trait in some rice varieties that gives plant branches a scruffy, lounging look. The trait, known as lazy, had intrigued plant breeders and geneticists since the 1930s, when researchers described its extreme manifestation in corn: The lazy plants grow along the ground, following the unevenness of the surface.

In ordinary rice (left), the hormone auxin helps to tell the plant which direction is up. Auxin transport within the plant goes awry when a gene called LAZY malfunctions, leading to confused plants with sprawling branches (right).

CREDIT: B. WANG ET AL / AR PLANT BIOLOGY 2018

The cause, it turns out, was errors in a gene that normally makes branches shoot straight up. Li and his colleagues surveyed some 30,000 mutant rice plants to pin down that gene, now called LAZY (names of genes, confusingly, often refer to what happens when a gene is mutated and doesnt work, rather than when it is functioning properly). And they provided convincing evidence for an idea batted around for decades that lazy plants have muddled perceptions of gravity and that auxin is centrally involved.

A common test for whether a plants gravity-perception machinery is working is to lay the plant on its side. If it knows up from down, it wont continue to grow sideways, but will start to grow up again, akin to the reaction-wood response of a toppled trees branches. An important step in this reorienting involves auxin pooling on the bottom side of the shoot. But in lazy mutants, proteins that help ferry auxin around the plant are malfunctioning, so instead of shoots growing in the correct direction, theyre prone to casually sprawl about.

Scientists now know that LAZY genes come in multiple versions. Some appear to operate in plant roots, telling them which way is down, probably using similar, auxin-related signals. If those genes are absent or inactive, confused roots grow upward. And though the genes were first found in monocots, a branch of the plant kingdom including rice and corn, researchers now know that LAZY genes exist in numerous plants, including the plums growing in the fruit research station in West Virginia.

A lazy mutant of corn (left) compared with normal corn (right). Such corn mutants were described nearly 100 years ago, but it took 21st century molecular biology to nail down the growth habitscause: genetic malfunctions that meddle with responses to gravity.

CREDIT: T.P. HOWARD III ET AL / PLOS ONE 2014

As our boots crunch along the uneven ground, Dardick points at an errant orchard cat watching our tree tour from a distance. One row of trees stands so upright that a fencepost at the end of it is enough to block the row from view. These regimented trees are pillar peaches, and they are favorites of landscapers (one reason: its easy to get around them with a lawnmower). They also were key to uncovering genes like LAZY and TAC1 at the Shenandoah Valley station.

By comparing ordinary peaches to pillar peaches, and drawing on decades of work by former lead scientist Ralph Scorza, a team of station scientists and others in the US and Germany discovered the cause of the pillar trait: mutations in the peach version of TAC1.

Many of the strange plant architectures under investigation existed as naturally occurring varieties that were developed by breeders for ornamental gardens or orchards; only recently have the genes underlying these forms been identified. Its now known that the upright growth habit of the pillar peach (center), available commercially under the nameCrimson Rocket,results from mutations in a gene that helps plants branch outward.

CREDIT: C. DARDICK

The team also found that LAZY was at work in many of their misfits. Just as with the corn plants described nearly 100 years ago, mutations in LAZY made plums grow topsy-turvy, their branches seeking the soil. Apple trees with LAZY mutations have similarly disoriented roots. And when multiple copies of LAZY genes malfunction in the weed Arabidopsis, its roots grow up, its shoots down.

In the last decade, researchers have found that TAC1 influences branch angle in plums, poplar trees, the grass Miscanthus and Arabidopsis, and it appears to affect leaf angle in corn. But LAZY genes have even deeper roots. Theyre found in all manner of plants, including the evolutionarily older Loblolly pine and even more ancient mosses.

This finding suggests a very old role for LAZY: It may have allowed plants to grow up, literally, when they first colonized land. Plants got their start in water. There, rootless and leafless, they were buoyed, unconcerned with gravity. The transition to land spurred the development of proper roots and stems, and plants then had to figure out up from down. LAZY seems to have allowed plants to orient their above-ground growth away from gravity and up toward the sun.

Scientists think that TAC1 evolved somewhat later, providing a counterpoint to LAZY ensuring that branches dont only grow straight up, but also reach out. Together, these genes laid critical groundwork for the diversity of plant forms we see today, all seeking sustenance in their own ways.

Once you start to grow up as a vascular plant, you need to maximize your resources, you need to capture as much sun as possible, says Hollender, who has been working on yet another gene, called WEEP, that when nonfunctional lends plants a weeping, waterfall-like structure seen here and there in trees of ornamental gardens. (But its probably not responsible for the shape of weeping willow trees.) Modifying your shoot angles is an important adaptive trait for plants that allows them to capture light. Its essential for them to survive.

This kind of research has broad economic implications. Fruit and nut trees bring $25 billion annually in the US alone and there are hefty costs associated with pruning, bending and tying branches; spraying hormones; and the manual labor of picking fruit from an unruly cacophony of limbs. Understanding the genetic controls behind tree architecture could help scientists breed trees that make the whole fruit-farming enterprise more efficient and environmentally friendly.

