Gene therapy is no longer an approach for the future. It's a technique used now.
As of January 2020, the FDA has approved four gene therapies for use in the United States and has received more than 900 investigational new drug (IND) applications for clinical studies. At present, more than 3,400 active gene therapy trials are taking place worldwide, according to ClinicalTrials.gov.
None of these trials would have launched without valid preclinical research. One of the key requirements during preclinical research is selection of the appropriate animal model.
Selecting animal models that reflect the population studied and reproduce the target disease state increases the likelihood that studies will meet strict regulatory expectations. Further, strong preclinical research, with accurate data and clinically relevant biomarkers, helps ensure that clinical trials get to the finish line on time and on budget.
"If you choose a too simplistic model or a model that does not accurately recapitulate the disease state you're trying to address, your preclinical data doesn't amount to much,"said Anjli Venkateswaran, PhD, spokesperson for Biomere, a preclinical CRO based in Worcester, Massachusetts. "Selection becomes even more important in gene therapy research, and it's something scientists grapple with daily."
Gene therapy researchers rely on animal models to assess variables such as safety, efficacy, dosage and localization of transgene expression. Traditional inbred and outbred mice the most common laboratory mice are suitable for most pharmaceutical research. However, when the goal is to alter a human genetic defect, scientists need to test their approach in models that contain the human target sequences. This led to the development of genetically engineered mouse models (GEMMs) of which there are many.
"Any mouse that is genetically changed or altered to be an appropriate model for disease falls under this umbrella,"Dr. Venkateswaran said. "These models express the gene target and recapitulate some, if not all, of the disease pathophysiology."
As animal model providers gain access to next-generation sequencing, genome-engineering tools and other technology, they can develop more customized models. "Older technology was based on homologous recombination,"said Tom Pack, PhD, senior scientist for Axovant, a New York City-based clinical-stage gene therapy company. "Now we've moved into an era of CRISPR-Cas9, where you have more efficient and sophisticated technology for manipulating DNA, and you can more closely mimic human mutations. You can also focus on specific organs or tissue types with DNA recombinase-based and intersectional genetics approaches to design more targeted therapies more rapidly."
For all the technological advances, certain studies may require a different type of model. "There are limitations as to how much you can humanize mice,"Dr. Venkateswaran said. "Also, mice behave very differently physiologically from humans, and they have a different blood-brain barrier, which can result in differences in gene therapy delivery to the brain. Because of their anatomical differences, large-animal models are emerging in gene therapy."
Large-animal models, including nonhuman primates, may suit certain studies more specifically than humanized mice. For example, pig models have been used effectively in cystic fibrosis studies because their respiratory is more similar to humans than mouse models.
However, large-animal models have limitations. They are more expensive than mouse models and require specialized scientists and technicians and adequate lab space. That's why Dr. Venkateswaran recommends that, generally, researchers should start small and move up.
"You need to get some confidence in your gene therapy's performance,"she said. "When data looks good in in vitro models and in mouse models, then, depending on the therapy, consider testing in relevant large animal models."
Axovant has two pediatric rare-disease studies in the pipeline: both fatal diseases with no other treatment options available. These delicate situations require Axovant to be especially thoughtful about model selection.
"You not only want to mimic the genetic condition, you want to be able to practice the same surgical techniques you would use to deliver the therapy as well as look at some of the same clinical biomarkers,"Dr. Pack said. "With a larger-animal model, you can optimize everything clinically before you start clinical trials."
To determine the appropriate animal model(s) for preclinical gene therapy studies, researchers must weigh both scientific and practical considerations.
Scientific considerations include:
Practical considerations include:
Gene therapy researchers have a lot to consider when designing preclinical research. Appropriate animal model selection is one of the first and most important steps to help move that research into clinical trials.
Fortunately, a select group of CROs have preclinical research expertise to help expedite the process. That includes access to complex genetically modified mouse models and other animal models, as well as scientific experts that understand the biology of these models. Many CROs, including Biomere, also have housing and breeding programs and experience with testing multiple types of therapies (CRISPR-mediated gene editing, AAV and other viruses, RNA therapeutics (RNAi andmiRNA), ceDNA, antisense oligos etc.).
"When you get it right in preclinical studies, you improve the success rate in the clinic,"Dr. Venkateswaran said. "A more thoughtful approach will lead to more robust therapies, which ultimately leads to more patient lives saved." To learn more about model selection for gene therapy studies, download Biomere's white paper.
Need a preclinical partner for a gene therapy study? Visit Biomere.com to contact one of its scientists about your preclinical study today.
Meyerholz DK. Lessons learned from the cystic fibrosis pig.Theriogenology. 2016;86(1):427-432. doi:10.1016/j.theriogenology.2016.04.057
- Patient Dies of Acute Liver Failure After Treatment With Sareptas DMD Gene Therapy Elevidys - CGTLive - March 19th, 2025
- Patient dies following muscular dystrophy gene therapy, Sarepta reports - The Associated Press - March 19th, 2025
- Duchenne patient dies after receiving Sarepta gene therapy - March 19th, 2025
- Liver Failure-Associated Death Reported in Patient Treated With Sarepta Gene Therapy Elevidys - MedCity News - March 19th, 2025
- DoD grant funds Hollings researcher's idea to pursue gene therapy for cancer - Medical University of South Carolina - March 19th, 2025
- Recon: Sarepta reports death of teen who received Duchenne gene therapy; Novartis to slash 427 jobs while revamping cardiovascular business -... - March 19th, 2025
- Data Gaps Leave Long-Term Impact of Ex Vivo Gene Therapy in DMD Uncertain - AJMC.com Managed Markets Network - March 19th, 2025
- CHO Plus Obtains U.S. Patent for Improved Production of Viral Vectors for Gene Therapy - Business Wire - March 19th, 2025
- Sarepta Shares Fall on Report of Patient Death After Gene Therapy - Bloomberg - March 19th, 2025
- Hologen AI commits up to $430M to help take MeiraGTx's Parkinson's gene therapy through phase 3 and beyond - Fierce Biotech - March 19th, 2025
- Duchenne patient on Sareptas gene therapy dies - The Business Journals - March 19th, 2025
- Im Unstoppable: New gene therapy cures first New Yorker of sickle cell anemia - PIX11 New York News - March 19th, 2025
- Boost in cancer treatment: PGI working on lab for stem cell, gene therapies - The Times of India - March 19th, 2025
- Man Cured Of Sickle Cell Disease In New York Thanks To New Gene Therapy - Forbes - March 19th, 2025
- Sarepta says teen died after its gene therapy treatment By Reuters - Investing.com - March 19th, 2025
- Innovative Gene Therapy Approach Drives Buy Rating for Insmed in DMD Treatment - TipRanks - March 19th, 2025
- Sarepta says patient dies after treatment with gene therapy - TradingView - March 19th, 2025
- Sarepta tumbles after patient dies following gene therapy treatment - TradingView - March 19th, 2025
- MeiraGTx teams with cryptic AI startup, co-founded by Eric Schmidt, to advance Parkinson's gene therapy - Endpoints News - March 19th, 2025
- Sickle cell anemia patient reunites with Long Island doctors whose gene therapy treatments made him symptom-free - Newsday - March 19th, 2025
- Extracellular vesicles for the delivery of gene therapy - Nature.com - March 9th, 2025
- Around the Helix: Cell and Gene Therapy Company Updates March 5, 2025 - CGTLive - March 9th, 2025
- Inside the secret island where wealthy people go to alter their DNA - Daily Mail - March 9th, 2025
- Regenerons Gene Therapy DB-OTO Trial Shows Promising Hearing Improvement - The Hearing Review - March 9th, 2025
- Global Cell and Gene Therapy Manufacturing Market to Reach ~USD 10 Billion by 2032 | DelveInsight - GlobeNewswire - March 9th, 2025
- College Station gene therapy company partners with nonprofit to develop treatments for rare diseases - KBTX - March 9th, 2025
- World Hearing Day 2025: Looking Back at Progress in Gene Therapy - CGTLive - March 9th, 2025
- Reflecting on a milestone year for cell and gene therapies - Pharmaceutical Technology - March 9th, 2025
- Q&A: Whats Next for Hemophilia Gene Therapy? | Newswise - Newswise - March 9th, 2025
- 'Llife-changing' gene therapy in London partially restores CT child's sight - CT Insider - March 9th, 2025
- The Genesis of Cell Therapy: Bridging Traditional Pharmacology and Gene Therapy - Technology Networks - March 9th, 2025
- Regenxbio at TD Cowen Conference: Gene Therapy Advancements - Investing.com - March 9th, 2025
- Anova Announces First Patient Enrolled to Phase 1/2a Study of DB107 for the Treatment of High-Grade Gliomas - Business Wire - March 9th, 2025
- Apertura Gene Therapy Supports the Broad Institute in Development of Gene Therapy for Prion Disease Using Engineered AAV Capsid Targeting TfR1 for CNS... - March 9th, 2025
- Gene therapy research offers hope for people with chronic kidney disease - Medical Xpress - January 6th, 2025
- Sangamo Therapeutics to Regain Full Rights to Hemophilia A Gene Therapy Program Following Pfizers Decision to Cease Development of Giroctocogene... - January 6th, 2025
- JCR Pharmaceuticals and Modalis Therapeutics Announce Transition to the Next Phase of Joint Research Agreement for Development of Novel Gene Therapy -... - January 6th, 2025
- Gene therapy targets the retina to treat eye disease - Nature.com - January 6th, 2025
- Sangamos Stock Plummets as Pfizer Axes Hemophilia Gene Therapy Pact - BioSpace - January 6th, 2025
- How Increased Use of Gene Therapy Treatment for Sickle Cell Disease Could Affect the Federal Budget - Congressional Budget Office - January 6th, 2025
- The Future of Regulatory Processes in Cell and Gene Therapy - Pharmaceutical Executive - January 6th, 2025
- CGTLive's 2024 Pillars of Progress: Most-Watched Conference Interviews - CGTLive - January 6th, 2025
- Pfizer cuts losses on near-approval hemophilia gene therapy, adding to troubled Sangamo's woes - Fierce Biotech - January 6th, 2025
- JCR Pharmaceuticals and Modalis Advance Joint Gene Therapy Research - TipRanks - January 6th, 2025
- JCR and Modalis Advance Joint Gene Therapy Research - TipRanks - January 6th, 2025
- Novartis Gene Therapy Shows Promise in Treating SMA - Yahoo Finance - January 6th, 2025
- Gene Therapy Market to Hit Valuation of US$ 42.26 Billion By 2033 | Astute Analytica - Yahoo Finance - January 6th, 2025
- Novartis gene therapy helps children with rare muscle disorder in study - Reuters - January 6th, 2025
- Capricor Puts Rolling BLA for DMD Cardiomyopathy Cell Therapy Deramiocel in Front of the FDA - CGTLive - January 6th, 2025
- Positive data could expand use of Novartis gene therapy for SMA - Yahoo Finance - January 6th, 2025
- Sangamo spirals after Pfizer halts hemophilia A gene therapy partnership - MM+M Online - January 6th, 2025
- Cell Therapy and Gene Therapy CDMO Market to Reach USD 11.11 Billion by 2030 | Discover Growth Trends and Insights | Valuates Reports - PR Newswire - January 6th, 2025
- Struggling With Adoption, Sickle Cell Gene Therapy Manufacturers Embrace CMS Model - News & Insights - January 6th, 2025
- Sangamo Therapeutics to Regain Rights to Gene Therapy Program from Pfizer - Contract Pharma - January 6th, 2025
- Researchers Create Gene Therapy with Potential to Treat Peripheral Pain ... - December 28th, 2024
- How CRISPR Is Changing Cancer Research and Treatment - December 28th, 2024
- Gene Therapy Shows Long-Term Vision Benefits in Rare Eye Disease - December 28th, 2024
- 100 cell and gene therapy leaders to watch in 2025 - December 28th, 2024
- Can a new gene therapy reverse heart failure? - Futurity - December 28th, 2024
- Sustained visual improvements in LHON patients treated with AAV gene therapy - Medical Xpress - December 28th, 2024
- Nebraska Medicine administers novel gene therapy to first hemophilia ... - December 28th, 2024
- Gene Therapy for Cardiomyopathies Presents Promising Alternative to Current Treatment - Managed Healthcare Executive - December 28th, 2024
- Stem Cell Transplantation Still the Main Treatment Option for Beta-Thalassemia - Medpage Today - December 28th, 2024
- Caribou Overhyped Gene-Therapy Testing, Investor Class Suit Says - Bloomberg Law - December 28th, 2024
- WuXi AppTec sells off cell and gene therapy operations in US, UK - FirstWord Pharma - December 28th, 2024
- Top 5 Print Publication Articles of 2024 - Managed Healthcare Executive - December 28th, 2024
- Gene Therapy Shows Long-Term Vision Benefits in Rare Eye Disease - Medpage Today - December 28th, 2024
- UPenn gene therapy pioneers biotech gets $34 million in funding - The Philadelphia Inquirer - December 28th, 2024
- PHC Corporation to present LiCellGrow at Advanced Therapies Week 2025 - Drug Target Review - December 28th, 2024
- The Evolution of Cell & Gene Therapy: Development and Manufacturing Insights and the Role of CDMOs - Pharmaceutical Technology Magazine - December 28th, 2024
- Pig kidney transplants, new schizophrenia drug: Here are 5 of the biggest medical breakthroughs in 2024 - ABC News - December 28th, 2024
- Cell Therapy Manufacturing Trends And Advancements Continuing In 2025 - BioProcess Online - December 28th, 2024
- Can Gene Therapy Treat Chronic Pain? - LabRoots - December 28th, 2024
- Driving innovation: India's foray into gene and cell therapies - The Economic Times - December 28th, 2024
- Governor Hochul Celebrates the Opening Of New York's First Cell and Gene Therapy Hub at Roswell Park Comprehensive Cancer Center in Buffalo - PR Web - December 19th, 2024
- GenSight Biologics Provides Update on Regulatory Discussions and Financial Situation - Business Wire - December 19th, 2024
- Atsena completes dosing in part A of X-linked retinoschisis gene therapy trial - Healio - December 19th, 2024
- Astellas and Sangamo Therapeutics Announce Capsid License Agreement to Deliver Genomic Medicines for Neurological Diseases - StreetInsider.com - December 19th, 2024
- Ring Therapeutics lays off just under half of staff in 2nd wave of cuts this year, CEO set to step down - Fierce Biotech - December 19th, 2024
- Gov. Hochul celebrates opening of first cell and gene therapy hub in NYS - WIVB.com - News 4 - December 19th, 2024