header logo image


Page 1,101«..1020..1,1001,1011,1021,103..1,1101,120..»

New Synthetic Cartilage Being Used To Treat Common Foot Arthritis – CBS Local

February 6th, 2017 9:44 am

February 3, 2017 6:18 PM

PITTSBURGH (KDKA) Logan Snyder has grown up playing softball, but then her big toes started to bother her.

Once I got to about 12 or 13, says Logan, I started to experience some pain and it just sort of escalated from there.

Her problem: hallux rigidus, or arthritis of the big toes the most common form of arthritis in the foot. The joint degenerates and becomes stiff.

Steps, walking, even just standing became agony.

Aching, almost like a stabbing. Any time the toe would bend, it would hurt. So that was pretty much all the time, Logan said.

Usual measures include shoe inserts, rocker sole shoes, anti-inflammatories, and steroid injections.

Logan had a number of operations to cut away some of the toe bones to relieve pressure, but it didnt help, and she got sick from the pain medicines after surgery.

She sought another opinion from West Penn Hospital foot orthopedist Dr. Victor Prisk, who brought up a new synthetic cartilage.

Its a hydrogel, kind of brings in water. Almost like a contact lens can breathe and bring in water, says Dr. Prisk. Its almost squishy, but firm. It has very similar wear characteristics to our own human cartilage.

It was just approved by the FDA a few months ago. So, Logan was a little hesitant.

Not only is it brand new, but its brand new to him, as well. It was his first one if I remember correctly. So that made me a little nervous, and the fact that it was approved the morning of my surgery, which I didnt know until afterwards, Logan said.

The procedure involves drilling the end of the toe bone and inserting the implant with a special instrument.

The other main surgical option is to fuse the bones together. You gain pain relief, but lose motion.

Using a plug of synthetic cartilage has some advantages.

When they come back in for the two-week post-op visit, they have more motion than they had after any other procedure. And they have more pain relief than with the other procedure, which has been amazing even to me, because I did not expect that, says Dr. Prisk. Its a very fast recovery compared to other procedures. Most people are kind of getting into a shoe within three weeks.

Aside from passive stretching prevent stiffness, there is no required physical therapy.

I had to do it a couple times a day. Just pull it back and like hold it there for as long as I could, which was really rough. But, it was necessary, though, says Logan.

In studies, there is a 4 percent failure rate. The implant was removed because the foot pain persisted, not because there were any problems with the implant. Its not for patients with gout, rheumatoid arthritis certain deformities, or for patients under 18.

It is covered by insurance, but out of pocket, the implant itself runs about $3,500.

I have a lot of movement out of it compared to the previous surgeries, Logan said. Im not quite up to running yet, but walking is still good, going up stairs is good. So, now that I can do that without pain, its just a huge change. Its really nice.

Join The Conversation On The KDKA Facebook Page Stay Up To Date, Follow KDKA On Twitter

Go here to see the original:
New Synthetic Cartilage Being Used To Treat Common Foot Arthritis - CBS Local

Read More...

Fred Lee’s Social Network: Full house for arthritis poker; sipping wine to aid Cambodia children; Year of the … – The Province

February 6th, 2017 9:44 am

Dianne Watts, the MP for South Surrey White Rock, and Liberal MLA hopeful Karen Wang, right, helped usher in the Year of the Rooster at the Bell Centre for Performing Arts. Fred Lee / Postmedia News

John and Nina Cassils once again fronted their eighth annual Taste the World Gala benefiting Cambodias Angkor Childrens Hospital.

After vacationing and falling in love with Myanmar and its people, the couple has rallied others to visit, and created Taste the World to support Cambodias Ankor Childrens Hospital a non-profit pediatrics teaching hospital and the countrys need for better health education and care.

As usual, a raucous crowd filled the Four Seasons Hotel ballroom in Vancouver for the wine and cheese grazer and fundraising event, held in partnership with the Import Vitners and Spirits Association.

Brenda McAllister and Karen Carmichael steered this years tipple fest the first major wine shindig of 2017. Oenophiles sipped and swirled to their hearts content, while bidding on an array of silent and live auction items in support of the worthy cause.

Event emcees Sophie Lui and Brad Jefferson saw for themselves the need to support the effort. Their travel stories to Southeast Asia along with others in the room buoyed the well-heeled crowd to empty their designer purses and wallets of $180,000 and change.

The impressive tally pushed the Cassils humanitarian efforts beyond the $1 million mark. The evenings proceeds will treat some 35,000 children this year who otherwise would not be able to afford health care, says McAllister.

Nina and John Cassils Taste the World event in Vancouver has generated more than $1 million for Cambodias Angkor Childrens Hospital, thanks to the generosity of friends and British Columbians.

Brenda McAllister and Karen Carmichael held the prestigious positions as event co-chairs of the annual Taste the World tipple fest. Their efforts resulted in $180,000 being raised which will help treat some 35,000 patients at the non-profit pediatrics hospital.

Goldcorps David Garofalo escorted his girlfriend Christie King to the wine and cheese grazer at the Four Seasons Hotel in Vancouver. The eighth annual event netted organizers $180,000 for Angkor Childrens Hospital.

Bill Sanford and Danielle Roberts of Appellation Wine offered oenophiles a taste of their Rocca delle Macie wines from Italy and Lake Sonoma wines from California.

After visiting the Angkor Childrens Hospital in Cambodia, Richard and Heidi Coglon were moved to help the children and families there that otherwise could not afford to access basic health care.

The White Rock Chinese Association ushered in the Year of the Rooster at the Bell Performing Arts Centre.

A gala celebration featuring 80 international and local musicians, singers and dancers, the Spring China at White Rock festival sponsored by local developer Landmark Premier Properties benefited the Peace Arch Hospital Foundation and its $15 million ER Campaign.

Several hundred guests, including a gaggle of glad-handing politicos, took in the multicultural arts extravaganza. The yearly party which began in South Surreys Life Church marked its sophomore year at the Bell Centre; a recognition of the growing Chinese community in White Rock and South Surrey.

Yours truly orchestrated the live auction in advance of the two-hour gala performance led by WRCA president Joanne Ding, Landmark PropertiesRaymond Chen and event emcee Lisa Wu.

Auction proceeds contributed to the $18,000 haul. That number quickly rose when Landmark matched every dollar. Not to be outdone, Dave and Rani Mann of Isle of Mann Construction further matched donations.

Before the final curtain fell on the cultural exchange, $72,000 was presented to hospital foundation chair Siobhan Philips and executive director Stephanie Beck.

Stella Chen and Bingqing Lin were among a host of local and international musicians, singers and dancers that performed at the Spring China at White Rock New Year Festival.

Building community, Raymond Chens Landmark Properties sponsored, and Jennifer Dings White Rock Chinese Association produced, the multicultural extravaganza Spring China at White Rock.

Beneficiary of the Chinese New Year party, Peace Arch Hospital Foundation board chair Siobhan Philips and executive director Stephanie Beck collected a $72,000 cheque for its ER Fundraising Campaign.

More than 650,000 British Columbians young and old live with arthritis. And three out of five people are under the age of 65.

The idea that there are more than 100 types of arthritis, and that many can be devastating, debilitating and even fatal, is shocking.

Putting a spotlight on an underestimated, often invisible disease, the B.C. and Yukon chapter of the Arthritis Society presented its inaugural All-in for Arthritis Poker Gala.

Fronted by party chair Dave Turner, tournament chair Sameer Ismailand executive directorChristine Basque, a capacity crowd filled the Stanley Park Pavilion for the charity poker tournament and a chance to play a hand to send kids with arthritis to summer camp.

Celebrating its 35th year, the Arthritis Camp provides a unique opportunity for children to meet others who understand what its like to grow up with the disorder.

Keynote speakerAdrienne Dalla-Longa knows first hand the magic of the camp. Diagnosed with juvenile arthritis, she had to wear ankle, knee and wrist braces in school, and was prevented from participating in many activities.

Bullied by peers who did not understand why she was unable to play, the camp introduced her to others with shared challenges and highlighted she was not alone in her journey. Dalla-Longas compelling story helped table $85,000 for the society.

Rheumatologist Dr. Jean Gillies was all-in for Samantha Rogers poker charity tournament. The inaugural event raised $85,000 for the Arthritis Societys B.C. and Yukon chapter.

Arthritis ambassador Adrienne Dalla-Longa joined Arthritis Society executive director Christine Basque and gala emcee Dawn Chubai for all the fun and games at the Stanley Park Pavilion.

Tournament chair Sameer Ismail congratulated Clark Wilsons Ryan Tam, the inaugural winner of the Arthritis Societys All-In for Kids Poker Championship. Monies will go toward sending children with arthritis to summer camp.

Drew McArthur, past chair of the national board of The Arthritis Society, and his wife Heather, helped mark the 35th anniversary of the arthritis kids camp, a summer program that gives children with arthritis the chance to meet others who live with similar challenges and to make lasting memories.

CLICK HERE to report a typo.

Is there more to this story? Wed like to hear from you about this or any other stories you think we should know about. Email vantips@postmedia.com

See the original post:
Fred Lee's Social Network: Full house for arthritis poker; sipping wine to aid Cambodia children; Year of the ... - The Province

Read More...

Taking on Arthritis: 3 Unique Ideas for Pain Relief – Care2.com

February 6th, 2017 9:44 am

Few people escape the daily aches and pains that come with aging. But persistent joint pain and stiffness can be a sign of something more: arthritis.

Arthritis affects more than 50 million adults and 300,000 children, according tothe Arthritis Foundation, making it the most common cause of disabilityin America. Maybe you know a parent or grandparent who suffers from arthritis; ormaybe you deal with it yourself.

There are two types of arthritis: rheumatoid arthritis, which is an inflammatory disease, and osteoarthritis, a type that is caused by the wearing away of joint cartillage. Either way, the most common symptom is pain and stiffness around the joints knees, hips, hands, etc.

Most people who suffer from arthritis turn to solutions like pain medications and stretching exercises to find relief. However, there are a number of other natural ways to soothe arthritis pain!

Here are a few oddball ideas you may not have heard of before.

3 Unique Ideas for Arthritis Pain Relief

Drink White Willow Tea

Before there was aspirin, white willow tea was the pain killer of choice. In fact, this remedy stretches all the way back to Hippocrates, a Greek physician who was operating back in 5th century BC!

White willow contains an active ingredient called salicin, a chemical that is converted in the body into salicylic acid. Sound familiar? Its essentially a less irritating form of acetyl salicylic acid, theactive ingredient in aspirin.

How to Make White Willow Tea:

Massage Sore Joints with Olive Oil

Extra virgin olive oil (sometimes abbreviated to EVOO)has anti-inflammatory properties that can actually inhibit inflammation just like aspirin or Advil.

To soothe your joints, gently massage a bit of cold-pressed, extra virgin olive oil into your sore joints, twice daily or more. You can also take a spoonful or two internally to reap its benefits as a reducer of swelling.

Related: 4 Myths About Olive Oil Debunked

Enjoy Turmeric-Based Foods

Turmeric(an earthy yellow spice you may recognize from Indian and East Asian dishes) is well-known for its anti-inflammatory properties. Its active ingredient is a naturally-occurring chemical called curcumin, which is a powerful antioxidant that lowers the levels of the enzymes responsible for causing inflammation.

There are several ways to enjoy turmeric, so stock up on those recipes; however, the simplest way to enjoy its benefits is through delicious golden milk or a lovely turmeric and ginger tea.

How to Make Turmeric & Ginger Tea:

Arthritis is a challenging, painful disease that can be hard to manage, but you dont have to suffer without aid. Test these three natural remedies throughout your day and trust what works. You may just find the relief youve been looking for.

How do you manage arthritis in your body? Do you have any tips that may help someone else find relief?

Disclaimer: The views expressed above are solely those of the author and may not reflect those of Care2, Inc., its employees or advertisers.

View original post here:
Taking on Arthritis: 3 Unique Ideas for Pain Relief - Care2.com

Read More...

Drug combination effective against chikungunya arthritis in mice … – Science Daily

February 6th, 2017 9:44 am

Combining a drug for rheumatoid arthritis with one that targets the chikungunya virus can eliminate the signs of chikungunya arthritis in mice in the disease's earliest stage, according to researchers at Washington University School of Medicine in St. Louis.

The findings could lead to a drug therapy for the painful, debilitating condition for which there currently is no treatment.

"We found that combining these two drugs could abolish the signs of arthritis in mice during the acute phase," said Deborah Lenschow, MD, PhD, an associate professor of medicine and the study's co-senior author, referring to the phase in the first weeks after infection.

The study is published Feb. 1 in Science Translational Medicine.

Until about a decade ago, chikungunya virus, which is transmitted by mosquitoes, mainly was restricted to East Africa and South Asia. But in recent years the virus has spread around the world. The first case originating in the Western Hemisphere was reported in late 2013, and by the end of 2015, the virus had infected an estimated 1.8 million people in the Americas.

Chikungunya infection causes fever and severe joint pain, as well as rash, muscle pain and fatigue. The majority of patients continue to experience joint pain six months after infection, and for some, the arthritis continues for years.

"We were seeing people at our rheumatology clinic whose signs and symptoms really mimicked rheumatoid arthritis but who had been infected with chikungunya," Lenschow said. "This raised the question in our minds, 'Would therapeutics we use to treat rheumatoid arthritis be of any benefit to patients with chikungunya arthritis?'"

To find out, Lenschow, co-senior author Michael Diamond, MD, PhD, and colleagues tested a panel of six rheumatoid arthritis drugs -- all approved by the Food and Drug Administration for use in patients -- on mice infected with chikungunya virus.

All six drugs work by suppressing the activity of the immune system. Although different in many ways, rheumatoid arthritis and chikungunya arthritis both involve out-of-control immune activity in the joints.

The researchers injected seven groups of mice with the virus and three days later administered one of the six arthritis drugs or a placebo to each group of mice. A week after infection -- when the mice's arthritis signs were at their peak -- the researchers measured the amount of swelling around the joints as well as the numbers of immune cells and molecules in the affected areas.

Two of the drugs -- abatacept and tofacitinib -- significantly reduced the swelling and the levels of immune cells and molecules. Importantly, the levels of live virus did not increase in the animals given the immunosuppressive arthritis drugs.

"There was a significant concern that administering any immunosuppressive drug would allow the virus to escape from immune control, leading to worse outcomes in the long term," said Diamond, the Herbert S. Gasser Professor of Medicine. "We've seen that with other viruses, but in this case, none of the drugs seemed to exacerbate viral replication. This raises the possibility that these drugs can be safely investigated in humans."

The treatment was only partially successful at resolving the arthritis, however, which led the researchers to test whether adding a human antibody against chikungunya virus could improve the effectiveness.

As before, the researchers infected mice with the virus and three days later dosed them with the arthritis drug abatacept, the antiviral drug or both. Each drug individually reduced joint swelling a week after infection. But when abatacept and the antiviral drug were used together, the joint swelling and the infectious virus in the animals' joints were eliminated.

"We saw real improvement in the acute phase, but unfortunately, the drug interventions we tried failed to correct the chronic phase," Diamond said.

In humans, the chronic phase of chikungunya arthritis starts three weeks after initial infection and lasts as long as the patient continues to experience joint pain, which can be three or four years. During the chronic phase, infectious virus is no longer detectable in the joints, but viral genetic material persists and may be sufficient to trigger an ongoing immune response, causing the tissue damage that patients perceive as arthritis.

The researchers found a similar pattern in the mice treated with the drug combination: By four weeks after infection, live virus was no longer present in the animals' joints, but viral genetic material remained, suggesting that the drugs had not eliminated the chronic phase of the disease.

It is possible that a treatment that reduces arthritis symptoms in the first weeks after infection could lower the chance that the disease becomes chronic, but no data has yet been published for or against the possibility. Still, any effective treatment, even if short-lived, would be a boon for chikungunya patients, who currently have no proven treatment options. Lenschow has discussed beginning a human study with colleagues in Brazil, but plans are not yet finalized.

"In those first weeks, people are really very sick with a high fever and a lot of pain, so if further studies show that this combination treatment is effective in humans, that will have real benefits for patients," Diamond said. "As for the chronic phase, we're going to continue looking for other treatment strategies."

Continue reading here:
Drug combination effective against chikungunya arthritis in mice ... - Science Daily

Read More...

Discovery of new T-cell subtype opens window on rheumatoid … – Science Daily

February 6th, 2017 9:44 am

A research team led by scientists from Brigham and Women's Hospital (BWH) has carefully scrutinized the immune cells from patients with rheumatoid arthritis, revealing a striking new subset of T-cells that collaborate with other immune cells to drive inflammation in peripheral tissues. The work, which was propelled by technologies that enable the detailed analysis of even a handful of cells, opens a critical window on the biology of the disease and suggests a strategy for the development of more precise, powerful treatments. The study appears in the February 1st advance online edition of the journal Nature.

"While the newest therapies for rheumatoid arthritis have helped transform our ability to treat the disease, they are fairly blunt instruments -- blocking components of the immune system in a non-specific, global way," said first author Deepak Rao, who co-directs the Human Immunology Center at BWH. "Our results help illuminate a path toward treatments that are much more precise and focused only on the most relevant immune cells."

Rheumatoid arthritis is an autoimmune condition in which the immune system attacks the joints, causing inflammation, pain, and eventually destruction of the tissues that make up this essential body part. The disorder affects roughly 1 percent of the world's population, and disproportionately afflicts women. Although there is significant evidence implicating T-cells -- particularly their interactions with B-cells, which produce antibodies -- it has been unclear which T-cell subtypes help orchestrate the damaging immune responses that underlie rheumatoid arthritis.

Rao, together with senior author Michael Brenner, set out to explore these questions by studying patient samples in remarkable detail not achieved in earlier studies. This "disease deconstruction" approach relies on sophisticated technologies, such as mass cytometry, which allowed the researchers to rapidly sift through blood, joint tissue, and the fluid surrounding joints to isolate specific cells, defined by the assortment of molecules on their surfaces. Rao and his colleagues also harnessed RNA sequencing methods that can characterize even very small numbers of cells, revealing which genes are turned on or off.

By using these and other high-tech tools, the researchers homed in on a unique population of T-cells that are highly prevalent in the joints of rheumatoid arthritis patients. These cells, a kind of CD4+ or "helper" T-cell, represent roughly one-quarter of the helper T-cells found in patients' joints. Yet abundance is not their only noteworthy attribute.

"These cells don't adhere to the conventional view of helper T-cells, and that is really interesting," said Rao.

By taking a deep look at these unique helper T-cells, Rao and his colleagues discovered that they display some unusual biological features. These T-cells are programmed to infiltrate parts of the body that are inflamed, and there they stimulate B-cells to produce antibodies. Antibodies are specialized proteins that usually recognize foreign substances and help rally the immune system to eliminate them. In autoimmune diseases, so-called autoantibodies instead recognize normal components of the human body and contribute to tissue damage. The Nature study represents the first detailed description of a type of T-cell with these features.

To extend their initial findings, the researchers seek to understand the signals that coax these cells to develop, and whether they play roles in other autoimmune diseases, such as lupus, multiple sclerosis, and type 1 diabetes. The BWH team also plans to explore whether targeting these unique T-cells hold promise as a treatment for rheumatoid arthritis.

"This work is a remarkable illustration of the power of our disease deconstruction approach," said Brenner, who also directs BWH's Human Immunology Center together with Rao. "We hope it will prove equally illuminating as we apply it to other immune-mediated diseases."

Story Source:

Materials provided by Brigham and Women's Hospital. Note: Content may be edited for style and length.

Read the rest here:
Discovery of new T-cell subtype opens window on rheumatoid ... - Science Daily

Read More...

Stem Cell Therapy Helps North Texas Teen Beat Asthma | NBC 5 … – NBC 5 Dallas-Fort Worth

February 6th, 2017 9:43 am

A North Texas teenager who battled severe asthma for years is breathing free and clear again after doctors used stem cell therapy to temporarily treat his condition. (Published Monday, Jan. 30, 2017)

A North Texas teenager who battled severe asthma for years is breathing free and clear again after doctors used stem cell therapy to temporarily treat his condition.

Kenton Crenshaw, 18, of Crowley, never knew when his asthma would strike.

"Like 2, 3, 4 in the morning and it just hits me and I freak out," Crenshaw said.

"My asthma stopped me from doing lots of stuff that I wanted to do," he added.

Activity, even as light as walking outside, came with risk.

"I spent eight Christmases in the hospital because of asthma days or weeks long, birthdays it's just controlled my life," he said.

Crenshaw took countless medications but nothing seemed to help, so his family brought him to Dr. Bill Johnson at Innovations Medical in Dallas.

Johnson is one of a growing group of doctors using stem cell therapy to treat various diseases.

"The stem cells have the ability to reproduce and become other types of tissue, and that's what makes them so special," Johnson said.

Johnson took a small amount of fat from the Crenshaw through liposuction and separated the stem cells in a centrifuge.

He then mixes the stem cells with a solution, which is given back to patients, like Crenshaw, through intravenous therapy or breathing treatments.

"He has an overactive immune system with his lungs and airways, and what the stem cells can do is turn that down, decrease inflammation, and he's had a remarkable course," Johnson said, of Crenshaw.

It's been a few months since the treatments, and Crenshaw says he hasn't needed many of his medications.

"I felt like I never had asthma, like I feel perfect. I didn't do one breathing treatment in almost three months and I used to do four to six breathing treatments a day," he said.

The treatment isn't said to cure his asthma, but the results can last a year possible longer.

"I hope I never have an asthma attack the rest of my life," Crenshaw said.