Orchard systems are not the most sustainable in the world, Dardick says. The idea is, if we can modify tree architecture, if we could reduce their size and limit the amount of area they take up, then we could plant them at higher density and potentially increase their sustainability.

And there may be odder outcomes than friendlier outdoor orchards: In collaboration with NASA, the USDA team is investigating genetic tweaks that might even help bring fruit to space. On that December day, Dardick takes me to a greenhouse tucked in a corner of the lab. In it are plum and apple trees whose shape is so transformed that they look more like the love children of shrubs and vines. This strange growth habit is a side-effect of efforts to breed plants that flower and make fruit sooner and then do so continuously, rather than flowering after growing for several years, and then only in the spring.

The genetic tweaks that sent the trees developmental program into overdrive have also transformed their architecture. In the greenhouse, these precocious trees sprawl, draping lazily along wire trellises, happily flowering and heavy with fruit. Theyre growing almost like tomatoes, Dardick says. So were broaching the concept of, can we bring an orchard indoors?

The strange, vine-like growth of this plum results when a gene controlling the timing of flower development malfunctions. Such unusually shapedtrees may facilitate indoororchards that produce fruit many months of the year.

CREDIT: C. SRINIVASAN

Those ambitions aside, Dardick has his hands full trying to answer numerous basic-science questions about how trees do what they do. Researchers still dont know how different tree species set the angles of their branches going wide like an oak, or arching like an elm. They dont know how trees alter those angles during the course of mature growth, as branches sprout from branches sprouted from branches, until some of them finally point down. Trees are both kindred and foreign to us, their various forms so familiar, but their architectural rules still in so many ways opaque.

I find myself looking at trees all the time now in a new way; they fill space so beautifully and efficiently, Dardick says. They are the biggest organism we have thats visible, thats in our face all the time. But theres so much we dont know.

Read this article:
Bent into shape: The rules of tree form - Knowable Magazine

Read More...

Viral epidemics, public health and universal vaccine against influenza, in international conference Viruses2020 – Mirage News

February 3rd, 2020 4:41 pm

This international conference will gather more than two hundred participants.

Professor Albert Bosch, from the Faculty of Biology of the UB, and the expert Eric O. Freed from the National Cancer Institute (United States).

The Long Road to a Universal Influenza Virus Vaccine is the title of the master conference to be given by the expert Peter Palese, from the School of Medicine at Mount Sinai (United States), in the opening ceremony for the conference Viruses2020 to take place on Wednesday, February 5, at 9 a.m. This international conference will gather more than two hundred participants and is promoted by a committee presided by Professor Albert Bosch, from the Department of Genetics, Microbiology and Statistics of the Faculty of Biology of the UB, and the expert Eric O. Freed from the National Cancer Institute (United States).

During his speech, Peter Palese will talk about the most recent studies on a protein from the surface of influenza hemagglutinin which could lead to the development of a vaccine against influenza, a viral infection that can create annual epidemics with about five million affected people and more than 600,000 deaths worldwide.

As part of this forum, which will take place from February 5 to 7 in the headquarters of Axa auditorium, the experts will show the latest advances in viral pathogenesis, innate immunity, viral replication and the evolution of viruses, among other content. In the 21st Century world, the challenge is to be always ready for the challenges that can come up regarding globalization and climate change, which contribute to the emergence of viral infections, notes Alfred Bosch, president of the Spanish Society of Virology (SEV).

Globalization, public health and viral epidemics

This work can only be based on solid knowledge on the molecular biology of the different viruses, continues Bosch. Regarding coronavirus, it is a fascinating group of viruses from the molecular perspective, which were not thought to be related to any important public health problem. When the SARS, MERS and 2019-nCoV (Wuhan) infectious episodes of coronavirus appeared, the basic knowledge of the scientific community have been determining to enable fast progress in the research on this coronavirus, as relevant as human pathogens.

Regarding the emerging viral infection episodes we should avoid panic and develop tools for diagnosis like in the coronavirus case- in order to establish control systems. Afterwards, we need knowledge on their transmission, reservoirs, etc. and this is the current phase we are in. The next step would be, therefore, to work on therapies, prophylactic therapies like vaccines, or antiviral ones.

See original here:
Viral epidemics, public health and universal vaccine against influenza, in international conference Viruses2020 - Mirage News

Read More...

Is the medication you’re taking worth its price? – Salon

February 2nd, 2020 2:46 pm

Austin was three years old and Max was a newborn when their mother, Jenn McNary, learned they had a rare genetic condition called Duchenne muscular dystrophy. The doctor painted a grim picture: Her boys would stop walking by age 12 or 13 and, shortly thereafter, they would require nighttime ventilation. They would each need a tracheotomy, a feeding tube, or both by their late teens. Death would come a few years later.

It hasn't worked out that way, thanks to two new drugs that became available after the boys' 2002 diagnosis. Exondys 51, a medicine that targets their genetic mutation, slows the disease's progression, and Emflaza, a corticosteroid, mitigates some of its symptoms. Thanks to these treatments, Austin now attends college and interns at a biotech company. Max attends his local high school in Newton, Massachusetts. Both are able to get around in wheelchairs, and neither needs ventilation. McNary just rented an apartment for her boys because they can function on their own with the help of an aide.

By all accounts, the drugs have been transformative, McNary said. But, she added, her boys "aren't going to be cured," and extending and improving their life for an unknown period of time comes at a high price. Emflaza came onto the market in 2017 at an annual cost of $65,000. Exondys 51 appeared in 2016 at $748,500. Neither of the drugs will help the young men walk again and, in the eyes of some U.S. health economists, the drugs are not worth the price.

That's why McNary hates the quality-adjusted life year (QALY, pronounced "qua-lee"), an economic calculation that attempts to quantify the value of a medical intervention, based in part on the quality of life it bestows on recipients.

First developed by U.S. economists in the late 1960s and early 1970s, variations of the QALY have been used for years by governments around the world to help determine what treatments citizens can obtain under public health care. In America's free-market health care system, however, QALY calculations have largely been avoided. As McNary and others like her are finding out, that's starting to change.

Advertisement:

As policymakers and insurance companies scramble to get a handle on skyrocketing health care costs, they are promoting the idea of paying for value. In this view, drugs designated as higher-value should be prioritized over lower-value treatments. But this raises a thorny question: Who gets to define "value"? Health economists and insurance companies who seek to use limited health care dollars judiciously? Or patients, parents, and doctors who want to receive the best health care for their situation?

Because the quality-adjusted life year threatens her sons' ability to get the medicine they need, McNary is clear about her answer. "To me, the QALY is a measurement that says that keeping my sons alive by providing incremental benefit but not totally curing them is never going to be valuable," McNary said. "Just mull that around in your head if you are less than perfect, you are worth less money."

* * *

In QALY math, a year of perfect health is equal to 1; death equates to 0. The value of other health states is derived from surveys of patients, caregivers, or the general public. Paralysis might be valued at .35, for example, and mild Alzheimer's disease at .52, depending on the survey. Those numbers can then be plugged into a formula that allows the relative cost-effectiveness of treatments to be compared to identify the best buys.

Economists developed the QALY concept more than 40 years ago to address a fundamental question: "Where should we spend whose money to undertake what programs to save which lives with what probability?' Richard J. Zeckhauser and Donald Shepard asked in a 1976 article describing the basic QALY formula. The next year, as U.S. health care spending topped $120 billion, Harvard health policy professor Milton C. Weinstein and his colleague, cardiologist William B. Stason, sounded an alarm bell. "It is now almost universally believed that the resources available to meet the demands for health care are limited," they wrote in the New England Journal of Medicine. "We, as a nation, will have to think very carefully about how to allocate the resources we are willing to make available for health care."

Their article cited by other authors more than a thousand times in the past four decades pointed out that resources were already being allocated by millions of individual decisions: hospitals rationing beds where they didn't have room for all patients, for example, and insurers agreeing to pay for some tests and treatments but not for others. Such decisions, they argued, were often inconsistent with the "societal objective of deriving the maximum health benefits from the dollars spent," an objective that could be achieved by putting the QALY to work.

In the intervening decades, some countries the United Kingdom, the Netherlands, and Sweden, for example have embraced QALY-based evaluations. In the U.K., cost-effectiveness studies are used, in part, to determine which therapies the National Health Service will provide for residents. The publicly-funded health system does not cover Orkambi, the first cystic fibrosis treatment that targets the cause of the disease, for example, because its cost-per-QALY far exceeds the U.K. cost-effectiveness threshold.

In the United States, however, QALY-based assessments have not gained traction until recently. "Perhaps the general reason is that we as patients and our providers don't want to be limited in the treatment options available," said Louis P. Garrison Jr., an economist in the Pharmaceutical Outcomes Research and Policy Program at the University of Washington.

In fact, QALY-based cost-effectiveness reviews are so controversial that the federal government has repeatedly quashed their use. In 1992, the Department of Health and Human Services rejected Oregon's attempt to use QALY-based cost-effectiveness assessments to determine what services its Medicaid program would cover. In 2010, as part of the Patient Protection and Affordable Care Act, Congress prohibited the use of QALYs by the Medicare program. It also banned the federal Patient-Centered Outcomes Research Institute from using QALY thresholds in its assessments of comparative treatments.

* * *

A QALY Primer

A QALY reflects quality of life and length of life. A year in "perfect health" is worth 1 QALY, death is worth 0 QALYs, and other health states fall between 0 and 1. The amount that a drug lengthens or improves the quality of life is calculated as "QALYs gained." The cost of getting a certain level of health improvement is the "cost per QALY gained," shown here for several interventions targeting asthma.

But more than half of U.S. residents are covered by private insurance companies, which are not prohibited from using QALY-based assessments to decide which medicines they will cover for their members. Traditionally, however, private insurers have generally not used QALYs explicitly in their decisions about what tests and treatments they will pay for, according to a recent report by the National Council on Disability. Instead, when major U.S. insurers decide to limit access to a given medication, they usually cite insufficient data to justify its use in a given situation.

Indeed, until recently, U.S. insurers did not have a source for QALY-based cost-effectiveness reports. That began to change in 2014, when the Institute for Clinical and Economic Review, a nonprofit research organization based in Boston, turned its attention to high-cost drugs. Founded in 2006 as a research project based at Harvard Medical School, ICER initially issued reports on broad topics such as obesity management and palliative care. But when Sovaldi, a drug for deadly hepatitis C, came on the market at the then-shocking price of $84,000 for a 12-week course of treatment, ICER kicked into action. Despite the high price, its assessment found that Sovaldi is cost-effective for some patients. Insurers took notice.

Since then, the organization has been churning out several drug-assessment reports each year. Each report includes its opinion of how much the drug is worth; drugs priced higher than that are deemed not cost-effective. ICER has no authority over anyone, but its reports have become popular reading for U.S. insurers. "If there is a drug of note being approved by the FDA, there's also likely going to be an ICER assessment of that drug that can factor into their decision-making," said David Whitrap, the research organization's vice president of communications and outreach.

* * *

U.S. health care spending has risen dramatically since Weinstein and Stason expressed concern in the mid-1970s. In 2016, the U.S. spent nearly 18 percent of its gross domestic product on health care, far outstripping the average of 11 percent for 10 other high-income nations. High prices for prescription drugs is one reason. "We're seeing price tags now of $1 million, $2 million," said Seema Verma, administrator for the federal Centers for Medicare and Medicaid Services, at a conference recently. "That's completely unsustainable for the system."

That's why Peter Neumann, director of the Center for the Evaluation of Value and Risk in Health at Tufts Medical Center, said cost-effectiveness analyses are needed more than ever. But there are many reasons for the resistance, Neumann and his co-authors wrote in the Journal of the American Medical Association, including "an inclination on the part of many individuals in the United States to minimize the underlying problem of resource scarcity and the consequent need to explicitly ration care."

Further, Ari Ne'eman, a disability rights activist and consultant to Partnership to Improve Patient Care, a coalition of advocacy groups, said the idea that two health conditions can be numerically compared to one another is simply wrong. "Proponents of the QALY will say it is this mathematically perfect measure that gives us a superpower ability to compare depression drugs to cystic fibrosis drugs to cancer drugs even though all of those drugs do different things because it lets you translate them back to this common measure," he said. "Our concern is that when you engage in that process of translation, you lose some significant nuance in terms of the amount of benefit that's being delivered."

The Partnership argues the QALY calculation is flawed because it assumes quality of life can be captured by a certain number, despite the fact that different surveys arrive at different numbers. For example, a 2006 quality-of-life survey in the U.S. assigns blindness/low vision as .69 on the 0-to-1 scale, while a 2011 survey in the U.K. gives blindness/low vision a score of .78.

Beyond the methodological issues, Ne'eman said, "there are all kinds of ethical problems with it." People with disabilities and chronic medical conditions may value a treatment that offers an incremental improvement in the quality or length of their lives, even though the "QALYs gained" are less than those for a treatment that prevents the loss of perfect health.

Former U.S. Representative Tony Coelho, a Democrat from California and a primary author of the Americans with Disabilities Act, is the Partnership's chairman. "I worry that more focus is being given to what is most cost-effective for the 'average patient' than creating a system that works for each individual patient," he wrote in 2018. "The medication I take for epilepsy isn't 'high value' for every patient. But it's the only one that works for me."

That's why, Ne'eman said, cost-effectiveness analyses must consider the fact that not all patients respond the same way to a drug. Some patients need drugs that aren't deemed cost-effective for the general population. It's important to account for that, he said. "Otherwise we're giving insurers a tool to deny care to people who need it."

When an insurer decides to cover a specific drug, that decision affects everybody who pays into the insurance pool. Michael Sherman, chief medical officer for the insurer Harvard Pilgrim Health Care, uses the example of a gene therapy that costs $1 million to treat a child who will die without it. Under the ACA, families will hit their out-of-pocket maximum at about $16,000, and many health plans have out-of-pocket maximums far below that. "The rest of that million dollars is going to be paid by everyone else that's the way it works in insurance," he said. When insurers see that kind of unanticipated budget impact, they raise premiums or out-of-pocket cost-sharing for everyone.

Like other proponents of the QALY, Neumann sees it as an imperfect but useful tool. "Any single number is never going to capture everything," he said.

"The problem is, if you're not going to use QALYs, what are you going to use?"

* * *

That's an urgent question, particularly now when there is a huge pipeline for rare-disease therapies, often called orphan drugs. By 2024, orphan drug sales are expected to reach $242 billion.

In the U.S., a rare disease is defined as one that affects fewer than 200,000 people. While these conditions are individually rare, in the aggregate, an estimated 25 to 30 million Americans that's about one in 10 live with a rare disease. Most rare diseases affect children, and many are fatal or disabling.

Historically, drugmakers spent little effort developing treatments for rare diseases, but that changed with the passage of the Orphan Drug Act of 1983, which provides tax credits and a seven-year marketing exclusivity to companies that develop rare-disease treatments. Hundreds of such treatments have won FDA approval in recent years, with more than 560 medicines in the works.

Those treatments are generally expensive. On average, the per-patient cost for orphan drugs in the U.S. is almost 4.5 times more than for non-orphan drugs.

In the two decades ending in 2017, the average annual cost for orphan drugs was $123,543, based on the price at the time the drug launched, compared to $4,961 for traditional drugs. For Duchenne alone, more than 30 orphan therapies are in development. None of them are going to cure patients, McNary said. But she hopes new treatments, generally used in combination, will help her sons live longer, healthier lives and completely change the disease trajectory for younger patients whose disease has not yet progressed as far.

The barrier she worries about is cost-effectiveness analysis. In August, the Institute for Clinical and Economic Review published its assessment of treatments for Duchenne, which affects about 400 to 600 boys born in the U.S. each year. Emflaza, the corticosteroid, appears to be as good as or better than prednisone, another corticosteroid approved to treat the disease, but it would need a price cut of at least 73 percent to be considered cost-effective.

Exondys 51 approved by the FDA for about 13 percent of the Duchenne population got a worse review. In the clinical trials used to seek FDA approval, no clinical benefit, including motor function improvement, was demonstrated. (The FDA approved the drug because some of the patients treated with Exondys 51 had a slight increase in dystrophin levels in skeletal muscle.) In light of that, Exondys 51 was not deemed cost-effective at any price.

But Jenn McNary said the drug works for her sons. Austin, who was not eligible for the Exondys 51 clinical trial, stopped walking at age 10. Max got in the trial and started taking the drug at age 9."They have the same mutation, they have been raised by the same mother, so one would expect they would progress similarly," she said. "But Max walked until he was 17."

Austin was already in a wheelchair when, at age 15, he started taking Exondys 51. He regained some upper-body strength that changed his life, according to his mother. "He's able to use a urinal on his own, which makes is possible for him to have a job and to go to college without an aide," she said.

The Medicaid program in Massachusetts, where the McNarys live, won't pay for Max's Duchenne therapies. For the time-being, the drugmakers are giving him the drugs free through a patient-assistance program. Austin, because he's enrolled in college, is eligible for student coverage through Blue Cross Blue Shield of Massachusetts. The insurer, by policy, does not cover Exondys 51 for patients who can no longer walk. His mother appeals the insurance denial. Every six months, she sends a video of Austin in action, along with a letter from his doctor and so far, his medicines have been covered.

The payers made their coverage policies before the quality-adjusted life year analysis was published. Now, insurers who have been covering the Duchenne treatments have an independent analysis with which to rethink that decision.

For now, there is one thing that QALY supporters and critics agree on. "Very promising drugs are coming, and they're going to be very expensive," said Neumann, the health economist at Tufts. Increasingly, the QALY appears poised to influence how American health care money is spent.

* * *

Lola Butcher is a health care business and policy writer based in Missouri.

This article was originally published on Undark. Read the original article.

Excerpt from:
Is the medication you're taking worth its price? - Salon

Read More...

Here are some tips, treatment options for acne – The Reporter

February 2nd, 2020 2:46 pm

According to the American Academy of Dermatology, acne affects up to a staggering 50 million Americans annually.

To make matters worse, blackheads, whiteheads, pimples, cysts and other acne-related blemishes seem to occur at the most inconvenient times: before a date, a meeting, class photos, you name it. Although acne is not a serious health threat, severe acne can lead to disfiguring and permanent scarring.

Why do I have acne? Acne is most commonly linked to the changes in hormone levels during puberty, but can start at any age. Certain hormones cause the grease-producing glands next to hair follicles in the skin to produce larger amounts of oil, or abnormal sebum. This abnormal oil changes the activity of harmless skin bacterium called P. acnes, or propionibacterium acnes, which becomes more aggressive and causes inflammation and pus. Certain medications, stress and a poor diet can also contribute to acne. There is also evidence of a genetic component to acne as well.

Types of treatments: Because acne is caused by a myriad of factors, treating it with one product or medicine usually is not enough. You may need to attack it from many angles with different types of treatments that all work differently.

While a pimple will eventually go away, if you have numerous outbreaks, you could end up with scars. This is when it is time to visit a dermatologist, who may suggest a cream, lotion, gel or some that contains ingredients that can help. Many can be bought without a prescription:

Benzoyl peroxide kills bacteria and removes extra oil.

Salicylic acid keeps pores from getting clogged.

Sulfur removes dead skin cells.

Stronger treatments: If some of these over-the-counter remedies do not get your acne under control, your doctor may prescribe a retinoid to be used on the skin. This comes in a cream or gel and helps unplug oil ducts. Antibiotics in cream, lotion, solution or gel form may be used for inflammatory acne.

Isotretinoin is a medicine used to treat severe acne. It is usually used for cystic acne that does not improve after treatment with other medicines. Brand names include Accutane, Amnesteem, Sotret and Claravis. Isotretinoin is the most effective long-term medication for acne but is associated with some risks that dermatologists are familiar with. Spironolactone blocks excess hormones.

When to seek medical help: Even mild cases of acne can cause distress and, in some cases, depression. If your acne is making you feel unhappy or you are having a hard time controlling your blemishes with over-the-counter medication, see your doctor. Try to resist the temptation to pick or squeeze the spots, because this can lead to scarring.

Treatments can take a few months to work, so do not expect immediate results. Once they do start to work, the results are usually good.

Dr. Daniel Shurman of Pennsylvania Dermatology Partners in Amity Township completed his dermatology training at Thomas Jefferson University. He is fellowship-trained in both Mohs micrographic surgery and procedural dermatology, and his research interests include medical genetics, antibiotics in dermatologic surgery and wound healing.

The rest is here:
Here are some tips, treatment options for acne - The Reporter

Read More...

The first case of coronavirus being spread by a person with no symptoms has been found – Science News

February 2nd, 2020 2:46 pm

As the 2019 novel coronavirus outbreak continues to spreadin China, researchers have found that people carrying the virus but not showingsymptoms may be able to infect others.

If infected people can spread 2019-nCoV while asymptomatic,it could be harder to trace contacts and contain the epidemic, which is alreadya globalhealth emergency (SN: 1/30/20).

An unnamed Shanghai woman passed the virus to businesscolleagues in Germanybefore she showed signs of the illness, doctors report January 30 in the New England Journal of Medicine. Thewoman had attended a business meeting at the headquarters of the auto supplierWebasto in Stockdorf on January 20 and flew back to China on January 22. Shebecame ill with mild symptoms on the flight back to China and tested positivefor the virus.

Meanwhile, one of her German colleagues fell ill on January24 with a fever, sore throat, chills and muscle aches. His illness was brief,and he returned to work on January 27, the same day that the woman informed thecompany she carried the virus. Nasal swabs and sputum, or phlegm, samples fromthe man contained high levels of the novel coronavirus even though his symptomshad passed.

Headlines and summaries of the latest Science News articles, delivered to your inbox

Three other employees of the company also tested positivefor the virus. Tracing their contacts, doctors conclude that the first man andanother person caught the virus from their Chinese colleague.

Whats also concerning is that the first man apparently passedthe virus to the other two coworkers, who both had contact with him before hedeveloped symptoms. All cases of the illness have been mild.

These cases suggest that people shed the virus before theyshow symptoms and after recovery from the illness, say Camilla Rothe, atropical medicine and infectious disease specialist at the University Hospital ofLudwig-Maximilians-Universitt in Munich, and her colleagues.

Asymptomatic spread, though common for influenza viruses forexample, would be a new trick for coronaviruses. The coronaviruses that causesevere acute respiratory syndrome, or SARS, and Middle East respiratorysyndrome, or MERS, are notcontagious before people show symptoms (SN:1/28/20).

Another coworker of the firm was confirmed to have the viruson January 30, and a child of one of the infected workers has also contractedthe virus, bringing the case count to six, health officials in the German stateof Bavaria said January 31. The company has closed its headquarters near Munichuntil February 2 and began testing contacts of the ill employees on January 29.

Visit link:
The first case of coronavirus being spread by a person with no symptoms has been found - Science News

Read More...

Here is what you need to know about novel… – ScienceBlog.com

February 2nd, 2020 2:46 pm

Before a packed room at the Health Sciences Learning Center on the University of WisconsinMadison campus on Jan. 29, Associate Dean for Public Health and Community Engagement Jonathan Temte asked for a moment of silence for those affected by an outbreak of a virus that in a matter of weeks has sickened nearly 10,000 people around the world and killed more than 200 people in China as of Jan. 31.

The virus, a previously unknown member of a class of coronaviruses, was first described in late December 2019 after several cases of illness appeared in people in Wuhan, a city in Hubei province, China. Its name, for now, is 2019-nCoV.

As details of the virus and its effects continue to emerge, UWMadison gathered a panel of experts, including physicians, epidemiologists, public health officials, scientists and communication experts, to address questions and concerns from the public.

Watch a video of the livestreamed event.

The event came together on short notice after the director of the Centers for Disease Control and Prevention, Robert R. Redfield, had to cancel his previously scheduled talk in Madison in order to help manage the outbreak.

Here are some takeaways:

Coronaviruses are relatively common. What makes this coronavirus unique is that it has never been implicated in human disease before. There are several human coronaviruses that cause mild disease and we have known about them for decades now, said Kristen Bernard, a professor in the UW School of Veterinary Medicine. They are the cause for about 30 percent of common colds. They are also the viruses behind the 2003 SARS and 2012 MERS outbreaks, which both killed large numbers of people.

The original source of the virus is probably bats, which serve as a reservoir for large numbers of zoonotic diseases, or those that pass between animals and people. Most of these viruses rely on an intermediary species to render it infectious in people. With SARS, experts believe that species was civet cats, and with MERS, it was dromedary camels. Some early reports blamed snakes for the 2019-nCoV outbreak, but, said Chris Olsen, emeritus professor in the School of Veterinary Medicine: I think we need to take that with a very large grain of salt.

In people, 2019-nCoV is transmitted through coughing and contact with saliva, mucus or the tears of people sick with the virus. Symptoms of illness include cough, fever and shortness of breath. Public health officials are still working to determine whether infected people can transmit the virus to others if they are not symptomatic.

There have been six confirmed cases of 2019-nCoV in the United States since mid-January, and as of Jan. 30, officials in the U.S. reported the first case of person-to-person transmission. There have been no confirmed cases in Wisconsin, though experts continue to monitor patients for symptoms and have sent six potential cases to the CDC for testing. One came back negative for the virus and results are still pending on the remaining samples. Allen Bateman, assistant director in the communicable disease division of the Wisconsin State Lab of Hygiene, said the laboratory is working with local health departments and clinical labs across the state to help with testing and response.

There are no specific cures or treatments for people with 2019-nCoV, but as is the case with many viruses, said Medical Director of Infection Control at UW Hospital and Clinics Nasia Safdar, those who are sick are offered supportive care to relieve symptoms and mitigate complications. And because the symptoms of the novel coronavirus are similar to other kinds of viruses, she and colleagues are working with health care providers to train them on containment and help keep them safe.

There are no cases of 2019-nCoV in Wisconsin at this time, but we are prepared to react if things are changing, said Patrick Kelly, interim director of medical services at University Health Services. On campus, that has meant taking steps to keep more than 40,000 students safe and provide physical and mental health care as needed. It has also meant communicating often with students and their families. An all-campus message sent Jan. 24 shared information about the novel virus and was translated on short notice in five languages.

The state has also been working on the logistics of monitoring and preparing for the virus, said School of Medicine and Public Health (SMPH) Professor of Medicine Ryan Westergaard, also chief medical officer and state epidemiologist at the Wisconsin Department of Health Services. While some areas have couriers to transport samples from the clinic to the state lab for testing, police are serving that role in others. Its been a good learning experience, he said, with people from legislative offices and the governors office at the table to make sure we are coordinating well.

Its important to be prepared for a possible outbreak of coronavirus, but public health officials still remain more concerned about seasonal influenza. That virus has had a greater impact in Wisconsin, and in the U.S., so far this year. Right now, in Dane County and southern Wisconsin, were in the midst of a huge influenza outbreak, said Temte, also a family medicine physician. As of Friday (Jan. 24), 54 children across the country had died of influenza and influenza is one of these diseases for which we have effective vaccines and effective antivirals.

Scientists at UWMadison are monitoring research developments globally. Chinese scientists worked swiftly in the aftermath of the outbreak to decode the genetic sequence of 2019-nCoV and share it with other researchers worldwide. Thomas Friedrich, a professor in the School of Veterinary Medicine, said some researchers are working with that sequence to develop vaccines against the new coronavirus. Some journals where scientists publish, including the New England Journal of Medicine, require researchers to share their raw data for others to use, and many researchers are making data instantly available on widely-used pre-print servers. I think its very important for us to make our information available to the public as much as possible, he said.

Misinformation is easy to spread, so sticking with facts when discussing 2019-nCoV is imperative, said Emily Kumlien, media strategist at UW Health. We work with the experts to get the right information to share with the community at the right time. That includes using social media and other platforms to reach people in the places where they get their news, and where misinformation is most likely to live. I think its everybodys responsibility, said Ajay Sethi, SMPH professor of population health, to serve as educated, informed opinion leaders; to identify misinformation; and to find creative and strategic ways to dispel that.

Officials believe the novel coronavirus originated in a seafood and live animal market in Wuhan. But shutting down these kinds of markets broadly would be akin to telling Wisconsinites not to hunt deer, said Bernard. Thats part of their culture and we have to be sensitive to that. However, she added: There are things we can do and thats why basic research is so, so important.

Excerpt from:
Here is what you need to know about novel... - ScienceBlog.com

Read More...

Snake venom can now be made in a lab and that could save many lives – CNN

February 2nd, 2020 2:46 pm

It involves milking snake venom by hand and injecting it into horses or other animals in small doses to evoke an immune response. The animal's blood is drawn and purified to obtain antibodies that act against the venom.

Producing antivenom in this way can get messy, not to mention dangerous. The process is error prone, laborious and the finished serum can result in serious side effects.

Experts have long called for better ways to treat snake bites, which kill some 200 people a day.

Now -- finally -- scientists are applying stem cell research and genome mapping to this long-ignored field of research. They hope it will bring antivenom production into the 21st Century and ultimately save thousands, if not hundreds of thousands, of lives each year.

Researchers in the Netherlands have created venom-producing glands from the Cape Coral Snake and eight other snake species in the lab, using stem cells. The toxins produced by the miniature 3-D replicas of snake glands are all but identical to the snake's venom, the team announced Thursday.

"They've really moved the game on," said Nick Cammack, head of the snakebite team at UK medical research charity Wellcome. "These are massive developments because it's bringing 2020 science into a field that's been neglected."

Hans Clevers, the principal investigator at the Hubrecht Institute for Developmental Biology and Stem Cell Research in Utrecht, never expected to be using his lab to make snake venom.

So why did he decide to culture a snake venom gland?

Clevers said it was essentially a whim of three PhD students working in his lab who'd grown bored of reproducing mouse and human kidneys, livers and guts. "I think they sat down and asked themselves what is the most iconic animal we can culture? Not human or mouse. They said it's got to be the snake. The snake venom gland."

"They assumed that snakes would have stem cells the same way mice and humans have stems cells but nobody had ever investigated this," said Clevers.

After sourcing some fertilized snake eggs from a dealer, the researchers found they were able to take a tiny chunk of snake tissue, containing stem cells, and nurture it in a dish with the same growth factor they used for human organoids -- albeit at a lower temperature -- to create the venom glands. And they found that these snake organoids -- tiny balls just one millimeter wide -- produced the same toxins as the snake venom.

The team compared their lab-made venom with the real thing at the genetic level and in terms of function, finding that muscle cells stopped firing when exposed to their synthetic venom.

The current antivenoms available to us, produced in horses not humans, trigger relatively high rates of adverse reactions, which can be mild, like rash and itch, or more serious, like anaphylaxis. It's also expensive stuff. Wellcome estimate that one vial of antivenom costs $160, and a full course usually requires multiple vials.

Even if the people who need it can afford it -- most snakebite victims live in rural Asia and Africa -- the world has less than half of the antivenom stock it needs, according to Wellcome. Plus antivenoms have been developed for only around 60% of the world's venomous snakes.

In this context, the new research could have far-reaching consequences, allowing scientists to create a biobank of snake gland organoids from the 600 or so venomous snake species that could be used to produce limitless amounts of snake venom in a lab, said Clevers.

"The next step is to take all that knowledge and start investigating new antivenoms that take a more molecular approach," said Clevers.

To create an antivenom, genetic information and organoid technology could be used to make the specific venom components that cause the most harm -- and from them produce monoclonal antibodies, which mimic the body's immune system, to fight the venom, a method already used in immunotherapy treatments for cancer and other diseases.

"It's a great new way to work with venom in terms of developing new treatments and developing antivenom. Snakes are very difficult to look after," Cammack said, who was not involved with the research.

Clevers said his lab now plans to make venom gland organoids from the world's 50 most venomous animals and they will share this biobank with researchers worldwide. At the moment, Clevers said they are able to produce the organoids at a rate of one a week.

But producing antivenom is not an area that pharmaceutical companies have traditionally been keen to invest in, Clevers said

Campaigners often describe snakebites as a hidden health crisis, with snakebites killing more people than prostrate cancer and cholera worldwide, Cammack said.

"There's no money in the countries that suffer. Don't underestimate how many people die. Sharks kill about 20 per year. Snakes kill 100,000 or 150,000," said Clevers.

"I'm a cancer researcher essentially and I am appalled by the difference in investment in cancer research and this research."

One challenge to making synthetic antivenom is the sheer complexity of how a snake disables its prey. Its venom contains several different components that have different effects.

Researchers in India have sequenced the genome of the Indian Cobra, in an attempt to decode the venom.

"It's the first time a very medically important snake has been mapped in such detail," said Somasekar Seshagiri, president of SciGenom Research Foundation, a nonprofit research center in India.

"It creates the blueprint of the snake and helps us get the information from the venom glands." Next, his team will map the genomes of the saw-scaled viper, the common krait and the Russell's viper -- the rest of India's "big four." This could help make antivenom from the glands as it will be easier to identify the right proteins.

In tandem, both breakthroughs will also make it easier to discover whether some of the potent molecules contained in snake venom are themselves worth prospecting as drugs -- allowing snakes to make their mark on human health in a different way to how nature intended -- by saving lives.

"As well as being scary, venom is amazingly useful," Seshagari said.

The rest is here:
Snake venom can now be made in a lab and that could save many lives - CNN

Read More...

Page 720«..1020..719720721722..730740..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick