What are Stem Cells?
Types of Stem Cells
Why are Stem Cells Important?
Can doctors use stem cells to treat patients?
Pros and Cons of Using Stem Cells
What are Stem Cells?
There are several different types of stem cells produced and maintained in our system throughout life. Depending on the circumstances and life cycle stages, these cells have different properties and functions. There are even stem cells that have been created in the laboratory that can help us learn more about how stem cells differentiate and function. A few key things to remember about stem cells before we venture into more detail:
Stem cells are the foundation cells for every organ and tissue in our bodies. The highly specialized cells that make up these tissues originally came from an initial pool of stem cells formed shortly after fertilization. Throughout our lives, we continue to rely on stem cells to replace injured tissues and cells that are lost every day, such as those in our skin, hair, blood and the lining of our gut.
Source ISSCR
Stem Cell History
Until recently, scientists primarily worked with two kinds of stem cells from animals and humans: embryonic stem cells and non-embryonic "somatic" or "adult" stem cells. Scientists discovered ways to derive embryonic stem cells from early mouse embryos nearly 30 years ago, in 1981. The detailed study of the biology of mouse stem cells led to the discovery, in 1998, of a method to derive stem cells from human embryos and grow the cells in the laboratory. These cells are called human embryonic stem cells. The embryos used in these studies were created for reproductive purposes through in vitro fertilization procedures. When they were no longer needed for that purpose, they were donated for research with the informed consent of the donor. In 2006, researchers made another breakthrough by identifying conditions that would allow some specialized adult cells to be "reprogrammed" genetically to assume a stem cell-like state. This new type of stem cell is now known as induced pluripotent stem cells (iPSCs).
Source NIH
Types of Stem Cells
Adult Stem Cells (ASCs):
ASCs are undifferentiated cells found living within specific differentiated tissues in our bodies that can renew themselves or generate new cells that can replenish dead or damaged tissue. You may also see the term somatic stem cell used to refer to adult stem cells. The term somatic refers to non-reproductive cells in the body (eggs or sperm). ASCs are typically scarce in native tissues which have rendered them difficult to study and extract for research purposes.
Resident in most tissues of the human body, discrete populations of ASCs generate cells to replace those that are lost through normal repair, disease, or injury. ASCs are found throughout ones lifetime in tissues such as the umbilical cord, placenta, bone marrow, muscle, brain, fat tissue, skin, gut, etc. The first ASCs were extracted and used for blood production in 1948. This procedure was expanded in 1968 when the first adult bone marrow cells were used in clinical therapies for blood disease.
Studies proving the specificity of developing ASCs are controversial; some showing that ASCs can only generate the cell types of their resident tissue whereas others have shown that ASCs may be able to generate other tissue types than those they reside in. More studies are necessary to confirm the dispute.
Types of Adult Stem Cells
Embryonic Stem Cells (ESCs):
During days 3-5 following fertilization and prior to implantation, the embryo (at this stage, called a blastocyst), contains an inner cell mass that is capable of generating all the specialized tissues that make up the human body. ESCs are derived from the inner cell mass of an embryo that has been fertilized in vitro and donated for research purposes following informed consent. ESCs are not derived from eggs fertilized in a womans body.
These pluripotent stem cells have the potential to become almost any cell type and are only found during the first stages of development. Scientists hope to understand how these cells differentiate during development. As we begin to understand these developmental processes we may be able to apply them to stem cells grown in vitro and potentially regrow cells such as nerve, skin, intestine, liver, etc for transplantation.
Induced Pluripotent Stem Cells (iPSCs)
Induced pluripotent stem cells are stem cells that are created in the laboratory, a happy medium between adult stem cells and embryonic stem cells. iPSCs are created through the introduction of embryonic genes into a somatic cell (a skin cell for example) that cause it to revert back to a stem cell like state. These cells, like ESCs are considered pluripotent Discovered in 2007, this method of genetic reprogramming to create embryonic like cells, is novel and needs many more years of research before use in clinical therapies.
NIH
Why are Stem Cells Important?
Stem cells are important for living organisms for many reasons. In the 3- to 5-day-old embryo, called a blastocyst, the inner cells give rise to the entire body of the organism, including all of the many specialized cell types and organs such as the heart, lung, skin, sperm, eggs and other tissues. In some adult tissues, such as bone marrow, muscle, and brain, discrete populations of adult stem cells generate replacements for cells that are lost through normal wear and tear, injury, or disease.
Given their unique regenerative abilities, stem cells offer new potentials for treating diseases such as diabetes, and heart disease. However, much work remains to be done in the laboratory and the clinic to understand how to use these cells for cell-based therapies to treat disease, which is also referred to as regenerative or reparative medicine.
Laboratory studies of stem cells enable scientists to learn about the cells essential properties and what makes them different from specialized cell types. Scientists are already using stem cells in the laboratory to screen new drugs and to develop model systems to study normal growth and identify the causes of birth defects.
Research on stem cells continues to advance knowledge about how an organism develops from a single cell and how healthy cells replace damaged cells in adult organisms. Stem cell research is one of the most fascinating areas of contemporary biology, but, as with many expanding fields of scientific inquiry, research on stem cells raises scientific questions as rapidly as it generates new discoveries.
Source NIH
Can doctors use stem cells to treat patients?
Some stem cells, such as the adult bone marrow or peripheral blood stem cells, have been used in clinical therapies for over 40 years. Other therapies utilizing stem cells include skin replacement from adult stem cells harvested from hair follicles that have been grown in culture to produce skin grafts. Other clinical trials for neuronal damage/disease have also been conducted using neural stem cells. There were side effects accompanying these studies and further investigation is warranted. Although there is much research to be conducted in the future, these studies give us hope for the future of therapeutics with stem cell research.
Potential Therapies using Stem Cells
Adult Stem Cell Therapies
Bone marrow and peripheral blood stem cell transplants have been utilized for over 40 years as therapy for blood disorders such as leukemia and lymphoma, amongst many others. Scientists have also shown that stem cells reside in most tissues of the body and research continues to learn how to identify, extract, and proliferate these cells for further use in therapy. Scientists hope to yield therapies for diseases such as type I diabetes and repair of heart muscle following heart attack.
Scientists have also shown that there is potential in reprogramming ASCs to cause them to transdifferentiate (turn back into a different cell type than the resident tissue it was replenishing).
Embryonic Stem Cell (ESC) Therapies
There is potential with ESCs to treat certain diseases in the future. Scientists continue to learn how ESCs differentiate and once this method is better understood, the hope is to apply the knowledge to get ESCs to differentiate into the cell of choice that is needed for patient therapy. Diseases that are being targeted with ESC therapy include diabetes, spinal cord injury, muscular dystrophy, heart disease, and vision/hearing loss.
Induced Pluripotent Stem Cell Therapies
Therapies using iPSCs are exciting because somatic cells of the recipient can be reprogrammed to en ESC like state. Then mechanisms to differentiate these cells may be applied to generate the cells in need. This is appealing to clinicians because this avoids the issue of histocompatibility and lifelong immunosuppression, which is needed if transplants use donor stem cells.
iPS cells mimic most ESC properties in that they are pluripotent cells, but do not currently carry the ethical baggage of ESC research and use because iPS cells have not been able to be manipulated to grow the outer layer of an embryonic cell required for the development of the cell into a human being.
Pros and Cons of Using Various Stem Cells
See the original post:
What are Stem Cells? - University of Nebraska Medical Center
- BioRestorative Therapies IFATS 2024 Presentation to - GlobeNewswire - September 21st, 2024
- Fasting may help improve immune system; 3 reasons why one should fast at least once a week or a month - Times Now - February 24th, 2023
- Alpilean Weight Loss Reviews (Legit Or Fake) Dont Try Alpine Ice Hack Diet Before You See This! - Outlook India - February 24th, 2023
- Stevens Institute of Technology Professors Use Interdisciplinary Collaboration to Enhance the Field of 3D-Printed Tissues - India Education Diary - February 24th, 2023
- Stress can throw off circadian rhythms and lead to weight gain - Medical News Today - August 19th, 2022
- Scientists Aim to Bring the Tasmanian Tiger Back From Extinction Mother Jones - Mother Jones - August 19th, 2022
- Benefits Of Ozone Therapy In Pain Medicine - Nation World News - August 19th, 2022
- New Discovered Adipokines Associated with the Pathogenesis of Obesity | DMSO - Dove Medical Press - August 11th, 2022
- Slimvance Reviews - Does This Fat Burner Really Work? - Outlook India - August 11th, 2022
- Mesenchymal stem cells - PubMed - June 16th, 2022
- Stem cells: Sources, types, and uses - Medical News Today - June 16th, 2022
- Fat Cells - The Definitive Guide | Biology Dictionary - June 16th, 2022
- Stem Cells For Back Pain | Stem Cells For Herniated Discs - June 16th, 2022
- 2022-06-13 | OTCPK:BRTXD | Press Release | BioRestorative Therapies - Stockhouse - June 16th, 2022
- Hepatic Diseases and Associated Glucose Intolerance | DMSO - Dove Medical Press - June 16th, 2022
- Why Fitness Experts Are Obsessed With "Bulletproofing" the Body - InsideHook - June 16th, 2022
- New Stem cell conveying hydrogel could assist the heart with recuperating myocardial ischemia - Microbioz India - August 17th, 2021
- Participants Diagnosis Halts Gene Therapy Clinical Trial - The Scientist - August 17th, 2021
- The Involuted Palate, or the Savage Crinkle of Future Snacks - lareviewofbooks - August 17th, 2021
- Time to Go Sushi With Cellular Salmon; When Pet Owners Tire of Their Minions - The SandPaper - August 17th, 2021
- Adipose-derived Stem Cell Market Analysis, Key Company Profiles, Types, Applications and Forecast To 2027 The Courier - The Courier - May 27th, 2021
- Global Cell Therapy Markets, Technologies, and Competitive Landscape Report 2020-2030: Applications, Cardiovascular Disorders, Cancer, Neurological... - May 27th, 2021
- What is lab grown meat? A scientist explains the taste, production and safety of artificial foods - BBC Focus Magazine - May 27th, 2021
- Rheumatoid Arthritis Stem Cell Therapy Market share, growth drivers, demand, supply, challenges, and investment opportunities by 2028 - WhaTech - May 27th, 2021
- Obesity-Related Inflammation and Endothelial Dysfunction in COVID-19: | JIR - Dove Medical Press - May 27th, 2021
- The hunt for the master cow that will feed the world - Wired.co.uk - May 27th, 2021
- Australia's Magic Valley On How to Turn Cells From "Cell Volunteer" Lucy the Lamb Into Lamb Steaks and Chops - vegconomist - the vegan... - May 27th, 2021
- Clearing Cellular Dead Wood | In the Pipeline - Science Magazine - May 27th, 2021
- University of Pittsburgh Won't Explain its Planned Parenthood Ties | Opinion - Newsweek - May 27th, 2021
- Smart Stem Cells Made From Fat Have the Power to Heal - Freethink - February 14th, 2021
- Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease - Science - February 14th, 2021
- Their Goal: Meat That's Better Than Meat | Tufts Now - Tufts Now - January 31st, 2021
- Gut microbiota: How does it interact with the brain? - Medical News Today - December 30th, 2020
- The 10 Best Herbs for Liver Health: Benefits and Precautions - Healthline - December 19th, 2020
- Startups are racing to reproduce breast milk in the lab - MIT Technology Review - December 19th, 2020
- The facts about the danger of melanoma - The Hudson Reporter - December 19th, 2020
- And Now, a Moment for Culture(d Meat) - The Spoon - December 4th, 2020
- How to live longer: Calorie restriction may reset your biological body clock - Express - December 4th, 2020
- Future Meat is cutting costs on mass production with an unlikely cellular approach - The Spoon - November 30th, 2020
- BioRestorative Therapies Emerges from Chapter 11 Reorganization - OrthoSpineNews - November 25th, 2020
- The Adipose Tissue Derived Stem Cells market to grow in the wake of incorporation of the latest technology - The Think Curiouser - November 7th, 2020
- Global Cell Therapy Technologies, Competitive Landscape & Markets, 2019-2020 & Forecast to 2029 - ResearchAndMarkets.com - Yahoo Finance - November 7th, 2020
- Blocking energy pathway reduces GVHD while retaining anti-cancer effects of T-cells - Science Codex - November 7th, 2020
- Singapore startup Shiok Meats re-creates shrimp in the lab - Los Angeles Times - October 10th, 2020
- Aqua-Spark Announces an Investment in Singapore-based Shiok Meats, the First Cell-Based Company to Produce Clean, Sustainable, Cruelty-Free Shrimp and... - October 6th, 2020
- Orgenesis to acquire regenerative medicine company Koligo Therapeutics - Pharmaceutical Business Review - September 30th, 2020
- Heart attack patches may save lives in US and beyond - Galveston County Daily News - September 30th, 2020
- Orgenesis Announces Agreement to Acquire Koligo Therapeutics, a Leader in Personalized Cell Therapies - GlobeNewswire - September 30th, 2020
- Bariatric surgery is booming, as obese patients worry about their Covid-19 risks - The Daily Briefing - September 30th, 2020
- Global Stem Cell Reconstructive Market- Industry Analysis and Forecast (2020-2027) - Unica News - September 30th, 2020
- Regenerative medicine and war: The next breakthrough in treating injured veterans? - Genetic Literacy Project - September 29th, 2020
- Sherrie Hewson celebrates 70th birthday with second face lift to transform her looks - The Sun - September 15th, 2020
- Two Austin Women Hope to Build the First Lab-Grown Brisket - Texas Monthly - September 15th, 2020
- FDA Clears Jointechlabs' MiniTC for Point-of-Care Fat Tissue Processing and its Broad Range of Applications - PRNewswire - August 26th, 2020
- Photos That Reveal the Hidden Side of Things - Obsev - August 26th, 2020
- Research Roundup: Lasting Immunity to COVID-19 and More - BioSpace - August 25th, 2020
- The Truth About Cosmetic Treatments review a format in need of a facelift - The Guardian - August 25th, 2020
- Survivors of Pediatric Cancers May Experience Lasting Impact on Heart, Metabolic Health Following Radiation Therapy - Pharmacy Times - August 15th, 2020
- AgeX Therapeutics Reports Second Quarter 2020 Financial Results and Provides Business Update - Business Wire - August 15th, 2020
- Global Stem Cell Reconstructive Market- Industry Analysis and Forecast (2020-2027) - Good Night, Good Hockey - August 15th, 2020
- Meet The 12 Next-Gen Food Techs Transforming The Future Of Protein - Green Queen Media - August 15th, 2020
- Meat-lover who wants to save the planet? 3D printed steaks are your solution - ThePrint - July 12th, 2020
- Fat stem cells improve prognosis in patients with Covid-19 ... - July 11th, 2020
- Making Sense of Stem Cells and Fat Grafting in Plastic ... - July 11th, 2020
- Tip Sheet: SARS-CoV-2 antibodies, COVID-19 and health disparities, eating in tough times and immune protection in breast milk - Fred Hutch News... - July 9th, 2020
- Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain - Science Magazine - July 9th, 2020
- Fasting is not starvation or a fad, it is a discipline: Luke Coutinho - The Indian Express - July 9th, 2020
- Is Meat Grown in a Lab Really Meat? - The New York Times - July 7th, 2020
- What if mammoths are brought back from extinction? - The Economist - July 7th, 2020
- Cancer Stem Cells (CSCs) Market Recent Industry Developments and Growth Strategies Adopted by Players - Cole of Duty - July 1st, 2020
- Coronavirus symptoms: How COVID-19 can damage the brain - what to look for - Express - July 1st, 2020
- Westerleigh resident is alive because of stem cell therapy by his doctor -- for free. Heres his story. - SILive.com - June 13th, 2020
- Regenerative Therapy Options for Horses With Osteoarthritis - TheHorse.com - June 13th, 2020
- Fat cells remember their diets early in life - Massive Science - June 13th, 2020
- Patient uses fat stem cells to repair his wrist - CNN - June 10th, 2020
- FDA Warns About Stem Cell Therapies | FDA - June 10th, 2020
- Regenerative Therapies: Helping Horses Self-Heal The Horse - TheHorse.com - May 31st, 2020
- AgeX Therapeutics and Sernova to Collaborate to Engineer Universal Locally Immune Protected Cell Therapies for Type I Diabetes and Hemophilia A -... - May 31st, 2020
- Hair regeneration using stem cells to treat baldness - BioNews - May 27th, 2020
- AgeX Therapeutics, Inc. Appoints Andrea Park as Chief Financial Officer - Yahoo Finance - May 27th, 2020