Stem cell therapy treatments cost upwards of $7,000 and are not covered by insurance.

Published at 10:03 PM CST on Jan 30, 2017 | Updated at 10:41 PM CST on Jan 30, 2017

Originally posted here:
Stem Cell Therapy Helps North Texas Teen Beat Asthma | NBC 5 ... - NBC 5 Dallas-Fort Worth

Read More...

Experimental Stem Cell Therapy Stops Multiple Sclerosis In Its … – Vocativ

February 6th, 2017 9:43 am

The prognosis for people affected by multiple sclerosis (MS), a degenerative autoimmune disorder that decimates the central nervous system, is a bleak one. The disease oftenbegins with a sudden burst of neurological symptoms like muscle spasms, vision problems, and trouble walking, then progresses differently, depending on which form of MS someone has. But eventually, nearly everyone with the disease comesto the point of being unable to move, breathe, or live independently. And sufferers on average live anywhere from five to ten years less than the general public.

Currently, the best medications we have available do little more than slow MS down, or tamp down peoples symptoms. But an experimental therapy continues to provide the first glimmers of something ground-breaking an actual way to stop one form of the disease in its tracks, and maybe even reverse some of the damage already done.

In this months Neurology, researchers detailed the final five-year-old results of a small clinical trial called HALT-MS. Twenty-four volunteers with MS who hadnt responded to conventional drugs were first given a powerful form of chemotherapy, high-dose immunosuppressive therapy (HDIT), that wiped out their immune system. Then they were given a transplant of their own stem cells taken out earlier, known as autologous hematopoietic cell transplant (HCT). These purified cells, the researchers theorized, would seed a new generation of uncorrupted white blood cells and reset the immune system, freezing MS in its place.

For the most part thats exactly what the combination HDIT/HCT therapy did. Nearly 70 percent of patients, five years in, have experienced no signs of the disease progressing. They havent had a relapse of symptoms, become more disabled, or had new brain lesions show up in imaging exams. Some have actually improved physically in the years since the treatment. And even those not in complete remission appear to be suffering less than before. Importantly, though the treatment isnt free of side-effects, there havent been severe ones. There were three deaths seen during the trial, all of whom experienced worsening MS, but none were attributed to the treatment.

The volunteers all had relapsing-remitting MS, the most common form, in which symptoms come and go with little rhyme or reason.

The evidence at this time is encouraging, but it isnt definitive, study author Dr. Linda Griffith, a researcher at the National Institute of Allergy and Infectious Diseases (NIAID), which sponsored the study, told Vocativ.

As Vocativ has previously reported, this isnt the first trial to find similar success rates for HDIT/HCT, though it does come with its own dangers. Patients can die from it, and like all kinds of chemotherapy, the deliberate weakening of the immune system often leads to more infections. It also doesnt seem to be as effective for more advanced types of MS, when the disease has stopped causing active inflammation, said Griffith. And while it could be promising for people in the earliest stages of MS, the research needed to promote it as a first-line treatment isnt there yet either, she added.

For now, the only trials of HDIT/HCT have been small and isolated. And though the effects of it when successful seem to extend as far out as 13 years later, its too early to call it a full-on cure. We still dont have a clear grasp of why MS happens in the first place, but its thought that multiple triggers like infections and unlucky genetics combine to increase peoples risk. So even if resetting someones immune system does treat MS completely, its plausible that some percentage of patients could fall victim to it again down the road, Griffith explained. We just dont know enough right now.

But Griffith is hopeful that larger, randomized studies will be underway within the next year or so. And if those prove to be as successful as the HALT-MS trial and others, the therapy could someday soon lead to a light at the end of tunnel for the millions of MS sufferers alive today.

Excerpt from:
Experimental Stem Cell Therapy Stops Multiple Sclerosis In Its ... - Vocativ

Read More...

Stem Cell Therapy Offers Hope to Multiple Sclerosis Patients (VIDEO) – Newsy

February 6th, 2017 9:43 am

ByEthan Weston February 2, 2017

Stem cell research is making medical breakthroughs, and now, it could offer hope to people who have multiple sclerosis.

A newNational Institutes of Healthstudy suggests one-time stem cell transplants might be more effective than long-term medicinal treatment at treating relapsing-remitting MS.

Multiple sclerosis is an autoimmune disease that causes a person's immune system to attack their central nervous system. Common symptoms are impaired motor function, weakness and chronic pain. Relapsing-remitting MS is the most common form of the disease.

Stem cells are cells that haven't decided what they want to be when they grow up. That means they can develop into different types of cells. Because of that, they can be used to heal older damaged cells, like those attacked by the immune system.

The study followed 24 people who weren't having success with the typical MS medications. The experimental treatment suppressed participants' immune systems with chemotherapy. Then, their own stem cells were transplanted back into their bodies to rebuild their immune systems.

Related StoryPart-Pig, Part-Human Embryos Could Give Us Replacement Human Organs

Five years after treatment, most participants' symptoms were in remission. Some of them even showed some improvements.

Larger studies will be needed to confirm these findings. But the head of the study said it's a good first step toward more effective treatment for an incredibly debilitating and deadly disease.

Read the rest here:
Stem Cell Therapy Offers Hope to Multiple Sclerosis Patients (VIDEO) - Newsy

Read More...

From Down syndrome to ‘near normal’? New Delhi clinic makes stem cell claims that worry experts – National Post

February 6th, 2017 9:43 am

A New Delhi clinic that has claimed to help paralyzed Canadians walk again by injecting them with stem cells now says it can use the same treatment to make children with Down syndrome almost near normal.

Nutech Mediworld says it has treated up to 16 newborns, toddlers and older children with Down syndrome. According to its medical director, Geeta Shroff, we have seen that patients actually start improving clinically they become almost at par for their age.

Canadian experts say the bold claim risks raising false expectations and public confusion, much like the now-discredited Liberation therapy for multiple sclerosis, and that its playing off the over-hyped belief stem cells have the potential to cure almost anything.

Its also the latest controversy over stem cell tourism, and the growing number of clinics worldwide marketing pricey, unregulated and unproven treatments.

Nutech Mediworld charges US$5,000 to $6,000 per week for its stem cell-based therapies. The clinic says it has treated such incurable conditions as spinal cord injury and cerebral palsy. Around 20 Canadians have sought treatment at the clinic for paralyzing spinal cord injuries, spending upwards of $US48,000 each. Shroff says some of her patients have regained the ability to walk with walkers.

More recently, she began working with Down syndrome, one of the most common chromosomal disorders worldwide.

Most cases are caused by a random error in cell division. The child ends up with three copies of chromosome 21, instead of the usual two.

That extra copy causes abnormal neuronal development and changes in the central nervous system, Shroff says, leading to persistent developmental delays.

Human embryonic stem cells injected into a childs muscles and bloodstreamcan regenerate and repair that damaged brain, she says. They also work at the genetic level, she claims.

In a single case published last year, Shroff reported treating a two-month-old baby boy in September 2014 diagnosed with Down syndrome at birth. The infant had delayed milestones, lack of speech, subnormal understanding and subnormal motor skills, she wrote.

After two stem cell therapy sessions, the baby started babbling and crawling, she reported. He had improved muscle tone. He was social and was able to recognize near ones.

The child became almost as near normal as possible cognitively

The child became almost as near normal as possible cognitively, Shroff told the Post in an interview. Today, hes talking; hes walking. He was at par with normal children on analysis.

The former infertility specialist uses embryonic stem cells developed from a single fertilized egg donated by an IVF patient 17 years ago. According to Shroff, We have witnessed no adverse events at all.

The Down syndrome treatments, reported by New Scientist, have raised skepticism and alarm. Its not at all clear what cells shes actually putting in patients, says renowned developmental biologist Janet Rossant, senior scientist at the Hospital for Sick Children Research Institute in Toronto.

By just putting them into the bloodstream theres no way to imagine they could contribute to the right tissues.

Embryonic stem cells can also form teratomas benign tumours and masses composed of lung cells, tufts of hair, teeth, bone and other tissues.

The gold standard for any therapy would be a clinical trial comparing treated with untreated children and vetted through proper regulatory systems that clearly she is not going through, Rossant says.

The Ottawa Hospitals Dr. Duncan Stewart, who is leading the first trial in the world of a genetically enhanced stem cell therapy for heart attack, says theres a remote chance embryonic stem cells could help with Down syndrome. But its a stretch. The injected cells would also likely be rejected and die off with days, he believes. If the cells are disappearing within days, how are they working?

This is a very vulnerable population Theyre very vulnerable to people who are selling hope and have no basis for it

This is a very vulnerable population, Stewart adds. Theyre very vulnerable to people who are selling hope and have no basis for it.

But stem cells have taken on almost mystical appeal.

Theyve become a pop culture phenomenon, says healthy policy expert Timothy Caulfield, of the University of Alberta. The field itself is guilty of making breathless announcements about breakthroughs and cutting edge, he says. And people can market that kind of language.

This kind of nonsense doesnt help.

Email: jskirkey@postmedia.com | Twitter:

Continued here:
From Down syndrome to 'near normal'? New Delhi clinic makes stem cell claims that worry experts - National Post

Read More...

Mesenchymal stem cells: the ‘other’ bone marrow stem cells …

February 5th, 2017 3:45 am

No treatments using MSCs are yet available. However, several possibilities for their use in the clinic are currently being explored.

Bone and cartilage repair The ability of MSCs to differentiate into bone cells called osteoblasts has led to their use in early clinical trials investigating the safety of potential bone repair methods. These studies are looking at possible treatments for localized skeletal defects (damage at a particular place in the bone).

Other research is focussed on using MSCs to repair cartilage. Cartilage covers the ends of bones and allows one bone to slide over another at the joints. It can be damaged by a sudden injury like a fall, or over a long period by a condition like osteoarthritis, a very painful disease of the joints. Cartilage does not repair itself well after damage. The best treatment available for severe cartilage damage is surgery to replace the damaged joint with an artificial one. Because MSCs can differentiate into cartilage cells called chondrocytes, scientists hope MSCs could be injected into patients to repair and maintain the cartilage in their joints. Researchers are also investigating the possibility that transplanted MSCs may release substances that will tell the patients own cells to repair the damage.

Many hurdles remain before this kind of treatment can become a reality. For example, when MSCs are transplanted, most of them are rapidly removed from the body. Researchers are working on new techniques for transplanting the cells, such as developing three-dimensional structures or scaffolds that mimic the conditions in the part of the body where the cells are needed. These scaffolds will hold the cells and encourage them to differentiate into the desired cell type.

Heart and blood vessel repair Some studies in mice suggest that MSCs can promote formation of new blood vessels in a process called neovascularisation. MSCs do not make new blood vessel cells themselves, but they may help with neovascularisation in a number of ways. For example, they may release proteins that stimulate the growth of other cells called endothelial precursors cells that will develop to form the inner layer of blood vessels. They may also "guide" the assembly of new blood vessels from preexisting endothelial cells (those that line the blood vessel). Such studies on animals have led researchers to hope that MSCs may provide a way to repair the blood vessel damage linked to heart attacks or diseases such as critical limb ischaemia. A number of early stage clinical trials using MSCs in patients are currently underway but it is not yet clear whether the treatments will be effective.

Inflammatory and autoimmune diseases Several claims have been made that MSCs are able to avoid detection by the immune system and can be transplanted from one patient to another without risk of immune rejection by the body. However, these claims have not been confirmed by other studies. MSCs are rejected like any other "non-self" cell type. It has also been suggested that MSCs may be able to slow down the multiplication of immune cells in the body to reduce inflammation and help treat transplant rejection or autoimmune diseases. Again, this has yet to be proven and much more evidence is needed to establish whether MSCs could really be used for this kind of application.

Follow this link:
Mesenchymal stem cells: the 'other' bone marrow stem cells ...

Read More...

Repairing the Nervous System with Stem Cells | stemcells …

February 5th, 2017 3:44 am

by David M. Panchision*

Diseases of the nervous system, including congenital disorders, cancers, and degenerative diseases, affect millions of people of all ages. Congenital disorders occur when the brain or spinal cord does not form correctly during development. Cancers of the nervous system result from the uncontrolled spread of aberrant cells. Degenerative diseases occur when the nervous system loses functioning of nerve cells. Most of the advances in stem cell research have been directed at treating degenerative diseases. While many treatments aim to limit the damage of these diseases, in some cases scientists believe that damage can be reversed by replacing lost cells with new ones derived from cells that can mature into nerve cells, called neural stem cells. Research that uses stem cells to treat nervous system disorders remains an area of great promise and challenge to demonstrate that cell-replacement therapy can restore lost function.

The nervous system is a complex organ made up of nerve cells (also called neurons) and glial cells, which surround and support neurons (see Figure 3.1). Neurons send signals that affect numerous functions including thought processes and movement. One type of glial cell, the oligodendrocyte, acts to speed up the signals of neurons that extend over long distances, such as in the spinal cord. The loss of any of these cell types may have catastrophic results on brain function.

Although reports dating back as early as the 1960s pointed towards the possibility that new nerve cells are formed in adult mammalian brains, this knowledge was not applied in the context of curing devastating brain diseases until the 1990s. While earlier medical research focused on limiting damage once it had occurred, in recent years researchers have been working hard to find out if the cells that can give rise to new neurons can be coaxed to restore brain function. New neurons in the adult brain arise from slowly-dividing cells that appear to be the remnants of stem cells that existed during fetal brain development. Since some of these adult cells still retain the ability to generate both neurons and glia, they are referred to as adult neural stem cells.

These findings are exciting because they suggest that the brain may contain a built-in mechanism to repair itself. Unfortunately, these new neurons are only generated in a few sites in the brain and turn into only a few specialized types of nerve cells. Although there are many different neuronal cell types in the brain, we now know that these new neurons can quot;plug inquot; correctly to assist brain function.1 The discovery of these cells has spurred further research into the characteristics of neural stem cells from the fetus and the adult, mostly using rodents and primates as model species. The hope is that these cells may be able to replenish those that are functionally lost in human degenerative diseases such as Parkinson's Disease, Huntington's Disease, and amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease), as well as from brain and spinal cord injuries that result from stroke or trauma.

Scientists are applying these new stem cell discoveries in two ways in their experiments. First, they are using current knowledge of normal brain development to modulate stem cells that are harvested and grown in culture. Researchers can then transplant these cultured cells into the brain of an animal model and allow the brain's own signals to differentiate the stem cells into neurons or glia. Alternatively, the stem cells can be induced to differentiate into neurons and glia while in the culture dish, before being transplanted into the brain. Much progress has been made the last several years with human embryonic stem (ES) cells that can differentiate into all cell types in the body. While ES cells can be maintained in culture for relatively long periods of time without differentiating, they usually must be coaxed through many more steps of differentiation to produce the desired cell types. Recent studies, however, suggest that ES cells may differentiate into neurons in a more straightforward manner than may other cell types.

Figure 3.1. The Neuron When sufficient neurotransmitters cross synapses and bind receptors on the neuronal cell body and dendrites, the neuron sends an electrical signal down its axon to synaptic terminals, which in turn release neurotransmitters into the synapse that affects the following neuron. The brain neurons that die in Parkinson's Disease release the transmitter dopamine. Oligodendrocytes supply the axon with an insulating myelin sheath.

2001 Terese Winslow

Second, scientists are identifying growth (trophic) factors that are normally produced and used by the developing and adult brain. They are using these factors to minimize damage to the brain and to activate the patient's own stem cells to repair damage that has occurred. Each of these strategies is being aggressively pursued to identify the most effective treatments for degenerative diseases. Most of these studies have been carried out initially with animal stem cells and recipients to determine their likelihood of success. Still, much more research is necessary to develop stem cell therapies that will be useful for treating brain and spinal cord disease in the same way that hematopoietic stem cell therapies are routinely used for immune system replacement (see Chapter 2).

The majority of stem cell studies of neurological disease have used rats and mice, since these models are convenient to use and are well-characterized biologically. If preliminary studies with rodent stem cells are successful, scientists will attempt to transplant human stem cells into rodents. Studies may then be carried out in primates (e.g., monkeys) to offer insight into how humans might respond to neurological treatment. Human studies are rarely undertaken until these other experiments have shown promising results. While human transplant studies have been carried out for decades in the case of Parkinson's disease, animal research continues to provide improved strategies to generate an abundant supply of transplantable cells.

The intensive research aiming at curing Parkinson's disease with stem cells is a good example for the various strategies, successful results, and remaining challenges of stem cell-based brain repair. Parkinson's disease is a progressive disorder of motor control that affects roughly 2% of persons 65 years and older. Triggered by the death of neurons in a brain region called the substantia nigra, Parkinson's disease begins with minor tremors that progress to limb and bodily rigidity and difficulty initiating movement. These neurons connect via long axons to another region called the striatum, composed of subregions called the caudate nucleus and the putamen. These neurons that reach from the substantia nigra to the striatum release the chemical transmitter dopamine onto their target neurons in the striatum. One of dopamine's major roles is to regulate the nerves that control body movement. As these cells die, less dopamine is produced, leading to the movement difficulties characteristic of Parkinson's disease. Currently, the causes of death of these neurons are not well understood.

For many years, doctors have treated Parkinson's disease patients with the drug levodopa (L-dopa), which the brain converts into dopamine. Although the drug works well initially, levodopa eventually loses its effectiveness, and side-effects increase. Ultimately, many doctors and patients find themselves fighting a losing battle. For this reason, a huge effort is underway to develop new treatments, including growth factors that help the remaining dopamine neurons survive and transplantation procedures to replace those that have died.

The strategy to use new cells to replace lost ones is not new. Surgeons first attempted to transplant dopamine-releasing cells from a patient's own adrenal glands in the 1980s.2,3 Although one of these studies reported a dramatic improvement in the patients' conditions, U.S. surgeons were only able to achieve modest and temporary improvement, insufficient to outweigh the risks of such a procedure. As a result, these human studies were not pursued further.

Another strategy was attempted in the 1970s, in which cells derived from fetal tissue from the mouse substantia nigra was transplanted into the adult rat eye and found to develop into mature dopamine neurons.4 In the 1980s, several groups showed that transplantation of this type of tissue could reverse Parkinson's-like symptoms in rats and monkeys when placed in the damaged areas.The success of the animal studies led to several human trials beginning in the mid-1980s.5,6 In some cases, patients showed a lessening of their symptoms. Also, researchers could measure an increase in dopamine neuron function in the striatum of these patients by using a brain-imaging method called positron emission tomography (PET) (see Figure 3.2).7

The NIH has funded two large and well-controlled clinical trials in the past 15 years in which researchers transplanted tissue from aborted fetuses into the striatum of patients with Parkinson's disease.7,8 These studies, performed in Colorado and New York, included controls where patients received quot;shamquot; surgery (no tissue was implanted), and neither the patients nor the scientists who evaluated their progress knew which patients received the implants. The patients' progress was followed for up to eight years. Unfortunately, both studies showed that the transplants offered little benefit to the patients as a group. While some patients showed improvement, others began to suffer from dyskinesias, jerky involuntary movements that are often side effects of long-term L-dopa treatment. This effect occurred in 15% of the patients in the Colorado study.7 and more than half of the patients in the New York study.8 Additionally, the New York study showed evidence that some patients' immune systems were attacking the grafts.

However, promising findings emerged from these studies as well. Younger and milder Parkinson's patients responded relatively well to the grafts, and PET scans of patients showed that some of the transplanted dopamine neurons survived and matured. Additionally, autopsies on three patients who died of unrelated causes, years after the surgeries, indicated the presence of dopamine neurons from the graft. These cells appeared to have matured in the same way as normal dopamine neurons, which suggested that they were acting normally in the brain.

Figure 3.2. Positron Emission Tomography (PET) images from a Parkinson's patient before and after fetal tissue transplantation. The image taken before surgery (left) shows uptake of a radioactive form of dopamine (red) only in the caudate nucleus, indicating that dopamine neurons have degenerated. Twelve months after surgery, an image from the same patient (right) reveals increased dopamine function, especially in the putamen. (Reprinted with permission from N Eng J Med 2001;344(10) p. 710.)

Researchers in Sweden followed the severity of dyskinesia in patients for eleven years after neural transplantation and found that the severity was typically mild or moderate. These results suggested that dyskinesias were due to effects that were distinct from the beneficial effects of the grafts.9 Dyskinesias may therefore be related to the ways that transplantation disturbs other cells in the brain and so may be minimized by future improvements in therapy. Another study that involved the grafting of cells both into the striatum (the target of dopamine neurons) and the substantia nigra (where dopamine neurons normally reside) of three patients showed no adverse effects and some modest improvement in patient movement.10 To determine the full extent of therapeutic benefits from such a procedure and confirm the reliability of these results, this study will need to be repeated with a larger patient population that includes the appropriate controls.

The limited success of these studies may reflect variations in the fetal tissue used for transplantation, which is of limited quantity and can not be standardized or well-characterized. The full complement of cells in these fetal tissue samples is not known at present. As a result, the tissue remains the greatest source of uncertainty in patient outcome following transplantation.

The major goal for Parkinson's investigators is to generate a source of cells that can be grown in large supply, maintained indefinitely in the laboratory, and differentiated efficiently into dopamine neurons that work when transplanted into the brain of a Parkinson's patient. Scientists have investigated the behavior of stem cells in culture and the mechanisms that govern dopamine neuron production during development in their attempts to identify optimal culture conditions that allow stem cells to turn into dopamine-producing neurons.

Preliminary studies have been carried out using immature stem cell-like precursors from the rodent ventral midbrain, the region that normally gives rise to these dopamine neurons. In one study these precursors were turned into functional dopamine neurons, which were then grafted into rats previously treated with 6-hydroxy-dopamine (6-OHDA) to kill the dopamine neurons in their substantia nigra and induce Parkinson's-like symptoms. Even though the percentage of surviving dopamine neurons was low following transplantation, it was sufficient to relieve the Parkinson's-like symptoms.11 Unfortunately, these fetal cells cannot be maintained in culture for very long before they lose the ability to differentiate into dopamine neurons.

Cells with features of neural stem cells have been derived from ES-cells, fetal brain tissue, brain tissue from neurosurgery, and brain tissue that was obtained after a person's death. There is controversy about whether other organ stem cell populations, such as hematopoietic stem cells, either contain or give rise to neural stem cells

Many researchers believe that the more primitive ES cells may be an excellent source of dopamine neurons because ES-cells can be grown indefinitely in a laboratory dish and can differentiate into any cell type, even after long periods in culture. Mouse ES cells injected directly into 6-OHDA-treated rat brains led to relief of Parkinson-like symptoms. Further investigation showed that these ES cells had differentiated into both dopamine and serotonin neurons.12 This latter type of neuron is generated in an adjacent region of the brain and may complicate the response to transplantation. Since ES cells can generate all cell types in the body, unwanted cell types such as muscle or bone could theoretically also be introduced into the brain. As a result, a great deal of effort is being currently put into finding the right quot;recipequot; for turning ES cells into dopamine neuronsand only this cell typeto treat Parkinson's disease. Researchers strive to learn more about normal brain development to help emulate the natural progression of ES cells toward dopamine neurons in the culture dish.

The recent availability of human ES cells has led to further studies to examine their potential for differentiation into dopamine neurons. Recently, dopamine neurons from human embryonic stem cells have been generated.13 One research group used a special type of companion cell, along with specific growth factors, to promote the differentiation of the ES cells through several stages into dopamine neurons. These neurons showed many of the characteristic properties of normal dopamine neurons.13 Furthermore, recent evidence of more direct neuronal differentiation methods from mouse ES cells fuels hope that scientists can refine and streamline the production of transplantable human dopamine neurons.

One method with great therapeutic potential is nuclear transfer. This method fuses the genetic material from one individual donor with a recipient egg cell that has had its nucleus removed. The early embryo that develops from this fusion is a genetic match for the donor. This process is sometimes called quot;therapeutic cloningquot; and is regarded by some to be ethically questionable. However, mouse ES cells have been differentiated successfully in this way into dopamine neurons that corrected Parkinsonian symptoms when transplanted into 6-OHDA-treated rats.14 Similar results have been obtained using parthenogenetic primate stem cells, which are cells that are genetic matches from a female donor with no contribution from a male donor.15 These approaches may offer the possibility of treating patients with genetically-matched cells, thereby eliminating the possibility of graft rejection.

Scientists are also studying the possibility that the brain may be able to repair itself with therapeutic support. This avenue of study is in its early stages but may involve administering drugs that stimulate the birth of new neurons from the brain's own stem cells. The concept is based on research showing that new nerve cells are born in the adult brains of humans. The phenomenon occurs in a brain region called the dentate gyrus of the hippocampus. While it is not yet clear how these new neurons contribute to normal brain function, their presence suggests that stem cells in the adult brain may have the potential to re-wire dysfunctional neuronal circuitry.

The adult brain's capacity for self-repair has been studied by investigating how the adult rat brain responds to transforming growth factor alpha (TGF), a protein important for early brain development that is expressed in limited quantities in adults.16 Injection of TGF into a healthy rat brain causes stem cells to divide for several days before ceasing division. In 6-OHDAtreated (Parkinsonian) rats, however, the cells proliferated and migrated to the damaged areas. Surprisingly, the TGF-treated rats showed few of the behavioral problems associated with untreated Parkinsonian rats.16 Additionally, in 2002 and 2003, two research groups isolated small numbers of dividing cells in the substantia nigra of adult rodents.17,18

These findings suggest that the brain can repair itself, as long as the repair process is triggered sufficiently. It is not clear, though, whether stem cells are responsible for this repair or if the TGF activates a different repair mechanism.

Many other diseases that affect the nervous system hold the potential for being treated with stem cells. Experimental therapies for chronic diseases of the nervous system, such as Alzheimer's disease, Lou Gehrig's disease, or Huntington's disease, and for acute injuries, such as spinal cord and brain trauma or stoke, are being currently developed and tested. These diverse disorders must be investigated within the contexts of their unique disease processes and treated accordingly with highly adapted cell-based approaches.

Although severe spinal cord injury is an area of intense research, the therapeutic targets are not as clear-cut as in Parkinson's disease. Spinal cord trauma destroys numerous cell types, including the neurons that carry messages between the brain and the rest of the body. In many spinal injuries, the cord is not actually severed, and at least some of the signal-carrying neuronal axons remain intact. However, the surviving axons no longer carry messages because oligodendrocytes, which make the axons' insulating myelin sheath, are lost. Researchers have recently made progress to replenish these lost myelin-producing cells. In one study, scientists cultured human ES cells through several steps to make mixed cultures that contained oligodendrocytes. When they injected these cells into the spinal cords of chemically-demyelinated rats, the treated rats regained limited use of their hind limbs compared with un-grafted rats.19 Researchers are not certain, however, whether the limited increase in function observed in rats is actually due to the remyelination or to an unidentified trophic effect of the treatment.

Getting neurons to grow new axons through the injury site to reconnect with their targets is even more challenging. While myelin promotes normal neuronal function, it also inhibits the growth of new axons following spinal injury. In a recent study to attempt post-trauma axonal growth, Harper and colleagues treated ES cells with a combination of factors that are known to promote motor neuron differentiation.20 The researchers then transplanted these cells into adult rats that had received spinal cord injuries. While many of these cells survived and differentiated into neurons, they did not send out axons unless the researchers also added drugs that interfered with the inhibitory effects of myelin. The growth effect was modest, and the researchers have not yet seen evidence of functional neuron connections. However, their results raise the possibility that signals can be turned on and off in the correct order to allow neurons to reconnect and function properly. Spinal injury researchers emphasize that additional basic and preclinical research must be completed before attempting human trials using stem cell therapies to repair the trauma-damaged nervous system.

Since myelin loss is at the heart of many other degenerative diseases, oligodendrocytes made from ES cells may be useful to treat these conditions as well. For example, scientists recently cultured human ES cells with a combination of growth factors to generate a highly enriched population of myelinating oligodendrocyte precursors.21,22 The researchers then tested these cells in a genetically-mutated mouse that does not produce myelin properly. When the growth factor-cultured ES cells were transplanted into affected mice, the cells migrated and differentiated into mature oligodendrocytes that made myelin sheaths around neighboring axons. These researchers subsequently showed that these cells matured and improved movement when grafted in rats with spinal cord injury.23 Improved movement only occurred when grafting was completed soon after injury, suggesting that some post-injury responses may interfere with the grafted cells. However, these results are sufficiently encouraging to plan clinical trials to test whether replacement of myelinating glia can treat spinal cord injury.

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is characterized by a progressive destruction of motor neurons in the spinal cord. Patients with ALS develop increasing muscle weakness over time, which ultimately leads to paralysis and death. The cause of ALS is largely unknown, and there are no effective treatments. Researchers recently have used different sources of stem cells to test in rat models of ALS to test for possible nerve cell-restoring properties. In one study, researchers injected cell clusters made from embryonic germ (EG) cells into the spinal cord fluid of the partially-paralyzed rats.24 Three months after the injections, many of the treated rats were able to move their hind limbs and walk with difficulty, while the rats that did not receive cell injections remained paralyzed. Moreover, the transplanted cells had migrated throughout the spinal fluid and developed into cells that displayed molecular characteristics of mature motor neurons. However, too few cells matured in this way to account for the recovery, and there was no evidence that the transplanted cells formed functional connections with muscles. The researchers suggest that the transplanted cells may be promoting recovery in some other way, such as by producing trophic factors.

This possibility was addressed in a second study in which scientists grew human fetal CNS stem cells in culture and genetically modified them to produce a trophic factor that promotes the survival of cells that are lost in ALS. When grafted into the spinal cords of the ALS-like rats, these cells secreted the desired growth factor and promoted the survival of the neurons that are normally lost in the ALS-like rats.25 While promising, these results highlight the need for additional basic research into functional recovery in ALS disease models.

Stroke affects about 750,000 patients per year in the

U.S. and is the most common cause of disability in adults. A stroke occurs when blood flow to the brain is disrupted. As a consequence, cells in affected brain regions die from insufficient amounts of oxygen. The treatment of stroke with anti-clotting drugs has dramatically improved the odds of patient recovery. However, in many patients the damage cannot be prevented, and the patient may permanently lose the functions of affected areas of the brain. For these patients, researchers are now considering stem cells as a way to repair the damaged brain regions. This problem is made more challenging because the damage in stroke may be widespread and may affect many cell types and connections.

However, researchers from Sweden recently observed that strokes in rats cause the brain's own stem cells to divide and give rise to new neurons.26 However, these neurons, which survived only a couple of weeks, are few in number compared to the extent of damage caused. A group from the University of Tokyo added a growth factor, bFGF, into the brains of rats after stroke and showed that the hippocampus was able to generate large numbers of new neurons.27 The researchers found evidence that these new neurons were actually making connections with other neurons. These and other results suggest that future stroke treatments may be able to coax the brain's own stem cells to make replacement neurons.

Taking an alternative approach, another group attempted transplantation as a means to treat the loss of brain mass after a severe stroke. By adding stem cells onto a polymer scaffold that they implanted into the stroke-damaged brains of mice, the researchers demonstrated that the seeded stem cells differentiated into neurons and that the polymer scaffold reduced scarring.28 Two groups transplanted human fetal stem cells in independent studies into the brains of stroke-affected rodents; these stem cells not only survived but migrated to the damaged areas of the brain.29,30 These studies increase our knowledge of how stem cells are attracted to diseased areas of the brain.

There is also increasing evidence from numerous animal disease models that stem cells are actively drawn to brain damage. Once they reach these damaged areas, they have been shown to exert beneficial effects such as reducing brain inflammation or supporting nerve cells. It is hoped that, once these mechanisms are better understood, this stem cell recruitment can potentially be exploited to mobilize a patient's own stem cells.

Similar lines of research are being considered with other disorders such as Huntington's Disease and certain congenital defects. While much attention has been called to the treatment of Alzheimer's Disease, it is still not clear if stem cells hold the key to its treatment. But despite the fact that much basic work remains and many fundamental questions are yet to be answered, researchers are hopeful that repair for once-incurable nervous system disorders may be amenable to stem cell based therapies.

Considerable progress has been made the last few years in our understanding of stem cell biology and devising sources of cells for transplantation. New methods are also being developed for cell delivery and targeting to affected areas of the body. These advances have fueled optimism that new treatments will come for millions of persons who suffer from neurological disorders. But it is the current task of scientists to bring these methods from the laboratory bench to the clinic in a scientifically sound and ethically acceptable fashion.

Notes:

* Chief, Developmental Neurobiology Program, Molecular, Cellular & Genomic Neuroscience Research Branch, Division of Neuroscience and Basic Behavioral Science, National Institute of Mental Health, National Institutes of Health, Email: panchisiond@mail.nih.gov

Chapter 2|Table of Contents|Chapter 4

Read this article:
Repairing the Nervous System with Stem Cells | stemcells ...

Read More...

Rheumatoid Arthritis: An Introduction

February 5th, 2017 3:43 am

Rheumatoid arthritis (RA) is starting to cement itself as a debilitating disease that affects people of all ages.1 In fact, its now the third most common type of arthritis, in terms of incidence, behind osteoarthritis and gout.2

According to the Arthritis Foundation, as many as 1.5 million people in the United States are affected by rheumatoid arthritis, with 41 out of 100,000 people being diagnosed with the disease annually.

Women are three times more likely to have rheumatoid arthritis, commonly occurring between the ages of 30 and 60. Men are also prone to experiencing the disease, but at a later age in their lives.3

Rheumatoid arthritis accounts for 22 percent of deaths from arthritis and other rheumatic conditions in the U.S., as noted in a report entitled Science has ARTHRITIS on the Run , written by Dr. Walter G. Barr and published by the Arthritis Foundation.4

Globally, rheumatoid arthritis is said to affect 1 about percent of the population. While this seems like a small number, its not an amount that should be taken lightly, since in other countries, RA is already gaining ground.

In a report published in 2009, The Australian Institute of Health and Welfare Agency stated that around 400,000 Australians were diagnosed with rheumatoid arthritis.5 That number rose slightly to 445,000 following self-reported estimates in 2011 to 2012.6

Meanwhile, information by Arthritis Research U.K. published in 2014 showed that around 400,000 adults in the U.K. already have rheumatoid arthritis, with 20,000 new patients being diagnosed every year.7

In 2016, Glenn Frey, co-founder and front man of the band The Eagles passed away at age 67 due to complications from rheumatoid arthritis, acute ulcerative colitis, and pneumonia. But what ultimately played a part in his untimely demise was the rheumatoid arthritis medication he was using.

The thing about rheumatoid arthritis is that one can heal from it if the disease is treated immediately, but in Freys case, the medication that was supposed to help him heal didnt work, but instead set him up for devastating effects.

This is why if you use or know someone who uses rheumatoid arthritis medications, it pays to be vigilant as common treatment protocols used for RA patients nowadays can pose health risks and lead to serious consequences.

Not all of the drugs in the market used to treat different diseases are as efficient and effective as they claim to be.

The good news is that an autoimmune disease like rheumatoid arthritis, and the pain that arises from it, can be treated naturally. Read this guide and get all the information you need to know about rheumatoid arthritis.

What Is Rheumatoid Arthritis?

Next What Is Rheumatoid Arthritis?

See the original post:
Rheumatoid Arthritis: An Introduction

Read More...

Genetics/Reproduction – beefmagazine.com

January 30th, 2017 2:47 am

A cowherds ability to maintain a high weaning rate with minimal supplementation of harvested feeds is a key contributor to a ranchs...

BEEFs 3rd annual Seedstock 100 listing, which ranks seedstock producers by number of bulls sold, offers you a...

Can you breed cattle to follow the road less traveled and graze hillsides? Research says its possible.

Sign Up for the BEEF Daily newsletter today!

This exclusive gallery features photos and information on the 100+ operations that make up the annual Seedstock 100 listing.

Bull buying season is nigh, and since your bull battery contributes 75% of your genetics, taking a little time to prepare ahead of the sale is time well spent. Those tips and more await you in this weeks Trending Headlines.

With most genetics available to everyone, increasingly, the primary point of differentiation among seedstock suppliers is their understanding of customer needs. That takes a relaetionship.

As the art and science of genomics becomes more accurate, cow-calf producers benefit. While cow-calf producers wont directly participate in genomic evaluation now that single-step evaluation is a reality, theyll be able to buy bulls with more...

Welcome to the 3rd annual edition of BEEF magazine's Seedstock 100, a listing of the biggest seedstock producers in the beef...

There will be plenty of bulls available this year, and while average prices will be lower than last year, the better bulls will...

Mary Lou Bradley-Henderson of Bradley 3 Ltd. at Memphis, Texas, offers her advice for getting the best bulls for your cowherd...

Engage your kids over the holiday break with an essay contest that asks the question, What does it mean to be a beef breeder in the 21st century?

Its not just chickens that have the dilemma of which came first. Every cow-calf producer faces a similar dilemma...

A North Dakota study shows smaller cows can produce more ranch profit, even when feedlot closeouts are applied to their steer calves...

Read the rest here:
Genetics/Reproduction - beefmagazine.com

Read More...

Stem cell laws – Wikipedia

January 29th, 2017 12:44 pm

Stem cell laws are the law rules, and policy governance concerning the sources, research, and uses in treatment of stem cells in humans. These laws have been the source of much controversy and vary significantly by country.[1] In the European Union, stem cell research using the human embryo is permitted in Sweden, Finland, Belgium, Greece, Britain, Denmark and the Netherlands; however, it is illegal in Germany, Austria, Ireland, Italy, and Portugal. The issue has similarly divided the United States, with several states enforcing a complete ban and others giving financial support.[2] Elsewhere, Japan, India, Iran, Israel, South Korea, China, and Australia are supportive. However, New Zealand, most of Africa (except South Africa), and most of South America (except Brazil) are restrictive.

The information presented here covers the legal implications of embryonic stem cells (ES), rather than induced pluripotent stem cells (iPSCs). The laws surrounding the two differ because while both have similar capacities in differentiation, their modes of derivation are not. While embryonic stem cells are taken from embryoblasts, induced pluripotent stem cells are undifferentiated from somatic adult cells.[3]

Stem cells are cells found in most, if not all, multi-cellular organisms. A common example of a stem cell is the Hematopoietic stem cell (HSC) which are multipotent stem cells that give rise to cells of the blood lineage. In contrast to multipotent stem cells, embryonic stem cells are pluripotent and are thought to be able to give rise to all cells of the body. Embryonic stem cells were isolated in mice in 1981, and in humans in 1998.[4]

Stem cell treatments are a type of cell therapy that introduce new cells into adult bodies for possible treatment of cancer, Somatic cell nuclear transfer, diabetes, and other medical conditions. Cloning also might be done with stem cells. Stem cells have been used to repair tissue damaged by disease.[5]

Because Embryonic Stem (ES) cells are cultured from the embryoblast 45 days after fertilization, harvesting them is most often done from donated embryos from in vitro fertilization (IVF) clinics. In January 2007, researchers at Wake Forest University reported that "stem cells drawn from amniotic fluid donated by pregnant women hold much of the same promise as embryonic stem cells."[4]

In 2000, the NIH, under the administration of President Bill Clinton, issued guidelines that allow federal funding of embryonic stem-cell research.[4]

The European Union has yet to issue consistent regulations with respect to stem cell research in member states. Whereas Germany, Austria, Italy, Finland, Ireland, Portugal and the Netherlands prohibit or severely restrict the use of embryonic stem cells, Greece, Sweden and the United Kingdom have created the legal basis to support this research.[6]Belgium bans reproductive cloning but allows therapeutic cloning of embryos.[1]France prohibits reproductive cloning and embryo creation for research purposes, but enacted laws (with a sunset provision expiring in 2009) to allow scientists to conduct stem cell research on imported a large amount of embryos from in vitro fertilization treatments.[1]Germany has restrictive policies for stem cell research, but a 2008 law authorizes "the use of imported stem cell lines produced before May 1, 2007."[1]Italy has a 2004 law that forbids all sperm or egg donations and the freezing of embryos, but allows, in effect, using existing stem cell lines that have been imported.[1]Sweden forbids reproductive cloning, but allows therapeutic cloning and authorized a stem cell bank.[1][6]

In 2001, the British Parliament amended the Human Fertilisation and Embryology Act 1990 (since amended by the Human Fertilisation and Embryology Act 2008) to permit the destruction of embryos for hESC harvests but only if the research satisfies one of the following requirements:

The United Kingdom is one of the leaders in stem cell research, in the opinion of Lord Sainsbury, Science and Innovation Minister for the UK.[7] A new 10 million stem cell research centre has been announced at the University of Cambridge.[8]

The primary legislation in South Africa that deals with embryo research is the Human Tissue Act, which is set to be replaced by Chapter 8 of the National Health Act. The NHA Chapter 8 has been enacted by parliament, but not yet signed into force by the president. The process of finalising these regulations is still underway. The NHA Chapter 8 allows the Minister of Health to give permission for research on embryos not older than 14 days. The legislation on embryo research is complemented by the South African Medical Research Council's Ethics Guidelines. These Guidelines advise against the creation of embryos for the sole purpose of research. In the case of Christian Lawyers Association of South Africa & others v Minister of Health & others[9] the court ruled that the Bill of Rights is not applicable to the unborn. It has therefore been argued based on constitutional grounds (the right to human dignity, and the right to freedom of scientific research) that the above limitations on embryo research are overly inhibitive of the autonomy of scientists, and hence unconstitutional.[10]

China prohibits human reproductive cloning but allows the creation of human embryos for research and therapeutic purposes.[1]India banned in 2004 reproductive cloning, permitted therapeutic cloning.[1] In 2004, Japans Council for Science and Technology Policy voted to allow scientists to conduct stem cell research for therapeutic purposes, though formal guidelines have yet to be released.[1] The South Korean government promotes therapeutic cloning, but forbids cloning.[1] The Philippines prohibits human embryonic and aborted human fetal stem cells and their derivatives for human treatment and research. In 1999, Israel passed legislation banning reproductive, but not therapeutic, cloning.[1][6]Saudi Arabia religious officials issued a decree that sanctions the use of embryos for therapeutic and research purposes.[1] According to the Royan Institute for Reproductive Biomedicine, Iran has some of the most liberal laws on stem cell research and cloning.[11][12]

Brazil has passed legislation to permit stem cell research using excess in vitro fertilized embryos that have been frozen for at least three years.[1]

Federal law places restrictions on funding and use of hES cells through amendments to the budget bill.[13] In 2001, George W. Bush implemented a policy limiting the number of stem cell lines that could be used for research.[4] There were some state laws concerning stem cells that were passed in the mid-2000s. New Jersey's 2004 S1909/A2840 specifically permitted human cloning for the purpose of developing and harvesting human stem cells, and Missouri's 2006 Amendment Two legalized certain forms of embryonic stem cell research in the state. On the other hand, Arkansas, Indiana, Louisiana, Michigan, North Dakota and South Dakota passed laws to prohibit the creation or destruction of human embryos for medical research.[13]

During Bush's second term, in July 2006, he used his first Presidential veto on the Stem Cell Research Enhancement Act. The Stem Cell Research Enhancement Act was the name of two similar bills, and both were vetoed by President George W. Bush and were not enacted into law. New Jersey congressman Chris Smith wrote a Stem Cell Therapeutic and Research Act of 2005, which made some narrow exceptions, and was signed into law by President George W. Bush.

In November 2004, California voters approved Proposition 71, creating a US$3 billion state taxpayer-funded institute for stem cell research, the California Institute for Regenerative Medicine. It hopes to provide $300 million a year.

President Barack Obama removed the restriction of federal funding passed by Bush in 2001, which only allowed funding on the 21 cell lines already created. However, the Dickey Amendment to the budget, The Omnibus Appropriations Act of 2009, still bans federal funding of creating new cell lines. In other words, the federal government will now fund research which uses the hundreds of more lines created by public and private funds.[14]

In March 2002, the Canadian Institutes of Health Research announced the first ever guidelines for human pluripotent stem cell research in Canada. The federal granting agencies, CIHR, Natural Sciences and Engineering Research Council, and Social Sciences and Humanities Research Council of Canada teamed up and agreed that no research with human IPSCs would be funded without review and approval from the Stem Cell Oversight Committee (SCOC).[15]

In March 2004, Canadian parliament enacted the Assisted Human Reproduction Act (AHRA), modeled on the United Kingdoms Human Fertilization and Embryology Act of 1990. Highlights of the act include prohibitions against the creation of embryos for research purposes and the criminalization of commercial transactions in human reproductive tissues.[16]

In 2005, Canada enacted a law permitting research on discarded embryos from in vitro fertilization procedures. However, it prohibits the creation of human embryos for research.[1]

On June 30, 2010, The Updated Guidelines for Human Pluripotent Stem Cell Research outline that:

Canada's National Embryonic Stem Cell Registry:

Australia is partially supportive (exempting reproductive cloning yet allowing research on embryonic stem cells that are derived from the process of IVF). New Zealand, however, restricts stem cell research.[17]

Read more here:
Stem cell laws - Wikipedia

Read More...

Charity Watchlist – Get Involved | American Life League

January 28th, 2017 4:43 pm

The list of charitable research organizations and their corresponding positions on the life issues posted to our website is neither all pro-life nor all anti-life; it is mixed. Unfortunately, most of the organizations on our list are marked with the red minus sign. It is simply just a sad fact that most national medical research/advocacy groups support some form of unethical research. There is no listing, to our knowledge, of only pro-life research organizations.

A green positive/plus sign indicates that ALL considers the organization worthy of support from pro-lifers. ALL considers an organization to be pro-life if it is opposed to abortion, human embryonic stem cell and/or aborted fetal body parts research, all forms of cloning and other attacks against the human person at any stage of development as well as Planned Parenthood Federation and other pro-abortion organizations.

A red negative/minus signs indicates that ALL does not consider the organization worthy of support from pro-lifers. If the organization supports, in any way (theory, advocacy, lobbying, granting and/or research) any offenses to life, it is not considered pro-life. Further, if any organization refuses to answer our inquiries, refuses to be clear about its position and/or attempts to couch its answer in terms of referring to another agency (i.e., federal government branches), it is not considered pro-life.

A plain yellow circle indicates that ALL urges caution when considering support for the organization due to a change in a prior rating. That is, an organization may have previously received a green positive or a red negative because of certain policy positions which are now questionable or cannot be verified.

The rating is based on the organizations response to written correspondence (regular postal or e-mail), a review of the organizations website, verifiable news reports, verifiable correspondence forwarded to us by others and/or a combination of any of these.

Research into other organizations not listed is an on-going process, but may be limited by staff and resources at ALL. If you have information (and documentation) about organizations that you would like to see listed, we would be most happy to receive it. Currently, we are not in a position to print the list (it amounts to more than 100 pages, not including documentation in hyperlinks) however, feel free to pass the link to the website to everyone you know!

Alex's Lemonade Stand Foundation 333 E. Lancaster Ave Suite 414 Wynnewood, PA 19096 Phone: 866-333-1213 Fax: 610-649-3038 http://www.alexslemonade.org Liz Scott, Alex's mother and co-executive director of Alex's Lemonade Stand Foundation, stated in an e-mail to ALL in May, 2012, that: "Alex's Lemonade Stand Foundation has not funded anything even remotely related to embryonic stem cell research."

However, when it was pointed out to Mrs. Scott that, according to the Foundation's website, there were grant funds being directed toward researchers and research facilities that support, promote and conduct such research, she responded:

"Although we have not issued a public policy position, I can tell you that ALSF has always followed all federal guidelines for research that involves human-derived cells and tissues. We are very sensitive to the variety of opinions on issues related to stem cells, and are committed to funding research programs that meet all of the stringent ethical standards at the institutional, foundation and government levels, that are designed to find cures for childhood cancer. I can tell you that when we award funds to our grant recipients 100% of the funds are used for their project onlythe institution is not allowed to take any indirect costs or general operating costs from the award funds or to use funds for other projects."

ALL cautions that federal guidelines allow for both human embryonic stem cell research and the use of aborted fetal materials in research.

When contacted by email in July 2014 with an update request, someone by the name of Lisa responded:

We do not have a policy. We have never received an application that includes embryonic stem cells so this isnt an issue for us.

When asked what the organization would do if it did receive a grant application that involved the use of human embryonic stem cells or aborted fetal material, there was no further reply.

Alliance for Aging Research 1700 K Street, NW Suite 740 Washington, DC 20006 Phone: 202-293-2856 Fax: 202-955-8394 http://www.agingresearch.org The Alliance for Aging Research is a 501(c)(3) group that advocates for medical research and scientific discoveries to improve the health and independence of Americans as they age. As such, the Alliance supports public policies that advance research involving both adult and embryonic stem cells and regenerative medicine in general.

While the Alliance for Aging Research opposes efforts to copy human life through cloning technologies, it is a leader among patient groups and science advocates supporting public funding for broad activities in stem cell research as well as therapeutic cloning of compatible stem cell lines for research and potential therapies. On its own and through membership in the Coalition for the Advancement of Medical Research, the Alliance will support the enactment of legislation to encourage increased federal funding for advances in stem cell research. https://web.archive.org/web/20130907070614/http://www.agingresearch.org/content/topic/detail/?id=1018&template=position

UPDATE: July 2, 2014

In an email to ALL from Noel Lloyd, Communications Manager at AAR:

The Alliance supports public policies that advance medical research with the potential to prevent, postpone or otherwise lessen diseases and disabilities that increase with aging. This includes policy support though not direct funding of a broad scope of regenerative medicine, including research on induced pluripotent and human embryonic stem cells.

Alliance for Regenerative Medicine 525 2nd Street, N.E. Washington, DC 20002 Phone: 202-568-6240 http://www.alliancerm.org "The Alliance for Regenerative Medicine (ARM)s mission is to advance regenerative medicine by representing, supporting and engaging all stakeholders in the field, including companies, academic research institutions, patient advocacy groups, foundations, health insurers, financial institutions and other organizations."

According to the website, regenerative medicine includes cell-based therapies, gene therapy, biologics, tissue engineering, bio-banking, and stem cells for drug discovery, toxicity testing and disease modeling. It is this last branch of regenerative medicine which causes the most concern: "Companies are increasingly learning to leverage the use of stem cells and/or living tissue constructs to create in vitro models to study human mechanisms of disease and the effects of drugs on a variety of cell and tissue types such as human heart, liver and brain cells. These models, built predominantly using embryonic and induced pluripotent stem cells, allow for faster and safer drug development." (http://alliancerm.org/industry-snapshot)

Many of ARM's membersare companies, foundations, and associations with public positions of support for human embryonic stem cell research.

ALS Association (Amyotrophic Lateral Sclerosis Association) 1275 K Street, NW Suite 250 Washington, DC 20005 Phone: 202-407-8580 http://www.alsa.org In an email to ALL from Carrie Munk at the ALS Association July 2, 2014:

The ALS Association primarily funds adult stem cell research. Currently, The Association is funding one study using embryonic stem cells (ESC), and the stem cell line was established many years ago under ethical guidelines set by the National Institute of Neurological Disorders and Stroke (NINDS); this research is funded by one specific donor, who is committed to this area of research. In fact, donors may stipulate that their funds not be invested in this study or any stem cell project. Under very strict guidelines, The Association may fund embryonic stem cell research in the future.

The ALS Association also financially supports NEALS (the Northeast ALS Consortium) which performs human embryonic stem cell research:

The ALS Association Awards $500,000 to the NEALS Consortium for Its TREAT ALS Clinical Trials Network For the sixth consecutive year, The ALS Association is pleased to announce its support of the Northeast ALS Consortium (NEALS), the largest consortium of ALS clinical researchers in the world. This years award totals $500,000 and will fund new initiatives and ongoing programs that will increase the quality and efficiency of clinical trials for ALS. (www.alsa.org/news/archive/neals-consortium-award.html)

The Northeast ALS Consortium (NEALS) is an international, independent, non-profit group of researchers who collaboratively conduct clinical research in Amyotrophic Lateral Sclerosis (ALS) and other motor neuron diseases.

Study utilizing the spinal cord neural stem cells from electively aborted fetus.

Alzheimer's Association 225 N. Michigan Avenue Floor 17 Chicago, IL 60601-7633 Phone: 312-335-8700 Fax: 866-699-1246 http://www.alz.org The Alzheimers Association policy supports and encourages any legitimate scientific avenue that offers the potential to advance this goal, including human embryonic stem cell research; and, we oppose any restriction or limitation on research, provided that appropriate scientific review, and ethical and oversight guidelines and compliance are in place." http://www.alz.org/national/documents/statements_stemcell.pdf

American Cancer Society 250 Williams St., NW Atlanta, GA 30303 Phone: 800-227-2345 http://www.cancer.org The American Cancer Society is not considered a pro-life organization for the following reasons:

Support for human embryonic stem cell research

The American Cancer Society (ACS) has, for many years, insisted that the federal government remains the institution best suited to both fund and oversee research using human embryonic stem cells while claiming to fund only explorations into uses of human adult stem cells and stem cells from umbilical cord blood.

However, in August 2001, when then-President Bush signed an executive order restricting federal funding of human embryonic stem cell research to stem cell lines that were already in existence at the time, the ACS issued a statement commending the administration for allowing stem cell research to proceed, and expressed hope for its future.

The Society believes that such research holds extraordinary potential in the fight against a variety of life-threatening diseases currently afflicting an estimated 140 million Americans, the statement said. It continued, The American Cancer Society commends the Administration for allowing this vital scientific research to proceedeven in a limited way.

The American Cancer Society remains hopeful that both the government and commercial sectors will continue to work collaboratively and with an open mind to explore additional solutions that will allow for the continuation of human embryonic stem cell research as necessary and appropriate, the ACS statement concluded.

These statements can no longer be found on the ACS website, but can be viewed here: http://replay.waybackmachine.org/20030626004233/http://www.cancer.org/docroot/NWS/content/NWS_1_1x_President_Supports_Limited_Stem_Cell_Research.asp

Keep in mind that during the eight years that followed Bushs order, Congress passed legislation to expand human embryonic stem cell research and each time it was vetoed. When President Barack Obama took office in 2009, one of his first acts as president was to issue an executive order expanding the research policy. The National Institutes of Health (NIH) began funding grants in the field of human embryonic stem cell research.

No ACS grants which provide for the direct funding of human embryonic stem cell research have been identified; however, grant funding to facilities and labs where such research abounds is indeed prominent.

The American Cancer Society has, in the past, also awarded financial grants to Planned Parenthood, the nations leading provider of abortion. http://www.lifesitenews.com/news/american-cancer-society-gives-planned-parenthood-grant-money-for-just-sayin

Despite the outcry over the connection to Planned Parenthood, the ACS maintains the association. Visitors to the ACS website can type Planned Parenthood into the search field and find a number of results:

Referral to Planned Parenthood as source of information and support for testicular cancer: http://www.cancer.org/cancer/testicularcancer/moreinformation/doihavetesticularcancer/do-i-have-testicular-cancer-add-res and http://www.cancer.org/acs/groups/cid/documents/webcontent/003172-pdf.pdf

Referral to Planned Parenthood as source of information and support for cervical cancer: http://www.cancer.org/cancer/cervicalcancer/overviewguide/cervical-cancer-overview-additional

The ACS refers to Planned Parenthood as a Voluntary Health Organization which should be invited into schools: http://www.cancer.org/acs/groups/content/@nho/documents/document/keycommunityrepresentativespdf.pdf

Planned Parenthood affiliate locations are used as sites for ACS awareness activities: http://www.cancer.org/myacs/eastern/areahighlights/cancernynj-news-blue-albany

The ACS notes that use of IUDs correlate with decreased risk of cervical cancer and that multiple pregnancies correlate to increased risk. The ACS recommends the HPV vaccine (Gardasil or Ceravax). The ACS also lists Planned Parenthood Federation of America as a source of information and support concerning HPV. http://www.cancer.org/acs/groups/cid/documents/webcontent/003042-pdf.pdf

J. Diane Redd, ACS Director for Major and Planned Gifts for New Jersey is a former fundraiser for Planned Parenthood: https://www.cancer.org/involved/donate/otherwaystogive/plannedgiving/diane_redd

Mady J. Schuman, a member of ACS' executive leadership used to work for Planned Parenthood: https://www.cancer.org/involved/donate/otherwaystogive/plannedgiving/mady_schuman

Kris Kim, ACS' CEO for the Eastern Division was the associate vice president for communications at Planned Parenthood New York City: http://www.cancer.org/acs/groups/content/@eastern/documents/document/acspc-028409.pdf

Similarly, the American Cancer Society has links to another pro-hESCR/pro-abortion organizationLance Armstrongs LIVESTRONG. The ACS is listed as an ambassador to the LIVESTRONG Global Cancer Campaign in honor of Lance Armstrongs return to professional cycling (http://www.livestrong.org/Who-We-Are/Our-Strength/LIVESTRONG-Societies/Ambassadors). Ambassadors committed to donating $250,000 or more in 2009.

Lance Armstrong supports human embryonic stem cell research http://livestrongblog.org/2009/03/09/president-obama-lifts-stem-cell-funding-ban/ and the LIVESTRONG Foundation lists abortion providers on its website. http://www.livestrong.com/search/?mode=standard&search=planned+parenthood

Aside from the American Cancer Societys support for human embryonic stem cell research and questionable grant funding, it refuses to acknowledge the abortion/breast cancer link and declines to even support the idea that doctors should mention it to their patients. Source: http://www.abortionbreastcancer.com/newsletter102202.htm

Lastly, in its document on fertility in women with cancer, the ACS suggests egg freezing, embryo freezing, in vitro fertilization, egg donation, and surrogacy. http://www.cancer.org/acs/groups/cid/documents/webcontent/acspc-041244-pdf.pdf

And, in its document on fertility in men with cancer, the ACS suggests sperm banking, sperm donation and in vitro fertilization. http://www.cancer.org/acs/groups/cid/documents/webcontent/acspc-041228-pdf.pdf

American Council on Science and Health 1995 Broadway Suite 202 New York, NY 10023-5860 Phone: 866-905-2694 Fax: 212-362-4919 http://www.acsh.org The American Council on Science and Health (ACSH) is a consumer education consortium concerned with issues related to food, nutrition, chemicals, pharmaceuticals, lifestyle, the environment, and health. ACSH was founded in 1978 by a group of scientists who had become concerned that many important public policies related to health and the environment did not have a sound scientific basis. These scientists created the organization to add reason and balance to debates about public health issues and to bring common sense views to the public. http://www.acsh.org/about/

Im pleased with the courts [U.S. appeals court rules in favor of stem cell research, August 2012] decision, says ACSHs Dr. Gilbert Ross, since stem cells have such vast potential to solve currently insoluble medical problems, including illnesses such as ALS and perhaps, eventually, Alzheimers disease. Certainly, to continue scientific advances in this field, research on stem cells must not be discouraged. http://acsh.org/2012/08/u-s-appeals-court-rules-in-favor-of-stem-cell-research/

ACSH has been a fervent advocate for supporting research progress in ESCs (embryonic stem cells) for years, despite the controversy involving the objections of some to using human embryonic tissues in research. http://acsh.org/2013/07/small-step-in-stem-cell-research-a-giant-leap-for-mankind/

American Diabetes Association National Office 1701 N. Beauregard St. Alexandria, VA 22311 Phone: 800-342-2383 http://www.diabetes.org We strongly support the protection and expansion of all forms of stem cell research, which offer great hope for a cure and better treatments for diabetes. We support legislation and proposals that enhance funding for stem cell research at the federal and state levels. http://www.diabetes.org/advocacy/advocacy-priorities/funding/stem-cell-research.html#sthash.PUBLIjKV.FhjarP2n.dpuf

The American Diabetes Association applauds President Obama for issuing an Executive Order that will advance stem cell research by lifting existing restrictions on the use of embryonic stem cells, while maintaining strict ethical guidelines.

The American Diabetes Association has long been a strong advocate for ending the current restrictions on stem cell research. http://www.diabetes.org/newsroom/press-releases/2009/statement-from-the-american-2009.html

American Heart Association National Service Center 7272 Greenville Ave Dallas, TX 75231 Phone: 800-242-8721 http://www.heart.org The American Heart Association website states the following regarding stem cell research:

Stem Cell Research The American Heart Association funds meritorious research involving human adult stem cells because it helps us fight heart disease and stroke. We dont fund research involving stem cells derived from human embryos or fetal tissue.

However, it continues:

Inducing adult stem cells into a pluripotent state may lead to patient-specific cell therapies that could reduce many of the underlying complications in therapies with embryonic stem cells.

Its important for research to continue in both cell types. To know how induced adult stem cells need to perform, we must know more about the innate function of embryonic stem cells. http://www.heart.org/HEARTORG/Conditions/Research-Topics_UCM_438796_Article.jsp

American Lung Association 55 Wacker Dr., Suite 1150 Chicago, IL 60601 Phone: 312-801-7630 http://www.lung.org The American Lung Association recognizes that research with human stem cells offer significant potential to further our understanding of fundamental lung biology and to develop cell-based therapies to treat lung disease. The American Lung Association supports the responsible pursuit of research involving the use of human stem cells. http://www.lung.org/get-involved/advocate/advocacy-documents/research.pdf

American Medical Association AMA Plaza 330 N. Wabash Ave., Suite 39300 Chicago, IL 60611-5885 Phone: 80-262-3211 http://www.ama-assn.org "The principles of medical ethics of the AMA do not prohibit a physician from performing an abortion in accordance with good medical practice and under circumstances that do not violate the law." http://www.ama-assn.org/ama/pub/physician-resources/medical-ethics/code-medical-ethics/opinion201.page?

The AMA supports the legal availability of mifepristone (RU-486) for appropriate research and, if indicated, clinical practice. (Res. 100, A-90; Amended: Res. 507, A-99) http://www.ama-assn.org/ad-com/polfind/Hlth-Ethics.pdf

The AMA reaffirms its position in support of the use of fetal tissue obtained from induced abortion for scientific research. (Res. 540, A-92; Reaffirmed: CSA Rep. 8, A-03) http://www.ama-assn.org/ad-com/polfind/Hlth-Ethics.pdf

Our AMA (1) supports continued research employing fetal tissue obtained from induced abortion, including investigation of therapeutic transplantation; and (2) demands that adequate safeguards be taken to isolate decisions regarding abortion from subsequent use of fetal tissue, including the anonymity of the donor, free and non-coerced donation of tissue, and the absence of financial inducement. (Res. 170, I-89; Reaffirmed by Res. 91, A-90; Modified: Sunset Report, I-00) http://www.ama-assn.org/ad-com/polfind/Hlth-Ethics.pdf

American Parkinson's Disease Association National Office 135 Parkinson Avenue Staten Island, NY 10305 Phone: 800-223-2732 Fax: 718-981-4399 http://www.apdaparkinson.org "We were very pleased on September 28, 2010 that the DC Circuit Court of Appeals issued a stay of the preliminary injunction pending its review of the appeal of the judicial challenge to federal funding for human embryonic stem cell (hESC) research. Without getting mired down in all the various terms and courts, what this means is that federal funding for hESC research will continue at least for the time period that it takes for the Court of Appeals to review Judge Lamberth's August 23rd decision to enjoin funding. You should also know that yesterday the Coalition for the Advancement of Medical Research (CAMR), of which PAN is a founding member, filed an amicus brief in the District Court. This brief supports and compliments the Department of Justice (DoJ) brief that was filed on behalf of the National Institutes of Health (NIH) on Monday."

[Department of Veteran Affairs and APDA Winter 2011 Parkinson Press Newsletter] http://bit.ly/1nsENqi

American Red Cross 2025 E. Street NW Washington, DC 20006 Phone: 202-303-4498 http://www.redcross.org A report issued from the International Federation of the Red Cross and Red Crescent in December of 2011 caused concerns that the organization may start advocating for abortion rights.

In a section of the report on human rights, IFRC quotes a widely criticized document issued by Anand Grover, the UN Special Rapporteur on the Right to Health, which said,

"States must take measures to ensure that legal and safe abortion services are available, accessible, and of good quality." The IFRC report goes on to editorialize, "But the real challenge is to find out how many states will indeed change their policies accordingly.

This may lead some to believe IFRC could eventually declare abortion a human right as Amnesty International did in 2007. Amid much controversy, Amnesty International simply announced that endorsing abortion as a right was a "natural" outgrowth of its 2-year campaign countering violence against women. http://www.c-fam.org/fridayfax/volume-14/analysis-is-the-red-cross-about-to-declare-abortion-a-human-right.html.

There have been no further developments in this area.

The American Red Cross has no formal public policy statements that we could find on life issues. It should be noted, however, that the American Red Cross has been under intense scrutiny and has been sued repeatedly by federal regulators to force improvements in blood safety. http://www.forbes.com/sites/gerganakoleva/2012/01/17/american-red-cross-fined-9-6-million-for-unsafe-blood-collection/

The American Red Cross also has a Diversity Program which officially recognizes and encourages participation in Gay and Lesbian Pride Month. American Red Cross Fires Employee for Refusal to Celebrate 'Gay and Lesbian Pride Month,' LifeSiteNews, August 5, 2005

American Spinal Injury Association 2020 Peachtree Road, NW Atlanta, GA 30309 Phone: 404-355-9772 Fax: 404-355-1826 ASIA_Office@shepherd.org http://asia-spinalinjury.org/ ASIA is a multidisciplinary organization whose membership is composed of physicians and allied health professionals specifically involved in spinal cord injury management. Current membership numbers 452 of which 85% are physicians. The remaining 15% are nurses, therapists, psychologists and other allied health professionals.

ASIA positions on the life topics are not clear; ALL is awaiting a response to our inquiry.

American Thoracic Society 25 Broadway New York, NY 10004 Phone: 212-315-6498 http://www.thoracic.org The American Thoracic Society (ATS) is an organization dedicated to serving patients with lung disease through research, advocacy, training, and patient care. As such, it supports making federal funding available for research using human embryonic stem cells with appropriate guidelines and federal and institutional oversight.

. . . [adult stem cell research] approaches should neither distract from nor preempt research for which the goal is to assess the use of pluripotent embryonic stem cells for the treatment of lung diseases. http://www.thoracic.org/statements/resources/research/stemcell.pdf

Amnesty International US 5 Penn Plaza New York, NY 10001 Phone: 212-807-8400 http://www.amnestyusa.org Amnesty International defends access to abortion for women at risk In April 2007, Amnesty International changed its neutral stance on abortion to supporting access to abortion in cases of rape and incest, and when the life or the health of the mother might be threatened. Amnesty's official policy is that they "do not promote abortion as a universal right" but "support the decriminalisation of abortion". http://www.amnesty.org/en/library/asset/POL30/012/2007/en/c917eede-d386-11dd-a329-2f46302a8cc6/pol300122007en.pdf

Amnesty International Continues Pushing Abortion Worldwide (2013) Amnesty International, a human rights organization that used to be abortion neutral, is now using the problem of maternal mortality to advocate for abortion. In a new report, ostensibly on medical care for maternal health, Amnesty calls on governments to repeal abortion laws and conscience protection for medical workers who may object. They also call for public health systems to train and equip health care providers to perform abortions.

Amnestys Maternal Health is a Human Right campaign focuses attention on four countries: Sierra Leone, Burkina Faso, Peru, and the United States. Amnesty argues that maternal mortality will decrease if it is treated as a human rights issue, if costs to health care are covered by governments, and if a right for women to control their reproductive and sex lives is established. http://www.lifenews.com/2012/08/09/amnesty-international-continues-pushing-abortion-worldwide/ http://www.amnestyusa.org/our-work/campaigns/demand-dignity/maternal-health-is-a-human-right

Amnesty International Launches New Campaign to Push Abortion Worldwide (2014) Amnesty International has been under fire for years for its pro-abortion positions and now the venerable human rights group is launching a new global effort to push abortion on a worldwide scale. The My Body My Rights campaign encourages young people around the world to know and demand their right to make decisions about their health, body, sexuality and reproduction without state control, fear, coercion or discrimination. It also seeks to remind world leaders of their obligations to take positive action, including through access to health services, the group says. http://www.lifenews.com/2014/03/10/amnesty-international-launches-new-campaign-to-push-abortion-worldwide/

"Amnesty International believes that everyone should be free to make decisions about if, when and with whom they have sex, whether or when they marry or have children and how to best protect themselves from sexual ill-health and HIV." http://www.amnesty.org/en/news/sexual-and-reproductive-rights-under-threat-worldwide-2014-03-06

Avon Foundation for Women 777 Third Avenue New York, NY 10017 Phone: 866-505-2866 http://www.avonfoundation.org The Avon Foundation for Women is a 501(c)(3) public charity founded in 1955 with the mission to promote or aid charitable, scientific, educational, and humanitarian activities, with a special emphasis on those activities that improve the lives of women and their families. In its work to realize those aspirations, the Foundations current mission focus is to lead efforts to eradicate breast cancer and end domestic and gender violence.

The Avon Breast Cancer Crusade was established in 1992. Since then, more than $815 million has been raised for breast cancer awareness and education, screening and diagnosis, access to care, support services and scientific research. Beneficiaries range from leading cancer research centers to local, nonprofit breast health programs, creating a powerful international network of research, medical, social service, and community-based breast cancer organizations.

The Avon Foundation is one of many breast cancer research fundraising groups that has yet to acknowledge the link between abortion and breast cancer.

While the Avon Foundation does not direct grant funding to Planned Parenthood, the more detailed answer on its website seems to indicate that it mightif it received a grant request that met its criteria.

Q: Does the Avon Foundation for Women support Planned Parenthood?

Our records indicate that in the last five years the Avon Foundation has received only one Planned Parenthood affiliate grant application from among more than an estimated 3,000 grant applications received during that time period, and it was not among our funded applicants. Our grant programs are highly competitive and unfortunately we receive many more quality applicants than available funds can support. Our Safety Net Program, Avon Breast Health Outreach Program and eight Avon Breast Health Centers of Excellence provide more than $15 million annually to address the needs for education, screening and treatment programs for underserved and uninsured women. http://www.avonfoundation.org/press-room/avon-foundation-for-women-response-to-recent-inquiries-about-breast-cancer-funding-support.html

The Speak Out Against Domestic Violence program was launched in the U.S. in 2004 and global expansion began shortly thereafter, with programs now in Central and South America and Europe. The Speak Out mission focuses on raising funds and awareness for domestic violence awareness, education and prevention programs while developing new community outreach and support for victims, and there is a special focus on supporting programs that assist children affected by domestic violence. Already more than $38 million has been awarded to over 250 organizations in the U.S.

In 2008, Avon Products, Inc. and the Avon Foundation introduced the company's first-ever global fundraising product, the Women's Empowerment Bracelet, designed to save and improve women's lives worldwide. The bracelet was unveiled by Avon Foundation Honorary Chair Reese Witherspoon at the second annual Global Summit for a Better Tomorrow, presented by the United Nations Development Fund for Women (UNIFEM) in partnership with Avon, at the United Nations in celebration of International Women's Day. Since then an entire catalog of fundraising products has been created.

UNIFEM is the United Nations Development Fund for Women. Established in 1976, it is self-described as fostering womens empowerment and gender equality and helping to make the voices of women heard at the United Nations. Two international agreements form the framework for UNIFEMs mission and goals: The Beijing Platform for Action and the Convention on the Elimination for All Forms of Discrimination Against Women (CEDAW).

In 1995, the Beijing Platform for Action (Beijing Platform) expressly called upon governments to reexamine restrictive abortion laws that punish women. By linking womens health to abortion law reform, the Beijing Platform affirmed what [pro-abortion] advocates [believe] worldwide: removing legal barriers to abortion saves womens lives, promotes their health, and empowers women to make decisions crucial to their well-being.

The Beijing mandate also reflects a global trend toward abortion law liberalizationa trend that first gained momentum in the late 1960s and continues to this day. http://reproductiverights.org/sites/default/files/documents/pub_bp_abortionlaws10.pdf

CEDAW, created in 1979, is actually a global Equal Rights Amendment. CEDAW mandates gender re-education, access to abortion services, homosexual and lesbian rights, and the legalization of voluntary prostitution as a valid form of professional employment. http://www.heritage.org/research/reports/2001/02/how-un-conventions-on-womens http://frcblog.com/2010/03/abortion-the-united-nations-and-cedaw/

See also http://www.all.org/newsroom_judieblog.php?id=2043.

See the original post:
Charity Watchlist - Get Involved | American Life League

Read More...

Genetic Engineering – News – Science – The New York Times

January 28th, 2017 4:42 pm

Latest Articles

University of Florida scientists say they have found a recipe that would return flavor that has been lost through breeding of modern hybrids.

By KENNETH CHANG

Daniel Kronauers transgenic ants offer scientists the chance to explore the evolution of animal societies and, perhaps, our own.

By NATALIE ANGIER

Gene editing, which does not add genes from other organisms into plants, is done with new tools that snip and tweak DNA at precise locations.

By KENNETH CHANG

The genetic engineering start-ups round includes the participation of Jennifer A. Doudna, who helped pioneer a technique that made altering DNA easier.

By MICHAEL J. de la MERCED

A California start-up that genetically engineers yeast to produce an acid for fragrances is at the forefront of efforts to reignite a market that fell short of earlier expectations.

By QUENTIN HARDY

The technique, discovered by a team at the Salk Institute and tested in mice, cannot be applied directly to people, but it points toward better understanding of human aging.

By NICHOLAS WADE

Why scientists and startups are tinkering with our most popular legume.

By ROXANNE KHAMSI

With inaugurations on everyones mind, heres another one: our new, weekly sampling of readers views.

By LIZ SPAYD with EVAN GERSHKOVICH

Monsanto writes that these crops are a very important and productive tool for modern and sustainable agriculture.

A cotton farmer in India says they have greatly increased his yield. The Union of Concerned Scientists urges better crop management methods instead.

Higher yields with less pesticides was the sales pitch for genetically modified seeds. But that has not proved to be the outcome in the United States.

By DANNY HAKIM

A Chinese firms $43 billion effort to buy Syngenta could upend the industry, but it faces widespread fears at home over modified food.

By AMIE TSANG and CAO LI

A bioethicist says research on a controversial procedure should be permitted with proper monitoring.

Officials want to test genetically modified mosquitoes built to blunt the spread of dengue and Zika, but many Key Haven residents fear the experiment more than the viruses.

By LIZETTE ALVAREZ

A new survey shows distrust of scientists, a suspicion about claims of progress and discomfort with the idea of meddling with human abilities.

By GINA KOLATA

The bill would require companies to indicate that foods have genetically engineered ingredients, but disagreement remains over how that would be done.

By STEPHANIE STROM

The study was testing the use of genetically engineered cells as a treatment for cancer, which had shown promising earlier results.

The bill would set a national standard for labeling G.M.O. foods, though critics say the system would not be tough enough.

By STEPHANIE STROM

A proposed law would make it unnecessarily difficult to check a label, by requiring the scanning of electronic codes in the store.

By THE EDITORIAL BOARD

As of Friday, nearly all food labels in the state must disclose when products include genetically engineered ingredients.

By STEPHANIE STROM

University of Florida scientists say they have found a recipe that would return flavor that has been lost through breeding of modern hybrids.

By KENNETH CHANG

Daniel Kronauers transgenic ants offer scientists the chance to explore the evolution of animal societies and, perhaps, our own.

By NATALIE ANGIER

Gene editing, which does not add genes from other organisms into plants, is done with new tools that snip and tweak DNA at precise locations.

By KENNETH CHANG

The genetic engineering start-ups round includes the participation of Jennifer A. Doudna, who helped pioneer a technique that made altering DNA easier.

By MICHAEL J. de la MERCED

A California start-up that genetically engineers yeast to produce an acid for fragrances is at the forefront of efforts to reignite a market that fell short of earlier expectations.

By QUENTIN HARDY

The technique, discovered by a team at the Salk Institute and tested in mice, cannot be applied directly to people, but it points toward better understanding of human aging.

By NICHOLAS WADE

Why scientists and startups are tinkering with our most popular legume.

By ROXANNE KHAMSI

With inaugurations on everyones mind, heres another one: our new, weekly sampling of readers views.

By LIZ SPAYD with EVAN GERSHKOVICH

Monsanto writes that these crops are a very important and productive tool for modern and sustainable agriculture.

A cotton farmer in India says they have greatly increased his yield. The Union of Concerned Scientists urges better crop management methods instead.

Higher yields with less pesticides was the sales pitch for genetically modified seeds. But that has not proved to be the outcome in the United States.

By DANNY HAKIM

A Chinese firms $43 billion effort to buy Syngenta could upend the industry, but it faces widespread fears at home over modified food.

By AMIE TSANG and CAO LI

A bioethicist says research on a controversial procedure should be permitted with proper monitoring.

Officials want to test genetically modified mosquitoes built to blunt the spread of dengue and Zika, but many Key Haven residents fear the experiment more than the viruses.

By LIZETTE ALVAREZ

A new survey shows distrust of scientists, a suspicion about claims of progress and discomfort with the idea of meddling with human abilities.

By GINA KOLATA

The bill would require companies to indicate that foods have genetically engineered ingredients, but disagreement remains over how that would be done.

By STEPHANIE STROM

The study was testing the use of genetically engineered cells as a treatment for cancer, which had shown promising earlier results.

The bill would set a national standard for labeling G.M.O. foods, though critics say the system would not be tough enough.

By STEPHANIE STROM

A proposed law would make it unnecessarily difficult to check a label, by requiring the scanning of electronic codes in the store.

By THE EDITORIAL BOARD

As of Friday, nearly all food labels in the state must disclose when products include genetically engineered ingredients.

By STEPHANIE STROM

Go here to read the rest:
Genetic Engineering - News - Science - The New York Times

Read More...

Cancer Genetics Overview (PDQ)Health Professional Version …

January 26th, 2017 11:52 am

Introduction

[Note: Many of the medical and scientific terms used in this summary are found in the NCI Dictionary of Genetics Terms. When a linked term is clicked, the definition will appear in a separate window.]

[Note: A concerted effort is being made within the genetics community to shift terminology used to describe genetic variation. The shift is to use the term variant rather than the term mutation to describe a difference that exists between the person or group being studied and the reference sequence. Variants can then be further classified as benign (harmless), likely benign, of uncertain significance, likely pathogenic, or pathogenic (disease causing). Throughout this summary, we will use the term pathogenic variant to describe a disease-causing mutation. Refer to Table 1, Variant Classification for Pathogenicity for more information.]

The etiology of cancer is multifactorial, with genetic, environmental, medical, and lifestyle factors interacting to produce a given malignancy. Knowledge of cancer genetics is rapidly improving our understanding of cancer biology, helping to identify at-risk individuals, furthering the ability to characterize malignancies, establishing treatment tailored to the molecular fingerprint of the disease, and leading to the development of new therapeutic modalities. As a consequence, this expanding knowledge base has implications for all aspects of cancer management, including prevention, screening, and treatment.

Genetic information provides a means of identifying people who have an increased risk of cancer. Sources of genetic information include biologic samples of DNA, information derived from a persons family history of disease, findings from physical examinations, and medical records. DNA-based information can be gathered, stored, and analyzed at any time during an individuals life span, from before conception to after death. Family history may identify people with a modest to moderately increased risk of cancer or may serve as the first step in the identification of an inherited cancer predisposition that confers a very high lifetime risk of cancer. For an increasing number of diseases, DNA-based testing can be used to identify a specific pathogenic variant as the cause of inherited risk and to determine whether family members have inherited the disease-related variant.

The proportion of individuals carrying a pathogenic variant who will manifest the disease is referred to as penetrance. In general, common genetic variants that are associated with cancer susceptibility have a lower penetrance than rare genetic variants. This is depicted in Figure 1. For adult-onset diseases, penetrance is usually described by the individual carrier's age and sex. For example, the penetrance for breast cancer in female carriers of BRCA1/BRCA2 pathogenic variants is often quoted by age 50 years and by age 70 years. Of the numerous methods for estimating penetrance, none are without potential biases, and determining an individual carrier's risk of cancer involves some level of imprecision. Enlarge

Figure 1. Genetic architecture of cancer risk. This graph depicts the general finding of a low relative risk associated with common, low-penetrance genetic variants, such as single-nucleotide polymorphisms identified in genome-wide association studies, and a higher relative risk associated with rare, high-penetrance genetic variants, such as pathogenic variants in the BRCA1/BRCA2 genes associated with hereditary breast and ovarian cancer and the mismatch repair genes associated with Lynch syndrome.

Genetic variants, or changes in the usual DNA sequence of a particular gene, can have harmful, beneficial, neutral, or uncertain effects on health and may be inherited as autosomal dominant, autosomal recessive, or X-linked traits. Pathogenic variants that cause serious disability early in life are usually rare because of their adverse effect on life expectancy and reproduction. However, if the pathogenic variant is autosomal recessivethat is, if the health effect of the variant is caused only when two copies (one from each parent) of the altered gene are inherited carriers of the pathogenic variant (healthy people carrying one copy of the altered gene) may be relatively common in the general population. Common in this context refers, by convention, to a prevalence of 1% or more. Pathogenic variants that cause health effects in middle and older age, including several pathogenic variants known to cause a predisposition to cancer, may also be relatively common. Many cancer-predisposing traits are inherited in an autosomal dominant fashion, that is, the cancer susceptibility occurs when only one copy of the altered gene is inherited. For autosomal dominant conditions, the term carrier is often used in a less formal manner to denote people who have inherited the genetic predisposition conferred by the pathogenic variant. (Refer to individual PDQ summaries focused on the genetics of specific cancers for detailed information on known cancer-susceptibility syndromes.)

Increasingly, the public is turning to the Internet for information related both to familial and genetic susceptibility to cancer and to genetic risk assessment and testing. Direct-to-consumer marketing of genetic testing for hereditary breast and colon cancer is also taking place in some communities. This wider availability of information related to inherited cancer risk may raise concerns among persons previously unaware of the implications inherent in their family histories and may lead some of these individuals to consult their primary care physicians for management advice and recommendations. In many instances, the evaluation and advice will be relatively straightforward for physicians with a basic knowledge of familial cancer. In a subset of patients, the evaluation may be more complex, calling for referral to genetics professionals for further evaluation and counseling.

Correctly recognizing and identifying individuals and families at increased risk of developing cancer is one of countless important roles for primary care and other health care providers. Once identified, these individuals can then be appropriately referred for genetic counseling, risk assessment, consideration of genetic testing, and development of a management plan. When medical and family histories reveal cardinal clues to the presence of an underlying familial or genetic cancer susceptibility disorder (see list below),[1] further evaluation may be warranted. (Refer to the PDQ summary on Cancer Genetics Risk Assessment and Counseling for more information about the components of a genetics cancer risk assessment.)

Features of hereditary cancer include the following:

Concluding that an individual is at increased risk of developing cancer may have important, potentially life-saving management implications and may lead to specific interventions aimed at reducing risk (e.g., tamoxifen for breast cancer, colonoscopy for colon cancer, or risk-reducing salpingo-oophorectomy for ovarian cancer). Information about familial cancer risk may also inform a persons ability to plan for the future (lifestyle and health care decisions, family planning, or other decisions). Genetic information may also provide a direct health benefit by demonstrating the lack of an inherited cancer susceptibility. For example, if a family is known to carry a cancer-predisposing variant in a particular gene, a family member may experience reduced worry and lower health care costs if his or her genetic test indicates that he or she does not carry the familys disease-related variant. Conversely, information about familial cancer risk may have psychological effects or social costs (e.g., worry, guilt, or increased health care costs). Family dynamics also may be affected. For instance, the involvement of one or more family members may be required for genetic testing to be informative, and parents may feel guilt about passing inherited risk on to their children.

Knowledge about a cancer-predisposing variant can be informative not only for the individual tested but also for other family members. Family members who previously had not considered the implications of their family history for their own health may be led to do so, and some will undergo genetic testing, resulting in more definitive information on whether they are at increased genetic risk. Some relatives may learn their carrier status without being directly tested, for example, when a biological parent of a child who is a known carrier of a pathogenic variant is identified as an obligate carrier. Founder effects may result in the recognition that specific ethnic groups have a higher prevalence of certain pathogenic variants, knowledge that can be either clinically useful (permitting more rational genetic testing strategies) or potentially stigmatizing. Testing may reveal the presence of nonpaternity in a family. There is the theoretical possibility that genetic information may be misused, and concerns about the potential for insurance and/or employment discrimination may arise. Genetic information may also affect medical and lifestyle decisions.

Refer to individual PDQ summaries for available evidence addressing all ancillary issues.

Genetic counseling is a process of communication between genetics professionals and patients with the goal of providing individuals and families with information on the relevant aspects of their genetic health, available testing and management options, and support as they move toward understanding and incorporating this information into their daily lives. Genetic counseling generally involves the following six steps:

Genetic evaluation involves an interaction with a medical geneticist or other genetics professional and may include a physical examination and diagnostic testing, in addition to genetic counseling. The principles of voluntary and informed decision making, nondirective and noncoercive counseling, and protection of client confidentiality and privacy are central to the philosophy of genetic counseling.[1-5] (Refer to the PDQ summary on Cancer Genetics Risk Assessment and Counseling for more information on the nature and history of genetic counseling.)

From the mid-1990s to the mid-2000s, genetic counseling expanded to include discussion of genetic testing for cancer risk, as more genes associated with inherited cancer risk were discovered. Cancer genetic counseling often involves a multidisciplinary team of health professionals that may include a genetic counselor, an advanced practice genetics nurse, or a medical geneticist; a mental health professional; and various medical experts such as an oncologist, surgeon, or internist. The process of counseling may require a number of visits to address medical, genetic testing, and psychosocial issues. Even when cancer risk counseling is initiated by an individual, inherited cancer risk has implications for the entire family. Because genetic risk affects an unknown number of biological relatives, contact with these relatives is often essential to collect accurate family and medical histories. Cancer genetic counseling may involve several family members, some of whom will have had cancer and others who have not.

The impact of risk assessment and predisposition genetic testing is improved health outcomes. The information derived from risk assessment and/or genetic testing allows the health care provider to tailor an individual approach to health promotion and optimize long-term health outcomes through the identification of at-risk individuals before cancer develops. The health care provider can thus intervene earlier either to reduce the risk or diagnose a cancer at an earlier stage, when the chances for effective treatment are greatest. The information may be used to modify the management approach to an initial cancer, clarify the risks of other cancers, or predict the response of an existing cancer to specific forms of treatment, all of which may alter treatment recommendations and long-term follow-up.

Individual PDQ summaries focused on the genetics of specific cancers contain detailed information about many known cancer susceptibility syndromes. Although this is not a complete list, the following cancer susceptibility syndromes are discussed in the PDQ cancer genetics summaries (listed in parentheses after the syndromes):

The methods described in this section are intended to provide a brief background about the genetic analysis and discovery approaches that have been used during the past 10 to 15 years for identifying disease susceptibility genes. These methods led to important cancer gene discoveries such as BRCA1 and breast cancer risk. Since then, genetic analysis techniques have transitioned to next-generation sequencing methods as described in the Clinical Sequencing section of this summary.

The recognition that cancer clusters within families has led many investigators to collect data on multiple-case families with the goal of localizing cancer susceptibility genes through linkage studies.

Linkage studies are typically performed on high-risk kindreds, in whom multiple cases of a particular disease have occurred, in an effort to identify disease susceptibility genes. Linkage analysis statistically compares the genotypes between affected and unaffected individuals and looks for evidence that known genetic markers are inherited along with the disease trait. If such evidence is found (linkage), it provides statistical data that the chromosomal region near the marker also harbors a disease susceptibility gene. Once a genomic region of interest has been identified through linkage analysis, additional studies are required to prove that there truly is a susceptibility gene at that position. Linkage analysis is affected by the following:

An additional issue in linkage studies is the background rate of sporadic cancer in the context of family studies. For example, because a mans lifetime risk of prostate cancer is one in eight,[1] it is possible that families under study have both inherited and sporadic prostate cancer cases. Thus, men who do not inherit the prostate cancer susceptibility gene that is segregating in their family may still develop prostate cancer.

One way to address inconsistencies between linkage studies is to require inclusion criteria that defines clinically significant disease.[2-6] This approach attempts to define a homogeneous set of cases/families to increase the likelihood of identifying a linkage signal. It also prevents the inclusion of cases that may be considered clinically insignificant that were identified by screening in families.

GWAS are identifying common, low-penetrance susceptibility alleles for many complex diseases,[7] including cancer. This approach can be contrasted with linkage analysis, which searches for genetic-risk variants cosegregating within families that have a high prevalence of disease. While linkage analyses are designed to uncover rare, highly penetrant variants that segregate in predictable heritance patterns (e.g., autosomal dominant, autosomal recessive, X-linked, and mitochondrial), GWAS are best suited to identify multiple, common, low-penetrance genetic polymorphisms. GWAS are conducted under the assumption that the genetic underpinnings of complex phenotypes, such as prostate cancer, are governed by many alleles, each conferring modest risk. Most genetic polymorphisms genotyped in GWAS are common, with minor allele frequencies greater than 1% to 5% within a given population (e.g., men of European ancestry). GWAS capture a large portion of common variation across the genome.[8,9] The strong correlation between many alleles located close to one another on a given chromosome (called linkage disequilibrium) allows one to scan the genome without having to test all 10 million known single nucleotide polymorphisms (SNPs). With GWAS, researchers can test approximately 1 million to 5 million SNPs per study and ascertain almost all common inherited variants in the genome.

In a GWAS, allele frequency for each SNP is compared between cases and controls. Promising signalsin which allele frequencies deviate significantly in case compared to control populationsare validated in replication cohorts. To have adequate statistical power to identify variants associated with a phenotype, large numbers of cases and controls, typically thousands of each, are studied. Because up to 1 million SNPs are evaluated in a GWAS, false-positive findings are expected to occur frequently when using standard statistical thresholds. Therefore, stringent statistical rules are used to declare a positive finding, usually using a threshold of P < 1 10-7.[10-12]

To date, hundreds of cancer-risk variants have been identified by well-powered GWAS and validated in independent cohorts.[13] These studies have revealed consistent associations between specific inherited variants and cancer risk. However, the findings should be qualified with a few important considerations:

The implications of these points are discussed in greater detail in the PDQ summaries on Genetics of Breast and Gynecologic Cancers; Genetics of Colorectal Cancer; and Genetics of Prostate Cancer. Additional details can be found elsewhere.[18]

Broad-scale genome sequencing approaches, including multigene (panel) testing, whole-exome sequencing (WES), and whole-genome sequencing (WGS), are rapidly being developed and incorporated into a spectrum of clinical oncologic settings, including cancer therapeutics and cancer risk assessment. Several institutions and companies offer tumor sequencing, and some are developing precision medicine programs that sequence tumor genomes to identify driver genetic alterations that are targetable for therapeutic benefit to patients.[1-3] Many of these tumor-based approaches use germline DNA sequences as a reference to discriminate between DNA changes only within the tumor and those that are potentially inherited. In the genetic counseling and cancer risk assessment setting, the use of multigene testing to evaluate inherited cancer risk is becoming more common and may become routine in the near future, with institutions and companies offering multigene testing to detect alterations in a host of cancer riskassociated genes.

These advances in gene sequencing technologies also identify variants in genes related to the primary indication for ordering genetic sequence testing, along with findings not related to the disorder being tested. The latter genetic findings, termed incidental or secondary findings, are currently a source of clinical, ethical, legal, and counseling debate. The American College of Medical Genetics and Genomics (ACMG) and the Presidential Commission for the Study of Bioethical Issues have published literature that address some of these issues and provide guidance and recommendations for their use.[4-7] However, controversy continues about when and what results to provide to patients and their health care providers. This section was created to provide information about genomic sequencing technologies in the context of clinical sequencing and highlights additional areas of clinical uncertainty for which further research and approaches are needed.

DNA sequencing technologies have undergone rapid evolution, particularly since 2005 when massively parallel sequencing, or next-generation sequencing (NGS), was introduced.[8]

Automated Sanger sequencing is considered the first generation of sequencing technology.[9] Sanger cancer gene sequencing uses polymerase chain reaction (PCR) amplification of genetic regions of interest followed by sequencing of PCR products using fluorescently labeled terminators, capillary electrophoresis separation of products, and laser signal detection of nucleotide sequence.[10,11] While this is an accurate sequencing technology, the main limitations of Sanger sequencing include low throughput, a limited ability to sequence more than a few genes at a time, and the inability to detect structural rearrangements.[10]

NGS refers to high throughput DNA sequencing technologies that are capable of processing multiple DNA sequences in parallel.[11] Although platforms differ in template generation and sequence interrogation, the overall approach to NGS technologies involves shearing and immobilizing DNA template molecules onto a solid surface, which allows separation of molecules for simultaneous sequencing reactions (millions to billions) to be performed in a parallel fashion.[10,12] Thus, the major advantages of NGS technologies include the ability to sequence thousands of genes at one time, a lower cost, and the ability to detect multiple types of genomic alterations, such as insertions, deletions, copy number alterations, and rearrangements.[10] Limitations include the possibility that specific gene regions may be missed, turnaround time can be lengthy (although it is decreasing), and informatics support to handle massive amounts of genetic data has lagged behind the sequencing capability. A well-recognized bottleneck to utilizing NGS data is the lack of advanced computational infrastructure to preserve, process, and analyze the vast amount of genetic data. The magnitude of the variants obtained from NGS is exponential; bioinformatics approaches need to evaluate genetic variants for predicted functional consequence in disease biology. There is also a need for user-friendly bioinformatics pipelines to analyze and integrate genetic data to influence the scientific and medical community.[11,13]

The following terms are defined to better understand the clinical application of NGS testing and implications of results reported.

NGS has multiple potential clinical applications. In oncology, the two dominant applications are: 1) the assessment of somatic alterations in tumors to inform prognosis and/or targeted therapeutics; and 2) the assessment of the germline to identify cancer risk alleles.

There are multiple approaches to tumor testing for somatic alterations. With targeted multigene testing, a number of different genes can be assessed simultaneously. These targeted multigene tests can differ substantially in the genes that are included, and they can be tailored to individual tumor types. Targeted multigene testing limits the data to be analyzed and includes only known genes, which makes the interpretation more straightforward than in whole exome or whole genome techniques. In addition, greater depth of coverage is possible with targeted multigene testing than with WES or WGS. Depth of coverage refers to the number of times a nucleotide has been sequenced; a greater depth of coverage has fewer sequencing errors. Deep coverage also aids in differentiating sequencing errors from single nucleotide polymorphisms.

WES and WGS are far more extensive techniques and aim to uncover variants in known genes and in genes not suspected a priori. The discovery of a variant that is unexpected for a particular tumor type can lead to the use of a directed therapeutic, which could improve patient outcome. WES generates sequence data of the coding regions of the genome (representing approximately 1% of the human genome), rather than the entire genome (WGS). Consequently, WES is less expensive than WGS.

Noncoding variants can be identified using WGS but cannot be identified using WES. The use of WGS is limited by cost and the vast bioinformatics needed for interpretation. Although the costs of sequencing have dropped precipitously, the analysis remains formidable.[14]

Although the goal of WES and WGS is to improve patient care by detecting actionable genetic variants (mutations that can be targeted therapeutically), a number of issues warrant consideration. This testing may detect pathogenic variants, variants of uncertain significance (VUS), or no detectable abnormalities. In addition, pathogenic variants can be found in genes that are thought to be clearly related to tumorigenesis but can also be detected in genes with unclear relevance (particularly with WES and WGS approaches). VUS have unclear implications as they may, or may not, disrupt the function of the protein. The definition of actionable can vary, but often this term is used when an aberration, if found, would lead to recommendations against certain treatments (such as variants in ras) for which a clinical trial is available, or for which there is a known targeted drug. Although there are case reports of success with this approach, it is unlikely to be straightforward. Studies are ongoing.

Some commercial and single-institution assays test only the tumor. Clearly pathogenic variants found in important genes in the tumor can be somatic but could also be from the germline. In situations in which somatic analysis is paired with a germline analysis, it can be determined whether an identified alteration is inherited. A study that estimated the prevalence of germline variants from patients undergoing tumor sequencing with matched, normal DNA sequencing reported that cancer susceptibility genes were identified in 198 of 1,566 individuals (12.6%). Only 81 of these 198 individuals (40.9%) had pathogenic variants in cancer susceptibility genes concordant with their tumor type. When expanding to include known noncancer-related Mendelian disease genes, 246 of 1,566 individuals (15.7%) had pathogenic or presumed pathogenic germline variants identified.[15]

Sequencing tumors may lead to the identification of hereditary (germline) pathogenic variants.[16] Founder pathogenic variants in well-characterized cancer susceptibility genes are highly suggestive of a germline pathogenic variant. Hypermutated tumor phenotype may suggest an underlying constitutional defect in DNA repair. Clinical characteristics that fit with a particular genetic predisposition, such as family history, young age at diagnosis, or specific tumor type, may also raise the suspicion of a germline variant correlating with a tumor variant. A high variant allele fraction may also indicate a germline variant. All of these factors signify a potential need for patients to undergo genetic counseling and to consider confirmatory germline genetic testing.

The absence of a variant in a gene assessed as part of somatic testing does not rule out the presence of an inherited susceptibility. All patients whose personal and family histories are suggestive of hereditary cancer should consider germline testing regardless of their somatic results.

Ongoing clinical trials, such as the NCI Molecular Analysis for Therapy Choice (NCI-MATCH) Trial, are examining the value of somatic sequencing to find actionable targets. Germline sequencing is occurring as a component of this study.

The goal of germline testing is to identify pathogenic variants associated with an inherited risk of cancer and to guide cancer riskmanagement decisions. Also, germline testing can aid in some management decisions at the time of diagnosis (e.g., decisions about colectomy in Lynch syndromerelated colon cancer and contralateral mastectomy in carriers of BRCA1/2 pathogenic variants). In addition, there are emerging data that germline status may help determine systemic therapy (e.g., the use of cisplatin or PARP inhibitors in BRCA1/2-related cancer).

To date, most germline genetic testing has been performed in a targeted manner, looking for variants in the gene(s) associated with a clinical picture (e.g., BRCA1 and BRCA2 in hereditary breast and ovarian cancer; or the mismatch repair [MMR] genes in Lynch syndrome). However, targeted multigene tests now available commercially or within an institution contain different sets of genes. Some are targeted to all cancers, others to specific cancers (e.g., breast, colon, or prostate cancers). The genes on the multigene tests include high-penetrance genes related to the specific tumor (such as BRCA1/2 on a breast cancer panel); high penetrance genes related to a different type of cancer but with a more moderate risk for the tumor of reference (such as CDH1 or MSH6 on a breast cancer panel); and moderate penetrance genes for which clinical utility is uncertain (such as NBN on a breast cancer panel). Because multiple genes are included on these panels, it is anticipated that many, and perhaps most, individuals undergoing testing using these panels will be found to have at least one VUS. As it is not possible to do standard pretest counseling models for a panel of 20 genes, new counseling models are needed. Ethical issues of whether patients can opt out of specific results (such as TP53 or CDH1 in breast cancer) and how this would be done in clinical practice are unresolved.

Refer to the Multigene (panel) testing section in the PDQ summary on Cancer Genetics Risk Assessment and Counseling for more information about the use of targeted multigene tests.

WES for inherited cancer susceptibility is also commercially available. Secondary findings are likely and management of such findings is evolving.

The ACCE model uses four main components to evaluate new genetic tests: analytic validity; clinical validity; clinical utility; and ethical, legal, and social issues.[17]

The ACCE model's framework has been adopted worldwide for the evaluation of genetic tests.

Several layers of complexity exist in managing NGS in the clinical setting. At the purely technical level, improvements in the sequencing technique have allowed for sequencing across the entire genome, not merely the exome. As the costs decrease, exomic and genomic sequencing of tumor and normal tissue can be expected to become more routine.

With routine use of WGS, major challenges in interpretation emerge. Foremost is the matter of determining which sequence variations in known cancer predisposition genes are pathologic, which are harmless, and which variations require further evaluation as to their significance. This is not a new challenge. Various groups are developing processes for the interpretation and curation of a growing database of variants and their significance. For example, the International Society for Gastrointestinal Hereditary Tumors has developed such a process for the MMR genes in concert with the Human Variome Project and International Mismatch Repair Consortium.

These processes may serve as a framework for the emerging challenge of interpreting the significance of sequence variations in genes of uncertain or unknown function in regulation of neoplastic progression or other diseases. Larger cancer predisposition multigene tests have been developed by commercial laboratories, with their own process for interpretation. To the extent that increasingly larger multigene tests include genes of unknown significance, governance of the interpretation process requires that academic institutions offering their own multigene tests or using external proprietary panels develop a deliberative process for managing the quality assurance for test performance (including Clinical Laboratory Improvement Amendments [CLIA], where appropriate) and interpretation.

ACMG has issued the following updated guidelines for achieving accountability in interpreting and reporting secondary findings:[4,18]

Concerns remain that the routine reporting of germline variants in the context of tumor sequencing would require laboratories to conduct results review with germline and tumor genome expertise, which would be expected to increase costs, laboratory efforts, and turnaround time for results reporting. The nature of discussions between oncologists and patients would be altered to include the multiple facets involved with germline testing and potential results. Pre- and post-test discussions would also potentially require involvement of genetic counselors and geneticists, who are a limited resource in oncology practices. Recent expert comment stated that more data are needed about the benefits of return of secondary germline findings to cancer patients undergoing tumor sequencing, citing a need for recommendations by experts in the oncology and genetics communities.[19]

It is still very early in the development processes for oversight at the institutional level. As an example, at one high-volume cancer center, the following process has been used:

Informed consent for the sequencing of highly penetrant disease genes has been conducted since the mid-1990s in the contexts of known or suspected inherited diseases within selected families. However, the best methods and approaches for educating and counseling individuals about the potential benefits, limitations, and harms of genetic testing to facilitate informed decisions have not been fully elucidated or adequately tested. New informed consent challenges arise as NGS technologies are applied in clinical and research settings. Challenges to facilitating informed consent include the following:

The increased availability and decreased cost of NGS technology are expanding the use of genome-wide testing of tumors, with the goal of identifying somatic variants as potential targets for cancer treatment. While identifying germline pathogenic variants may be considered secondary to the main purpose of testing tumors, the possibility of identifying actionable secondary findings of pathogenic variants in cancer predisposition genes supports the need for genetic counseling in this context. Approaches for genetic counseling and informed consent in the context of tumor sequencing have been proposed.[20,21]

Advances in genetic sequencing technologies have dramatically reduced the cost of sequencing an individual's full genome or exome. WGS and WES are increasingly being employed in the clinical setting in testing for both somatic and germline variants. In addition, multigene tests are now available commercially or within an institution. Considerable debate surrounds the clinical, ethical, legal, and counseling aspects associated with NGS and gene panels. Future research is warranted to address these issues.

PDQ cancer genetics summaries focus on the genetics of specific cancers, inherited cancer syndromes, and the ethical, social, and psychological implications of cancer genetics knowledge. Sections on the genetics of specific cancers include syndrome-specific information on the risk implications of a family history of cancer, the prevalence and characteristics of cancer-predisposing variants, known modifiers of genetic risk, opportunities for genetic testing, outcomes of genetic counseling and testing, and interventions available for people with increased cancer risk resulting from an inherited predisposition.

The source of medical literature cited in PDQ cancer genetics summaries is peer-reviewed scientific publications, the quality and reliability of which is evaluated in terms of levels of evidence. Where relevant, the level of evidence is cited, or particular strengths of a study or limitations of the evidence are described.

Refer to the Levels of Evidence for Cancer Genetics Studies summary for more information on the levels of evidence utilized in the PDQ cancer genetics summaries.

Health care providers who deliver genetic services, including genetic counseling, can be located through local, regional, and national professional genetics organizations and through NCI's Cancer Genetics Services Directory website. Providers of cancer genetic services are not limited to one specialty and include medical geneticists, genetic counselors, advanced practice genetics nurses, oncologists (medical, radiation, or surgical), other surgeons, internists, pediatricians, family practitioners, and mental health professionals. A cancer genetics health care provider will assist in constructing and evaluating a pedigree, eliciting and evaluating personal and family medical histories, and calculating and providing information about cancer risk and/or probability of a pathogenic variant being associated with cancer in the family. In addition, if a genetic test is available, these providers can assist in pretest counseling, laboratory selection, informed consent, test interpretation, posttest counseling, and follow-up.

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about cancer genetics. It is intended as a resource to inform and assist clinicians who care for cancer patients. It does not provide formal guidelines or recommendations for making health care decisions.

This summary is reviewed regularly and updated as necessary by the PDQ Cancer Genetics Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Cancer Genetics Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as NCIs PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].

The preferred citation for this PDQ summary is:

PDQ Cancer Genetics Editorial Board. PDQ Cancer Genetics Overview. Bethesda, MD: National Cancer Institute. Updated . Available at: http://www.cancer.gov/about-cancer/causes-prevention/genetics/overview-pdq. Accessed . [PMID: 26389204]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

The information in these summaries should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the websites Email Us.

Excerpt from:
Cancer Genetics Overview (PDQ)Health Professional Version ...

Read More...

Toxicology Conferences 2017 | Pharmacology Conferences …

January 24th, 2017 4:45 am

Sessions/Tracks

On behalf of Conference Series LLC we are pleased to welcome you all to Chicago, Illinois, USA to attend the 10th Global Summit on Toxicology and Applied Pharmacology during July 20-22, 2017

Toxicology 2017 is one of the most significant conferences in the world where it contains many disciplines related to the research work and which are prominent in the field it is a leading platform to debate and acquire about the present and developing research works of Toxicology and Pharmacology. Toxicology 2017 which is scheduled at Chicago, USA influences main and important advances in the field. The conference may lead to long-lasting scientific collaborations.

Track 1: Toxicology and Pharmacology

The connected discipline of toxicology includes the study of the nature and mechanisms of deleterious effects of chemicals on living beings. The study of toxicology as a distinct, yet related, discipline to pharmacology highlights the emphasis of toxicologists in formulating measures aimed at protective public health against exposures associated with toxic materials in food, air and water, as well as hazards that may be related with drugs. The word pharmacology itself comes from the Greek word. Pharmacology not only includes the sighting of drugs, but also the study of their biochemical properties, mechanisms of action, uses and biological effects.

Toxicology Conferences | Pharmacology Conferences | Toxicology and Pharmacology Conferences

9th Euro-Global Summit on Toxicology and Applied Pharmacology June 22-24, 2017 Paris, France; 11th Global Toxicology and Risk Management Meeting October 10-12, 2017 London, UK; 3rd Global Genomics and Toxicogenomics Meeting September 27-28, 2017 Chicago, USA; 10th Global Summit on Toxicology and Applied Pharmacology July 20-22, 2017 Chicago, USA; 12th International Conference on Environmental Toxicology and Ecological Risk Assessment October 19-20, 2017 Atlanta, USA; 19th International Conference on Toxicology and Applied Pharmacology, March 29 - 30, 2017 Singapore, SG; Society of Environmental Toxicology and Chemistry North America 38th Annual Meeting, November 1216, 2017, Minneapolis, Minnesota, United States; 53rd European Societies of Toxicology, September 10-13, 2017, Bratislava, Slovak; 56th Annual Meeting of Society of Toxicology March 12-16, 2017 Baltimore USA; 15th International Conference on Toxicology and Clinical Pharmacology December 14-16, 2017 Dubai, UAE; Society of Toxicology; Academy of Toxicological Sciences; American Board of Toxicology; Society of Toxicology of Canada; International Union of Toxicology; American College of Medical Toxicology; Argentine Toxicological Association; EUROTOX; German Society of Toxicology

Track 2: Mechanisms of Toxicity

Mechanisms of toxicity are important in both practical and theory wise. It provides a rational basis for understanding descriptive toxicity data, approximating the possibility that a substance will cause risky effects, establishing measures to avoid or antagonize the toxic effects, designing drugs and industrialized chemicals that are fewer hazardous, and evolving pesticides that are more selectively poisonous for their target organisms.

Toxicity Conferences | Immunotoxicity Conferences | Drug Toxicity Conferences

9th Euro-Global Summit on Toxicology and Applied Pharmacology June 22-24, 2017 Paris, France; 3rd Global Genomics and Toxicogenomics Meeting September 27-28, 2017 Chicago, USA; 11th Global Toxicology and Risk Management Meeting October 10-12, 2017 London, UK; 12th International Conference on Environmental Toxicology and Ecological Risk Assessment October 19-20, 2017 Atlanta, USA; 10th Global Summit on Toxicology and Applied Pharmacology July 20-22, 2017 Chicago, USA; 5th Immunogenicity & Immunotoxicity Conference on February 6-7, 2017 in San Diego, CA; 2nd International Conference on Pollutant Toxic Ions and Molecules, 6 - 9 November 2017, Lisbon, Portugal; Stem Cells in Drug Discovery & Toxicity Screening, July 10-11, 2017, Boston, USA; 19th International Conference on Predictive Human Toxicity, February 16 - 17, 2017, London, United Kingdom; Predicting Drug Toxicity, June 13-14, 2017, Boston, USA; Academy of Toxicological Sciences; EUROTOX; American Board of Toxicology; Society of Toxicology of Canada; International Union of Toxicology; American College of Medical Toxicology; Argentine Toxicological Association;

Track 3: Molecular Toxicology

Molecular toxicology, the use of sub-atomic science standards and advancements to preclinical wellbeing appraisal, speaks to a key apparatus for comprehension systems of danger and surveying the dangers connected with toxicities. The utilization of quality expression markers to early stage preclinical security evaluation can possibly affect pipelines in two fundamental zones: lead improvement and issue administration.

Toxicology Conferences | Molecular Conferences | Molecular Toxicology Conferences

International Conference on Molecular Evolution July 18-19, 2016 Bangkok, Thailand; 2nd World Congress on Molecular Genetics and Gene Therapy July 3-5, 2017 Bangkok, Thailand; 11th Global Toxicology and Risk Management Meeting October 10-12, 2017 London, UK; 9th Euro-Global Summit on Toxicology and Applied Pharmacology June 22-24, 2017 Paris, France; 3rd Global Genomics and Toxicogenomics Meeting September 27-28, 2017 Chicago, USA; Computational Aspects: Biomolecular NMR (GRS) June 10 - 11, 2017, USA; Association for Molecular Pathology (AMP) April 3-5, 2017, Berlin, Germany; International Conference on Biochemistry and Molecular Biology April 3-5 2017, Munich, Germany; 60th Annual Conference of the Canadian Society for Molecular Biosciences May 16-20, 2017, Ottawa, Canada; Canadian Anatomic and Molecular Pathology, February 2-4, 2017, Whistler, Canada; 2nd International Conference on Pollutant Toxic Ions and Molecules, 6 - 9 November 2017, Lisbon, Portugal; Academy of Toxicological Sciences; American Board of Toxicology; Society of Toxicology of Canada; International Union of Toxicology; American College of Medical Toxicology; Argentine Toxicological Association;

Track 4: Applied Toxicology

Applied Toxicology deals with the fundamentals in toxicology and risk assessment, including the most important databases. The topics related to Applied Toxicology are Medicinal Chemistry, Biochemistry, Environmental Chemistry, Pharmacology, Pharmacodynamics, Pharmacokinetics and Instrumental Chemistry. Toxicology is the study of the toxic substances which are poisons and their risky effects on biological systems. Drugs are medicines for diseases but can also have unsafe effects prominent to toxicity and deadly injuries

Occupational Toxicology Conferences | Toxicology Conferences | Pharmaceutical Conferences

11th Global Toxicology and Risk Management Meeting October 10-12, 2017 London, UK; 3rd Global Genomics and Toxicogenomics Meeting September 27-28, 2017 Chicago, USA; 10th Global Summit on Toxicology and Applied Pharmacology July 20-22, 2017 Chicago, USA; 12th International Conference on Environmental Toxicology and Ecological Risk Assessment October 19-20, 2017 Atlanta, USA; 9th Euro-Global Summit on Toxicology and Applied Pharmacology June 22-24, 2017 Paris, France; 15th International Conference on Toxicology and Clinical Pharmacology December 14-16, 2017 Dubai, UAE; 19th International Conference on Toxicology and Applied Pharmacology, March 29 - 30, 2017 Singapore, SG; 56th Annual Meeting of Society of Toxicology March 12-16, 2017 Baltimore USA; Society of Environmental Toxicology and Chemistry North America 38th Annual Meeting, November 1216, 2017, Minneapolis, Minnesota, United States; 53rd European Societies of Toxicology, September 10-13, 2017, Bratislava, Slovak; EUROTOX; Academy of Toxicological Sciences; American Board of Toxicology; Society of Toxicology of Canada; International Union of Toxicology; American College of Medical Toxicology; Argentine Toxicological Association; Austrian Society of Toxicology; Colombia Society of Toxicology

Track 5: Regulatory Toxicology

Regulatory Toxicology includes the gathering, handling and evaluation of epidemiological as well as experimental toxicology data to license toxicologically grounded results absorbed to the safety of health against injurious effects of biochemical materials. Furthermore, Regulatory Toxicology supports the growth of regular procedures and new challenging approaches in order to constantly progress the technical basis for decision-making developments.

Regulatory Toxicology Conferences | Toxicology Conferences | Pharmacovigilance Conference

12th International Conference on Environmental Toxicology and Ecological Risk Assessment October 19-20, 2017 Atlanta, USA; 9th Euro-Global Summit on Toxicology and Applied Pharmacology June 22-24, 2017 Paris, France; 11th Global Toxicology and Risk Management Meeting October 10-12, 2017 London, UK; 3rd Global Genomics and Toxicogenomics Meeting September 27-28, 2017 Chicago, USA; 10th Global Summit on Toxicology and Applied Pharmacology July 20-22, 2017 Chicago, USA; 15th International Conference on Toxicology and Clinical Pharmacology December 14-16, 2017 Dubai, UAE; 19th International Conference on Toxicology and Applied Pharmacology, March 29 - 30, 2017 Singapore, SG; 56th Annual Meeting of Society of Toxicology March 12-16, 2017 Baltimore USA; 53rd European Societies of Toxicology, September 10-13, 2017, Bratislava, Slovak; Society of Environmental Toxicology and Chemistry North America 38th Annual Meeting, November 1216, 2017, Minneapolis, Minnesota, United States; Academy of Toxicological Sciences; Argentine Toxicological Association; American Board of Toxicology; EUROTOX; Society of Toxicology of Canada; International Union of Toxicology; American College of Medical Toxicology; Austrian Society of Toxicology; Colombia Society of Toxicology;

Track 6: Clinical Toxicology

Clinical toxicology is absorbed on the diseases related with short-term and long-term disclosure to numerous toxic substances. It typically overlaps with other disciplines such as biochemistry, pharmacology, and pathology. Persons who specify in clinical toxicology are referred to as clinical toxicologists. Their work emphases around the identification, analysis, and treatment of conditions resulting from disclosure to harmful agents. They regularly study the toxic effects of numerous drugs in the body, and are also apprehensive with the treatment and prevention of drug toxicity in the population.

Toxicology Conferences | Clinical Toxicology Conferences | Pharmacology Conferences

9th Euro-Global Summit on Toxicology and Applied Pharmacology June 22-24, 2017 Paris, France; 10th Global Summit on Toxicology and Applied Pharmacology July 20-22, 2017 Chicago, USA; 12th International Conference on Environmental Toxicology and Ecological Risk Assessment October 19-20, 2017 Atlanta, USA; 11th Global Toxicology and Risk Management Meeting October 10-12, 2017 London, UK; 3rd Global Genomics and Toxicogenomics Meeting September 27-28, 2017 Chicago, USA; 53rd European Societies of Toxicology, September 10-13, 2017, Bratislava, Slovak; 19th International Conference on Toxicology and Applied Pharmacology, March 29 - 30, 2017 Singapore, SG; 15th International Conference on Toxicology and Clinical Pharmacology December 14-16, 2017 Dubai, UAE; 56th Annual Meeting of Society of Toxicology March 12-16, 2017 Baltimore USA; Society of Environmental Toxicology and Chemistry North America 38th Annual Meeting, November 1216, 2017, Minneapolis, Minnesota, United States;Academy of Toxicological Sciences; American Board of Toxicology; Society of Toxicology of Canada; International Union of Toxicology; American College of Medical Toxicology; Argentine Toxicological Association; Austrian Society of Toxicology; Colombia Society of Toxicology;

Track 7: Computational Toxicology

Computational toxicology is a discipline in the area of computational molecular sciences which is definitely swiftly emerging due to the overall public attention stimulated by many of us initiatives. Health care specialists beauty sector fragrance and flavour as well seeing that lawmakers and chemical substance protection regulators. It really is of particular concern in remedy discovery and progression and its own assessment is compulsory for the getting of new medicines for humans make use of it. The effect of toxicity and safety connected events in the progression of new biochemical elements is significant whether it pertains to medications or other chemical substances.

Computational Conferences | Toxicology Conferences | Computational Toxicology Conferences

3rd Global Genomics and Toxicogenomics Meeting September 27-28, 2017 Chicago, USA; 9th Euro-Global Summit on Toxicology and Applied Pharmacology June 22-24, 2017 Paris, France; 10th Global Summit on Toxicology and Applied Pharmacology July 20-22, 2017 Chicago, USA; 11th Global Toxicology and Risk Management Meeting October 10-12, 2017 London, UK; 12th International Conference on Environmental Toxicology and Ecological Risk Assessment October 19-20, 2017 Atlanta, USA; 53rd European Societies of Toxicology, September 10-13, 2017, Bratislava, Slovak; 19th International Conference on Toxicology and Applied Pharmacology, March 29 - 30, 2017 Singapore, SG; 15th International Conference on Toxicology and Clinical Pharmacology December 14-16, 2017 Dubai, UAE; 56th Annual Meeting of Society of Toxicology March 12-16, 2017 Baltimore USA; Society of Environmental Toxicology and Chemistry North America 38th Annual Meeting, November 1216, 2017, Minneapolis, Minnesota, United States; Society of Toxicology of Canada; International Union of Toxicology; American College of Medical Toxicology; Argentine Toxicological Association; Austrian Society of Toxicology; Colombia Society of Toxicology; EUROTOX; Academy of Toxicological Sciences; American Board of Toxicology;

Track 8: Organ Toxicity

The gathering of antimicrobial drugs and their metabolic by-products in organs can be poisonous, leading to organ injury. Toxicity is the degree to which a material can harm an organism. Toxicity can mention to the effect on an entire organism and the result on a substructure of the creature such as organ which may effect on any organ of the human being organ or tissue in the human body can be affected by antimicrobial toxicity

Organ Toxicology Conferences | Toxicity Conferences | Neurotoxicology Conferences

3rd Global Genomics and Toxicogenomics Meeting September 27-28, 2017 Chicago, USA; 11th Global Toxicology and Risk Management Meeting October 10-12, 2017 London, UK; 9th Euro-Global Summit on Toxicology and Applied Pharmacology June 22-24, 2017 Paris, France; 10th Global Summit on Toxicology and Applied Pharmacology July 20-22, 2017 Chicago, USA; 12th International Conference on Environmental Toxicology and Ecological Risk Assessment October 19-20, 2017 Atlanta, USA; Predicting Drug Toxicity, June 13-14, 2017, Boston, USA 5th Immunogenicity & Immunotoxicity Conference ImmunoTX Summit on February 6-7, 2017 in San Diego, CA; 2nd International Conference on Pollutant Toxic Ions and Molecules, 6 - 9 November 2017, Lisbon, Portugal; 19th International Conference on Predictive Human Toxicity, February 16 - 17, 2017, London, United Kingdom; Stem Cells in Drug Discovery & Toxicity Screening, July 10-11, 2017, Boston, USA; American Board of Toxicology; Society of Toxicology ; Society of Toxicology of Canada; International Union of Toxicology; American College of Medical Toxicology; Argentine Toxicological Association; Austrian Society of Toxicology; Colombia Society of Toxicology; EUROTOX; Academy of Toxicological Sciences;

Track 9: Applied Pharmacology

Applied Pharmacology is the clinical utilizations of the medications and its use in genuine medicinal practice. Where in this it lets the doctors to extend his realities of the medication the approach it would really work in the medicinal science. It is the utilization of the medications and how the pharmacological activities or data could be connected to the therapeutics. Additionally to give clarification to various medications having associated with the pharmacological activity. It Provides elucidations about medication collaborations and to clear up the activity of different medications on the numerous organs in the body when they are sick state with symptoms disagreements

Pharmacology Conferences | Toxicology Conferences | Pharmaceutical Conferences

9th Euro-Global Summit on Toxicology and Applied Pharmacology June 22-24, 2017 Paris, France; 5th International Conference on Pharmacology and Ethnopharmacology Mar 23-25, 2017 Orlando, USA; 6th Global Experts Meeting on Cardiovascular Pharmacology and Cardiac Medications April 13-14, 2017 Dubai, UAE; 7th Global Experts Meeting on Neuropharmacology July 31-Aug 02, 2017 Milan, Italy; 10th International Conference on Neuropharmacology and Neuropharmaceuticals Oct 23-24, 2017 Dubai, UAE; 7th European Congress of Pharmacology 26-30 June 2016 stanbul, Turkey; Annual International Conference on Pharmacology and Pharmaceutical Sciences (PHARMA), 26 - 27 October 2015 Bangkok, Thailand; 18th International Conference on Pharmaceutical Sciences and Pharmacology January 21-22,2016 Paris, France; 117th Annual Meeting of the American Society for Clinical Pharmacology and Therapeutics March 8 - 12, 2016 San Diego, California, USA; World congress on pharma and Advanced Clinical Research November 6-8, 2017, Singapore; American Board of Toxicology; Society of Toxicology ; Society of Toxicology of Canada; EUROTOX; Academy of Toxicological Sciences; International Union of Toxicology; American College of Medical Toxicology; Argentine Toxicological Association; Austrian Society of Toxicology; Colombia Society of Toxicology

Track 10: Genetic Toxicology

Genetic toxicology is of the toxic effects of harm to deoxyribonucleic acid (DNA). Genetic info, programmed chemically in DNA, is conserved, simulated and transmitted to consecutive generations with high reliability. Damage to DNA can happen through usual biological procedure or as the result of contact of DNA, directly or indirectly, with biochemical, physical or agents. Genetic toxicology over the years has been to examine mechanisms of inheritance by providing tools to study DNA and RNA structure, DNA repair and the role of mutation at both the individual and population levels

Genetic Conferences | Medical Toxicology Conferences | Genetic Toxicology Conferences

9th Euro-Global Summit on Toxicology and Applied Pharmacology June 22-24, 2017 Paris, France; 3rd Global Genomics and Toxicogenomics Meeting September 27-28, 2017 Chicago, USA; 10th Global Summit on Toxicology and Applied Pharmacology July 20-22, 2017 Chicago, USA; 12th International Conference on Environmental Toxicology and Ecological Risk Assessment October 19-20, 2017 Atlanta, USA; 11th Global Toxicology and Risk Management Meeting October 10-12, 2017 London, UK; Society of Environmental Toxicology and Chemistry North America 38th Annual Meeting, November 1216, 2017, Minneapolis, Minnesota, United States; 53rd European Societies of Toxicology, September 10-13, 2017, Bratislava, Slovak; 19th International Conference on Toxicology and Applied Pharmacology, March 29 - 30, 2017 Singapore, SG; 15th International Conference on Toxicology and Clinical Pharmacology December 14-16, 2017 Dubai, UAE; 56th Annual Meeting of Society of Toxicology March 12-16, 2017 Baltimore USA; Society of Environmental Toxicology and Chemistry North America 38th Annual Meeting, November 1216, 2017, Minneapolis, Minnesota, United States; Society of Toxicology; Society of Toxicology of Canada; EUROTOX; Academy of Toxicological Sciences; International Union of Toxicology; American College of Medical Toxicology; Argentine Toxicological Association; Austrian Society of Toxicology; Colombia Society of Toxicology; American Board of Toxicology

Track 11: Risk assessment

Risk assessment is a methodical investigation of an assignment, job or procedure that we carry out at work for the persistence of classifying the important risks that are present. Risk assessments are very significant as they form an essential part of a virtuous occupational health and safety management strategy. They help to make consciousness of exposures and risks. Identify them who may be at risk. The identification, assessment, and valuation of the levels of risks complicated in a situation, their assessment against standards, and determination of an acceptable level of risk

Risk Assessment Conferences | Occupational Conferences | Toxicology Conferences

11th Global Toxicology and Risk Management Meeting October 10-12, 2017 London, UK; 9th Euro-Global Summit on Toxicology and Applied Pharmacology June 22-24, 2017 Paris, France; 3rd Global Genomics and Toxicogenomics Meeting September 27-28, 2017 Chicago, USA; 10th Global Summit on Toxicology and Applied Pharmacology July 20-22, 2017 Chicago, USA; 12th International Conference on Environmental Toxicology and Ecological Risk Assessment October 19-20, 2017 Atlanta, USA; 53rd European Societies of Toxicology, September 10-13, 2017, Bratislava, Slovak; 19th International Conference on Toxicology and Applied Pharmacology, March 29 - 30, 2017 Singapore, SG; 15th International Conference on Toxicology and Clinical Pharmacology December 14-16, 2017 Dubai, UAE; 56th Annual Meeting of Society of Toxicology March 12-16, 2017 Baltimore USA; Society of Environmental Toxicology and Chemistry North America 38th Annual Meeting, November 1216, 2017, Minneapolis, Minnesota, United States; Society of Toxicology; Society of Toxicology of Canada; EUROTOX; Academy of Toxicological Sciences; International Union of Toxicology; American College of Medical Toxicology; Argentine Toxicological Association; Austrian Society of Toxicology; Colombia Society of Toxicology; American Board of Toxicology

Track 12: Environmental and Occupational Toxicology

Environmental Toxicology is the investigation of effects of contaminations on the structure and capacity of biological communities. It does exclude the regular poisons, additionally the synthetic chemicals and their impact on the earth. It relies on upon the impacts of the toxicants on the organic chemistry and physiology. The principle motivation behind the natural toxicology is to recognize the mode/site of the activity of a xenobiotic. It additionally incorporate how the chemicals travel through biological systems and how they are consumed and metabolized by plants and creatures, the instruments by which they cause illness, result in inherent deformities, or toxin living beings

Environmental Toxicology Conferences | Ecologic Conferences | Occupational Conferences

12th International Conference on Environmental Toxicology and Ecological Risk Assessment October 19-20, 2017 Atlanta, USA; 9th Euro-Global Summit on Toxicology and Applied Pharmacology June 22-24, 2017 Paris, France; 11th Global Toxicology and Risk Management Meeting October 10-12, 2017 London, UK; 3rd Global Genomics and Toxicogenomics Meeting September 27-28, 2017 Chicago, USA; 10th Global Summit on Toxicology and Applied Pharmacology July 20-22, 2017 Chicago, USA; 12th International Conference on Environmental Toxicology and Ecological Risk Assessment October 19-20, 2017 Atlanta, USA; 53rd European Societies of Toxicology, September 10-13, 2017, Bratislava, Slovak; 19th International Conference on Toxicology and Applied Pharmacology, March 29 - 30, 2017 Singapore, SG; 15th International Conference on Toxicology and Clinical Pharmacology December 14-16, 2017 Dubai, UAE; 56th Annual Meeting of Society of Toxicology March 12-16, 2017 Baltimore USA; Society of Environmental Toxicology and Chemistry North America 38th Annual Meeting, November 1216, 2017, Minneapolis, Minnesota, United States; Academy of Toxicological Sciences; International Union of Toxicology; American College of Medical Toxicology; Argentine Toxicological Association; Colombia Society of Toxicology; American Board of Toxicology; Society of Toxicology; Society of Toxicology of Canada

Track 13: Experimental Toxicology

Protection of any live non-human vertebrate drifting animals of a tame species shall not be used in processes. The take care of animals used in processes, including management, shall have had suitable education and preparation. Experimental Toxicology widely covers all features of experimental and clinical studies of functional, biochemical and structural disorder. Validity announcements are also given in valuation procedures particularly if a skilled must choose which data of.

Experimental Conferences | Toxicology Conferences | Pharmaceutical Conferences

10th Global Summit on Toxicology and Applied Pharmacology July 20-22, 2017 Chicago, USA;9th Euro-Global Summit on Toxicology and Applied Pharmacology June 22-24, 2017 Paris, France; 12th International Conference on Environmental Toxicology and Ecological Risk Assessment October 19-20, 2017 Atlanta, USA; 3rd Global Genomics and Toxicogenomics Meeting September 27-28, 2017 Chicago, USA; 11th Global Toxicology and Risk Management Meeting October 10-12, 2017 London, UK; 12th International Conference on Environmental Toxicology and Ecological Risk Assessment October 19-20, 2017 Atlanta, USA; 53rd European Societies of Toxicology, September 10-13, 2017, Bratislava, Slovak; 19th International Conference on Toxicology and Applied Pharmacology, March 29 - 30, 2017 Singapore, SG; 15th International Conference on Toxicology and Clinical Pharmacology December 14-16, 2017 Dubai, UAE; 56th Annual Meeting of Society of Toxicology March 12-16, 2017 Baltimore USA; Society of Environmental Toxicology and Chemistry North America 38th Annual Meeting, November 1216, 2017, Minneapolis, Minnesota, United States; American College of Medical Toxicology; Argentine Toxicological Association; American Board of Toxicology; Society of Toxicology; Society of Toxicology of Canada

Track 14: Immunotoxicology

Immunotoxicology offers a critical assessment of planned experimental animal models and methods, and discusses the influence that immunotoxicity can make to the overall valuation of chemical-induced adverse health effects on individuals and the ecosystem. Animal models of autoimmunity associated with chemical exposure, includes recommendations for the selection of sentinel species in ecotoxicology

Immunological Conferences | Immunotoxicology Conferences | Toxicity Conferences

12th International Conference on Environmental Toxicology and Ecological Risk Assessment October 19-20, 2017 Atlanta, USA; 9th Euro-Global Summit on Toxicology and Applied Pharmacology June 22-24, 2017 Paris, France; 3rd Global Genomics and Toxicogenomics Meeting September 27-28, 2017 Chicago, USA; 11th Global Toxicology and Risk Management Meeting October 10-12, 2017 London, UK; 10th Global Summit on Toxicology and Applied Pharmacology July 20-22, 2017 Chicago, USA; 12th International Conference on Environmental Toxicology and Ecological Risk Assessment October 19-20, 2017 Atlanta, USA; 53rd European Societies of Toxicology, September 10-13, 2017, Bratislava, Slovak; 19th International Conference on Toxicology and Applied Pharmacology, March 29 - 30, 2017 Singapore, SG; 15th International Conference on Toxicology and Clinical Pharmacology December 14-16, 2017 Dubai, UAE; 56th Annual Meeting of Society of Toxicology March 12-16, 2017 Baltimore USA; Society of Environmental Toxicology and Chemistry North America 38th Annual Meeting, November 1216, 2017, Minneapolis, Minnesota, United States; Academy of Toxicological Sciences; International Union of Toxicology; American College of Medical Toxicology; Argentine Toxicological Association; Colombia Society of Toxicology; American Board of Toxicology; Society of Toxicology

Track 15: Toxicity Testing

Toxicity is key to evaluate potential dangers to people through the intense, sub endless, and interminable presentation of creatures to pesticides. The more correct sorts of harmfulness that are resolved incorporate cancer-causing nature; developing incorporating teratogenicity in regenerative danger and neurotoxicity the degree of metabolite testing required relies on upon the level of conceivable poisonous quality and ecological steadiness of the metabolite. A toxicity test, by augmentation, is intended to create information in regards to the antagonistic impacts of a material on human or creature wellbeing, or the earth.

Toxicology Conferences | Toxicity Conferences | Pharmaceutical Conferences

9th Euro-Global Summit on Toxicology and Applied Pharmacology June 22-24, 2017 Paris, France; 11th Global Toxicology and Risk Management Meeting October 10-12, 2017 London, UK; 10th Global Summit on Toxicology and Applied Pharmacology July 20-22, 2017 Chicago, USA; 3rd Global Genomics and Toxicogenomics Meeting September 27-28, 2017 Chicago, USA; 12th International Conference on Environmental Toxicology and Ecological Risk Assessment October 19-20, 2017 Atlanta, USA; Stem Cells in Drug Discovery & Toxicity Screening, July 10-11, 2017, Boston, USA; 2nd International Conference on Pollutant Toxic Ions and Molecules, 6 - 9 November 2017, Lisbon, Portugal; Predicting Drug Toxicity, June 13-14, 2017, Boston, USA 5th Immunogenicity & Immunotoxicity Conference, one of three parallel tracks to the ImmunoTX Summit on February 6-7, 2017 in San Diego, CA; 19th International Conference on Predictive Human Toxicity, February 16 - 17, 2017, London, United Kingdom; American Board of Toxicology; Society of Toxicology; Society of Toxicology of Canada; EUROTOX; Academy of Toxicological Sciences International Union of Toxicology; Argentine Toxicological Association; Austrian Society of Toxicology; Colombia Society of Toxicology; American College of Medical Toxicology

Toxicology 2016

6th Global Summit on Toxicology and Applied Pharmacology was hosted by the Conference Series LLC in Houston, USA during October 17-19, 2016. The conference was focused on the theme "Bringing together leading researchers to share pragmatic insights" and facilitated by the Conference Series LLC. Liberal reaction and cooperation was received from the Editorial Board Members of Conference Series LLC Journals, Toxicology-2016 Organizing Committee Members, and from researchers, analysts and pioneers in Toxicology.

The conference was started by the Keynote Forum and we are chuffed to thank all our Keynote Speakers, Honorable Guests, Speakers and Conference Attendees for creating a successful meeting.

The conference has encrusted through the following sessions:

We would like to specially mention our Keynote Speakers who participated very enthusiastically and actively

The speakers gave their productive commitment as exceptionally enlightening presentations and made the meeting an extraordinary achievement.

We thank all the members who supported the conference by encouraging the healthy discussions. Conference Series LLC expresses gratitude to the Organizing Committee Members for their generous nearness, support and help towards Toxicology-2016. After the immense idealistic reaction from logical crew, prestigious identities and the Editorial Board individuals from Conference Series LLC, we are pleased to announce our forth coming conference 10th Global Summit on Toxicology and Applied Pharmacology" to be held in Chicago, USA during July 20-22, 2017.

We anticipate your precious presence at the Toxicology-2017 Conference.

Let us meet again @ Toxicology-2017

Toxicology 2015

Toxicology 2015 Past Conference Report

Conference Series LLC is the proud host of the4thGlobal Summit on Toxicologywhich took place inPhiladelphia, USAduringAugust 24-26, 2015with the theme,Exploring the Tailored Strategies and Lucid Technologies in Toxicology and Pharmacology.The Editorial Board Members of Conference Series LLC Journals and the Organizing Committee Members of the conference have extended their unsparing support and active participation towards Toxicology 2015. The participants included eminent speakers, scientists, industrialists, delegates, researchers and students who thoroughly relished the conference.

The core of the conference revolved around interactive sessions on the following scientific tracks:

This event is a collaborative effort and Conference Series LLC would like to thank the following people for making this conference a grand success:

Moderators

Keynote Speakers

We would sincerely thank the distinguished speakers who resplendently conducted workshops on Genotoxicity:

The conference marked its start by an opening ceremony which included introduction by the Honorable Guests and the Members of Keynote Forum. All the speakers have extended their contribution in the form of highly informative presentations to lead the conference to the ladder of success. Conference Series LLC extends its warm gratitude towards all the Participants, Eminent Speakers, Young Researchers, Delegates and Students.

All accepted abstracts have been indexed inConference Series LLCjournal, theJournal ofClinical Toxicologyas a special issue.

After the huge optimistic response from scientific fraternity, renowned personalities and the Editorial Board Members ofConference Series LLCfrom across the world,Conference Series LLCis pleased to announce the5thGlobal Summit on Toxicology and Applied Pharmacologyto be held duringOctober 17-19, 2016inHouston, Texas, USA.

We look forward to welcoming you to theToxicology 2016Conference and hope that the event will be both informative and enjoyable.

Toxicology-2014

Toxicology 2014 Past Conference Report

The3rdInternational Summit on Toxicology & Applied Pharmacologytook place inChicago, USAonOctober 20-22, 2014. The conference was titled: New Challenges and Innovations in Pharmacological and Toxicological Sciences and hosted by theConference Series LLC. Generous response and active participation was received from the Editorial Board Members ofConference Series LLCJournals, Toxicology-2014 Organizing Committee Members, as well as from scientists, researchers and leaders in Toxicology.

Students from various parts of the world took active participation in poster presentations. Students who presented well were awarded Best Poster Presentations for their outstanding contribution in the field of Toxicology.

The conference was carried out through various sessions and the discussions were held on the following scientific tracks:

The conference was opened by introductions from the honorable guests and members of the keynote forum. On the first day of opening the keynote speakers were,

Gerhard Eisenbrand,University of Kaiserslautern, Germany

Pavel Vodicka,Institute of Experimental Medicine, Czech Republic

Anne Marie Vinggaard,Technical University of Denmark, Denmark

Special session was conducted by Carter Cliff, Cellular Dynamics International, USA on the topic Pluripotent stem cell models-Application in toxicology and beyond, Heres-Pulido M E, Universidad Nacional Autnoma de Mxico, Mexico on the topic The Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster.

Symposium conducted by Cinzia Forni from University of Rome Tor Vergata, Italy and Hemant Misra from Prolong Pharmaceuticals, USA and the title of the Symposium is Stress response in living organisms exposed to pollutants.

All the speakers gave their fruitful contribution in the form of highly informative presentations and made the conference a great success.

All accepted abstracts have been indexed inConference Series LLCJournal of Clinical Toxicologyas a special issue.

Toxicology-2013

Toxicology 2013 Past Conference Report

The2ndInternational Summit on Toxicologytook place inLas Vegas, USAonOctober 07-09, 2013.The conference was titled: Insight into the Global Issues of Toxicology and hosted by theConference Series LLC. Generous response and active participation was received from the Editorial Board Members ofConference Series LLCJournals, Organizing Committee Members, scientists, researchers, clinical experts and leaders from the field of Toxicology.

Original post:
Toxicology Conferences 2017 | Pharmacology Conferences ...

Read More...

Propofol – Wikipedia

January 21st, 2017 4:45 am

Propofol, marketed as Diprivan among others, is a short-acting medication that results in a decreased level of consciousness and lack of memory for events.[2] Its uses include the starting and maintenance of general anesthesia, sedation for mechanically ventilated adults, and procedural sedation. It is also used for status epilepticus if other medications have not worked. It is given intravenously. Maximum effect takes about two minutes to occur and it typically lasts five to ten minutes.[2]

Common side effects include an irregular heart rate, low blood pressure, burning sensation at the site of injection, and the stopping of breathing. Other serious side effects may include seizures, infections with improper use, addiction, and propofol infusion syndrome with long-term use. It appears to be safe for using during pregnancy but has not been well studied in this group. However, it is not recommended during cesarean section.[2] Propofol is not a pain medication, so opioids such as morphine may also be used.[3] Whether or not they are always needed is unclear.[4] Propofol is believed to work at least partly via the receptor for GABA.[2]

Propofol was discovered in 1977.[5] It is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system.[6] It is available as a generic medication.[2] The wholesale price in the developing world is between 0.61 and 8.50 USD per vial.[7] It has been referred to as milk of amnesia because of the milk-like appearance of the intravenous preparation.[8] Propofol is also used in veterinary medicine.[9]

Propofol is used for induction and maintenance (in some cases) of anesthesia, having largely replaced sodium thiopental.[3] It can also be administered as part of an anaesthesia maintenance technique called total intravenous anesthesia using either manually-programmed infusion pumps or computer-controlled infusion pumps in a process called target controlled infusion or TCI. Propofol is also used to sedate individuals who are receiving mechanical ventilation but are not undergoing surgery, such as patients in the intensive care unit. In critically ill patients, propofol has been found to be superior to lorazepam both in effectiveness and overall cost.[10]

Propofol is often used instead of sodium thiopental for starting anesthesia because recovery from propofol is more rapid and "clear."

Propofol is also used for procedural sedation. Its use in these settings results in a faster recovery compared to midazolam.[11] It can also be combined with opioids or benzodiazepines.[12][13][14] Because of its fast induction and recovery time, propofol is also widely used for sedation of infants and children undergoing MRI.[15] It is also often used in combination with ketamine as the two together have lower rates of side effects.[16]

The Missouri Supreme Court decided to allow the use of propofol to execute prisoners condemned to death. However, the first execution by administration of a lethal dose of propofol was halted on 11 October 2013 by governor Jay Nixon following threats from the European Union to limit the drug's export if it were used for that purpose.[17][18] The United Kingdom had already banned the export of medicines or veterinary medicines containing propofol to the United States.[19]

Recreational use of the drug via self-administration has been reported[20][21] (including among medical professionals, see below), but is relatively rare due to its potency and the level of monitoring required for safe use.[citation needed] Critically, the steep dose-response curve of the drug makes potential misuse very dangerous without proper monitoring, and deaths from self-administration continue to be reported.[22][23]

The short-term effects sought via recreational use include mild euphoria, hallucinations, and disinhibition.[24][25] The euphoria caused by propofol has been reported to be unlike that caused by other sedation agents; as one anesthetist reported, "I... remember my first experience using [administering] propofol: a young woman... emerging from a MAC anesthesia looked at me as though I were a masked Brad Pitt and told me that she felt simply wonderful."[26]

Recreational use of the drug has been described among medical staff, such as anesthetists who have access to the drug,[27] and is reportedly more common among anesthetists on rotations with short rest periods (as rousing is to a well-rested state).[28] Long-term use has been reported to result in addiction.[27][29]

Attention to the risks of off-label use of propofol increased in August 2009 due to the Los Angeles County coroner's conclusion that music icon Michael Jackson died from a mixture of propofol and the benzodiazepine drugs lorazepam and diazepam on June 25, 2009, the propofol sometimes administered orally.[30][31][32][33] According to a 22 July 2009 search warrant affidavit unsealed by the district court of Harris County, Texas, Jackson's personal physician, Conrad Murray, administered 25 milligrams of propofol diluted with lidocaine shortly before Jackson's death.[31][32][34] Even so, as of 2016 propofol was not on a U.S Drug Enforcement Administration schedule.[28][35]

One of propofol's most frequent side effects is pain on injection, especially in smaller veins. This pain arises from activation of the pain receptor, TRPA1,[36] found on sensory nerves and can be mitigated by pretreatment with lidocaine.[37] Less pain is experienced when infused at a slower rate in a large vein (antecubital fossa). Patients show great variability in their response to propofol, at times showing profound sedation with small doses.

Additional side effects include low blood pressure related to vasodilation, transient apnea following induction doses, and cerebrovascular effects. Propofol has more pronounced hemodynamic effects relative to many intravenous anesthetic agents.[38] Reports of blood pressure drops of 30% or more are thought to be at least partially due to inhibition of sympathetic nerve activity.[39] This effect is related to dose and rate of propofol administration. It may also be potentiated by opioid analgesics.[40] Propofol can also cause decreased systemic vascular resistance, myocardial blood flow, and oxygen consumption, possibly through direct vasodilation.[41] There are also reports that it may cause green discolouration of the urine.[42]

As a respiratory depressant, propofol frequently produces apnea. The persistence of apnea can depend on factors such as premedication, dose administered, and rate of administration, and may sometimes persist for longer than 60 seconds.[43] Possibly as the result of depression of the central inspiratory drive, propofol may produce significant decreases in respiratory rate, minute volume, tidal volume, mean inspiratory flow rate, and functional residual capacity.[38]

Diminishing cerebral blood flow, cerebral metabolic oxygen consumption, and intracranial pressure are also characteristics of propofol administration.[44] In addition, propofol may decrease intraocular pressure by as much as 50% in patients with normal intraocular pressure.[45]

A more serious but rare side effect is dystonia.[46] Mild myoclonic movements are common, as with other intravenous hypnotic agents. Propofol appears to be safe for use in porphyria, and has not been known to trigger malignant hyperpyrexia.[citation needed]

Propofol is also reported to induce priapism in some individuals,[47][48] and has been observed to suppress REM sleep stage and to worsen the poor sleep quality in some patients.[49]

As with any other general anesthetic agent, propofol should be administered only where appropriately trained staff and facilities for monitoring are available, as well as proper airway management, a supply of supplemental oxygen, artificial ventilation, and cardiovascular resuscitation.[50]

Another recently described rare, but serious, side effect is propofol infusion syndrome. This potentially lethal metabolic derangement has been reported in critically ill patients after a prolonged infusion of high-dose substance in combination with catecholamines and/or corticosteroids.[51]

People with this gene have trouble processing sulphites (one of the potential ingredients), and should discuss use of this drug with their specialist.

The respiratory effects of propofol are increased if given with other respiratory depressants, including benzodiazepines.[52]

Propofol has been proposed to have several mechanisms of action,[53][54][55] both through potentiation of GABAA receptor activity, thereby slowing the channel-closing time,[56][57][58] and also acting as a sodium channel blocker.[59][60] Recent research has also suggested that the endocannabinoid system may contribute significantly to propofol's anesthetic action and to its unique properties.[61]EEG research upon those undergoing general anesthesia with propofol finds that it causes a prominent reduction in the brain's information integration capacity at gamma wave band frequencies.[62]

Researchers have identified the site where propofol binds to GABAA receptors in the brain, on the second transmembrane domain of the beta subunit of the GABA A receptor.[63]

Propofol is highly protein-bound in vivo and is metabolised by conjugation in the liver.[64] The half-life of elimination of propofol has been estimated to be between 2 and 24 hours. However, its duration of clinical effect is much shorter, because propofol is rapidly distributed into peripheral tissues. When used for IV sedation, a single dose of propofol typically wears off within minutes. Propofol is versatile; the drug can be given for short or prolonged sedation, as well as for general anesthesia. Its use is not associated with nausea as is often seen with opioid medications. These characteristics of rapid onset and recovery along with its amnestic effects[65] have led to its widespread use for sedation and anesthesia.

Propofol was originally developed in the UK by Imperial Chemical Industries as ICI 35868. Clinical trials followed in 1977, using a form solubilised in cremophor EL. However, due to anaphylactic reactions to cremophor, this formulation was withdrawn from the market and subsequently reformulated as an emulsion of a soya oil/propofol mixture in water. The emulsified formulation was relaunched in 1986 by ICI (now AstraZeneca) under the brand name Diprivan. The currently available preparation is 1% propofol, 10% soybean oil, and 1.2% purified egg phospholipid as an emulsifier, with 2.25% glycerol as a tonicity-adjusting agent, and sodium hydroxide to adjust the pH. Diprivan contains EDTA, a common chelation agent, that also acts alone (bacteriostatically against some bacteria) and synergistically with some other antimicrobial agents. Newer generic formulations contain sodium metabisulfite or benzyl alcohol as antimicrobial agents. Propofol emulsion is a highly opaque white fluid due to the scattering of light from the tiny (about 150-nm) oil droplets it contains.

A water-soluble prodrug form, fospropofol, has recently been developed and tested with positive results. Fospropofol is rapidly broken down by the enzyme alkaline phosphatase to form propofol. Marketed as Lusedra, this new formulation may not produce the pain at injection site that often occurs with the traditional form of the drug. The US Food and Drug Administration approved the product in 2008.[66] However fospropofol is a Schedule IV controlled substance with the DEA ACSCN of 2138 in the United States unlike propofol.[67]

On 4 June 2010, Teva Pharmaceutical Industries Ltd., an Israel-based pharmaceutical firm and a major supplier of the drug, announced the firm would no longer manufacture it. This aggravates an already existing shortage, caused by manufacturing difficulties at Teva and Hospira. A Teva spokesperson attributed the halt to ongoing process difficulties, and a number of pending lawsuits related to the drug.[68] In Switzerland, various preparations of the drug are supplied by Fresenius-Kabi, a German company.

By incorporation of an azobenzene unit, a photoswitchable version of propofol (AP2) was developed in 2012 that allows for optical control of GABAA receptors with light.[69] In 2013, a propofol binding site on mammalian GABAA receptors has been identified by photolabeling using a Diazirine derivative.[70] Additionally, it was shown that the hyaluronan polymer present in the synovia can be protected from free-radical synovia by propofol.[71]

Propofol is one of the chemicals used in the manufacture of Avasamibe (ACAT inhibitor).

Read more:
Propofol - Wikipedia

Read More...

Integrative Medicine | Carin Nielsen, MD Serving Northern …

January 21st, 2017 4:45 am

Are you ready for a fresh approach to your health?Whether you have a chronic medical condition, want to lose weight, have a specific concern, or are simply looking to optimize your general health, Dr. Carin Nielsen can work with you to create a health care plan that is personalized for your individual needs.

Working with an experienced, board-certified physician makes a difference.

Dr. Nielsens innovative approach to treating a variety of medical concerns begins as soon as you walk through the door. One of the hallmarks that sets Dr. Nielsen apart from other physicians is the amount of time she spends getting to know you and discussing your concerns. Your questions will be answered and you will leave with the comfort of knowing that you are receiving a higher level of medical care than you have experienced in the past. Physician services include:

We are Petoskey's Integrative Medicine Specialists, providing Integrative and Functional Medicine and Medical Weight Loss in Petoskey, Harbor Springs, Bay Harbor, Walloon Lake, and across Northern Michigan.

Read the original:
Integrative Medicine | Carin Nielsen, MD Serving Northern ...

Read More...

Page 1,101«..1020..1,1001,1011,1021,103..1,1101,120..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick