header logo image


Page 49«..1020..48495051..60..»

Archive for the ‘Gene therapy’ Category

Gene therapy – Mayo Clinic

Monday, June 18th, 2018

Overview

Gene therapy involves altering the genes inside your body's cells in an effort to treat or stop disease.

Genes contain your DNA the code that controls much of your body's form and function, from making you grow taller to regulating your body systems. Genes that don't work properly can cause disease.

Gene therapy replaces a faulty gene or adds a new gene in an attempt to cure disease or improve your body's ability to fight disease. Gene therapy holds promise for treating a wide range of diseases, such as cancer, cystic fibrosis, heart disease, diabetes, hemophilia and AIDS.

Researchers are still studying how and when to use gene therapy. Currently, in the United States, gene therapy is available only as part of a clinical trial.

Gene therapy is used to correct defective genes in order to cure a disease or help your body better fight disease.

Researchers are investigating several ways to do this, including:

Gene therapy has some potential risks. A gene can't easily be inserted directly into your cells. Rather, it usually has to be delivered using a carrier, called a vector.

The most common gene therapy vectors are viruses because they can recognize certain cells and carry genetic material into the cells' genes. Researchers remove the original disease-causing genes from the viruses, replacing them with the genes needed to stop disease.

This technique presents the following risks:

The gene therapy clinical trials underway in the U.S. are closely monitored by the Food and Drug Administration and the National Institutes of Health to ensure that patient safety issues are a top priority during research.

Currently, the only way for you to receive gene therapy is to participate in a clinical trial. Clinical trials are research studies that help doctors determine whether a gene therapy approach is safe for people. They also help doctors understand the effects of gene therapy on the body.

Your specific procedure will depend on the disease you have and the type of gene therapy being used.

For example, in one type of gene therapy:

Viruses aren't the only vectors that can be used to carry altered genes into your body's cells. Other vectors being studied in clinical trials include:

The possibilities of gene therapy hold much promise. Clinical trials of gene therapy in people have shown some success in treating certain diseases, such as:

But several significant barriers stand in the way of gene therapy becoming a reliable form of treatment, including:

Gene therapy continues to be a very important and active area of research aimed at developing new, effective treatments for a variety of diseases.

Explore Mayo Clinic studies testing new treatments, interventions and tests as a means to prevent, detect, treat or manage this disease.

Dec. 29, 2017

Go here to read the rest:
Gene therapy - Mayo Clinic

Read More...

First Gene Therapy For An Inherited Disorder Gets Expert …

Saturday, October 14th, 2017

A panel of experts has recommended that the Food and Drug Administration approve a treatment developed by Spark Therapeutics for a rare form of blindness. Spark Therapeutics hide caption

A panel of experts has recommended that the Food and Drug Administration approve a treatment developed by Spark Therapeutics for a rare form of blindness.

Gene therapy, which has had a roller-coaster history of high hopes and devastating disappointments, took an important step forward Thursday.

A Food and Drug Administration advisory committee endorsed the first gene therapy for an inherited disorder a rare condition that causes a progressive form of blindness that usually starts in childhood.

The recommendation came in a unanimous 16-0 vote after a daylong hearing that included emotional testimonials by doctors, parents of children blinded by the disease and from children and young adults helped by the treatment.

"Before surgery, my vision was dark. It was like sunglasses over my eyes while looking through a little tunnel," 18-year-old Misty Lovelace of Kentucky told the committee. "I can honestly say my biggest dream came true when I got my sight. I would never give it up for anything. It was truly a miracle."

Several young people described being able to ride bicycles, play baseball, see their parents' faces, read, write and venture out of their homes alone at night for the first time.

"I've been able to see things that I've never seen before, like stars, fireworks, and even the moon," Christian Guardino, 17, of Long Island, N.Y., told the committee. "I will forever be grateful for receiving gene therapy."

The FDA isn't obligated to follow the recommendations of its advisory committees, but it usually does.

If the treatment is approved, one concern is cost. Some analysts have speculated it could cost hundreds of thousands of dollars to treat each eye, meaning the cost for each patient could approach $1 million.

Spark Therapeutics of Philadelphia, which developed the treatment, hasn't said how much the company would charge. But the company has said it would help patients get access to the treatment.

Despite the likely steep price tag, the panel's endorsement was welcomed by scientists working in the field.

"It's one of the most exciting things for our field in recent memory," says Paul Yang, an assistant professor of ophthalmology at the Oregon Health and Science University who wasn't involved in developing or testing the treatment.

"This would be the first approved treatment of any sort for this condition and the first approved gene therapy treatment for the eye, in general," Yang says. "So, on multiple fronts, it's a first and ushers in a new era of gene therapy."

Ever since scientists began to unravel the genetic causes of diseases, doctors have dreamed of treating them by fixing defective genes or giving patients new, healthy genes. But those hopes dimmed when early attempts failed and sometimes even resulted in the deaths of volunteers in early studies.

But the field may have finally reached a turning point. The FDA recently approved the first so-called gene therapy product, which uses genetically modified cells from the immune system to treat a form of leukemia. And last week, scientists reported using gene therapy to successfully treat patients suffering from cerebral adrenoleukodystrophy, or ALD, a rare, fatal brain disease portrayed in the film Lorenzo's Oil. Researchers are also testing gene therapy for other causes of blindness and blood disorders such as sickle cell disease.

The gene therapy endorsed by the committee Thursday was developed for RPE65-mutation associated retinal dystrophy, which is caused by a defective gene that damages cells in the retina. About 6,000 people have the disease worldwide, including 1,000 to 2,000 people in the United States.

The treatment, which is called voretigene neparvovec, involves a genetically modified version of a harmless virus. The virus is modified to carry a healthy version of the gene into the retina. Doctors inject billions of modified viruses into both of a patient's eyes.

In a study involving 29 patients, ages 4 to 44, the treatment appeared to be safe and effective. More than 90 percent of the treated patients showed at least some improvement in their vision when tested in a specially designed obstacle course. The improvement often began within days of the treatment.

"Many went from being legally blind to not being legally blind," said Albert Maguire, a professor of ophthalmology who led the study at the University of Pennsylvania, in an interview before the hearing.

The improvement varied from patient to patient, and none of the patients regained normal vision. But some had a significant increase in their ability to see, especially at night or in dim light, which is a major problem for patients with this condition.

"What I saw in the clinic was remarkable," Maguire told the committee. "Most patients became sure of themselves and pushed aside their guides. Rarely did I see a cane after treatment."

That was the case of Allison Corona, who's now 25 and lives in Glen Head, N.Y. She underwent the treatment five years ago as part of the study.

"My light perception has improved tremendously," Corona said during an interview before the hearing. "It's been life-changing. I am able to see so much better. I am so much more independent than what I was. It is so much better."

The patients have been followed for more than three years, and the effects appear to be lasting. "We have yet to see deterioration," Maguire says. "So far the improvement is sustained."

The injections themselves did cause complications in a few patients, such as a serious infection that resulted in permanent damage, and a dangerous increase in pressure in the eye. But there were no adverse reactions or any signs of problems associated with the gene therapy itself, the researchers reported.

While this disease is rare, the same approach could work for similar forms of genetic eye disease, Maguire says."There are a lot of retinal diseases like this, and if you added them together it's a big thing because they are all incurable."

If approved, the treatment would be marketed under the name Luxturna.

View original post here:
First Gene Therapy For An Inherited Disorder Gets Expert ...

Read More...

In a First, Gene Therapy Halts a Fatal Brain Disease – The …

Wednesday, October 11th, 2017

Scientists were understandably wary. Disabled AIDS viruses had not been used in human gene therapy. But I dont take no for an answer, Dr. Salzman said. I probably come just shy of stalking people.

The result of her lobbying was a tiny study in France in which researchers used a disabled form of HIV to deliver a normal form of the ALD gene. The investigators reported that the treatment seemed to stop brain degeneration in two boys.

Yet the idea behind the treatment seems almost preposterous: Take bone marrow stem cells from a boy with the ALD gene mutation. Insert a good gene into those cells and then infuse them back into the bone marrow.

Wait about a year while stem cells with the good genes multiply in the bone marrow. Eventually, they drift up into the brain, where they slowly turn into glial cells support cells that surround neurons and help insulate them.

The proper gene in the glial cells takes over, stopping the brain deterioration that would otherwise occur.

That unlikely process also explains why bone marrow transplants work, said David A. Williams, chief scientific officer at Boston Childrens Hospital and a principal investigator for the study. New bone marrow cells, from a healthy donor, supply good ALD genes to cells in the recipient that eventually become glial cells.

Either therapy must be administered early, before symptoms are apparent. In the year it takes for the treatment to become effective, the brains of children who are already showing symptoms can deteriorate to the point of no return.

The success of the small pilot study was enough to inspire the founding of a company, Bluebird Bio, which sponsored the bigger study in hopes of marketing gene therapy for ALD.

The company has now expanded that study to include an additional eight boys, and in separate research is following boys who had bone marrow transplants to compare outcomes.

For Paul Rojas of Dover Plains, N.Y., whose son was in the study, gene therapy has been a lifesaver. He never heard of the disease until his son Brandon, who was 7, started drooling, losing his ability to concentrate and listing to one side when he walked.

The diagnosis was a shock. And since Brandon was showing symptoms, it was too late for a bone-marrow transplant.

Brandons doctors, Mr. Rojas said, sat across from him and his wife, Liliana, in a small conference room and gave them the bad news: This is a disease that has no cure.

He had his 4-year-old, Brian, tested. He had the mutated gene, too.

The Rojases could not find a compatible donor for a bone-marrow transplant. But then they learned about the gene therapy trial and got Brian enrolled. He is now 7, with no sign of the disease.

But his older brother Brandon, now 10, no longer speaks, walks or eats. He has a feeding tube.

Brian misses playing with his brother, Mr. Rojas said. Brandon was his idol.

For Dr. Salzman, the results of the new gene therapy study have come too late. She had to get treatment for her son before he developed symptoms.

He had a cord blood transplant, which was successful. Her nephew also had one, but suffered complications and must use a wheelchair.

The results of the new study also give rise to a concern that is becoming a regular feature of gene therapy work and other new biotech therapies: How much will this treatment cost?

Bluebird Bio is not saying companies generally do not announce prices until their drugs are approved.

Dr. David A. Williams, chief scientific officer at Boston Childrens Hospital and a principal investigator of the new study, expects the price to be similar to the hundreds of thousands of dollars it costs for a bone-marrow transplant.

But the new treatment is a curative therapy, he said.

Dr. Friedmann is not assuaged by such arguments. The research enabling these products to come to market often begins with studies already paid for by grants from the federal government or from private foundations.

The expected prices, he said, are absolutely crazy.

See the original post:
In a First, Gene Therapy Halts a Fatal Brain Disease - The ...

Read More...

Overview of Gene Therapy Methods and Types of Gene Therapy

Sunday, September 3rd, 2017

Virtually all cells in the human body contain genes, making them potential targets for gene therapy. However, these cells can be divided into two major categories: somatic cells (most cells of the body) or cells of the germline (eggs or sperm). In theory it is possible to transform either somatic cells or germ cells.

Gene therapy using germ line cells results in permanent changes that are passed down to subsequent generations. If done early in embryologic development, such as during preimplantation diagnosis and in vitro fertilization, the gene transfer could also occur in all cells of the developing embryo. The appeal of germ line gene therapy is its potential for offering a permanent therapeutic effect for all who inherit the target gene. Successful germ line therapies introduce the possibility of eliminating some diseases from a particular family, and ultimately from the population, forever. However, this also raises controversy. Some people view this type of therapy as unnatural, and liken it to "playing God." Others have concerns about the technical aspects. They worry that the genetic change propagated by germ line gene therapy may actually be deleterious and harmful, with the potential for unforeseen negative effects on future generations.

Somatic cells are nonreproductive. Somatic cell therapy is viewed as a more conservative, safer approach because it affects only the targeted cells in the patient, and is not passed on to future generations. In other words, the therapeutic effect ends with the individual who receives the therapy. However, this type of therapy presents unique problems of its own. Often the effects of somatic cell therapy are short-lived. Because the cells of most tissues ultimately die and are replaced by new cells, repeated treatments over the course of the individual's life span are required to maintain the therapeutic effect. Transporting the gene to the target cells or tissue is also problematic. Regardless of these difficulties, however, somatic cell gene therapy is appropriate and acceptable for many disorders, including cystic fibrosis, muscular dystrophy, cancer, and certain infectious diseases. Clinicians can even perform this therapy in utero, potentially correcting or treating a life-threatening disorder that may significantly impair a baby's health or development if not treated before birth.

In summary, the distinction is that the results of any somatic gene therapy are restricted to the actual patient and are not passed on to his or her children. All gene therapy to date on humans has been directed at somatic cells, whereas germline engineering in humans remains controversial and prohibited in for instance the European Union.

Somatic gene therapy can be broadly split into two categories:

Originally posted here:
Overview of Gene Therapy Methods and Types of Gene Therapy

Read More...

Soon, Broken Bones Could be Fixed Using Gene Therapy and Microbubbles – Futurism

Sunday, September 3rd, 2017

In BriefResearchers healed bone fractures by attracting stem cells to the area and injecting a mix of microbubbles and DNA encoding a bone protein at the break. This method could replace bone grafting for nonhealing fractures.

Fixing broken limb bones after serious injuries can challenge even the most skilled orthopedic surgeons. Too much bone loss makes regrowth impossible, and even smaller fractures make bone growth problematic if the patient is in poor health or at an advanced age.

When physicians encounter these kinds of nonhealing fractures, autologous bone grafts are the gold standard for treatment. These bone grafts involve harvesting a segment of healthy bone, typically from the pelvis of the patient, which is then used to bridge the portion of the break that isnt growing new bone adequately. However, bone grafts are not always possible, depending on the patients health and the extent of the damage from the break.

Some doctors in recent years have started to try something new: incorporating bone morphogenetic proteins (BMPs) into bone implants to enhance healing. This isnt a sure thing, though. Through their traditional administration, BMPs come with significant side effects including bone formation in soft tissues and bone resorption.

These side effects might haveoccurred because BMPs wereadministered in large doses, so researchers came up with a new strategy: use gene therapy to deliver not the protein itself, but the underlying gene instead. This way the cells will get BMP at physiological levels solely at the site of the injury.

However, gettinggene therapiesinto the right cells isnt always easy. The genes are typically delivered using viral vectors, and these come with their own safety concerns. The researchers in this case used a relatively new delivery mechanism instead: sonoporation.

In sonoporation, an ultrasound is used to cause gas-filled microbubbles with lipid shells to oscillate and create tiny, easily repaired holes in cells. These tiny holes allow DNA for gene therapy to enter into the right place without affecting other areas. The next step was ensuring that the gene therapy targeted the correctcells. The team targeteda special form of stem cells that can become bone cells and produce BMPs proficiently.

The researchers trialled their new strategy in broken pig shinbones and found that the technique healed fractures after a single dose. They first inserted collagen scaffolds, because they attract the stem cells, and then waited for two weeks to allow the scaffolds to recruit sufficient numbers of stem cells.

Next, they injected a mix of microbubbles and BMP-encoding DNA at the fracture site, and applied an ultrasound pulse. The team then waited for eight weeks after the single instance of the gene therapy. The experimental fractures were healed, while the control animals fractures were not.

This innovative therapy could improve the recovery of millions of people around the world. While human trials must be conducted before we know whether hospitals should adopt the procedure,many of its components have shown enough promise for scientists to utilize them insimilar bone-healing experiments: One fracture-fixing strategy incorporates a specific form of BPM, and another therapy uses stem cells to revitalize bone growth.

View post:
Soon, Broken Bones Could be Fixed Using Gene Therapy and Microbubbles - Futurism

Read More...

Lexington biotech plots $86M IPO as key gene therapy trial nears – Boston Business Journal

Sunday, September 3rd, 2017

Boston Business Journal
Lexington biotech plots $86M IPO as key gene therapy trial nears
Boston Business Journal
A Lexington biotech developing gene therapy treatments for rare eye diseases has announced plans to raise up to $86 million in an initial public offering. Nightstar Therapeutics, a 23-employee company with a 3,300 square foot office in Lexington and a ...
Nightstar files for $86M IPO to fund gene therapy trialsFierceBiotech

all 14 news articles »

Original post:
Lexington biotech plots $86M IPO as key gene therapy trial nears - Boston Business Journal

Read More...

Gene Therapy for the Bacteria of Our Microbiome Could Improve Our Health – Genetic Engineering & Biotechnology News

Sunday, September 3rd, 2017

If you listen closely to gut bacteria and host cells, you learn that they speak the same language. You might then pick up the language yourself, giving you the ability to join the microbiomehost conversation, which is known to have implications for human health. And if you ever had trouble being heard, you could try putting words in the mouths of all those jabbering bacteria, steering the microbiomehost conversation toward healthy conclusions.

When bacteria and host cells talk, they do so via signaling molecules, such as the ligands that interact with membrane-bound G-protein-coupled receptors (GPCRs). To keep an ear out for such ligands, scientists based at Rockefeller University and the Icahn School of Medicine at Mt. Sinai used the tools of bioinformatics and synthetic biology. These scientists, led by Sean Brady, Ph.D., director of Rockefeller University's Laboratory of Genetically Encoded Small Molecules, were particularly attuned to N-acyl amides, which interact with GPCR receptors.

Dr. Brady and colleagues, including co-investigator Louis Cohen, Ph.D., found that gut bacteria and human cells may not speak in the same dialect, but they can understand each other. Building on this observation, the scientists developed a method to genetically engineer the bacteria to produce molecules that have the potential to treat certain disorders by altering human metabolism. In a test of their system on mice, the introduction of modified gut bacteria led to reduced blood glucose levels and other metabolic changes in the animals.

Details of this work appeared August 30 in the journal Nature, in an article entitled Commensal Bacteria Make GPCR Ligands That Mimic Human Signalling Molecules. The article describes newly discovered commonalities in bacteria and host signaling, and it explains how these commonalities suggest ways gut flora could be engineered to have therapeutically beneficial effects on disease.

We found that N-acyl amide synthase genes are enriched in gastrointestinal bacteria and the lipids that they encode interact with GPCRs that regulate gastrointestinal tract physiology, wrote the articles authors. Mouse and cell-based models demonstrate that commensal GPR119 agonists regulate metabolic hormones and glucose homeostasis as efficiently as human ligands, although future studies are needed to define their potential physiological role in humans.

The language shared by bacteria and host cells involves the lock-and-key relationship of ligands, which bind to receptors on the membranes of human cells to produce specific biological effects. In this case, the bacteria-derived molecules are mimicking human ligands that bind to GPCRs. Many of the GPCRs are implicated in metabolic diseases, Dr. Brady noted, and are the most common targets of drug therapy. And they're conveniently present in the gastrointestinal tract, where the gut bacteria are also found.

"If you're going to talk to bacteria," explained Dr. Brady, "you're going to talk to them right there." (Gut bacteria are part of the microbiome, the larger community of microbes that exist in and on the human body.)

In its work, the team led by Drs. Cohen and Brady engineered gut bacteria to produce N-acyl amides that bind with a specific human receptor, GPR 119, which is known to be involved in the regulation of glucose and appetite and has previously been a therapeutic target for the treatment of diabetes and obesity. The bacterial ligands they created turned out to be almost identical structurally to the human ligands, said Dr. Cohen, an assistant professor of gastroenterology in the Icahn School of Medicine at Mt. Sinai.

Among the advantages of working with bacteria, continued Dr. Cohen, who spent five years in Dr. Brady's lab as part of Rockefeller's Clinical Scholars Program, is that their genes are easier to manipulate than human genes and much is already known about them. "All the genes for all the bacteria inside of us have been sequenced at some point," he pointed out.

Although the ligands are the product of nonhuman microorganisms, Dr. Brady says it's a mistake to think of the bacterial ligands they create in the lab as foreign. "The biggest change in thought in this field over the last 20 years is that our relationship with these bacteria isn't antagonistic," he commented. "They are a part of our physiology. What we're doing is tapping into the native system and manipulating it to our advantage."

"This is a first step in what we hope is a larger-scale, functional interrogation of what the molecules derived from microbes can do," Dr. Brady said. His plan is to systematically expand and define the chemistry that is being used by the bacteria in our guts to interact with us.

See the rest here:
Gene Therapy for the Bacteria of Our Microbiome Could Improve Our Health - Genetic Engineering & Biotechnology News

Read More...

Pioneering gene therapy approved for leukaemia in the US – New Scientist

Friday, September 1st, 2017

Carrying a $475,000 price-tag

AP

By Mallory Locklear

A CAR-T treatment a type of gene therapy for cancer has been approved for use in the US. Announced by the US Food and Drug Administration (FDA) on Wednesday, this is the first approval anywhere in the world for a type of CAR-T therapy, although the techniques have been used experimentally for some time.

CAR-T therapy made headlines earlier this year, when it was announced a CAR-T approach had saved the life of Layla, a young child in the UK who had leukaemia. The approach involves reprogramming a persons own immune cells to make them better at targeting cancerous ones.

The drug that has been approved by the FDA is Kymriah, a treatment for B-cell acute lymphoblastic leukaemia, the most common childhood cancer in the US.

Advertisement

To synthesise Kymriah, a patient first has a type of immune cell, called T-cells, removed from their body and transported to a facility in New Jersey operated by the pharmaceutical firm Novartis. Here, viruses will be used to insert a gene into these cells. The gene codes for a protein called a chimeric antigen receptor (CAR).

These cells are then reinfused back into the person. The added protein helps these modified T-cells home in on and fight leukemia cells.

In a trial, this approach achieved an 83 per cent remission rate over a period of three months in people who hadnt responded to other treatment options. The FDA has approved Kymriah for people aged 25 or under who have not responded to other treatments, or who have relapsed.

Nearly half the people in the trial experienced a side effect caused by an unwanted immune response triggered by the altered T-cells. Because of this, the FDA is requiring staff at the 32 facilities approved for this treatment to undergo specific training to recognise this response, called cytokine release syndrome.

Kymriah will cost $475,000. This sounds high, but its lower than some analysts expected, and unlike many expensive cancer drugs, it is a one-off treatment that could result in years, not months, of extended lifespan.

The FDAs decision has been hailed as the first approval for a gene therapy in the US. Some argue that this isnt a true gene therapy, as the genes introduced into the T-cells are not the treatment themselves it is the transformed T-cells that go on to fight the cancer. But the FDA defines human gene therapy as products that introduce genetic material into a persons DNA to treat a disease, so has classified Kymriah as such.

Europe has already approved two gene therapies for inherited diseases, while China approved a gene therapy for cancer treatment in 2004.

As for CAR-T therapies, other firms have similar treatments in the works, while Novartis also plans to get Kymriah approved for treating lymphoma.

More on these topics:

Continued here:
Pioneering gene therapy approved for leukaemia in the US - New Scientist

Read More...

Weekend roundup: Campbell in the soup | New cancer gene therapy | Exposing bad investment advice – MarketWatch

Friday, September 1st, 2017

MarketWatch rounded up 10 of its most interesting topics over the past week.

Campbell Soup Co. CPB, -0.22% had a rough quarter, but the company is facing a dire long-term problem.

Novartis AG NVS, -0.08% received FDA approval for the first cancer gene therapy available in the U.S. Emma Court explained how important this is for young people suffering from a type of acute lymphoblastic leukemia (ALL), and she interviewed Janney analyst Paul Knight, who made recommendations for investors on how to play a potential decade-long growth cycle for gene therapy.

Here are charts that will help you sift through a boatload of absurdity spouted every day by self-styled stock-market gurus.

Nissan Motor Co. 7201, +0.27% is about to launch a redesigned Leaf electric car. The company has a big advantage over Tesla Inc. TSLA, -0.15% because of its huge manufacturing scale, but one big question is the new Leafs battery range, as Claudia Assis reports.

The startling increase in value for bitcoin rivals that of other types of assets that have bubbled and burst. Andrew Left believes the Bitcoin Investment Trust GBTC, -12.94% is a very dangerous investment.

The damage from Hurricane Harvey to the Houston area has been devastating. The coming flurry of activity as the damage is repaired might cause a rise in U.S. GDP, but Caroline Baum calls claims of real economic benefits predictable nonsense.

Amazon.com Inc. AMZN, +0.11% was called the weakest major U.S. retailer this week by Moodys Investors Service. But T. Rowe Price Media and Telecommunications Fund PRMTX, +0.69% is a big believer. The fund, which had more than quadrupled the S&P 500s return over the past 15 years, had more than 10% of its assets in Amazons shares as of July 31.

If you are retired, you might think it will be very difficult to get a mortgage loan because of low income. But there are many financing options available for those without a steady monthly income, according to Darrow Kirkpatrick.

Jeff Reeves weighs the pros and cons of scooping up shares of Apple Inc. AAPL, +0.05% right now.

If you get excited by Labor Day sales, you might be missing out on bigger savings later.

Want more from MarketWatch? Check out our Personal Finance Daily or other newsletters, and get the latest news, personal finance and investing advice.

See original here:
Weekend roundup: Campbell in the soup | New cancer gene therapy | Exposing bad investment advice - MarketWatch

Read More...

What are the ethical issues surrounding gene therapy …

Friday, September 1st, 2017

Because gene therapy involves making changes to the bodys set of basic instructions, it raises many unique ethical concerns. The ethical questions surrounding gene therapy include:

How can good and bad uses of gene therapy be distinguished?

Who decides which traits are normal and which constitute a disability or disorder?

Will the high costs of gene therapy make it available only to the wealthy?

Could the widespread use of gene therapy make society less accepting of people who are different?

Should people be allowed to use gene therapy to enhance basic human traits such as height, intelligence, or athletic ability?

Current gene therapy research has focused on treating individuals by targeting the therapy to body cells such as bone marrow or blood cells. This type of gene therapy cannot be passed on to a persons children. Gene therapy could be targeted to egg and sperm cells (germ cells), however, which would allow the inserted gene to be passed on to future generations. This approach is known as germline gene therapy.

The idea of germline gene therapy is controversial. While it could spare future generations in a family from having a particular genetic disorder, it might affect the development of a fetus in unexpected ways or have long-term side effects that are not yet known. Because people who would be affected by germline gene therapy are not yet born, they cant choose whether to have the treatment. Because of these ethical concerns, the U.S. Government does not allow federal funds to be used for research on germline gene therapy in people.

Read the original here:
What are the ethical issues surrounding gene therapy ...

Read More...

Has the Era of Gene Therapy Finally Arrived? – Scientific American (blog)

Friday, September 1st, 2017

In 1990, geneticist William French Anderson injectedcells with altered genes into a four-year-old girl with severe immunodeficiency disorder. This was the first sanctioned test of gene therapy, in which genetic material is used to treat or prevent disease.

If were lucky, Anderson told The Chicago Tribune, with this little girl weve opened the door for genetic engineering to attack major killers and cripplers, particularly AIDS, cancer and heart disease.

Gene therapy has never fulfilled these grand hopes. In the decades since Andersons experiment, thousands of clinical trials of gene therapies have been carried out. But the first gene therapy was only approved for sale in the U.S. this week. The Food and Drug Administration announced its approval of Kymriah, a gene therapy produced by Novartis for a form of childhood leukemia. A few gene therapies have previously become available in Europe and China.

An FDA press release emphasizes the historic nature of the approval. Were entering a new frontier in medical innovation with the ability to reprogram a patients own cells to attack a deadly cancer, FDA Commissioner Scott Gottlieb says.

As I have noted previously, for gene-therapy proponents have long predicted that it will eliminate diseases such as cystic fibrosis and early-onset breast cancer, which are traceable to a defective gene. Enthusiasts also envisioned genetically engineered "designer babies" who would grow up to be smarter than Nobel laureates and more athletic than Olympians.

Gene therapy turned out to be extremely difficult, because it can trigger unpredictable, fatal responses from the body's immune system.The National Institutes of Health warnsthat gene therapy can have very serious health risks, such as toxicity, inflammation, and cancer.

Kymriah is a case in point. The FDA press release warns that Kymriah can cause life-threatening immune reactions and neurological events, as well as serious infections, low blood pressure (hypotension), acute kidney injury, fever, and decreased oxygen (hypoxia). According to The New York Times, the FDA is requiring that hospitals and doctors be specially trained and certified to administer [Kymriah], and that they stock a certain drug needed to quell severe reactions.

Kymriah illustrates another problem with gene therapy: high cost. Novartis estimates the cost of its treatment at $475,000 per patient. As a recent Reuters article notes, over the past five years two gene therapies have been approved for sale in Europe, one for a rare blood disease and the other for the bubble-boy immunodeficiency disorder. The therapies cost $1 million and $700,000, respectively. So far, the companies that make the therapies have achieved a total of three sales.

As journalist Horace Freeland Judson points out in this excellent 2006 overview, The Glimmering Promise of Gene Therapy, most individual diseases caused by single-gene defectsthe kind that seem most likely to be cured by gene therapyare rare. (Sickle-cell anemia and some other hemoglobin disorders are among the few exceptions.)

Judson adds that because different diseases have different genetic mechanisms and affect different types of tissue, each presents a new set of research problems to be solved almost from scratch. As the millions burned away, it became clear that even with success, the cost per patient cured would continue to be enormous. And success had shown itself to be always glimmering and shifting just beyond reach.

The advent of CRISPR, a powerful gene-editing technique, has aroused hopes that gene therapy might finally fulfillexpectations. Researchers recently reported that they employed CRISPR to counteract a mutation that causes heart disease. Potentially, The New York Times reported last month, the method could apply to any of more than 10,000 conditions caused by specific inherited mutations.

CRISPR has also renewed concerns about the ethics of producing designer babies with enhanced physical and mental traits. But as Science noted recently, CRISPR poses some of the same risks as gene therapies. CRISPR still has a long way to go before it can be used safely and effectively to repairnot just disruptgenes in people.

So to answer the question posed in the headline: No, the gene-therapy era has still not arrived.

See the original post here:
Has the Era of Gene Therapy Finally Arrived? - Scientific American (blog)

Read More...

How Does Gene Therapy Work? – CBS Minnesota / WCCO

Friday, September 1st, 2017

MINNEAPOLIS (WCCO) Colin Cooley of Burnsville beat lymphoma four years ago, but the lymphoma came back in a different spot two years later.

Chemo wasnt cutting it, Cooley said. It was keeping it in check, but it wasnt getting rid of it.

He decided to undergo a clinical trial at the University of Minnesota. He received a gene therapy called CAR-T and is now cancer-free.

The FDA approved CAR-T Wednesday as the first type of gene therapy in the United States.

The treatment has been called a breakthrough in the fight against cancer. It is only approved right now to treat children with acute lymphoblastic leukemia, but doctors are excited about its potential for other cancers and diseases.

Doctors at the University of Minnesotas Cancer Day at the Minnesota State Fair called the therapy a major leap.

(credit: CBS)

Were able to take a patients own cells and turn them into something that can actually attack their specific cancer, said Dr. Edward Greeno, medical director of the University of Minnesotas Masonic Cancer Clinic. Many people have referred to this as living cancer because were taking live cells and turning them into your treatment.

First, a patients blood is drawn and their T-cells, or immune cells, are separated out. Those T-cells are then sent to a laboratory to be genetically modified and reprogrammed to zero in on the cancer.

Those modified cells are then multiplied in the lab before being returned to the patient via blood. They are essentially revved-up cells that are missiles for the cancer.

In one significant study, 83 percent of the patients who received CAR-T went into remission.

This treatment is expected to be offered for lymphoma patients next year. Dr. Greeno says it could be decades, though, before its offered to patients with other types of cancer.

Right now, its expensive almost $500,000 and used mostly on patients when other methods of treatment, like chemotherapy, have failed.

Before I didnt know if Id be here in three or four or five years, I didnt know, Cooley said. Now I feel like I have a new lease, some minor issues, but a new lease on life, and thats pretty exciting.

Read more here:
How Does Gene Therapy Work? - CBS Minnesota / WCCO

Read More...

First gene therapy to treat cancer gets FDA approval; UM only Michigan hospital to use it – Detroit Free Press

Friday, September 1st, 2017

HUMANKIND VIDEOS Quiet dad freaks out when baby #4 is born | 0:39

A normally quiet dad of three girls can't help but celebrate when he finds out his fourth child is a boy. Humankind

1 of 8

This police officer with the Austin Police Department in Minnesota spotted an elderly lady dancing in a parking lot alone. The officer pulled up, blasted the music, and joined her for a dance. Humankind

2 of 8

Wyatt constantly pushes himself in the gym, and in everyday life, even after a motorcycle accident left him paralyzed from the waist down. Humankind

3 of 8

Branson found his two-year-old twin cousins face down in the pool. He started CPR, and helped save their lives. Humankind

4 of 8

After being bullied for most of her life, Lindsay has found her strength and confidence through sports. Humankind

5 of 8

A mom-to-be wanted to surprise her mom with her pregnancy, so she put a shirt on her dog that says, I am going to be sister. Animalkind

6 of 8

Roxy can't stop eyeing her owner's Doritos, but when she's caught staring, she quickly looks away. Animalkind

7 of 8

These kids rapping about school will get you out of your seat. Humankind

8 of 8

Quiet dad freaks out when baby #4 is born

Police officer finds lady dancing in parking lot alone, joins in

Paralyzed teens pull-up video is incredible to watch

Six-year-old saves drowning babies with CPR

Runner with alopecia overcomes bullying, finds confidence

Grandma can't contain her excitement over baby announcement

Dog can't stop eyeing mama's snacks

Kids combine rap and college goals to create songs of success

Dr. Gregory Yanik, clinical director of the Pediatric Blood and Marrow Transplantation Program at C.S. Mott Children's Hospital in Ann Arbor, works with Maryam Rasheed of Macomb Township. Maryam was part of a clinical trial using gene therapy to successfully treat her leukemia.(Photo: Sophie Masson/Michigan Medicine)

The U.S. Food and Drug Administrationapproved on Wednesdaythe first-ever gene therapytotreat children and young adults withleukemia.

Called Kymriah, but better known as CAR T-cell treatment, the therapy is being hailed by doctors as revolutionary. Itinvolves genetically modifyinga patient's own T-cells, which thencantarget and kill a form of acute lymphoblastic leukemiacells.

This new treatment has the potential to change the face of cancer therapy for years to come, not just in childhood acute lymphoblastic leukemia but in other cancers in which a patients own T-cells can be collected, genetically modified and redirected to kill a patients tumor," said Dr.Gregory Yanik, clinical director of the Pediatric Blood and Marrow Transplantation Program at the University of Michigan's C.S. Mott Children's Hospital. Mottwas one of a few hospitals nationally to take part inclinical trials of the treatment.

"This allows us to turn patients own cells into a powerful weapon to fight the disease a weapon that does not rely on chemotherapy but takes a whole new approach to attacking childhood leukemia, Yanik said.

The CAR T-cell treatmentoffers new hope for children like Maryam Rasheed, 10, of Macomb Township.

Maryam was diagnosed with B-cell acute lymphoblastic leukemia at age 4, when her family was seeking refuge from religious persecution in Turkey, said Maryam's mother, Asmaa Rasheed.

Maryam Rasheed (right) with her brother, Rashid, and sister Samantha. Maryam, 10 of Macomb Township, survived acute lymphoblastic leukemia.(Photo: Rasheed family photo)

"My country is Iraq," Asmaa Rasheedsaid. "It wasnt safe. We are Christian. It was so hard over there in Baghdad. We run away to Turkey.

"We take her to hospital the first timebecause ... she stopped eating, stopped walking, stopped talking. We bring her to emergency. The doctor decided to take her bone marrow to do tests. Then the results came back, and she have leukemia."

Maryam underwent her firstchemotherapy treatment in Turkey.

"Over there, it was so hard," Rasheed said. "The doctors dont speak English over there. We know English a little bit. We speak Arabic."

Maryam Rasheed of Macomb Township undergoes treatment for acute lymphoblastic leukemia. She is now in remission.(Photo: Rasheed family photo)

Rasheed stayed with her daughter for two months in the Turkish hospital. A few months later,the Rasheed family was able to immigrate to the U.S. and settled in Michigan.

But Maryam's cancer returned. She was treated at Children's Hospital of Michigan with more chemotherapy and radiation. In 2013,her younger brother, Rashid, proved to be a match for a bone marrow transplant.

Still, the cancer wouldn't relent.

The Rasheed family learned of a clinical trial for CAR T-cell therapy under way atMott. It was the family's last chance,Rasheed said.

Maryam Rasheed, 10, of Macomb Township holds up her arms joyfully. She's surrounded by her sister Samantha (left), brother, Rashid, and baby sister Annabell.(Photo: Rasheed family photo)

"There was nothing to do," her mother said."In Detroit, there was chemo, radiation, bone marrow transplant. It returned back three times. She lose her hair three times. It was so hard for her and my family."

She remembers the date Maryam started the clinical trial at Mott: Dec. 17, 2014. Maryam spent Christmas and her seventh birthday in the hospital.

"I think we waited like 100 days,I dont remember exactly, and they did a bone marrow test, and the medicine, it work!" Rasheed said.

"It was like a dream, you know, like light coming from far away when youre in the dark. Theres nothing else we could do. But the CART-cell was like a shining light from far away."

Maryam has been in remission two years, andis starting fourth grade next week at Shawnee Elementary School in Macomb Township.

"Now, shes start her life, and doing everything a little kid is doing," said Rasheed, who says she hopes the treatment helps other children, too.

So does Yanik.

"Acute lymphoblastic leukemia is the most common form of cancer in children, accounting for approximately25% of all childhood cancers," Yanik said. "This particular therapy utilizes a childs own immune system to target their leukemia."

Theclinical trials focused on the 15% to 20% ofchildren whoseB-cell acute lymphoblastic leukemia had either relapsed or who had residual leukemia cells in their bone marrow after treatment.

"Historically, such patients would have an estimated cure rate of approximately 10%," Yanik said. "The two trials were groundbreaking. In the most recent trial, 52 of 63 patients with childhood leukemia successfully entered complete remission with this therapy."

Novartis Pharmaceuticals Corp. got the FDA approval for the gene cell therapy, whichinvolves drawing blood from childrenwith B-cell acute lymphoblastic leukemia. The T-cellsin the child's blood are thenshipped to a lab where they are genetically engineered so theywillseek outa particular protein in the leukemia cells and attack. Patients are then infused with the modified blood, and the T-cells go to work to find and kill the leukemia.

The New York Times reported Wednesday that the therapy will cost $475,000 for the initial treatment, with additional treatments administered at no cost.

Although 83% of the children in the clinical trials for CAR T-cell therapy went into remission, Yaniksaid it's too early to tell howcurative treatmentswill prove in the long run. And, its use will be limited to only a few medical centers in the U.S.

"The University of Michigan is the only site in the state and within this region that is licensed to administer these cells for childhood leukemia," he said.

Offering the treatment at a large medical center like U-Mis essential, said Dr. Rajen Mody,a pediatric oncologist at Mott, because of the severity ofpotential side effects.

"It can cause serious side effects, especially within the first 21 days," said Mody, who is Mott's director of pediatric oncology. "Patients can have high fevers, bleeding complications, trouble breathing, infections. ... Thats why a hospital like the University of Michigan is the ideal place. ... Patients who undergo this treatment are usually so sick after an infusion of the CAR-T cells, that they can't be safely treated at smaller hospitals."

Dr. Rajen Mody, a pediatric oncologist at the University of Michigan's C.S. Mott Children's Hospital.(Photo: University of Michigan)

Yanik is hopeful that successful treatment with CAR T-cell therapy in children with leukemia will open the door for similar therapies targeting other cancers.

"Aseparate CAR T-cell trial targeting diffuse large-cell lymphoma was recently completed with the results in that clinical trial now under review at the FDA," he said. That trial alsoincluded adult patientsat the University of Michigan.

Mody called the gene therapy revolutionary.

"This is clearly a life-saving and potentially curative therapy," he said."Its being tested in other types of leukemia and solid tumors. Its too early to say whether its going to work as well for other cancers.... We are not there yet."

Still, he said, it's made all the difference for Maryam and her family.

"She was one of the lucky ones coming from Iraq, and with all the things she has survived. And then coming here and surviving this,... she clearly has some goodluck.

"I think she should do very well. Patients who actually survive the first six months and still have CAR T-cells detected in their systems tend todo very, very well."

Contact Kristen Jordan Shamus: 313-222-5997 or kshamus@freepress.com. Follow her on Twitter @kristenshamus.

Read or Share this story: http://on.freep.com/2wV39dg

Read the original here:
First gene therapy to treat cancer gets FDA approval; UM only Michigan hospital to use it - Detroit Free Press

Read More...

Nightstar files for $86M IPO to fund gene therapy trials – FierceBiotech

Friday, September 1st, 2017

Nightstar Therapeutics has filed to raise up to $86 million in a Nasdaq IPO. The money will equip Nightstar to complete a phase 3 trial of its choroideremia gene therapy and advance two other eye disease candidates through early-stage clinical studies.

London-based Nightstar, also known as NightstaRx, is set to move the choroideremia asset into phase 3 in the first half of next year. The therapy, NSR-REP1, is advancing into the 140-patient trial on the strength of data on 32 subjects treated in investigator-sponsored studies. Those trials found 90% of patients either maintained or improved their visual acuity in the year after receiving the gene therapy.

Given choroideremia causes currently-untreatable progressive vision loss, Nightstar sees the data as supporting further development. The asset is moving forward with a fairly clean safety profile in the 50 people treated to date. Investigators have seen one adverse eventtransient intraocular inflammationthat may have stemmed from treatment with NSR-REP1.

Challenges await Nightstar as it scales up for the phase 3 trial and potentially commercial sales, though. The biotech acknowledges the administration of NSR-REP1 requires significant skill and training, potentially creating a bottleneck to use of the gene therapy. And as a small, unpartnered player in a new field, any number of events could knock it off course.

What Nightstar does have is a head start. Spark Therapeutics has the most advanced challenger to NSR-REP1 but its program is yet to move past phase 1/2. The field is similarly clear for Nightstars follow-up candidate NSR-RPGR, which moved into the clinic just ahead of MeiraGTxs rival X-linked retinitis pigmentosa gene therapy. AGTCs Biogen-partnered candidate is close behind.

Nightstar has reached this point using money from a succession of private rounds, starting with the 12 million Syncona invested when the biotech spun out of the University of Oxford in 2014. The biotech pulled in a further 5 million when it named former Johnson & Johnson VP David Fellows as CEO early in 2015. A $35 million series B round followed late in 2015. And Nightstar broadened its investor base and raised a further $45 million in a series C round a few months ago.

Along the way, Nightstar has built out a team in preparation for the broadening of its clinical trial program and life on public markets. Last month, Ex-Pfizer clinical lead Tuyen Ong, M.D., left PTC Therapeutics to serve as chief development officer. And in April, Nightstar hinted at its IPO plans by recruiting the man who led Intercept Pharmaceuticals repeated public raises, Senthil Sundaram.

The question now is how receptive public investors are to gene therapy biotechs. The companies in the sector to go public to date have delivered mixed returns, with the successes of bluebird bio and Spark offset by the steady decline of uniQure and implosion of Dimension Therapeutics.

See the rest here:
Nightstar files for $86M IPO to fund gene therapy trials - FierceBiotech

Read More...

Man describes new FDA-approved gene therapy for leukemia that … – fox4kc.com

Friday, September 1st, 2017

Please enable Javascript to watch this video

KANSAS CITY, Mo. -- Lucas Novick, 27, has been in a battle with leukemia since his freshman year of college.

"I was having headaches that were so bad that they were causing vomiting pretty regularly and I couldn`t see straight well enough that I felt safe driving myself to school," Novick said.

Since 2009, Novick has endured a number of treatments including chemotherapy and a bone marrow transplant. The treatments have taken a physical and mental toll on Novick's body.

"The transplant that was supposed to save my life also nearly took it from me," Novick said. "The damage chemotherapy did to my body when I was first treated in 2009 and 2010 was such that I was walking with a cane after my 21st birthday. It did so much damage to my hip joints that they were replaced in 2011."

But after Novick's leukemia returned for a second time, he went to Children's Mercy Hospital where doctors were performing an experimental treatment.

"The approval of the CTL019 product for pediatric patients with relapsed refractory acute lymphoblastic leukemia is really exciting for us," Doctor Doug Myers, of Children's Mercy Hospital, said. "We`ve spent a lot of time working on ways to get the immune system into the fight against cancer because we think it can decrease toxicity, decrease the amount of chemotherapy and radiation that we use for these cancers."

Dr. Myers said the treatment helped Novick, a musician, back onto the stage and has held his leukemia awayfor two years.

"Those are really special rewards for us in this field that have seen so many failures of this type of therapy in the past. To see this go forward, move forward, do well enough for a pharmaceutical company will pick this up and take it the rest of the way, that`s a really special time for us," Dr. Myers said.

While doctors believe it's too early to call the new treatment a cure, many agree this is the first step to a new generation of cancer treatment.

"I know at the end of the day that this is the future of medicine," Novick said.

Read more from the original source:
Man describes new FDA-approved gene therapy for leukemia that ... - fox4kc.com

Read More...

Local pediatric oncologist hopeful new gene therapy will save lives – WTVC

Friday, September 1st, 2017

Erlanger hopes to bring the treatment to the patients who need it most within the next few years . (Coutesy: WTVC)

Wednesday, the Food and Drug Administration cleared the way for a ground breaking cancer treatment in the United States.

It's a gene therapy treatment named CAR-T therapy.

Dr. Meghann McManus is a Pediatric Hematologist Oncologist at Erlanger in Chattanooga.

On Thursday, Dr. McManus described the treatment as the "first gene therapy treatment for any type of cancer in the pediatric world or adult world."

In layman's terms, Dr. McManus said the treatment allows doctors to remove a patients "T-cells, which are a type of white blood cell," send them to a lab "where their genetically modified to fight their certain type of leukemia."

"It uses the patients own immune system, their own cells from their own body, to fight their leukemia. Which is not something that we do with any other disease," Dr. McManus said.

At this time, Dr. McManus said CAR-T therapy is approved for "children that have relapsed or with refractory disease."

"We may not be able to stop cancers from happening... but if we could treat it in a way to get rid of the cancer without big side effects or tolls on patients, it would change the way we do our job," Dr. McManus said.

Read more from the original source:
Local pediatric oncologist hopeful new gene therapy will save lives - WTVC

Read More...

Gene Therapy – Abeona Therapeutics

Thursday, August 31st, 2017

Gene therapy is the use of DNA as a potential therapy to treat a disease.In many disorders, particularly genetic diseases caused by a single genetic defect, gene therapy aims to treat a disease by delivering the correct copy of DNA into a patients cells.The healthy, functional copy of the therapeutic gene then helps the cell function correctly.

In gene therapy, DNA that encodes a therapeutic protein is packaged within a vector, often a naked virus, which is used to transfer the DNA to the inside of cells within the body. Gene therapy can be delivered by a direct injection, either intravenously (IV) or directly into a specific tissue in the body, where it is taken up by individual cells. Once inside cells, the correct DNA becomes expressed by the cell machinery, resulting in the production of therapeutic protein, which in turn treats the patients disease and can provide long-term benefit.

Abeona is developing next generation adeno-associated virus (AAV) gene therapies. Viruses such as AAV are utilized because they have evolved a way of encapsulating and delivering one or more genes of the size needed for clinical application, and can be purified in large quantities at high concentration. Unlike AAV vectors found in nature, the AAV vectors used by Abeona have been genetically-modified such that they do not replicate. Although the preclinical studies in animal models of disease demonstrate the promising impact of AAV-mediated gene expression to affected tissues such as the heart, liver and muscle, our programs use a specific virus that is capable of delivering therapeutic DNA across the blood brain barrier and into the central nervous system (CNS), making them attractive for addressing lysosomal storage diseases which have severe CNS manifestations of the disease.

Lysosomal storage diseases (LSD) are a group of rare inborn errors of metabolism resulting from deficiency in normal lysosomal function. These diseases are characterized by progressive accumulation of storage material within the lysosomes of affected cells, ultimately leading to cellular dysfunction. Multiple tissues ranging from musculoskeletal and visceral to tissues of the central nervous system are typically involved in disease pathology.

Since the advent of enzyme replacement therapy (ERT) to manage some LSDs, general clinical outcomes have significantly improved; however, treatment with infused protein is lifelong and continued disease progression is still evident in patients. Thus, viral gene therapy may provide a viable alternative or adjunctive therapy to current management strategies for LSDs.

Our initial programs are focused on LSDs such as Mucopolysaccharidosis (MPS) IIIA and IIIB, also known as Sanfilippo syndromes type A and type B. MPS III is a progressive neuromuscular disease with profound CNS involvement. Our lead product candidates, ABO-101 and ABO-102, have been developed to replace the damaged, malfunctioning enzymes within target cells with the normal, functioning version.

Delivered via a single injection, the drug is only given once.

Here is the original post:
Gene Therapy - Abeona Therapeutics

Read More...

‘Hit-and-run’ gene therapy nanoparticles could enhance CAR-T … – FierceBiotech

Thursday, August 31st, 2017

Personalized cancer treatments known as CAR-T cells (chimeric antigen receptor T cells) have dominated the headlines lately, thanks to Novartis tisagenlecleucel, which won an early approval from the FDA for the treatment of leukemia on Aug. 30. But CAR-T treatments are labor-intensive and expensive to make, and they can attack healthy tissues in the body, leading to dangerous side effects.

Scientists at the Fred Hutchinson Cancer Research Center have developed a tool that they believe could address both those shortcomings of CAR-T and other forms of cell engineering. They have invented nanoparticles that deliver proteins to cells, which in turn edit those cells genes temporarily. Lead author and bioengineer Matthias Stephan describes it as hit-and-run gene therapy, and he believes the technique will streamline the manufacturing of cell-based therapies.

Heres how it works: The nanoparticles home in on specific cells, such as the T cells in the immune system. They then deposit messenger RNA (mRNA) to those cells, which triggers short-term changes in the proteins the genes produce. The technology does not permanently change the DNA, but it makes enough of an impact on it to produce a therapeutic outcome.

RELATED: Can CAR-T cancer treatments be fine-tuned to avoid toxic side effects?

Whats more, the nanoparticles can be freeze-dried and then activated with a small amount of water. They really let you fulfill all your wishes as a genetic engineer because you can pack in all your different [gene-therapy] components and further improve the therapeutic potential of your cell product without additional manufacturing steps, Stephan said in an article posted on Fred Hutchs website.

Stephans team proved out their concept by testing the nanoparticles in three different cell-engineering applications, one of which was CAR-T. Currently, CAR-T treatments are made by giving T cellsgenes that teach them to destroy cancer cells. The Fred Hutch scientists used their nanoparticles to remove a different gene from T cellsone that normally prompts them to attack healthy tissue.

Then they tried enhancing the CAR-T cells in a different manner. They temporarily gave them genes that have the potential to make central memory T cells, which are able to survive over the long term, remembering their cancerous targets and attacking them should they ever resurface.

The scientists tested their engineered CAR-T cells in mouse models of leukemia and found that the animals that received them lived twice as long as mice that got conventional CAR-T cells. They also tested the nanoparticles in two other cancer-related applications of gene therapy.

Despite all the excitement over CAR-T, concerns about side effects continue to dog the field. A dangerous immune reaction known as a cytokine storm has been seen in trials of both Novartis treatment and Axi-Cel, a CAR-T from Kite Pharma, which is being acquired by Gilead. The third player in the CAR-T field, Juno Therapeutics, saw its late-stage trials delayed when some patients died of neurological side effects.

Fred Hutch scientists have been working on other techniques for improving CAR-T. In December, a set of researchers there who receive funding from Juno announced positive results from a trial of a fine-tuned CAR-T treatment in patients with chronic lymphocytic leukemia (CLL). Instead of using just one type of CAR-T, the team combined two specially selected cell subtypes into one treatment. They also announced they had identified biomarkers that they believe can be used to predict which patients are likely to have severe reactions to the treatment.

Stephans team is now collaborating with several companies to fine-tune CAR-T treatments for cancer, according to Fred Hutch. And they believe their freeze-dried nanoparticles may prove useful in developing treatments for a range of other diseases, too, including HIV and blood disorders caused by defective hemoglobin.

Read the original:
'Hit-and-run' gene therapy nanoparticles could enhance CAR-T ... - FierceBiotech

Read More...

FDA approves gene therapy that could fight type of leukemia – KMSP-TV

Thursday, August 31st, 2017

(KMSP) - Charlotte Gifford is almost 5 years old with dreams of looking like her favorite Disney princess.

Rapunzel, because she has the long hair, says Charlotte.

Charlotte lost her own long locks after being diagnosed last March with b-cell acute lymphoblastic leukemia, the most common form of leukemia to develop in children and young adults.

Once we got the word it was leukemia. Our world came down it crumbled, says Erica Gifford, Charlottes mom.

Erica and Adam Gifford are thrilled the Food and Drug Administration announced approval of the first gene therapy in the United States. Car t-cell gene therapy can be used for Charlottes type of leukemia, affecting anyone under 25 years old.

Its a new treatment with an entirely different flavor, says Dr. Daniel Weisdorf, Professor of Medicine and Chief Division of Hematology, Oncology and Transplantation. Its not a drug, but a way to take the patients own cells, their normal cells, and engineer the cells so they will specifically and uniquely attack the leukemia cells.

Weisdorf witnessed success from this treatment, as some patients from University of Minnesota Health and Masonic Cancer Center were part of the clinical trials.

The treatments are remarkably effective but complicated to administer because the patients get very sick, says Weisdorf.

The Leukemia and Lymphoma Society has helped fund research for decades, and today, Executive Director Teri Cannon is celebrating a major medical milestone.

Nowadays 90 percent of young people diagnosed with leukemia survive, says Cannon, Those kids that relapse and standard therapy doesn't work for them, 83 percent of the kids who have used car t-therapy in the clinical trial have survived. So that's going to bring us a lot closer to that 100 percent that is going to make parents happy.

As for Charlotte, she's doing well and in remission. Hopefully she'll never need the this newly approved gene therapy reserved for patients whose cancer has returned. For the Giffords, this major medical advancement offers their family and others optionsand hope.

You dont know how important it is until your own child is diagnosed with cancer, says Gifford.

Charlotte continues steroid, chemo and physical therapy. Her parents have started a Go Fund Me Page.

View post:
FDA approves gene therapy that could fight type of leukemia - KMSP-TV

Read More...

US approves breakthrough gene therapy for childhood leukemia – Deutsche Welle

Thursday, August 31st, 2017

The US Food and Drug Administration (FDA) on Wednesday approved a "historic" treatment that genetically engineers a patient's own immune cells to fight childhood leukemia.

The procedure, known as CAR-T cell therapy, takes a patient's immune cells, or T-cells and white blood cells, and genetically modifies them to give a power boost to viciously target leukemia.

Once transfused back into the patient, the immune cells then attack leukemia cells for months or even years.

"We're entering a new frontier in medical innovation with the ability to reprogram a patient's own cells to attack a deadly cancer," said FDA Commissioner Scott Gottlieb. "New technologies such as gene and cell therapies hold out the potential to transform medicine and create an inflection point in our ability to treat and even cure many intractable illnesses."

Read more:Fighting cancer with methadone - making chemotherapy more powerful

Last resort

The treatment was developed by Novartis Pharmaceuticals and the drug is known as Kymriah (tisagenlecleucel).

The immune system-altering treatment was approved for patients aged3 to 25 with a blood cancer called acute lymphoblastic leukemia (ALL),the most common form of childhood cancer in the US.

About 3,100 people under the age of 20 are diagnosed with ALL each year in the United States.Around20 percent of those with ALL fail to respond to traditional drug, bone marrow transplants and chemotherapy treatments. Typically, young patients with ALL who fail chemotherapy have only a 30 percent chance of survival.

The breakthrough treatment would only be used if the disease failed to respond to standard treatment.

The therapy would cost $475,000 (400,000 euros) per dose, but Novartis said anyone who didn't respond within a month would not have to pay. Typical treatments of ALL, such as bone marrow transplants, can run up to $800,000 in the first year.

Application to be filed in EU

According to studies, about 83 percent of patients responded to CAR-T cell therapy went into remission after three months.

The treatment does carry potential side effects, including an immune overreaction, fever, high blood pressure, neurological reactions, acute kidney injury and decreased oxygen.

Questions also remain about the drug's possible long-term side effects and ability to preventALL from coming back.

Due to their age, many of those suffering from the disease would be covered by their parent's health insurance or Medicare in the US.

The procedure is best known for treating a now 12-year-old girl named Emily Whitehead, who has been cancer-free for five years after being the first child to receive the experimental therapy.

An application for CAR-T is expected to be filed with the European Medicines Agency by the end of the year.

cw/cmk(AP, AFP)

Read the rest here:
US approves breakthrough gene therapy for childhood leukemia - Deutsche Welle

Read More...

Page 49«..1020..48495051..60..»


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick