Page 4«..3456..1020..»

Archive for the ‘Gene therapy’ Category

FDA approves third gene therapy for large B-cell lymphoma – European Pharmaceutical Review

Thursday, February 11th, 2021

Breyanzi (lisocabtagene maraleucel) was approved on the 54 percent complete remission rate achieved in diffuse large B-cell lymphoma trials.

Breyanzi (lisocabtagene maraleucel), a chimeric antigen receptor (CAR) T cell-based gene therapy to treat adult patients with certain types of large B-cell lymphoma who have not responded to, or relapsed, after at least two other types of systemic treatment has been approved by the US Food and Drug Administration (FDA).

According to the agency, Breyanzi is the third gene therapy approved in the US for certain types of non-Hodgkin lymphoma, including diffuse large B-cell lymphoma (DLBCL). Breyanzi is not indicated for the treatment of patients with primary central nervous system lymphoma.

Todays approval represents another milestone in the rapidly progressing field of gene therapy by providing an additional treatment option for adults with certain types of cancer affecting the blood, bone marrow, and lymph nodes, commented Dr Peter Marks, director of the FDAs Center for Biologics Evaluation and Research. Gene and cell therapies have evolved from promising concepts to practical cancer treatment regimens.

DLBCL is the most common type of non-Hodgkin lymphoma in adults. Approximately 77,000 new cases of non-Hodgkin lymphoma are diagnosed in the US each year, with DLBCL accounting for around a third of newly diagnosed cases.

Breyanzi is customised for each patient; their T cells, a type of white blood cell, are collected and genetically modified to include a new gene that facilitates targeting and killing of the lymphoma cells. Once the cells are modified, they are infused back into the patient.

The safety and efficacy of the treatment were established in a multi-centre clinical trial of more than 250 adults with refractory or relapsed large B-cell lymphoma. The complete remission rate after treatment with Breyanzi was 54 percent.

The treatment can cause severe side effects, including cytokine release syndrome (CRS), which is a systemic response to the activation and proliferation of CAR T cells, causing high fever and flu-like symptoms and neurologic toxicities. Both CRS and neurological events can be life-threatening, so the therapy is being approved with a risk evaluation and mitigation strategy (REMS) which includes elements to assure safe use (ETASU).

The requirements include, among other things, that healthcare facilities that dispense Breyanzi be specially certified, with staff involved in the prescribing, dispensing or administering of the treatment being trained to recognise and manage the risks of CRS and neurologic toxicities.

Other side effects include hypersensitivity reactions, serious infections, low blood cell counts and a weakened immune system. According to the FDA, side effects generally appear within the first one to two weeks following treatment, but some side effects may occur later.

To further evaluate the long-term safety, the FDA is also requiring the manufacturer to conduct a post-marketing observational study involving patients treated with Breyanzi.

The approval was granted to Juno Therapeutics Inc., a Bristol-Myers Squibb Company.

View original post here:
FDA approves third gene therapy for large B-cell lymphoma - European Pharmaceutical Review


Adverum to Present Data from the OPTIC Phase 1 Trial with ADVM-022 Intravitreal Gene Therapy in Wet AMD at the Angiogenesis, Exudation, and…

Thursday, February 11th, 2021

REDWOOD CITY, Calif., Feb. 10, 2021 (GLOBE NEWSWIRE) -- Adverum Biotechnologies, Inc. (Nasdaq: ADVM), a clinical-stage gene therapy company targeting unmet medical needs in ocular and rare diseases, today announced the presentation of data from Cohorts 1-4 of the OPTIC Phase 1 clinical trial of ADVM-022 intravitreal (IVT) injection gene therapy in patients requiring frequent anti-VEGF injections for their wet age-related macular degeneration (AMD). These data were previously presented as part of a corporate update on Saturday, November 14, 2020.

Oral Presentation Title: Intravitreal Gene Therapy for Exudative AMD and Diabetic RetinopathyDate and Time: Saturday, February 13, 2021 at 9:30 am ETSession V: Gene Therapy for Exudative AMD and Diabetic RetinopathyPresenter: Arshad M. Khanani, M.D., M.A., Director of Clinical Research, Sierra Eye Associates

A copy of this presentation will be available as the presentation begins in the publications and presentation section of Adverums website.

About Adverum BiotechnologiesAdverum Biotechnologies (Nasdaq: ADVM) is a clinical-stage gene therapy company targeting unmet medical needs in serious ocular and rare diseases. Adverum is advancing the clinical development of its novel gene therapy candidate, ADVM-022, as a one-time, intravitreal injection for the treatment of patients with wet age-related macular degeneration and diabetic macular edema. For more information, please

Read more:
Adverum to Present Data from the OPTIC Phase 1 Trial with ADVM-022 Intravitreal Gene Therapy in Wet AMD at the Angiogenesis, Exudation, and...


World Symposium Orchard leads the crop of Hurler syndrome hopefuls – Vantage

Thursday, February 11th, 2021

Gene therapy companies have been under pressure lately, but Orchard Therapeutics got a lift yesterday from promising early data with its mucopolysaccharidosis type I candidateOTL-203.

The company is seeking to supersede the current standard of care, enzyme-replacement therapy or bone marrow transplant. But other gene therapy contenders are not too far behind, notablyRegenxbio, which in December started a proof-of-concept study of its rival project, RGX-111.


Both projects seek to deliver the -l-iduronidase (IDUA) gene, which is mutated in MPS-I, leading to a deficiency of the IDUA enzyme. This enzyme usually breaks down glycosaminoglycans (GAGs), so in MPS-I patients these build up, causing tissue and organ damage. Symptoms of MSP-I, also known as Hurler syndrome, include cognitive impairment and skeletal deformity; if left untreated, patients rarely survive beyond the age of 10.

And both OTL-203 and RGX-111 are designed as one-time therapies, whereas the current enzyme replacement, Biomarin/Sanofis Aldurazyme, is given intravenously once a week.

However, the gene therapy candidates go about restoring IDUA enzyme activity in different ways. OTL-203 uses hematopoietic stem cells taken from the patient, then genetically modified using a lentiviral vector to express the IDUA gene, before being reinfused.

RGX-111, meanwhile, uses an adeno-associated viral vector to deliver the gene directly to the brain, getting around a central problem with Aldurazyme, which cannot cross the blood-brain barrier.

Getting into the brain should not be a problem for OTL-203 either, Orchards head of medical affairs, Leslie Meltzer, told Evaluate Vantage. She explained that hematopoietic stem cells naturally cross the blood-brain barrier and, once in the CNS, differentiate into a microglial-like cell.

This claim appears to be supported by the latest data, which admittedly come in just a handful of subjects. The eight-patient phase I/II trial, presented at the World Symposium yesterday, found increases in the IDUA enzyme in patients blood and cerebrospinal fluid. There was also a decrease in GAGs in the CSF and urine.

Encouragingly, this activity appears to have translated into a clinical benefit: all eight patients showed stable cognitive scores and stable motor function versus baseline, as well as growth in the normal range for patients age.

Its a progressive disease, so youd expect these things to worsen over time, but the fact they continued to be stable is very promising, Ms Meltzer said.She admitted that the data were early, with only around a year of follow-up on most of the clinical endpoints.

Orchard plans to start a registrational study by the end of this year.Ms Meltzer would not give any details ondesign, saying this would be finalised after feedback from regulators.

Regenxbios proof-of-concept study of RGX-111 is due to complete in November, putting the project about a year behind OTL-203.

One candidate that will go no further is Sangamos SB-318. The company reported disappointing data with the in vivo zinc finger nuclease genome-editing project two years ago, and has since said it would focus on second-generation zinc finger projects.

Still, even two gene therapies might be too many for an ultra-rare disease like MPS-I, which affects just one in 100,000 people. Asked whether this market could support more than one gene therapy, Ms Meltzer said newborn screening recently implemented in countries including the UScould lead to a revision of that estimate.

But, as in other rare disorders that have attracted several gene therapy players, a battle over a limited patient pool could be shaping up.

Read the original post:
World Symposium Orchard leads the crop of Hurler syndrome hopefuls - Vantage


AGTC Executives Awarded First Place in the BioProcess International Reader’s Choice Awards, Cell & Gene Therapies Category – GlobeNewswire

Thursday, February 11th, 2021

Article reflects Companys leadership and innovation in scalable, reproducible manufacture of adeno-associated virus (AAV)-based gene therapies

GAINESVILLE, Fla. and CAMBRIDGE, Mass., Feb. 04, 2021 (GLOBE NEWSWIRE) -- Applied Genetic Technologies Corporation (Nasdaq: AGTC), a biotechnology company focused on developing adeno-associated virus (AAV) based gene therapies for the treatment of rare inherited diseases, announced that Sue Washer, President & Chief Executive Officer and Dave Knop, Vice President of Process Development, have been awarded first place in the BioProcess International (BPI) magazine inaugural Readers Choice Awards program, cell and gene therapies category, for their article, Viral-Vectored Gene Therapies: Harnessing Their Potential Through Scalable, Reproducible Manufacturing Processes.

High-productivity approaches to AAV manufacturing processes, like AGTCs HSV-helper based platform, will be crucial if we are to address the unmet clinical need growing across a variety of indications, said AGTC President and CEO, Sue Washer. There is no question that investing in the manufacturing process is imperative and our early commitment in this area has put AGTC in a strong position with respect to the purity and quality needed for late stage development and commercialization.

Concentrating on articles published from September 2019 through June 2020, and using rankings based on views, engagement, and download rates, BioProcess International identified the four most popular articles within each of its six pillars of bioprocessing coverage. The AGTC authors article received the highest number of votes from BPI readers, who ranked the nominees in terms of their innovativeness, presentability and applicability.

The eBook featuring the first-place article by Washer and Knop, as well as summarized versions of the second- and third-place articles, are available by visiting:

About AGTCAGTC is a clinical-stage biotechnology company developing genetic therapies for people with rare and debilitating ophthalmic, otologic and central nervous system (CNS) diseases. AGTC is a leader in designing and constructing all critical gene therapy elements and bringing them together to develop customized therapies that address real patient needs. The Companys most advanced clinical programs leverage its best-in-class technology platform to potentially improve vision for patients with an inherited retinal disease. AGTC has active clinical trials in X-linked retinitis pigmentosa (XLRP) and achromatopsia (ACHM CNGB3 & ACHM CNGA3). Its preclinical programs build on the Companys industry-leading AAV manufacturing technology and scientific expertise. AGTC is advancing multiple important pipeline candidates to address substantial unmet clinical need in optogenetics, otology and CNS disorders.

IR/PR CONTACTS:David Carey (IR) or Glenn Silver (PR)Lazar FINN PartnersT: (212) 867-1768 or (646) or

Corporate Contact:Bill SullivanChief Financial OfficerApplied Genetic Technologies CorporationT: (617)

Stephen PotterChief Business OfficerApplied Genetic Technologies CorporationT: (617)

See the original post:
AGTC Executives Awarded First Place in the BioProcess International Reader's Choice Awards, Cell & Gene Therapies Category - GlobeNewswire


Actinium Showcases Targeted Conditioning Program with 2 Oral Presentations Highlighting Iomab-B and Pivotal Phase 3 SIERRA Trial at 2021…

Thursday, February 11th, 2021

NEW YORK, Feb. 11, 2021 /PRNewswire/ --Actinium Pharmaceuticals, Inc. (NYSE AMERICAN: ATNM) ("Actinium" or the "Company") today highlighted its presence at the 2021 Transplantation & Cellular Therapy (TCT) Annual Meeting, which is being held virtually from February 8th 12th. The TCT meeting organizes thousands of transplant professionals from over five hundred transplant centers worldwide and is a seminal event for Actinium given its focus on targeted conditioning for bone marrow transplant (BMT), CAR-T and other adoptive cell therapies and gene therapy. At TCT, Actinium's pivotal Phase 3 trial SIERRA trial for Iomab-B was featured in 2 oral presentations, as well as CME event focused on AML and BMT and in investigator interactions led by Actinium's clinical development and medical affairs teams.

Dr. Mark Berger, Actinium's Chief Medical Officer, said, "TCT is the ideal venue to showcase Actinium's Iomab-B and Iomab-ACT targeted conditioning programs given the concentrated audience of thought leaders in these fields that TCT brings together. The timing of TCT is also ideal as it follows shortly after ASH resulting in a data rich period for Actinium that drives investigator interest. This is particularly the case this year as we have built strong momentum in SIERRA following positive data from 75% enrollment featured in 2 oral presentations at ASH and now in 2 oral presentations at this year's TCT, which has driven high levels of investigator and referring physician interactions. We have coupled this with bolstered outreach efforts, which will continue beyond TCT, that have resulted in new site activation despite the advanced stage of SIERRA and robust enrollment rates that give us great confidence in completing SIERRA enrollment rapidly."

Summary data presented in TCT oral presentations include:

-100% BMT and engraftment rate for patients receiving a therapeutic dose of Iomab-B compared to 18% of patients receiving physician's choice of salvage therapy on the control arm- 79% of all patients enrolled on SIERRA were able to proceed to BMT despite being a patient population not considered eligible for BMT with standard approaches-Iomab-B delivers high amounts of targeted radiation to the bone marrow with minimal impact on other organs resulting in lower rates and severity of adverse events

TCT Oral Presentation: Targeted Radioimmunotherapy with Anti-CD45 Iodine (131I) Apamistamab [Iomab-B] in Older Patients with Active, Relapsed or Refractory (R/R) Acute Myeloid Leukemia Results in Successful and Timely Engraftment Not Related to the Radiation Dose Delivered

Phase 3 SIERRA 75% Enrollment Results

Baseline Characteristics

Iomab-B Arm(N=56)

Conventional Care (CC) Arm(N=57)

Age (yrs, median, range)

63 (55-77)

65 (55-77)

Cytogenetic and Molecular Risk1, 2

Favorable: 4%Intermediate: 35%

Adverse: 61%

Favorable: 5%

Intermediate: 32%

Adverse: 63%

% TransplantedIntent-to-Treat Group

88% (49/56)

18% (10/57)

64% (30/47)


Underwent Iomab-B based Conditioning and HCT (N=49)3

Achieved CR and received standard of care HCT (N=10)

Randomized to Conventional Care and Crossed Over to Iomab-B with HCT (N=30)4

Cross-over Rate



Received Therapeutic Dose of Iomab-B (N=30)

Transplanted (N=30)

64% (30/47)

% Transplanted

100% (49/49)

18% (10/57)

100% (30/30)

% Marrow Blast @ randomization (median, range)

29% (4-95)5

20% (5-97)

28% (6-87)

Days to ANC Engraftment

14 (9-22)6

17 (13-83)7

14 (10-37)8

Days to Platelet Engraftment

18 (4-39)6

22 (8-35)7

19 (1-38)8

Days to HCT (Post Randomization)

30 (23-60)

67 (52-104)

62 (36-100)9

Myeloablative Dose Delivered to Bone Marrow

14.7 (4.6-32) Gv


15.5 (6.3-42) Gv

592 (313-1013) mCi

646 (354-1027) mCi

100-day non-Relapse Transplant-Related Mortality


(2/45 Evaluable)


(2/10 Evaluable)


(3/28 Evaluable)

1) Iomab-B arm: data unavailable (4) and patient was excluded (1)

2) Per NCCN guidelines version 3. 2020

3) No therapy dose (7) due to: declining KPS (4), Infusion reaction (1), unfavorable biodistribution (1), post- randomization eligibility (1). Two (2) did not receive DI and five (5) received DI without proceeding to TI.

4) Thirteen (13) patients ineligible for crossover due to: hospice care/progression (4), declined/ineligible for HCT (5), died pre-crossover (4). Additionally, four (4) patients were eligible for crossover and did not receive Iomab-B due to declining KPS.

5) One (1) patient with 4% blasts in the marrow had circulating AML blasts

6) ANC engraftment data not available (4), platelet engraftment data not available (7)

7) ANC and platelet engraftment data not available (1)

8) ANC engraftment data not available (1), platelet engraftment data not available (2)

9) One (1) patient at 161 days had delayed transplant due to infection & respiratory failure, received Iomab & transplant when stable, not included in range

TCT Oral Presentation: Myeloablative Targeted Conditioning with Anti-CD45 Iodine (131I) Apamistamab [Iomab-B] Spares the GI Tract and Has Low Incidence of Severe Mucositis, Febrile Neutropenia and Sepsis in the Prospective, Randomized Phase 3 Sierra Trial for Patients with Relapsed or Refractory Acute Myeloid Leukemia (AML)

Adverse Event

Iomab-B Arm (N=56)

Conventional Care Arm (N=57)

Received Iomab-B/HCT


Achieved CR and received Std HCT (N=10)

No CR Crossed over to Iomab-B/HCT (N=30)


% (N)

4.2 (2)*

30.0 (3)

23.3 (7)

Febrile Neutropenia Gr 3-4

% (N)

41.7 (20)

50.0 (5)

40.0 (12)

Mucositis Gr 3-4

% (N)

10.4 (5)

30.0 (3)

16.7 (5)

Day +100 Non-Relapse Mortality3


Here is the original post:
Actinium Showcases Targeted Conditioning Program with 2 Oral Presentations Highlighting Iomab-B and Pivotal Phase 3 SIERRA Trial at 2021...


Europe Cell and Gene Therapy Market Size to Reach Revenues of USD 2.9 Billion by 2026 – Arizton – PRNewswire

Wednesday, February 3rd, 2021

CHICAGO, Feb. 2, 2021 /PRNewswire/ -- In-depth analysis and data-driven insights on the impact of COVID-19 included in this Europe cell and gene therapy market report.

The Europe cell and gene therapy market is expected to grow at a CAGR of over 23% during the period 20202026.

Key Highlights Offered in the Report:

Key Offerings:

Get your sample today!

Europe Cell and Gene Therapy Market Segmentation

Europe Cell and Gene Therapy Market by Product

Europe Cell and Gene Therapy Market by End-user

Europe Cell and Gene Therapy Market by Application

Europe Cell and Gene Therapy Market Dynamics

Cell and gene therapy is revolutionizing the global healthcare segment. Although various new cell and gene therapies are approved, there are various hurdles that limit the penetration of new therapies, such as high cost, multiple regulatory hurdles, and other manufacturing challenges. These cell and gene therapy developers need reliable, efficient, and cost-effective manufacturing services with the flexibility to scale up production as the demand increases. Cell and gene therapy products are very complex, and their manufacturing requires skilled labor, developed infrastructure for limited patients. Such huge investments will affect vendors and contract manufacturing organizations (CMOs) work with companies to overcome these challenges.

Key Drivers and Trends fueling Market Growth:

Europe Cell and Gene Therapy Market Geography

European countries such as Germany, France, the UK, Italy, and Spain play a significant role in the cell and gene therapy market. However, clinical trials and the number of manufacturing facilities are increasing slowly in Europe. Europe has become a major R&D destination for many vendors as the funding for cell and gene therapies is increasing across many European countries. Europe stands next to North America in the global cell and gene therapy market. Initially, Europe led the cell and gene therapy market due to first product approvals. France, Germany, and Italy had a greater contribution globally and in Europe. However, from the past decade, the US has competed and increased its market share globally. Europe stands second in the market, with the increasing prevalence of cancer and rare genetic disorders that are not effectively solved by the conventional therapies are increasing in the region. This increased target population is driving the demand for cell and gene therapy in the region.

Get your sample today!

Europe Cell and Gene Therapy Market by Geography

Major Vendors

Other Prominent Vendors

Emerging Investigational Vendors In Europe

Explore our healthcare & lifesciencesprofile to know more about the industry.

Read some of the top-selling reports:

About Arizton:

AriztonAdvisory and Intelligence is an innovation and quality-driven firm, which offers cutting-edge research solutions to clients across the world. We excel in providing comprehensive market intelligence reports and advisory and consulting services.

We offer comprehensive market research reports on industries such as consumer goods & retail technology, automotive and mobility, smart tech, healthcare, and life sciences, industrial machinery, chemicals and materials, IT and media, logistics and packaging. These reports contain detailed industry analysis, market size, share, growth drivers, and trend forecasts.

Arizton comprises a team of exuberant and well-experienced analysts who have mastered in generating incisive reports. Our specialist analysts possess exemplary skills in market research. We train our team in advanced research practices, techniques, and ethics to outperform in fabricating impregnable research reports.

Mail: [emailprotected] Call: +1-312-235-2040 +1-302-469-0707

SOURCE Arizton Advisory & Intelligence

See the original post here:
Europe Cell and Gene Therapy Market Size to Reach Revenues of USD 2.9 Billion by 2026 - Arizton - PRNewswire


Retinal Gene Therapy Market: Advent of High-end Technologies to Support Development of the Market – BioSpace

Wednesday, February 3rd, 2021

Global Retinal Gene Therapy Market: Overview

The retinal gene therapy market is estimated to expand at an exponential growth rate. For the use of gene therapy, retina is considered a highly desirable target as it an irreplaceable part of a body. The global retinal gene therapy market is likely to be influenced by the promise its holds for the treatment of various forms of inherited and non-inherited blindness. Furthermore, this therapy can also be used in the treatment of rare genetic retinal diseases, such as Leber's congenital amaurosis, which is likely to augur well for the development of the global retinal gene therapy market during the forecast period, from 2020 to 2030. It is expected that the global retinal gene therapy market is anticipated to witness the entry of new players, with the presence of promising candidates in the phases of drug approval process.

Read Report Overview -

Type, application, and region are the three important parameters based on which the global retinal gene therapy market has been classified. Such detailed analysis of the market comes with the sole purpose to provide stakeholders with a detailed and clear analysis of the global retinal gene therapy market.

Read Report Overview -

Global Retinal Gene Therapy Market: Notable Developments

One of the important market developments that give a quick view of the dynamics pertaining to the global retinal gene therapy market is mentioned as below:

There is only one player in this global retinal gene therapy market, which is mentioned as below:

Request for Analysis of COVID-19 Impact on Retinal Gene Therapy Market-

Global Retinal Gene Therapy Market: Key Trends

The global retinal gene therapy market is characterized by the presence of the following restraints, drivers, and opportunities.

Advent of High-end Technologies to Support Development of the Market

Mostly in the cases of inherited retinal diseases, retinal gene therapy is performed. Gene therapy is capable of bettering vision impairment through mutation in RPE65 gene. Luxturna, a recently introduced gene therapy is utilized for the treatment of patients suffering from type 2 Leber's congenital amaurosis. This disease is a form of inherited disease that causes impairment in vision at the time of birth, which leads to a highly progressive degeneration. At present, there are many retinal gene therapy at the clinical trial phase and those are utilizing recombinant viruses. This factor is likely to increase the scope of growth for the global retinal gene therapy market over the period of assessment, from 2020 to 2030.

Request for Custom Research -

In addition to that, the emergence of new market players together with the advent of high-end technological developments is likely to encourage growth of the global retinal gene therapy market during the forecast period. It is estimated that retinal gene therapy is likely to come up as a standard form of treatment for such retina-related diseases.

Pre Book Retinal Gene Therapy Market Report -

Global Retinal Gene Therapy Market: Geographical Analysis

North America is clearly at the forefront of the growth of the global retinal gene therapy market at the very moment. It is estimated that the region will continue to retain its dominance over the period of forecast, from 2020 to 2030. So far, the product that has been approved for use is from a manufacturer from this region. Europe is likely to emerge as another lucrative region in the global retinal gene therapy market over the period of forecast.

About Us

Transparency Market Research is a next-generation market intelligence provider, offering fact-based solutions to business leaders, consultants, and strategy professionals.

Our reports are single-point solutions for businesses to grow, evolve, and mature. Our real-time data collection methods along with ability to track more than one million high growth niche products are aligned with your aims. The detailed and proprietary statistical models used by our analysts offer insights for making right decision in the shortest span of time. For organizations that require specific but comprehensive information we offer customized solutions through ad hoc reports. These requests are delivered with the perfect combination of right sense of fact-oriented problem solving methodologies and leveraging existing data repositories.

TMR believes that unison of solutions for clients-specific problems with right methodology of research is the key to help enterprises reach right decision.

ContactMr. Rohit BhiseyTransparency Market ResearchState Tower,90 State Street,Suite 700,Albany NY - 12207United StatesUSA - Canada Toll Free: 866-552-3453Email: sales@transparencymarketresearch.comWebsite:

Go here to see the original:
Retinal Gene Therapy Market: Advent of High-end Technologies to Support Development of the Market - BioSpace


Paragon Biosciences Launches CiRC Biosciences to Expand Cell and Gene Therapy Platform – PRNewswire

Wednesday, February 3rd, 2021

CHICAGO, Feb. 2, 2021 /PRNewswire/ -- Paragon Biosciences, a life science innovator that creates, invests in and builds life science companies in biopharmaceuticals, cell and gene therapy and synthetic biology utilizing artificial intelligence, today announced the launch of CiRC Biosciences, a cell therapy company developing treatments for serious diseases with high, unmet needs with an initial focus on the eye.

"The addition of CiRC Biosciences to our portfolio builds upon our cell and gene therapy platform, an area that has tremendous potential to address serious genetic diseases," said Jeff Aronin, founder, chairman and chief executive officer of Paragon Biosciences. "CiRC Biosciences gives us the science to target retinal diseases that could lead to vision restoration with numerous other applications in the years ahead."

CiRC Biosciences is currently advancing pre-clinical development of chemically induced retinal cells for vision restoration in Geographic Atrophy Age-Related Macular Degeneration (Dry AMD), which is the most common cause of irreversible vision loss over the age of 65, and advanced Retinitis Pigmentosa (RP), a genetic disorder that causes tunnel vision and eventual blindness. There are no U.S. Food & Drug Administration (FDA) approved treatments to restore vision loss in Dry AMD or RP.

The company's novel mechanism of action is designed for direct chemical conversion of fibroblasts into other cell types using a cocktail of small molecules in an 11-day chemical conversion process. Pre-clinical studies have shown efficacy in blind mice that demonstrated vision restoration. CiRC Biosciences has provisional patent applications to protect its platform.

"Our technology transforms ordinary skin cells into specialized retinal cells using a cocktail of small molecules," said Sai Chavala, M.D., co-founder and chief scientific officer of CiRC Biosciences. "This process is potentially safer, quicker, more cost effective and easier to manufacturer than using traditional stem cells. Working with Paragon Biosciences to build and advance CiRC Biosciences provides us the opportunity to efficiently progress this technology through research and development stages.

CiRC Biosciences first reported its discovery in the highly respected scientific journal Nature (April 15, 2020). A recently published New England Journal of Medicine article (Nov. 5, 2020)discussed CiRC's technology of using chemically induced cells to restore retinal function. The article concluded, "The new and emerging strategies for the rescue, regeneration, and replacement of photoreceptors suggest a bright future in the fight to preserve and restore vision in blinding eye diseases."

The abstract in Nature is available here:

Access to the NEJM article is available here:

About CiRC Biosciences CiRC Biosciences is a privately held cell therapy company dedicated to developing treatments for serious diseases with high, unmet needs with an initial focus on the eye. Currently it is pre-clinical phase for Geographic Atrophy Age-Related Macular Degeneration (Dry AMD) and advanced Retinitis Pigmentosa (RP). CiRC Biosciences is a portfolio company of Paragon Biosciences. Visit our website:

About Paragon Biosciences Paragon is a life science innovator that creates, invests in and builds life science companies in biopharmaceuticals, cell and gene therapy and synthetic biology utilizing artificial intelligence. The company's current portfolio includes Castle Creek Biosciences, CiRC Biosciences, Emalex Biosciences, Evozyne, Harmony Biosciences, Qlarity Imaging, Skyline Biosciences, and a consistent flow of incubating companies created and supported by the replicable Paragon Innovation Capital model. Paragon stands at the intersection of human need, life science, and company creation. For more information, please visit

Media Contact:

Evelyn M. O'Connor Paragon Biosciences 312-847-1335 [emailprotected]

SOURCE Paragon Biosciences


See the article here:
Paragon Biosciences Launches CiRC Biosciences to Expand Cell and Gene Therapy Platform - PRNewswire


The gene therapy market is projected to be worth USD 14.6 billion in 2030, growing at a CAGR of 30%, over the next decade, claims Roots Analysis -…

Wednesday, February 3rd, 2021

London, Feb. 02, 2021 (GLOBE NEWSWIRE) -- Roots Analysis has announced the addition of Gene Therapy Market (4th Edition), 2020-2030 report to its list of offerings.

Success of approved gene therapies has resulted in a surge in interest of biopharmaceutical developers in this rapidly evolving domain. Presently, the ability of gene therapies to treat diverse disease indications is considered among the most prominent drivers of this market. In addition, promising clinical results of pipeline candidates are anticipated to draw in more investments to support product development initiatives.

To order this 720+ page report, which features 220+ figures and 375+ tables, please visit this link

Key Market Insights

Around 800 gene therapies are currently being developed across different stages Apart from 10 approved products, most of the aforementioned therapies (65%) are in the early stages of development (discovery / preclinical), while the rest are being evaluated in clinical trials. It is worth mentioning that more than 40% of clinical stage candidates are intended for the treatment of oncological disorders.

Over 65% of innovator companies focused on gene therapy development, are based in North AmericaInterestingly, more than 75 players based in the same region, are start-ups, while over 35 are mid-sized players, and 10 are large and very large firms. Since the majority of gene therapy developers are headquartered in the US, it is considered a key R&D hub for such advanced therapy medicinal products.

There are 400+ registered gene therapy focused clinical trials, worldwideClinical research activity, in terms of number of trials registered, is reported to have increased at a CAGR of 12% during the period 2015-2020. Of the total number of trials, close to 25% have already been completed, and 35% claim to be actively recruiting.

USD 25.4 billion has been invested by both private and public investors, since 2015So far, a significant proportion of the capital raised has been through secondary offerings (USD 12.9 billion). On the other hand, around USD 5 billion was invested by venture capital investors, representing 20% of the total amount.

Close to 20,000 patents have been filed / published related to gene therapies, since 2016Around 30% of the total number of applications were related to gene editing-based therapies, while the remaining were associated with gene therapies. Further, majority of the patent assignees were industry players, however, the contribution of non-industry players in the overall patent filing activity has increased considerably (CAGR of 16%), over the past few years.

There have been several mergers and acquisitions in this market during the period 2015-2019 In fact, M&A activity is reported to have increased at a CAGR of more than 40%. Key drivers of the acquisitions mentioned in the report include, therapeutic area expansion, access to a novel technology / platform, drug class consolidation and drug class expansion.

North America and Europe are anticipated to capture over 90% of the market share, in terms of sales revenues, in 2030In vivo gene therapies currently represent a significant share of the market, and this trend is unlikely to change in the foreseen future, as several such candidates are being evaluated in late stages. In addition, more than 130,000+ patients are projected to use gene therapies in 2030 and the demand for gene therapies is expected to grow at an annualized rate of 29% and 31% during the periods 2020-2025 and 2025-2030, respectively.

To request a sample copy / brochure of this report, please visit this link

Key Questions Answered

The USD 14.6 billion (by 2030) financial opportunity within the gene therapy market has been analyzed across the following segments:

The report features inputs from eminent industry stakeholders, according to whom, gene therapies exhibit the potential to become a promising alternative for the treatment of genetic disorders. The report includes detailed transcripts of discussions held with the following experts:

The research includes brief profiles of key players (listed below) engaged in the development of gene therapies; each profile features an overview of the therapy, current development status, clinical trials and its results (if available), target indication, route of administration, and recent developments (if available).

For additional details, please visit or email

You may also be interested in the following titles:

View post:
The gene therapy market is projected to be worth USD 14.6 billion in 2030, growing at a CAGR of 30%, over the next decade, claims Roots Analysis -...


Gene Therapy Market to Reach US$ 20.9 Billion by 2027, Globally |CAGR: 29.7%|UnivDatos Market Insights – PR Newswire India

Wednesday, February 3rd, 2021

NOIDA, India, Jan. 29, 2021 /PRNewswire/ -- A comprehensive overview of the gene therapy market is recently added by UnivDatos Market Insights to its humongous database. The gene therapy market report has been aggregated by collecting informative data of various dynamics such as market drivers, restraints, and opportunities. This innovative report makes use of several analyses to get a closer outlook on the gene therapy market. The gene therapy market report offers a detailed analysis of the latest industry developments and trending factors in the market that are influencing the market growth. Furthermore, this statistical market research repository examines and estimates the gene therapy market at the global and regional levels. The Global Gene therapy Market is expected to grow at a CAGR of 29.7% from 2021-2027 to reach US 20.9 billion by 2027.

Market Overview

Gene therapy is the next trend of curative transformation in the life sciences industry. Globally, around 2,600 clinical trials in gene therapy have been performed, are underway, or have been approved to date. More than ever, the field of gene therapy seeks to identify a route to the clinic and the market. Approximately 20 gene therapies have now been licensed and over two thousand clinical trials of human gene therapy have been published globally. Aging populations worldwide and socio-economic risk factors are among the primary influences driving this surge.

As per Alliance for Regenerative Medicine (ARM) Quarterly Regenerative Medicine Global Data Report Q12019, 372 gene therapy clinical trials were in progress as of the end of Q1. Remarkably, a margin (217 or 58%) were studies in Phase II, followed by Phase I (123 or 33%), and Phase III (32 or 9%). The number of gene therapy clinical trials edged up by 10 from the 362 recorded as of the end of 2018.

Request Sample Copy of this Report @

Covid-19 Impact:

The COVID-19 pandemic has dislocated global management attempts across gene therapies. The manufacture and delivery of treatments, research and clinical development, and commercial operations are the three areas within the gene therapy sector that have been most interrupted amid the COVID-19 crisis. The development of gene therapies has been less affected. For instance, Peter Marks, Director of FDA's Center for Biologics Evaluation and Research (CBER) stated that with the arrival of therapies for cell and gene therapies over the last five years, it should have doubled in size while it is only modestly larger, 15-20% larger in size.

Ask for Price & Discounts @

Global Gene therapy Market report is studied thoroughly with several aspects that would help stakeholders in making their decisions more curated.

By Vector, the market is primarily bifurcated into

The viral vector segment dominated the gene therapy vector market in 2019 and will grow at 29.2% CAGR to reach US$ 17.9 billion by the year 2027.

By Viral Vector, the market is primarily sub-segmented into

Amongst viral vector types, adeno-associated virus accounted for the largest share and is expected to grow at 29.3% CAGR during the forecast period 2021-2027. In 2019, the adeno-associated virus segment accounted for a revenue share of almost 34%.

By Gene Type, the market is primarily studied into

In 2019, the antigen segment dominated the global gene therapy market with nearly 19.2% of the market share and it is anticipated by 2027, the segment will garner US$ 3.9 billion of the market.

By Indication, the market is primarily studied into

In 2019, the oncology segment dominated the global gene therapy market by indication with nearly 48.6% of the market share and it is anticipated to grow at 27.6% CAGR during the forecast period 2021-2027.

By Delivery Method, the market is primarily segmented into

Amongst delivery method, In vivo accounted for the largest share and is expected to grow at 28.6% CAGR during the forecast period 2021-2027. In 2019, the ex vivo segment accounted for a revenue share of 12.5%.

Gene therapy Market Geographical Segmentation Includes:

Based on the estimation, the North America region dominated the gene therapy market with almost US$ 1.7 billion revenue in 2019. At the same time, the Asia-Pacific region is expected to grow remarkably with a CAGR of 28.7% over the forecast period on account of owing increasing government initiative to improve healthcare infrastructure and rise in healthcare expenditure and surging cancer incidence rate in the region.

Ask for Report Customization @

The major players targeting the market includes

Competitive Landscape

The degree of competition among prominent global companies has been elaborated by analyzing several leading key players operating worldwide. The specialist team of research analysts sheds light on various traits such as global market competition, market share, most recent industry advancements, innovative product launches, partnerships, mergers, or acquisitions by leading companies in the gene therapy market. The leading players have been analyzed by using research methodologies for getting insight views on global competition.

Key questions resolved through this analytical market research report include:

We understand the requirement of different businesses, regions, and countries, we offer customized reports as per your requirements of business nature and geography. Please let us know If you have any custom needs.

For more informative information, please visit us @

Contact:UnivDatos Market Insights Pvt. Ltd. 4th & 5th Floor, C-80B, Sector 8, Noida, Pin code- 201301, UP, India Ph: +91 7838604911 Email: [emailprotected]

Logo :

SOURCE UnivDatos Market Insights

Visit link:
Gene Therapy Market to Reach US$ 20.9 Billion by 2027, Globally |CAGR: 29.7%|UnivDatos Market Insights - PR Newswire India


Delay aging and extend our lifespans? Gene therapy might be able to do that – Genetic Literacy Project

Wednesday, February 3rd, 2021

How many aging-promoting genes are there in the human genome? What are the molecular mechanisms by which these genes regulate aging? Can gene therapy alleviate individual aging? Recently, researchers from the Chinese Academy of Sciences have shed new light on the regulation of aging.

In this study, the researchers conducted genome-wide CRISPR/Cas9-based screens in human premature aging stem cells and identified more than 100 candidate senescence-promoting genes. They further verified the effectiveness of inactivating each of the top 50 candidate genes in promoting cellular rejuvenation using targeted sgRNAs.

Among them, KAT7 encoding a histone acetyltransferase was identified as one of the top targets in alleviating cellular senescence. It increased in human mesenchymal precursor cells during physiological and pathological aging. KAT7 depletion attenuated cellular senescence whereas KAT7 overexpression accelerated cellular senescence.

Altogether, this study has successfully expanded the list of human senescence-promoting genes using CRISPR/Cas9 genome-wide screen and conceptually demonstrated that gene therapy based on single-factor inactivation is able to delay individual aging. This study not only deepens our understanding of aging mechanism but also provides new potential targets for aging interventions.

Read the original post

Originally posted here:
Delay aging and extend our lifespans? Gene therapy might be able to do that - Genetic Literacy Project


Spark Therapeutics Announces First Participant Dosed in Phase 1/2 Study of Investigational Gene Therapy for Late-Onset Pompe Disease – BioSpace

Wednesday, February 3rd, 2021

First participant dosed in the RESOLUTESM trial, a Phase 1/2 dose-escalation study of SPK-3006

Enrollment of approximately 20 total study participants is ongoing

PHILADELPHIA, Feb. 01, 2021 (GLOBE NEWSWIRE) -- Spark Therapeutics, a member of the Roche Group (SIX: RO, ROG; OTCQX: RHHBY) and a fully integrated, commercial gene therapy company dedicated to challenging the inevitability of genetic disease, today announced the dosing of the first participant in the Phase 1/2 RESOLUTESM trial of SPK-3006, an investigational liver-directed adeno-associated viral (AAV) vector gene therapy for late-onset Pompe disease (LOPD), a rare, inherited lysosomal storage disorder.

Dosing the first participant in the Phase 1/2 RESOLUTE trial of investigational SPK-3006 for late-onset Pompe disease is an important milestone and first step to what we hope will ultimately allow us to bring an innovative gene therapy to these patients, said Gallia G. Levy, M.D., Ph.D., chief medical officer of Spark Therapeutics. We are deeply appreciative of the ongoing collaboration of the Pompe disease community as we continue to enroll participants in this Phase 1/2 study.

The RESOLUTE trial is an open-label Phase 1/2, dose-escalation gene transfer study designed to evaluate the safety, tolerability and efficacy of a single intravenous infusion of investigational SPK-3006, an AAV vector-based gene therapy, developed in collaboration with Genethon, in adults with clinically moderate LOPD currently receiving enzyme replacement therapy. The study is expected to enroll approximately 20 participants receiving the investigational gene therapy in sequential, dose-level cohorts. Additional details are available on (NCT04093349).

We are honored to have the first participant dosed in this clinical trial, which we hope will lead us to introduce a novel therapeutic option for patients living with late-onset Pompe disease, said Principal Investigator Tahseen Mozaffar, M.D., University of California Irvine Health.

The International Pompe Association has been proud to collaborate with Spark Therapeutics to enhance the Pompe disease communitys understanding of gene therapy research, said Tiffany House, International Pompe Association Board Chairman. We look forward to the progress in the Phase 1/2 RESOLUTE trial, as well as the ongoing work aimed at developing gene therapies that have the potential to help individuals living with genetic diseases.

Pompe disease is a rare, inherited lysosomal storage disorder. It is a progressive, often life-limiting disease caused by the buildup of a complex sugar, glycogen, in the bodys cells. Mutations in the gene encoding acid alpha-glucosidase (GAA) result in deficiencies of the GAA enzyme and limit the breakdown of glycogen. For patients living with LOPD, the respiratory system, locomotion and maintenance of gait are the most critically impacted. These symptoms commonly result in patients becoming wheelchair bound and requiring respiratory support, which may result in reduced life-expectancy.

About SPK-3006 for Pompe diseaseSPK-3006is an investigational liver-directed AAV gene therapy for the potential treatment of late-onset Pompe disease (LOPD).SPK-3006has been engineered to produce a modified enzyme (secretable GAA) that is produced by the liver, which may result in sustained GAA plasma levels and could potentially provide greater uptake in muscle tissue. The transgene integrates technologies designed at and licensed from Genethon, where the in-vivo proof of concept in pre-clinical models was demonstrated. Spark Therapeutics retains global commercialization rights toSPK-3006.

About Spark Therapeutics AtSpark Therapeutics, a fully integrated, commercial company committed to discovering, developing and delivering gene therapies, we challengethe inevitability of genetic diseases,includingblindness, hemophilia, lysosomal storage disorders and neurodegenerative diseases.We currently have four programs in clinical trials.At Spark, a member of the Roche Group, we see the path to a world where no life is limited by genetic disease. For more information, visit, and follow us on Twitter and LinkedIn.

Media Contact:Kevin 294-9942

Read more here:
Spark Therapeutics Announces First Participant Dosed in Phase 1/2 Study of Investigational Gene Therapy for Late-Onset Pompe Disease - BioSpace


Albumedix enters into collaboration agreement with Cell and Gene Therapy Catapult –

Wednesday, February 3rd, 2021

Nottingham, UK 2nd February 2021 Life Science Newswire Albumedix Ltd. (Albumedix), an enabler of advanced therapies and the world leader in recombinant human albumin (rAlb), announced today that they have entered into a collaboration agreement with the Cell and Gene Therapy Catapult (CGT Catapult) to investigate the use of Albumedix proprietary albumin-based solutions for advanced therapy applications, including viral vectors manufacturing.

This agreement reflects the continued efforts of Albumedix to engage with the industry and expand upon its knowledge in the field, and the CGT Catapults mission to drive the growth of the UK cell and gene therapy industry by helping cell and gene therapy organisations across the world translate early-stage research into commercially viable and investable therapies.

Albumedix Chief Executive Officer; Jonas Skjdt Mller commented on the collaboration:

With a mission to empower excellence in advanced therapies, we are committed to continuously playing an integral part in enabling our customers to advance in a fast-moving industry. For us to do so, we continuously look at other industry leaders to establish collaborations. Continuing to learn from each other allows innovation in the market to advance, and Albumedix to support our customers with in-depth knowledge of how rAlb can uniquely benefit their therapies. Cell and Gene Therapy Catapult is the ideal partner; located in our own backyard here in the UK and with incredible skills, knowledge and drive to advance the cell and gene therapy industry we are excited about this collaboration.

Matthew Durdy, Chief Executive Officer at Cell and Gene Therapy Catapult commented:

The opportunity to collaborate with a leading company like Albumedix Ltd in order to assess and drive the potential of their latest technology is something that we embrace. The prospect of improving manufacturing of viral vectors such as Adeno-associated virus (AAV) through this exciting technology is something which could significantly benefit and advance the wider cell and gene therapy field.

Activities under this agreement will be carried out both at the CGT Catapult facility in Braintree and at Albumedix new R&D center, with state-of-the-art laboratories specifically designed for the process optimization, characterization and formulation development of advanced therapies.

Get in touch with Albumedix today by emailing to learn more about their Recombumin range of world leading recombinant human albumin products. Reach out to Cell and Gene Therapy Catapult by emailing to learn more about how they can help your organisation to translate early stage research into commercially viable and investable therapies.

About Albumedix Dedicated to Better Health

Albumedix is a science-driven, life-science company focused on enabling the creation of superior biopharmaceuticals utilizing our recombinant human albumin products. We believe in empowering excellence to enable advanced therapies and facilitate otherwise unstable drug candidates reach patients worldwide. We are proud to be recognized as the world leader in recombinant human albumin with products and technologies used in clinical and marketed drugs by pharmaceutical and medical device companies worldwide. Headquartered in Nottingham, England with more than 100 people all committed to improving patient quality of life. We are just as passionate about albumin and albumin-enabled therapies today as we were when we started more than 35 years ago. For more information, please reach out to Albumedix at or visit

About Cell and Gene Therapy Catapult

The Cell and Gene Therapy Catapult was established as an independent centre of excellence to advance the growth of the UK cell and gene therapy industry, by bridging the gap between scientific research and full-scale commercialisation. With more than 330 employees focusing on cell and gene therapy technologies, it works with partners in academia and industry to ensure these life-changing therapies can be developed for use in health services throughout the world. It offers leading-edge capability, technology and innovation to enable companies to take products into clinical trials and provide clinical, process development, manufacturing, regulatory, health economics and market access expertise. Its aim is to make the UK the most compelling and logical choice for UK and international partners to develop and commercialise these advanced therapies. The Cell and Gene Therapy Catapult works with Innovate UK. For more information please visit or visit

See original here:
Albumedix enters into collaboration agreement with Cell and Gene Therapy Catapult -


Method may improve safety of gene therapies targeting the brain – Spectrum

Wednesday, February 3rd, 2021

Gene silencer: Monkeys injected with a modified virus that includes the binding sequence of miRNA183 (bottom) express significantly lower levels of a gene delivered for gene therapy than do those injected with an unmodified virus, with or without steroid treatment (top).

A novel method for delivering gene therapies to the brain and spinal cord reduces nerve damage in primates, a new study shows. The approach could improve the safety of gene therapies under development for conditions related to autism, such as Angelman syndrome, Rett syndrome and fragile X syndrome.

Gene therapy typically involves replacing or repairing a faulty gene with a functional version, using a harmless adeno-associated virus (AAV). In primates, however, AAV-based gene therapies can damage the axons neuronal projections that transmit signals to other cells of neurons in the dorsal root ganglion, a bundle of nerves close to the spinal cord that relay information to the brain. In severe cases, degeneration in these cells leads to poor motor coordination.

Cell death in the dorsal root ganglion is associated with high levels of expression of the artificially introduced gene, the new work shows. To prevent it, the researchers devised a way to limit this gene expression only in the dorsal root ganglion nerves and not where it is needed.

The method takes advantage of short regulatory RNAs, known as microRNAs, that dampen gene expression by binding to messenger RNA, the intermediary between genes and proteins. The team identified four microRNAs miRNA96, miRNA145, miRNA182 and miRNA183 that are mainly expressed in the dorsal root ganglion. For each microRNA, they added its binding sequence to an AAV carrying the gene for a green fluorescent protein and injected it into mice. After 21 days, they imaged tissue slices from the spinal cord and various organs, including the brain, to gauge levels of the protein.

Viruses carrying the binding sequence of miRNA183 most effectively prevented expression of the green protein in the dorsal root ganglion, imaged tissue slices revealed. The findings were published in November in Science Translational Medicine.

Next, the team tested the viruses in macaques. In one experiment, they injected two animals with a virus carrying only the gene for the fluorescent protein, and another four with a version carrying miRNA183s binding sequence.

The researchers also made a virus carrying hIDUA, a gene that codes for an enzyme lacking in people with the condition mucopolysaccharidosis. They injected this virus into six macaques, half of which also received steroids to lower immune responses, a common practice in gene therapy trials. Three additional macaques received a modified version of the hIDUA virus that included the miRNA183 binding sequence.

After 14, 60 or 90 days, the team examined tissue slices from the animals spinal cord, brain and other organs. Adding miRNA183s binding sequence to the virus significantly prevented expression of either the fluorescent protein or hIDUA in the dorsal root ganglion, the researchers report. Elsewhere in the body, however, the genes expression levels were unaltered, or even increased.

The modified viruses that included miRNA183s binding sequence also caused less toxicity: Macaques injected with these versions had few, if any, damaging lesions in the dorsal root ganglion. By contrast, the steroid treatment did not reduce toxicity, suggesting that the immune response does not explain the damage.

The microRNA technique could be used to mitigate toxicity for a variety of gene therapies that target the central nervous system, the researchers say. It may also enable scientists to further investigate gene therapies for autism.

See the rest here:
Method may improve safety of gene therapies targeting the brain - Spectrum


Prototype Gene Therapy for Long QT Heart Condition Developed – Clinical OMICs News

Wednesday, February 3rd, 2021

A gene therapy targeting the inherited electrical heart disorder long QT syndrome has been developed by researchers at the Mayo Clinic and has shown early success in lab-based studies.

The therapy involves a two-stage process of silencing the genetic error that causes the electrical dysfunction and then replacing it with a functional protein using a short hairpin RNA vector.

As reported in the journal Circulation, the research is still at an early stage, but shows promise in a lab-based cardiac cell model.

Although the first gene therapy trials happened more than 30 years ago, several deaths and adverse effects from these original therapies, combined with sometimes limited efficacy, led to delays in further research and development in this area.

However, things have changed over the last few years. Since the eye gene therapy Luxturna was approved by the FDA in 2017, more than double the number of new therapies for different genetic diseases have gone into development than before and there have been notable successes in developing therapies for various retinal, neurological and immune disorders.

The possibility of developing gene therapies for heart disease has not been explored in depth until recently and is still in its early stages. More widespread heart diseases with polygenic causes are complicated to target with gene therapies and incur high costs. But many rarer arrythmias, such as long QT syndrome, have a genetic cause and are therefore potential gene therapy targets.

Gene therapy is an emerging area of interest for treating a variety of genetic heart diseases in general and long QT syndrome in particular, says Michael Ackerman, M.D. Ph.D., a Mayo Clinic cardiologist and director of Mayo Clinics Windland Smith Rice Comprehensive Sudden Cardiac Death Program, who led the research.

Long QT syndrome is caused by an electrical heart problem that can cause irregular heartbeat, and under conditions of stress, or exertion, can cause the heart to stop beating suddenly. It occurs in approximately 1 in 7,000 people and most often has a genetic cause, although in some cases it can be acquired as a side effect of certain medications or as a result of other illnesses.

Ackerman and team designed and developed the first suppression and replacement KCNQ1 gene therapy approach for the potential treatment of patients with type 1 long QT syndrome. The KCNQ1 protein is involved in potassium channel function and mutations in this gene are common in people with long QT syndrome.

The therapy designed by the Mayo Clinic team involved cloning two short hairpin RNAs one for silencing purposes and one to replace the faulty protein into a single gene therapy construct.

When tested in beating cardiac cells from long QT patients and controls in the lab, the therapy successfully normalized the electrical function of the long QT cells, providing proof of principle to continue development of the therapy.

If the therapeutic efficacy of this disease-in-the-dish gene therapy trial with KCNQ1 can be replicated in a nonhuman, animal model of long QT syndrome, then suppression-replacement gene therapy may be a promising strategy for long QT syndrome in general and in theory almost any sudden death-predisposing autosomal dominant genetic heart disease, says Ackerman.

Of course, we still have a long way to go from nearly curing a patients heart cells in the dish to effectively treating the whole person. Nevertheless, we are excited by this first critical milestone and look forward to the next step.

Read the rest here:
Prototype Gene Therapy for Long QT Heart Condition Developed - Clinical OMICs News


Passage Bio Receives FDA Clearance of IND Application for PBFT02 Gene Therapy Candidate for Treatment of Patients with Frontotemporal Dementia with…

Wednesday, February 3rd, 2021

Second Product Candidate Expected to Enter Clinic in First Half of 2021

Preclinical Data Underscore Treatment Potential for PBFT02 in Frontotemporal Dementia with Granulin (GRN) Mutations, a Devastating, Progressive Disorder Impacting Adults with No Approved Disease-Modifying Therapy Options

PHILADELPHIA, Jan. 28, 2021 (GLOBE NEWSWIRE) -- Passage Bio, Inc. (Nasdaq: PASG), a genetic medicines company focused on developing transformative therapies for rare, monogenic central nervous system (CNS) disorders, today announced that the U.S. Food and Drug Administration (FDA) has cleared an investigational new drug (IND) application for PBFT02, an adeno-associated virus (AAV)-delivery gene therapy that is being studied for the treatment of patients with Frontotemporal Dementia (FTD) with granulin (GRN) mutations. FTD is a debilitating form of early onset dementia that currently has no approved disease-modifying therapies.

We are pleased to be advancing our second therapy into clinical development in our quest to bring transformative medicines to patients who need them, said Bruce Goldsmith, Ph.D., chief executive officer of Passage Bio. FTD can have a devastating impact on a persons quality of life and create a substantial caregiving and economic burden for families. We are excited to investigate the potential of PBFT02 as a treatment for FTD-GRN as we initiate our clinical development program in the coming months.

FTD is one of the more common causes of early-onset (midlife) dementia, causing impairment in behavior, language and executive function, and occurs at similar frequency to Alzheimers disease in patients younger than 65 years. In approximately 5 to 10 percent of individuals with FTD 3,000 to 6,000 in the United States the disease occurs because of mutations in the GRN gene, causing a deficiency of progranulin (PGRN). PGRN is a complex and highly conserved protein. The mechanism by which PGRN deficiency results in FTD is uncertain, but increasing evidence points to PGRNs role in lysosomal function. The rapid progression of FTD results in an average survival of eight years after onset of symptoms.

Passage Bio is developing PBFT02 to treat FTD-GRN as a single dose delivered via intra-cisterna magna (ICM) injection. The gene therapy utilizes an AAV1 viral vector to deliver a modified DNA encoding the GRN gene to a patient's cells. The goal of this vector and delivery approach is to provide higher than normal levels of PGRN to the central nervous system to overcome the progranulin deficiency in GRN mutation carriers, who have been observed to have reduced cerebrospinal fluid PGRN levels ranging from 30% to 50% of the PGRN levels observed in normal, mutation non-carriers.

Clinical Development of PBFT02 Supported by University of Pennsylvanias Gene Therapy Program (GTP) Pre-Clinical Data

Passage Bio is advancing PBFT02 into the clinic supported by preclinical data generated by its collaborator, University of Pennsylvanias Gene Therapy Program (GTP). The data, published in the peer-reviewed scientific journal Annals of Clinical and Translational Neurology, showed that a single administration of an optimized AAV containing the GRN gene resulted in elevated levels of PGRN in the brain and cerebral spinal fluid (CSF), reduced lysosomal storage lesions, normalized lysosomal enzyme expression and corrected microgliosis in a mouse model of progranulin deficiency. A single administration of PBFT02 via the optimized AAV1-GRN vector demonstrated transduction broadly across the brain, including a very high transduction of ependymal cells that line the ventricles of the brain and are involved with CSF production, resulting in CSF progranulin levels of more than 50-fold normal.

The FDA has granted an Orphan Drug designation for PBFT02 for the treatment of FTD-GRN.

Phase 1/2 Study Initiation Anticipated for 1H21

Passage Bio expects to initiate a Phase1/2 clinical trial for PBFT02 in the first half of 2021. The trial is designed as a dose-escalation study of a single ICM dose of PBFT02 in subjects with FTD and heterozygous mutations in the GRN gene. The primary endpoint of the Phase 1/2 study is safety and tolerability; secondary endpoints include CSF progranulin levels, disease biomarkers, and clinical outcome measure. Initial data from the trial is anticipated to potentially readout in late 2021 or early 2022, depending on the timing of when the first patient is treated in the study.

About Passage Bio

At Passage Bio (Nasdaq: PASG), we are on a mission to provide life-transforming gene therapies for patients with rare, monogenic CNS diseases that replace their suffering with boundless possibility, all while building lasting relationships with the communities we serve. Based in Philadelphia, PA, our company has established a strategic collaboration and licensing agreement with the renowned University of Pennsylvanias Gene Therapy Program to conduct our discovery and IND-enabling preclinical work. This provides our team with access to a broad portfolio of gene therapy candidates and future gene therapy innovations that we then pair with our deep clinical, regulatory, manufacturing and commercial expertise to rapidly advance our robust pipeline of optimized gene therapies into clinical testing. As we work with speed and tenacity, we are always mindful of patients who may be able to benefit from our therapies. More information is available at

Forward-Looking Statements

This press release contains forward-looking statements within the meaning of, and made pursuant to the safe harbor provisions of, the Private Securities Litigation Reform Act of 1995, including, but not limited to: our expectations about timing and execution of anticipated milestones, including our planned IND submissions, initiation of clinical trials and the availability of clinical data from such trials; our expectations about our collaborators and partners ability to execute key initiatives; our expectations about manufacturing plans and strategies; our expectations about cash runway; and the ability of our lead product candidates to treat the underlying causes of their respective target monogenic CNS disorders. These forward-looking statements may be accompanied by such words as aim, anticipate, believe, could, estimate, expect, forecast, goal, intend, may, might, plan, potential, possible, will, would, and other words and terms of similar meaning. These statements involve risks and uncertainties that could cause actual results to differ materially from those reflected in such statements, including: our ability to develop and obtain regulatory approval for our product candidates; the timing and results of preclinical studies and clinical trials; risks associated with clinical trials, including our ability to adequately manage clinical activities, unexpected concerns that may arise from additional data or analysis obtained during clinical trials, regulatory authorities may require additional information or further studies, or may fail to approve or may delay approval of our drug candidates; the occurrence of adverse safety events; the risk that positive results in a preclinical study or clinical trial may not be replicated in subsequent trials or success in early stage clinical trials may not be predictive of results in later stage clinical trials; failure to protect and enforce our intellectual property, and other proprietary rights; our dependence on collaborators and other third parties for the development and manufacture of product candidates and other aspects of our business, which are outside of our full control; risks associated with current and potential delays, work stoppages, or supply chain disruptions caused by the coronavirus pandemic; and the other risks and uncertainties that are described in the Risk Factors section in documents the company files from time to time with the Securities and Exchange Commission (SEC), and other reports as filed with the SEC. Passage Bio undertakes no obligation to publicly update any forward-looking statement, whether written or oral, that may be made from time to time, whether as a result of new information, future developments or otherwise.

For further information, please contact:

Passage Bio Investors:

Sarah McCabe and Zofia MitaStern Investor Relations,

Passage Bio Media:

Gwen FisherPassage

Excerpt from:
Passage Bio Receives FDA Clearance of IND Application for PBFT02 Gene Therapy Candidate for Treatment of Patients with Frontotemporal Dementia with...


Adverum Biotechnologies Announces Publication of Preclinical Long-Term Safety Data on ADVM-022 IVT Gene Therapy – GlobeNewswire

Wednesday, February 3rd, 2021

REDWOOD CITY, Calif., Feb. 02, 2021 (GLOBE NEWSWIRE) -- Adverum Biotechnologies, Inc. (Nasdaq: ADVM), a clinical-stage gene therapy company targeting unmet medical needs in ocular and rare diseases, today announced the publication of preclinical data on ADVM-022 intravitreal (IVT) gene therapy in Translational Vision Science & Technology (TVST), an official journal of the Association for Research in Vision and Ophthalmology (ARVO). ADVM-022 is in clinical trials for wet AMD and DME, and this preclinical study in NHPs is the longest safety and expression study to date, with measurements out 30 months following a single IVT injection.

There is a growing body of both clinical and preclinical data demonstrating durable efficacy and favorable safety profile following a single IVT injection of ADVM-022, said Laurent Fischer, M.D., chief executive officer at Adverum Biotechnologies. In this preclinical study, we saw long-term, sustained aflibercept expression out to 30 months following ADVM-022. The levels of aflibercept were sustained at therapeutic levels, with no measurable adverse effects on normal retinal structure and function. We are excited to work on developing ADVM-022 as a potential one and done IVT injection therapy that may dramatically reduce the treatment burden for patients living with wet AMD and DME.

Szilrd Kiss, M.D., academic retina specialist, added, Currently, patients with wet AMD are treated with frequent anti-VEGF intravitreal injections to maintain their vision. One of the highest priorities in research today is to develop therapies that extend the duration of efficacy following treatment, enabling patients to preserve sight for months or years following treatment. The preclinical data on ADVM-022 demonstrate long-term safety and aflibercept expression following a single intravitreal injection of this novel IVT injection gene therapy. We are excited to continue to assess ADVM-022 as it demonstrates the potential to improve real-world visual outcomes over intermittent anti-VEGF injections for patients living with wet AMD.

The publication, titled Long-Term Safety Evaluation of Continuous Intraocular Delivery of Aflibercept by the Intravitreal Gene Therapy Candidate ADVM-022 in Nonhuman Primates, reported the following:

The full online publication can be accessed from the TVST website.

About ADVM-022 Gene TherapyADVM-022 utilizes a propriety vector capsid, AAV.7m8, carrying an aflibercept coding sequence under the control of a proprietary expression cassette. ADVM-022 is administered as a one-time intravitreal injection (IVT), designed to deliver long-term efficacy and reduce the burden of frequent anti-VEGF injections, optimize patient compliance and improve vision outcomes for patients with wet age-related macular degeneration (wet AMD) and diabetic macular edema (DME).

In recognition of the need for new treatment options for wet AMD, the U.S. Food and Drug Administration granted Fast Track designation for ADVM-022 for the treatment of wet AMD.

Adverum is currently evaluating ADVM-022 in the OPTIC Phase 1 clinical trial in patients with wet AMD and the INFINITY Phase 2 trial in patients with DME at 2 x 10^11 vg/eye and 6 x 10^11 vg/eye doses. The Company plans to begin a pivotal trial in mid-2021 for ADVM-022 in wet AMD.

About Adverum BiotechnologiesAdverum Biotechnologies (Nasdaq: ADVM) is a clinical-stage gene therapy company targeting unmet medical needs in serious ocular and rare diseases. Adverum is advancing the clinical development of its novel gene therapy candidate, ADVM-022, as a one-time, intravitreal injection for the treatment of patients with wet age-related macular degeneration and diabetic macular edema. For more information, please visit

Forward-looking StatementsStatements contained in this press release regarding the events or results that may occur in the future are forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Such statements include but are not limited to statements regarding: the potential for ADVM-022 in treating patients with wet AMD and DME; the potential efficacy and safety of ADVM-022 in wet AMD and DME; Adverums expectations as to its plans to advance ADVM-022 in wet AMD by initiating a pivotal trial mid-2021. Actual results could differ materially from those anticipated in such forward-looking statements as a result of various risks and uncertainties, which include risks inherent to, without limitation: Adverums novel technology, which makes it difficult to predict the time and cost of product candidate development and obtaining regulatory approval; the results of early clinical trials not always being predictive of future results; the potential for future complications or side effects in connection with use of ADVM-022. Risks and uncertainties facing Adverum are described more fully in Adverums Form 10-Q filed with theSEConNovember 5, 2020under the heading Risk Factors. All forward-looking statements contained in this press release speak only as of the date on which they were made. Adverum undertakes no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made.

View original post here:
Adverum Biotechnologies Announces Publication of Preclinical Long-Term Safety Data on ADVM-022 IVT Gene Therapy - GlobeNewswire


Meeting the commercialization challenge of a surging gene and cell therapy market – FierceBiotech

Wednesday, February 3rd, 2021

Undaunted by the challenges the COVID-19 pandemic unleashed on the world the expected surge of cell and gene therapies already in the pipeline and on the horizon will continue to materialize, and with them the complexity of riding that wave of innovation.

Just two years ago the U.S. Food and Drug Administration (FDA) forecast that it would be flooded by 2020 with about 200 Investigational New Drugs a year on top of the more than 800 active cell-based or gene therapies it was already processing. The agency projected that by 2025 it would be approving anywhere between 10 to 20 new cell and gene therapy products a year. By 2024, the FDA and the pharmaceutical and biopharmaceutical industries expect more than 40 new and innovative cell and gene therapies will be available on the market.

Although the pandemic disrupted drug discovery and development efforts early in the crisis, the industry has been quick to respond and adjust. The CG&T market will likely slow from $6.68 billion in 2019 to $6.92 in 2020 because of the pandemic, yet it is forecast to recover and grow to an estimated $13.23 billion by 2023, according to

There is more momentum than ever before to bring these innovative medicines to market, said Doug Cook, president of Commercialization Services and Animal Health at AmerisourceBergen. The influx of therapies offers tremendous promise and hope to patients with conditions where there are few treatment options and no cures. But these complex products introduce new considerations throughout the commercialization journey, so its critical that manufacturers work with a partner that can help them navigate challenges at each stepfrom pre-clinical and commercial logistics to market access strategies and patient support solutions.

Because CG&T are derived from a patients own cells, time and temperature have become critical factors from the moment they are extracted on through the manufacturing process and then returned as a curative life-saving therapy. As such, there is little room for failure or delay throughout the supply chain.

Given the narrow window of viability of these therapies they need to be shipped as quickly as possible to preserve the time the cells are active. With such a constraint on the time those cells are viable, the pressure on logistics providers has become even more acute. Clearly, supply chain companies that have larger networks and better access to more depots are more advantageous for manufacturers, but more importantly, for patients.

The complexity of these treatments can be staggering both from a development perspective and on into storage and transportation, Cook said. For the first time, the patient is now part of the supply chain where they used to be at the end of it, and thats really different than anything weve seen before.

Many, if not most, of CG&T require ultra-frozen storage from the development stage on through to the application to the patient. This is an element of the supply chain the public is becoming acutely aware of as a result of the COVID-19 pandemic. For example: Pfizer-BioNTechs COVID-19 vaccine must be stored in containers that can achieve between -80 to -60 degrees Celsius. C> require storage conditions from ultracold (-80 degrees Celsius) down to cryogenic temperatures (-135 to -150 degrees Celsius). To ensure the product remains viable throughout transport, the shipping containers must have the ability to keep a constant monitor of the temperatures as well as have real-time GPS tracking.

The shorter the shelf life of the cell therapy, the more intense the logistical challenges. To achieve successful outcomes in what are very patient-centric treatmentsoften referred to as a vein-to-vein supply chainrequires manufacturers to partner with experienced and technologically advanced wholesalers and distributors that have a global reach and ability to address issues with customs and country-specific regulatory requirements.

As the wave of these therapies begins to swell past the approval stage, the need for infrastructure that can handle CG&T has to be in place to avoid bottlenecks and delays that could limit patient access.

Because of all the complexity, handoffs are where mistakes happen, and you need a partner who focuses on all those small details and makes the process seamless, Cook said. This is where experience matters, and capabilities are essential.

In order to continue to meet and exceed its capabilities, early last year AmerisourceBergen strengthened its logistics offerings by integrating its global logistics provider, World Courier, with ICS, its third-party (3PL) provider. Now fully integrated, the service offers a complete cryogenic supply chain. World Courier and ICS offer vapor-charged cryogenic storage with fully automated technology and temperature-controlled transport from a manufacturers location to a storage facility and then to each point of care in dry shipment containers. The group has extensive experience in navigating international borders while maintaining temperature requirements.

With a global network of more than 140 offices, World Couriers has the ability to provide cryogenic shipping solutions that are close to patient and manufacturing locations, which provides much more flexibility as well as cutting response times for patient and hospital needs.

Its become clear as we navigated through COVID that everything has to be connected in ways they werent before, Cook said. As a result, weve invested in more technology services to better position ourselves to support CG&T and play the role of partner and connector more than ever before.

And we are always looking at ways to offer more cohesive capabilities.

To learn more about how AmerisourceBergen anticipates supply and demand and how we do business and the role of distributors in the supply chain check out:

Continued here:
Meeting the commercialization challenge of a surging gene and cell therapy market - FierceBiotech


Aruvant Announces the European Medicines Agency (EMA) Granted Priority Medicines (PRIME) Designation to ARU-1801 for the Treatment of Sickle Cell…

Wednesday, February 3rd, 2021

NEW YORK, Feb. 3, 2021 /PRNewswire/ -- Aruvant Sciences, a private company focused on developing gene therapies for rare diseases,today announced that the European Medicines Agency (EMA) granted Priority Medicines (PRIME) designation to ARU-1801, a one-time investigational gene therapy for sickle cell disease (SCD).

"PRIME designation from EMAhighlightsthe importance of ARU-1801, administeredwith only reduced intensity conditioning,for the treatment ofindividuals with severe sickle cell disease,"said Will Chou, M.D., Aruvant chief executiveofficer."With PRIME,we will be able to work closely with EMAon the development of ARU-1801, with the goal of rapidlybringingthispotential cure toSCD patients in Europe."

PRIME was created by the European Medicines Agency (EMA) to enhance support for the development of innovative medicinesthat target an unmet medical needand demonstratethe potential to achieve relevant clinical outcomes on morbidity, mortality or underlying disease progression. The PRIME designation offersenhanced early interaction with companiesdeveloping promising medicines, to optimize development plans and speed up evaluation. PRIME focuses on medicines that may offer a major therapeutic advantage over existing treatments, or that benefit patients without treatment options.

ARU-1801 was designated PRIME status based on clinical data from the MOMENTUMstudy, an ongoing Phase 1/2 trial of ARU-1801 in patients with severe sickle cell disease, that demonstrate meaningful,durable reductions in disease burden.

About ARU-1801ARU-1801 is designed to address the limitations of current curative treatment options, such as low donor availability and the risk of graft-versus-host disease (GvHD) seen with allogeneic stem cell transplants. Unlike investigational gene therapies and gene editing approaches which require fully myeloablative conditioning, the unique characteristics of ARU-1801 allow it to be given with reduced intensity conditioning ("RIC"). Compared to myeloablative approaches, the lower dose chemotherapy regimen underlying RIC has the potential to reduce not only hospital length of stay, but also the risk of short- and long-term adverse events such as infection and infertility. Preliminary clinical data from the MOMENTUMstudy, an ongoing Phase 1/2 trial of ARU-1801 in patients with severe sickle cell disease, demonstrate continuing durable reductions in disease burden.

The MOMENTUM StudyAruvant is conducting the MOMENTUM study, which is evaluating ARU-1801, a one-time potentially curative investigational gene therapy for patients with SCD. This Phase 1/2 study is currently enrolling participants, and information may be found at http://www.momentumtrials.comwhich includes a patient brochure, an eligibility questionnaireand information for healthcare providers.

About Aruvant SciencesAruvant Sciences, part of the Roivant family of companies, is a clinical-stage biopharmaceutical company focused on developing and commercializing gene therapies for the treatment of rare diseases. The company has a talentedteamwith extensive experience in the development, manufacturing and commercialization of gene therapy products. Aruvant has an activeresearchprogram with a lead product candidate, ARU-1801, in development for individuals suffering fromsickle cell disease(SCD). ARU-1801, an investigational lentiviral gene therapy, is being studied in aPhase 1/2 clinical trial,the MOMENTUM study, as a one-time potentially curative treatment for SCD. Preliminary clinical data demonstrate engraftment of ARU-1801 and amelioration of SCD is possible with one dose of reduced intensity chemotherapy. For more information on the clinical study, please visit http://www.momentumtrials.comand for more on the company, please Follow Aruvant on Facebook, Twitter @AruvantSciencesand on Instagram @Aruvant_Sciences.

About RoivantRoivant's mission is to improve the delivery of healthcare to patients by treating every inefficiency as an opportunity. Roivant develops transformative medicines faster by building technologies and developing talent in creative ways, leveraging the Roivant platform to launch Vants nimble and focused biopharmaceutical and health technology companies. For more information, please visit

SOURCE Aruvant Sciences


Originally posted here:
Aruvant Announces the European Medicines Agency (EMA) Granted Priority Medicines (PRIME) Designation to ARU-1801 for the Treatment of Sickle Cell...


Welsh, Carson, Anderson & Stowe Commits $250 Million in a Strategic Partnership with Kiniciti, a Newly-Formed Platform Investing in Cell and Gene…

Wednesday, February 3rd, 2021

NEW YORK, Feb. 1, 2021 /PRNewswire/ --Welsh, Carson, Anderson & Stowe ("WCAS"), a leading private equity firm focused exclusively on the healthcare and technology industries, announced today that it is committing up to $250 million to a strategic partnership with Kiniciti, a newly-formed platform. Kiniciti will invest in non-therapeutic companies supporting cell and gene therapy ("CGT") innovation which have the potential to transform the cell and gene therapy ecosystem and deliver the promise of CGT to impact patients' lives.

Principal focus areas for investment include companies with: transformational capabilities in cell engineering and gene-editing; cell sources and other value-added starting materials; process science and scale-up tools and services; production technologies; and, source-to-patient delivery. Kiniciti plans to invest in a cross section of CGT opportunities, large and small, across multiple geographies.

Core to Kiniciti's strategy is its flexible investment model focused on ensuring that the ecosystem of companies supporting cell and gene therapeutics customers have access to the capital and strategic resources necessary to enable these advanced therapies to rapidly and reliably reach patients.This will include control, growth equity and significant minority stake structures intended to:

Kiniciti's leadership team includes Geoffrey Glass, Chief Executive Officer, and Jason Conner, Chief Strategy Officer. For more than 25 years, Mr. Glass has helped lead services and therapeutic companies in the life sciences sector. Mr. Conner has helped numerous high-growth life sciences and services companies in his senior strategy, corporate development, and legal roles over more than two decades. Kiniciti's core team has a total of five decades of experience in growing and scaling companies across the healthcare services, life sciences and tools and equipment sectors organically and through M&A.

Mr. Glass said, "The number of innovations, new companies and clinical trials in the cell and gene therapy space is at an all-time high and, ironically, this is exactly when challenges emerge. The pace of funding and therapeutic innovation is far outstripping the available human capital to design, execute and scale the uniquely demanding processes required by advanced therapies. Furthermore, many promising cell and gene therapy solutions providers lack the scale and capital to support this pace of industry growth. We aim to address these challenges."

"In forming Kiniciti, we are thrilled to partner with WCAS, a pioneer in the private equity industry with a 40-year track record of building strong, sustainable platforms working hand-in-hand with management teams," added Mr. Glass. "The firm has deep experience investing in high growth healthcare businesses that are at unique inflection points. WCAS has raised and successfully managed funds totaling over $27 billion of committed capital, and dozens of public healthcare companies can trace their roots to WCAS. We are pleased that two of WCAS's General Partners, Nick O'Leary and Brian Regan, will serve on our Board of Directors and we look forward to benefitting from their judgment and years of experience."

Nick O'Leary, General Partner at WCAS, said, "Partnering with Kiniciti to help realize the promise of cell and gene therapy represents a natural extension for WCAS's Healthcare franchise. We will pursue opportunities where operational improvements, organic growth initiatives and strategic acquisitions can unlock full potential, for both our investments and the patients these companies serve. In today's cell and gene therapy landscape, we believe that there are many exciting therapy innovators that possess the right science but need the supporting ecosystem essential to advancing their therapeutics at the pace they require and deserve. We look forward to working with the Kiniciti team to help address these critical pain points to help deliver CGT at scale and lower cost."

About KinicitiNewly-formed Kiniciti was established to partner with companies with the potential to transform and strengthen the cell and gene therapy ecosystem. With a highly tailored, collaborative and flexible investment and strategic support model, Kiniciti aims to ensure the promise of cell and gene therapeutics is delivered quickly and safely to patients in need worldwide. The company's leadership team includes professionals experienced in investing in and building successful companies across the life sciences sector. For more information, visit

About Welsh, Carson, Anderson & StoweWCAS is a leading U.S. private equity firm focused on two target industries: technology and healthcare. Since its founding in 1979, the firm's strategy has been to partner with outstanding management teams and build value for its investors through a combination of operational improvements, growth initiatives and strategic acquisitions. The firm has raised and managed funds totaling over $27 billion of committed capital. WCAS is currently investing an equity fund, Welsh, Carson, Anderson and Stowe XIII, L.P., which closed on $4.3 billion in commitments in 2019. For more information, please visit

Media and Investment Opportunity Contact:

Geoffrey Glass+1 (212) 650-4104[emailprotected]

SOURCE Welsh, Carson, Anderson & Stowe; Kiniciti

See the original post here:
Welsh, Carson, Anderson & Stowe Commits $250 Million in a Strategic Partnership with Kiniciti, a Newly-Formed Platform Investing in Cell and Gene...


Page 4«..3456..1020..»

2021 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick